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biquadratic Gauss sums, II

By Hiroshi ITO

(Received April 20, 1987)

§1. Introduction.

For a prime number p=5(mod8) take positive integers a and b such that
p=a?+4b* and put w=w,=a+2bi. Consider the Gauss sum

P-l/m iy
Tp _— 2 (__) ez,.mm/p ,
m=1\@/4

where (%)4 is the biquadratic residue symbol in Gauss’ number field Q(Z). We
write
Tp = g, PpMt with O<arg (w1’2)<—Z—.

It is known that ej=1. Furthermore we put
(p-D/2/m

Cp - 2 ("") .

m=1 @ /4

For a complex number z we denote by Z the complex conjugate of z and put
Re(z)=(z+2)/2 and Im (z2)=(z—%)/2{. Yamamoto observed that the inequality

) Im(¢,C,) >0

holds for p<4,000 and proposed the question whether this is always true. In
the previous paper [7], the author reported a counter-example for (1). At the
same time, it was also mentioned that there is only one counter-example for
(1) up to 1,000,000. The purpose of this paper is to explain the tendency of
the inequality (1) to be satisfied. We shall prove the following theorem.

THEOREM 1. The limit

i D5 p=x, p=5(mod8), the inequality (1) holds for p}
T #{p; p=<x, p=5(mod8)} ’

where p denotes rational prime numbers, exists and lies between 0.9997 and 0.9998.

For an element p of ©:=Z[i] prime to 2, denote by X, the Dirichlet

character modulo 2m induced from (—) where m is the smallest positive integer
4
contained in the ideal #©. Then
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L0, )= B = = 525,y
because ’
Com-(-(2N)8 5= E(D)m.

cf. Barkan [1]. It follows that the inequality (1) is equivalent to
(2) Re (L, X,)/w'?) > 0.

We normalize the argument arg(z) of a complex number z+0 by —rx=<arg(z)
<m and define the square root z'/? by z!/?=edcgizi+iare)/2  Note that there is
the obvious one to one correspondence between the sets

{w,; p is a rational prime number, p=5(mod8)}
and

. . . T -1
3) {co ; @ is a prime number of @), 0<arg (w)< 5 w=1 (mod2), (?)4— 1}».

In the following the letter w will always denote an element of the set (3). For
every real number x greater than 5, we use the notation

#{w; No<x, o satisfies the property -}

Vol@; ) = #{w; NoLx}
Here Now=w®. Then is equivalent to the same assertion on the
limit
) lim (@ ; Re (L(1, 1,)/@"%)>0).

T —0

To prove this assertion we first formulate the distribution of arg(L(1, X,)) by
the method developed in Elliott [5] and [6]:

THEOREM 2. Let, for each rational integer k,

o=+ HEEL Y I

Then, the infinite product
)=
(6) o(k) =11 §(g, k),

where g runs over all rational primes greater than 2, and the infinite series

(7 Gz) = —+z 1 3 9D(k)e'““‘z (zeR)

277.‘2 kEzZ-10y Fk

both converge absolutely, and we have

] 1 1 1
gg;»x(w; 0. ——arg@=0, —5 <5 —arg(L(l, X)<2) =4(0:—0)G(2)
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for every z with —1/2<2z<1/2 and every 6., 8, such that 0<6,<0,<1/4. The
Sfunction G(z) is infinitely differentiable on R and satisfies G(—1/2)=0.

The next theorem follows easily from the above.

THEOREM 3. For every real number z such that —1/2<2<3/8, we have

limya(o; — S 50 arg(L(L, L)y )=2) = 8] (Gt 8)—G(—5 +0))d0.

T —00

It follows that the limit (4) is equal to

1/8 1 1
® (6 +0)-(~4 )
and we get by the numerical calculation of this quantity.

2 will be proved in Section 2. and will be proved in
Section 3. The possibility that the inequality (1) can be reduced to an assertion
like (2) has already been remarked by Heath-Brown and Patterson in Berndt

and Evans [2].

§ 2. The distribution of arg (L(1, X,)).

1. The letter ¢ will always denote an odd rational prime number. For a
real number 2>0 and a Dirichlet character X, put

D,=1611¢q and L1, 0= IT(1-X(gqg H™".
gsh gsh

Because of the reciprocity law of the biquadratic residue symbol, the value
L,1,%,) depends only on the residue class of @ modulo D,. We define the
map Y, :(©/D,0)*—-T :=R/Z by

1
Ya(pmod D) = —arg (La(, ,).

Usually, T will be identified with the interval [—1/2, 1/2). Denote by £, the
subset of (©/D;0)* represented by integers p=© such that p=1 (mod2) and
(—";1— =—1. Let, for z&[—1/2, 1/2),

, ,
1

Gu(z) = —"2*

#{cth; gYh(c)éz}».

1
#0Q,
Then it is easy to see that

1

. 1
limy(o; 0,25 arg (@0, — 3 = - arg(L(l, L)Sz2) = 40, 0)Ga(2)

00

if 0£60,<£0,<1/4.
In order to consider the limit of G,(z) when h tends to the infinity, we quote
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a result from Fourier analysis. A real valued function F(z) on [—1/2, 1/2) will
be called a distribution function if it satisfies the following three conditions:

(1) F(2) increases in the wide sense with z,

(ii) it is continuous on the right,

. 1 .

ii —=)> =

(iii) F( 2):0 and 2}1‘{5‘_0”2) 1.
The domain of a distribution function F(z) will be often extended to R by de-
fining F(z+n)=F(z)+n for every integer n. By the characteristic function of
a distribution function F(z) we understand the function ¢: Z—C defined by

gy =" redF ()= e —2min|” T R )z

Here a is an arbitrary real number at which F is continuous. Let F, (n=1,2,:-)
and F be distribution functions and ¢,(k) and ¢(k) be their respective charac-
teristic functions. Assume F(—1/2)=0 and

lim ¢, () = (k)
for every integer k. Then it is known that

lim F,(z) = F(2)
holds for every z (cf. Elliott [4]).

LEMMA 1. i) The characteristic function ¢n(k) of the distribution function
Gn(2) is equal to Tl<nd(q, k) where ¢(q, k) is defined by (5).
ii) The estimate
(g, k) =1+0(q®)  (g—)

holds for every integer k and we can define ¢(k) by (6).
iii) There is a positive constant ¢ such that, if |k| is sufficiently large,

k
o(k) < exp (— ch“%el—) .

Hence it is possible to define G(z) by (7) and then G(z) is infinitely differentiable
on R.
iv) We have

lhlin Gu(z) = G(2).

REMARK. We understand that the infinite product in (6) is zero if there
exists ¢ such that ¢(g, k)=0.

Proor. i) It suffices to prove the assertion in case 4 is a positive rational
integer and we can consider inductively. If A<3, then L,(1, X)=1 for every
character ¥ and it follows that



Biquadratic Gauss sums 651

0 i —-;—§2<0
Gn(2) = . 1 onl)=1 (k€Z).
1 if 0Zz<—,

Hence the assertion is true in this case. Assume that the assertion holds when
h is a positive integer n. If n-+1 is not a prime number there is nothing to
prove because ¢,(k)=¢,+.(k). Consider the case n+1is a prime number p. In
general the formula

90h(k) = > mh(Z)ehi“

2eT

holds with
1
mnp(2) = #—Qh#{cegh s Yiale)=z}.

We have, for every {&{l1, —1, 7, —i} and every a<0 prime to=D,,

#{pmod Dy EQpss s p=a(mod Dy), XLu(p)=C} _ 1

#{pmod D, E2,41 ; p=a (mod D,)} T4
Hence
1 1 1
Mn41(2) = 5 Ma(2)F 5 Ma(2+2p)+ 7 ma(2—2,)
if we put
2y = —%arg (l——;—) .
Therefore

Pnsi(R) = §(b, ) 2 ma(2)e?™Hke = qsgl o(g, k)

by the assumption.
ii) Because
arg(1+ig™) = ¢7'+0(¢g™®
we see

142g71 \* ) . ‘
(ll—j:%qu_‘l) = exp Gk arg (1+ig™) = 1+ikg7'+0(g™),

and similarly

1—ig™* \* .
(i) = 1mika+0G™.

Hence the assertion follows.

iii) To use the estimate later we give slightly sharper one than is needed.

Let |£=100 and | /gl <1/4. Then, bscause (f )<k,

1 . . k
§{<1+2q-1)k+(1_zq—l)k} — é(_]_)rﬂ(r)q—r

2ir
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gl—k(kz D _ +< )+<§)8+_._

=1- 290% (5 k) +§_gg(g) =1- %G;‘)Z = exp (_%{(?]:‘)2) :

Note that, for all ¢ and %,

0= glg, k)< 1.
It follows that

kz
< < —= -2
<9) @(k) = qz§k1¢(q, k> = exp( 5 qz4|k|q )
if |£|=100. By the prime number theorem,
-2~ (x—0).

qzz x log x
This completes the proof.

iv) By the fact stated before Lemma 1|, it suffices to show that G(z) in-
creases in the wide sense and G(—1/2)=0. The latter follows easily from the
fact ¢(—k)=¢(k). Because of the property (i) of distribution functions the
sequence ¢,(k) (RSZ) is positive definite (i.e., 7 ro1n(f—k)&;€, 20 for an
arbitrary n and arbitrary complex numbers &,, ---, &,) for every h and hence

the sequence ¢(k)=Ilim,_ .pn(k) (k< Z) also has this property, from which follows
that G(z) increases in the wide sense.

LEMMA 2. Let hix)=loglog x and 0<60,<6,<1/4. Then

llmvx(w é, <iarg (=80, — 1

1
lim o < 5 arg (Lol L)<z) = K0:— 0.)G().

ProoF. We need a theorem proved by Mitsui [8]: For an integral ideal a
of Q@), an integer p<O such that (a, #)=1 and real numbers x, & with x>0,
—1/2£60<1/2, we denote by =(a, #; x, ) the number of prime numbers p of
Q@) satisfying the following conditions;

e = p(moda), Np < x, —-‘,12—<2Larg(p)<0

Then, for any positive constant A, there exists a positive number ¢, depending
only on A, such that if a satisfies

Na < (log x)*,
the estimate

m(a, p;x, 0)=

__;_O(xe-CJIOg z )

4(0+7) Sx dt

#(©/a)* Je logt
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holds uniformly in a, # and 8. Because D, satisfies

Dyoy = qu g < (log x)*,

sh(x)

the above theorem shows

1 1 1
vx(w; 01§garg ()£ 0,, —gé—z—ﬂ—arg@muﬂ, X‘w))guZ)
~v (w- 0, < arg (@)= s, —— <Y 1eo(@mod Dycey) <2, (@, D ):1)
xz y 1= 277'_ = » 2 = h(x) hrlx)/ =%, ’ h{x)

=4(0,—0,)Grzy(z)+O(e Vo8 7)
with a positive constant ¢. By this converges to 4(6,—8,)G(z) when
x tends to the infinity.

LEMMA 3. There exist functions f(x) and g(x), which are defined for suffici-
ently large real numbers and satisfy f(x)=0, g(x)=0 and lim . ..f(x)=1iMm;..g(x)
=0, so that the estimate

(10) va(w; |arg (L(1, Xo))—arg (Lacax(l, X)) > f(x)) < g(x)
holds.

This will be proved in the next subsection. Here we prove
admitting this lemma. By the continuity of G(z) and Dini’s theorem the con-
vergence proved in is uniform with respect to z. Therefore we see

11
27 2rm
5= arg(Laco(l, L)S2+1(0)+0g(x)}

— 1
lim vz(w; Hlégarg (W)<0,, — arg (L1, Xw))gz)

00

. 1
<lim ‘{Vx<w ; 0. oo arg ()=6,, —

RoRade]

= 4(02’_ al)G(Z).
Similarly the inferior limit is not smaller than 4(64,—6,)G(z). This proves
'The 2

2. Let us prove [Lemma 3. The letter p will always denote a prime ideal
of K:=Q() which is prime to 2 and X, will denote the Dirichlet character modulo

2p induced from (—5)4 where p is the rational prime divided by p. For each

real number x>5, put

. #{p; Np=<x, p satisfies the condition ---}
valp; ) = 2 S .

with
m(x; K):i=#{p; Np=x}.
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Note that
4#t{w; No<x} ~n(x; K) (x—00).

Then to prove it is sufficient to show the similar assertion in which
the left hand side of is replaced by

va(p; larg (L1, X)—arg (Lay(L, L) > f(x)).
Furthermore this reduces to the existence of f(x) and g(x) such that

L)
vilos | ooy Y > ) < 80

or, equivalently,
(1D va(p; |q>,§x) X(@)g™' 1> f(x) € g(x).

We have the following fact (Elliott [6], Proof of Lemma 22.7): Let y and Q
be real numbers with Q=9 and (log Q)**<y<@Q?. Then there exist positive
constants ¢, and ¢, such that

#{X; | ?X(q)q“l>cxy‘“‘°} < Q78
QoY

Here X denotes primitive Dirichlet characters to moduli not exceeding Q. Putting
H(x)=(log x)** and considering the case @=x and y=H(x), we get

(12) va(0; 1 2 Xl@g ' >ci(log x)™®) L x~ V8 log x .
q>H(Z)

To deal with the contribution from prime numbers ¢ such that h(x)<¢g<H(x)
we need a lemma.

LEMMA 4. Let x and y be positive real numbers satisfying y<(log x)* where
A is a positive constant. Then there exists ¢>0 so that the following estimate
holds for arbitrary complex numbers a,, Qs, ***:

> a,,,(%)JZ Lrn(x; K)

msy

Amln | +xe7®PF( T an|)?.
Npsz mn“ﬁfgg‘;x)“ msy

PROOF. This kind of formula has been considerded in Elliott [3]. The left
hand side is equal to

3
— I mn
=( 3 en@)at Kt S e 3 (55) .
mn-1e@Q () )4 mn-1gQ () )¢ Npsz\ P /4
m,nsy m,nsy

3

The map p»—»( mn )4 gives an ideal class character whose conductor divides
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16mn. Hence, by the result of Mitsui quoted in the proof of Lemma 2, there
is a positive constant ¢ so that

Néx( b )4 = O(xe¢-V1o87)

b

holds uniformly for all m, n<y with mn='&(Q#)*)!. Furthermore we have

AnGn

1 < 3 sl = (2 laal)t.
mn-1&(Q (i) *)4 m msy
m,n=y

SREY
This completes the proof.

For positive integers m and all sufficiently large real numbers x we induc-
tively define functions log.x by

log»x = log (logn-1%), m=2

with
log,x = log x, x>0.
LEMMA 5 ve(p;| = x<)-1]> 1 )<-1°g3x
: N | henr<ZH " 94 logsx logsx *
Proor. Use with y=H(x) and
0. — —5—, n=q is an odd prime greater than A(x),
0, otherwise.

Then,
2
Lgg™?

Npsz | h(2)<gsH(2)

—— 2 n(x; K)
. -2 —cvlog -1 i At A
L alx; K)n(z)<§§H(a¢)q Txe (h(x)<qzé}H(x)q ) < logzx logsx

because

1
-2 ~ -1 .
h(:quq h(x)log h(x)’ ngEu:)q < Hx)

Therefore, denoting by M the left hand side of the formula to be proved, we
have

w(x; K) and M < logsx

. -2 P —
ﬁ(x; K)M(l()gsx) < logzx 10g8x 10g2x )

Combining this lemma with [12), we see that holds with

_ logsx
~ logax °

fx)=

g(x)

logsx’
is proved.
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§3. The distribution of arg (L(1, X,)/®"/?).

We first prove [Theorem 3. Let —1/2<z<3/8. For an arbitrary positive
integer N,

(13)  va(w; —5 = 5 ara(L(L, L)/0'")52)
N n— l i1 1 n—1 1
) <5 <
S va(05 gy S g ar@= g~ gy S g LU L) S et gy ).
Hence, by [Theorem 2, the superior limit of (13) when x tends to the infinity does

not exceed

L (eler )-0(-5+520).

Similarly, the inferior limit is not smaller than

v & (66 )6 (3 )

follows because N is arbitrary. We remark heére that if 3/8<z<1/2
the limit of (13) when x tends to the infinity is equal to

1/2-2 -7/8 1/8 1
SS G(z+a>d0+8g Gle+0)d0—8. "G (—+0)d6 .
0 ~1/2-2 0 2
Let us turn to the proof of [Theorem 1. What we have to do is to calculate

the quantity (8). It is easy to see from (7) that

8. Glet0)0 = 1 +2 12 5 gk

n? rez- -{0} k?

(l_e—zikﬂ)e—‘ln’ikz

Therefore (8) is equal to

1,2 5 o

% rEZ-10

~nik/2

_enik/Z)

i @(k) k(e—zik/4 errik/4) 4\/2 Z go(k)
k=1

Ck2-1)/
2 (1) s

4/2 o(k)

7t k>2500 bt

LEMMA 6. < 1.3x107%,

PrROOF. We first prove that

k
(15) (k) <exp (— m)

for k=2500. By the estimate (9) it is sufficient to prove that
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1
5Nlog N

for integers N=10000. The partial summation formula shows

(16) S(N):= 3 q¢7*>
Q>N

S(N)= Zan)(n*—(n+1)"*)—a(N)N?,
n>N
where m(x) denotes the total number of rational primes not exceeding x. It is
known (Rosser [9]) that

X

ogrt2 <7<

S — >
log gy (x=55) and

n(x) < — (< xZe').
g x—2

Take positive real numbers ¢,, €, €; and &, such that

2= (x+1)2 = 2(1—51)25‘3 ,

1 - 1
x2log x = (1= 2)( 2log x ' x*(log x)z_‘) ’
X
log x+2 = d—e) log
X
log x— 2_( ted g x log

for x=10000. Then, if 10000<N=<e',

1 1
S(N) > 2(1—&;)(1—e3) 2 . lOg o (1+84)m
3 1 1
2= ‘)n‘?‘zv(x logx) _(H—s‘)NlogN
s 1
>{el1 <1—ei>—<1+e4>}~—MOg e
We can put
30002 B 1
$175.100008 7 ** T Tog 1000041
= Tog 10000+2 ’ *~ Tog 10000—2
Then

2T (1—e)—(l4e) >~
ici 5

and [16) holds if 10000<N=<e'"*. The case N=e¢'® can be treated similarly
appealing to the estimate
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x [
m(x) < W (x=55).
It is seen that
0.98
* > 100
SN > Fiogny V2™

Hence we have proved the inequalities [16) and [I5). Take a positive real num-
ber a such that

x -a
exp (—— W) <x (x>10000) .
Then
o(k) —2 _ k
E>z500 k2 k>§500k eXp( 100 log (4/2))

-2 < —2-a _ -1-a
< Szaoox exp( 100Tog (42 (4x))dx <4 Smoox dx = Ta 10000 .

Taking a=0.29 we see that the estimate of holds.

LEMMA 7. AT o(k)

PRoor. We have, for A=>541 (the 100-th prime number),
o(k) < pa(k) <107 (255 R <2500) .

Here the second inequality is the result of some computer calculation. The
lemma follows easily from this estimate.

LEMMA 8. Assume that h and k are positive integers with h=2k. Then

0= pu(b)—g(k) < S pu(h).

PrROOF. What must be shown is that

kZ
q1>1h¢(q, kzl-7 (hz2k).

If 2/q<1/2, we have
{1+ (=)} = v (D

2ir

SUOROR o

Lot = W 2 (1) = B0 () )

and
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=1- 2122 _<2§2 )3'(2122 )= 21 2122 2145 ('5‘)2
Hence
v 0= 1= L0 B)Ef zen(—(2)) w220
and

2

k? k
> 2 -2 —_—
q1>1h¢(q, k)gexp(—kng ) Zexp( —h) >1 A (h=2k).

The above lemma shows

o) 2 28 _gycm-n.

a7 kgl §
21k

2 oalh)

2
for every integer h=46. We list the values of ¢,(k) for h=224737 (the 20000-th
prime number) which are calculated by the help of an electronic computer:

bl

h‘

b (k) k o) |
|
o 0.9527050 --- 3| 0.6400176 -- ‘
5 0.2706640 --- 7 0.0581728 -
9 0.0020544 --- 11 0.0016605 -+ |
13 0.0019098 - | 15 0.0001763 ---
17 0.0001176 - ' 19 0.0002221 - |
21 0.0000850 - | 23 | 0.0000116-- |
We see
(18) %+4‘7§2— > SD’if)( R0/ = 0,90976 .- (h=224737)
and *
19) 4;2/}17 :23 on(k) < 107 (h=2024737).
i

Lemma 6, Lemma 7, and [19) show that the absolute value of the difference
of (14) and is smaller than 2.6 x107°. This completes the proof of Theorem 1.
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