Maximal toral action on aspherical manifolds $\Gamma \backslash G / K$ and G / H

By Tsuyoshi Watabe

(Received Sept. 11, 1985)
(Revised April 13, 1987)

Introduction.

In this note, we shall consider only topological actions. For a closed aspherical manifold M, it is well known that if a compact connected Lie group G acts on M effectively, then G is a toral group T^{s} with $s \leqq$ rank of the center $z\left(\pi_{1}(M)\right)$ of the fundamental group $\pi_{1}(M)$ of M (Theorem 5.6 in [4]). In [5], it was conjectured that if M is a closed aspherical manifold, then
(1) $z\left(\pi_{1}(M)\right)$ is finitely generated, say of rank k,
(2) there exists a toral group T^{k} acting effectively on M.

These have been verified in many cases. For examples, if M is a smooth manifold admitting a Riemannian metric with non-positive sectional curvature or if M is a nilmanifold, then (1) and (2) hold (see [10]).

In this note, we shall prove the following
Theorem A. The conjectures (1) and (2) hold for aspherical manifold of type $\Gamma \backslash G / K$, where G is a connected non-compact Lie group, K a maximal compact subgroup of G and Γ a torsion free discrete uniform subgroup of G.

Theorem B. The conjectures (1) and (2) hold for a compact homogeneous aspherical manifold G / H, where G is a connected non-compact Lie group and H a closed subgroup of G.

In this note, we shall use the following notations;

1. $\boldsymbol{Z}, \boldsymbol{R}$ and \boldsymbol{C} denote the ring of integers, the field of real numbers and the field of complex numbers, respectively.
2. \tilde{G} denotes the universal covering of a Lie group G and $\pi: \tilde{G} \rightarrow G$ the covering projection.
3. G^{0} denotes the identity component of a Lie group G.
4. $z(G)$ denotes the center of a group G.
5. Lie group is assumed to be connected unless the contrary is stated.

1. Preliminaries.

Let G be a simply connected non-compact Lie group. Then it is well known that G is a semi-direct product of a simply connected semisimple subgroup S and its radical R. Thus every element of G is uniquely written as a product $r s(r \in R, s \in S)$ and the product of $r_{1} s_{1}$ and $r_{2} s_{2}$ is given by $\left(r_{1} s_{1}\right)\left(r_{2} s_{2}\right)=$ $r_{1} s_{1} r_{2} s_{1}^{-1} s_{1} s_{2}$ and we have the following split exact sequence;

$$
1 \longrightarrow R \longrightarrow G \underset{i}{\stackrel{p}{\rightleftarrows}} S \longrightarrow 1
$$

Let Γ be a torsion free discrete uniform subgroup of G and K a maximal compact subgroup of G. It is easy to show that K is semisimple and $R \cap K=1$. Since Γ is torsion free, $\Gamma \cap K=1$. When one considers the manifold $\Gamma \backslash G / K$, it is sufficient to consider the case when S contains no compact normal factors. We list some lemmas which are needed in the sequel.

Lemma 1 (Corollary 8.28 in [11]). (1) $\Gamma_{R}=\Gamma \cap R$ is a discrete uniform subgroup of R.
(2) $p(\Gamma)$ is a discrete uniform subgroup of S.

Lemma 2 (Corollary 5.18 in [11]). Let G be a semisimple Lie group without compact normal subgroup and H a closed subgroup with the property (S) (e.g. G/H has a finite invariant measure). Then the centralizer of H in G is equal to $z(G)$. In particular, $z(H)$ is contained in $z(G)$.

Lemma 3 (Theorems 2.1 and 2.11 in [11]). (1) Let N be a simply connected nilpotent Lie group and Γ a closed uniform subgroup of N. Then there are no proper connected closed subgroups of N containing Γ.
(2) Let N and V be two nilpotent simply connected groups and let H be a uniform subgroup of N. Then any continuous homomorphism $f: H \rightarrow V$ can be extended in a unique manner to a continuous homomorphism $\tilde{f}: N \rightarrow V$.

Lemma 4 (Theorem 1.1 of Chap. VI in [9]). Let g be a non-compact semisimple Lie algebra over \boldsymbol{R} and $\underline{g}=\underline{k}+\underline{p}$ a Cartan decomposition of \underline{g}. Suppose (G, K) is any pair associated with (\underline{g}, θ), where $\theta(T+X)=T-X(X \in \underline{p}, T \in \underline{k})$ is an involutive automorphism of g. Then we have
(1) K is connected, closed and contains $z(G)$,
(2) K is compact if and only if $z(G)$ is finite.

Lemma 5 (Theorem 2.3 in Section 2 in Chap. IV in [13]). Let (G, K) be the pair as in Lemma 4. Then K is its own normalizer and the centralizer $C_{G}(K)$ of K in G is $z(K)$.

Lemma 6. Let G be a semisimple Lie group and $\pi: \tilde{G} \rightarrow G$ the universal cover-
ing. Then $z(\hat{G})$ is equal to $\pi^{-1}(z(G))$.
Proof. Let $x \in \pi^{-1}(z(G))$ and consider the continuous map $c_{x}: \tilde{G} \rightarrow \tilde{G}$ defined by $c_{x}(y)=x y x^{-1} y^{-1}$. Since $\pi\left(x y x^{-1} y^{-1}\right)=1, \operatorname{Im} c_{x} \cong \operatorname{Ker} \pi$. $\operatorname{Ker} \pi$ being discrete, $c_{x}(\tilde{G})=1$ and hence $x y x^{-1} y^{-1}=1$, which implies $x \in z(\tilde{G})$. Conversely let $x \in z(\tilde{G})$. Then $\pi(x) \in z(G)$, which implies $x \in \pi^{-1}(z(G))$.
Q.E.D.

Lemma 7. Let G be a non-compact simple Lie group. Suppose $z(\tilde{G})$ is not finite. Then we have
(1) $z(\tilde{G})$ is contained as a lattice in a subgroup L of \tilde{G}, which is isomorphic to \boldsymbol{R}, and
(2) Let \bar{K} be a maximal compact subgroup of \tilde{G}. Then L is contained in the centralizer of \bar{K} in \tilde{G}.

Proof. The following arguments are due to Chap. VI, VII, X in [9]. Since $z(\tilde{G})$ is not finite, G is $P S L(2, \boldsymbol{R})$ (or its finite covering group), $S U(p, q), S O^{*}(2 n)$, $S p(n, \boldsymbol{R}), S O_{0}(2, q), E_{6}$, or E_{7}. Let K be a subgroup of G such that the pair (G, K) has the property of Lemmas 4 and 5 . Then G / K is an irreducible Hermitian space and $z(K)$ is $S O(2)$. It follows from Lemma 6 that $z(G)$ is contained in $L=\pi^{-1}(z(K))$, which is isomorphic to \boldsymbol{R}. This proves (1). It follows from arguments in Chap. X in [9] (see pp. 451-455 in [9]) that $\pi^{-1}(K)$ is isomorphic to $\bar{K} \times \boldsymbol{R}$, where \bar{K} is a maximal compact subgroup of \tilde{G}. Since $z(K)=$ $c_{G}(K)$, we have $\pi\left(x y x^{-1}\right)=\pi(y)$ for every $y \in \bar{K}$ and $x \in L$. This implies that the image of the continuous map $c: \bar{K} \times L \rightarrow \tilde{G}$ defined by $c(y, x)=x y x^{-1} y^{-1}$ is contained in $\operatorname{Ker} \pi$. Since $\operatorname{Ker} \pi$ is discrete and $\bar{K} \times L$ is connected, we have $c(y, x)=1$. This completes the proof of Lemma 7.
Q.E.D.

We shall recall some results about solvable Lie groups. Let R be a simply connected solvable Lie group and Γ a discrete uniform subgroup of R. It is well known that there is an exact sequence

$$
1 \longrightarrow N \longrightarrow R \longrightarrow \boldsymbol{R}^{s} \longrightarrow 1
$$

where N is the nilradical of R. It is easy to see that there is a sequence of subgroups of R;

$$
N=R_{0} \cong R_{1} \cong \cdots \cong R_{s}=R
$$

such that $R_{i+1}=R_{i} \rtimes \boldsymbol{R}_{i}$ (semidirect product), where $\boldsymbol{R}_{i}=\boldsymbol{R}$. In the following, we write the addition of \boldsymbol{R} multiplicatively. Define $\Gamma_{i}=\Gamma \cap R_{i}, z_{i-1}=z\left(\Gamma_{i}\right) \cap \Gamma_{i-1}$ and $p_{i}: R_{i} \rightarrow \boldsymbol{R}_{i}$ the natural projection. Put $\Gamma_{N}=\Gamma_{0}$ and $z_{N}=z_{0}$. We may write an element of R_{i} in the form;

$$
n x_{1} x_{2} \cdots x_{i}=n \prod_{\prod}^{i} x_{j} \quad\left(n \in N, x_{j} \in \boldsymbol{R}_{j}\right) .
$$

We have the following

Lemma 8. (1) Γ_{i} is a discrete uniform subgroup of R_{i}.
(2) $p_{i}\left(\Gamma_{i}\right)$ is a discrete uniform subgroup of \boldsymbol{R}_{i}.

This follows from the standard arguments about Lie group theory (see Chap. 3 in [3] and [11]).

Lemma 9. Let N be a simply connected nilpotent Lie group and Γ_{N} is a discrete uniform subgroup of N. Suppose $z\left(\Gamma_{N}\right)=\boldsymbol{Z}^{n}$. Then there exists a subgroup N_{0} of N which is isomorphic to \boldsymbol{R}^{n} and contains $z\left(\Gamma_{N}\right)$ as a lattice.

This follows from Lemma 3,
Lemma 10. Let R be a simply connected solvable Lie group, Γ a discrete uniform subgroup of R, N the nilradical of R and N_{0} the subgroup of N which has the property in Lemma 9 for $\Gamma_{N}=N \cap \Gamma$ and $z(\Gamma) \cap \Gamma_{N}$. Then we have $r x=x r$ for every $r \in \Gamma$ and $x \in N_{0}$.

Proof. Consider the inner automorphism $c_{r}: R \rightarrow R$. Since $z(\Gamma) \cap \Gamma_{N} \subseteq z(\Gamma)$, we have $z(\Gamma) \cap \Gamma_{N} \subseteq N_{0} \cap \dot{c}_{r}\left(N_{0}\right)$. It follows from a result in [11] (Lemma 2.4 in [11]) that $N_{0} \cap c_{r}\left(N_{0}\right)$ is connected and hence $N_{0} \cap c_{r}\left(N_{0}\right)=N_{0}$, which implies $c_{r}\left(N_{0}\right)=N_{0}$.
Q.E.D.

Lemma 11. (1) Let Γ be a group satisfying the exact sequence;

$$
1 \longrightarrow Z^{t} \longrightarrow \Gamma \longrightarrow Z^{s} \longrightarrow 1
$$

Then there exists a simply connected solvable Lie group R and a closed subgroup D of R such that $\pi_{1}(R / D)=\Gamma$.
(2) Let Γ, R and D be as above. Assume $z(\Gamma)$ is not trivial. Then there exist closed subgroups D_{1} and D_{2} of R which satisfy
i) $D_{1} \triangleleft D$ and $D_{1} / D_{1}^{0}=z(\Gamma)=\boldsymbol{Z}^{k}$,
ii) D_{2} / D_{1}^{0} is isomorphic to \boldsymbol{R}^{k}
and
iii) $z(\Gamma)$ is contained in D_{2} / D_{1}^{0} as a lattice.

Proof. The following arguments are due to [1] (Chap. III, Section 5 in [1]).
(1) The arguments in [1] (see p. 245) show that there exists a commutative diagram in which the horizontal sequences are exact;

Let D be the subgroup of R generated by the image of Γ and the subgroup I
of $\boldsymbol{Z}^{t} \times \boldsymbol{C}$ consisting of purely imaginary vectors. Then D is closed in R and $\pi_{1}(R / D)=D / D^{0}=D / I=\Gamma$.
(2) Let D_{1} be the subgroup of R generated by $z(\Gamma)$ and $I . \quad z(\Gamma)$ satisfies the following exact sequence;

$$
1 \longrightarrow \boldsymbol{Z}^{t^{\prime}} \longrightarrow z(\Gamma) \longrightarrow \boldsymbol{Z}^{s^{\prime}} \longrightarrow 1 .
$$

It is easy to construct the following commutative diagram;

where $z(\Gamma)=\boldsymbol{Z}^{k}$. Now let D_{2} be the subgroup of R generated by $\boldsymbol{Z}^{k} \otimes \boldsymbol{R}$ and I. Then $D_{2} / D_{1}^{0}=\boldsymbol{R}^{k}$ and $z(\Gamma)$ is a lattice of D_{2} / D_{1}^{0}.
Q.E.D.

Now we shall consider $M=\Gamma \backslash G / K$, where G is a non-simply connected non-compact Lie group, K a maximal compact subgroup and Γ a torsion free discrete uniform subgroup of G. Let $\pi: \tilde{G} \rightarrow G$ be the universal covering of G. Then $\operatorname{Ker} \pi=\pi_{1}(G)=\pi_{1}(K) \cong Z^{r} \times F$, where F is a finite abelian group. Since $\tilde{K}=\pi^{-1}(K)$ is the universal covering of $K, \tilde{K} \cong \boldsymbol{R}^{r} \times \bar{K}$, where \bar{K} is a simply connected compact semisimple Lie group. Put $\tilde{\Gamma}=\pi^{-1}(\Gamma)$.

We have the following
Lemma 12. \boldsymbol{Z}^{r} and F are central subgroups of G.
This follows from the fact that $\pi_{1}(G)$ is a central subgroup of \tilde{G}. Let $\tilde{G}=\tilde{R} \circ \tilde{S}$ be the Levi-decomposition of \tilde{G}. Define $\tilde{G}^{*}, \tilde{S}^{*}, \tilde{\Gamma}^{*}, \tilde{K}^{*}$ and \bar{K}^{*} by ()$^{*}=() / F$. Clearly $\tilde{G}=\tilde{R}^{\circ} \cdot \tilde{S}^{*}$ is the Levi-decomposition of \tilde{G}^{*}. We have the following

Lemma 13. $\quad \tilde{\Gamma}^{*} \cap g \tilde{K}^{*} g^{-1}=Z^{r} \quad$ for every $g \in \tilde{G}^{*}$.
Proof. Consider the following commutative diagram in which every horizontal sequence is exact.

where $\bar{g}=\pi^{*}(g), \pi^{*}: \tilde{G}^{*} \rightarrow G$ the homomorphism induced by π. Since $\tilde{\Gamma}^{*}$ and Γ are torsion free and $\bar{g} K \bar{g}^{-1}$ is compact, $\tilde{\Gamma}^{*} \cap g \tilde{K}^{*} g^{-1}$ is equal to Z^{r}. Q.E.D.

Lemma 14. (1) $\Gamma \backslash G / K$ is homeomorphic to $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \tilde{K}^{*}$.
(2) The natural map $q: \tilde{G}^{*} / \bar{K}^{*} \rightarrow \tilde{G}^{*} / \tilde{K}^{*}$ is a principal $\boldsymbol{R}^{r}=\tilde{K}^{*} / \bar{K}^{*}$-bundle.
(3) The map q induces a map $\tilde{q}: \tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \bar{K}^{*} \rightarrow \tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \tilde{K}^{*}$ which is a principal $T^{r}=\boldsymbol{Z}^{r} \backslash \tilde{K}^{*} / \bar{K}^{*}$-bundle.

Proof. We omit the proof of (1) and (2). It is clear that \tilde{q} is a fiber bundle with typical fiber ($\left.\tilde{\Gamma}^{*} \cap K^{*}\right) \backslash \tilde{K}^{*} / \bar{K}^{*}=\boldsymbol{Z}^{r} \backslash \tilde{K}^{*} / \bar{K}^{*}$. Consider $\boldsymbol{Z}^{r} \tilde{K}^{*} / \bar{K}^{*}$ as an r-dimensional torus T^{r} and define a T^{r}-action on $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \bar{K}^{*}$ by the formula;

$$
\left(\boldsymbol{Z}^{r} k \bar{K}^{*}\right)\left(\tilde{\Gamma}^{*} g \bar{K}^{*}\right)=\tilde{\Gamma}^{*} g k^{-1} \bar{K}^{*} .
$$

The well-definedness follows from the fact that $\bar{K}^{*} \triangleleft \tilde{K}^{*}$ and Lemma 12. The action is free. In fact,

$$
\begin{aligned}
&\left(\boldsymbol{Z}^{r} k_{1} \bar{K}^{*}\right)\left(\tilde{\Gamma}^{*} g \bar{K}^{*}\right)=\tilde{\Gamma}^{*} g \bar{K}^{*} \Rightarrow \tilde{\Gamma}^{*} g k^{-1} \bar{K}^{*}=\tilde{\Gamma}^{*} g \bar{K}^{*} \Rightarrow g k_{1}^{-1}=x g k^{\prime} \\
&\left(k^{\prime} \in \bar{K}^{*}, x \in \tilde{\Gamma}^{*}\right)
\end{aligned}
$$

$$
x=g k_{1}^{-1} k^{\prime-1} g^{-1} \in \tilde{\Gamma}^{*} \cap g \tilde{K}^{*} g^{-1} .
$$

It follows from Lemma 13 that we have $k_{1}^{-1}=g^{-1} x g k^{\prime} \in \boldsymbol{Z}^{r} \bar{K}^{*}$, which implies that $\boldsymbol{Z}^{r} k_{1} \bar{K}^{*}=1$ in $\boldsymbol{Z}^{r} \backslash \tilde{K}^{*} / \bar{K}^{*}$. It is clear that the orbit space of $\tilde{\Gamma}^{*} \tilde{G}^{*} / \bar{K}^{*}$ by $\boldsymbol{Z}^{r} \backslash \tilde{K}^{*} / \bar{K}^{*}$ is $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \tilde{K}^{*}$. Q.E.D.

2. The proof of Theorem \mathbf{A} when G is simply connected.

In this section, we shall prove Theorem A when G is simply connected. As in Section 1, let $G=R \circ S$ be the Levi-decomposition and $p: G \rightarrow S$ the projection. We have the following exact sequence;

$$
1 \longrightarrow \Gamma_{R} \longrightarrow \Gamma \longrightarrow p(\Gamma) \longrightarrow 1
$$

It follows from this exact sequence that we have the following exact sequence;

$$
1 \longrightarrow z(\Gamma) \cap \Gamma_{R} \longrightarrow z(\Gamma) \longrightarrow p(z(\Gamma)) \longrightarrow 1
$$

It is clear that $z(\Gamma) \cap \Gamma_{R} \subseteq z\left(\Gamma_{R}\right)$ and $p(z(\Gamma)) \subseteq z(p(\Gamma))$. Since Γ_{R} is poly- \boldsymbol{Z} group (see [11]), $z(\Gamma) \cap \Gamma_{R}$ is also a poly- \boldsymbol{Z} group and hence finitely generated. It follows from a result in [11] (Corollary 5.18 in [11]) that $z(p(\Gamma))$ is finitely generated abelian group and hence isomorphic to \boldsymbol{Z}^{k} for some integer k. We have the following

Proposition 15. (1) The map $G \rightarrow R \times S ; g=r s \rightarrow(r, s)$ is a homeomorphism.
(2) The map $f_{1}: G / K \rightarrow R \times(S / K)$; $r s K \rightarrow(r, s K)$ is a homeomorphism.
(3) The natural map $\Gamma_{R} \backslash G / K \rightarrow \Gamma \backslash G / K$ is a regular covering map with the group $p(\Gamma)$ of covering transformations and hence $\Gamma \backslash G / K \cong p(\Gamma) \backslash\left(\Gamma_{R} \backslash G / K\right)$.
(4) The map $g: \Gamma_{R} \backslash G / K \rightarrow\left(\Gamma_{R} \backslash R\right) \times(S / K) ; \Gamma_{R} r S K \rightarrow\left(\Gamma_{R} r, s K\right)$ is a homeo-
morphism.
Since these are proved immediately, we shall omit the proof.
Define the action of $p(\Gamma)$ on $\left(\Gamma_{R} \backslash R\right) \times(S / K)$ by

$$
\left(\Gamma_{R} r s\right)\left(\Gamma_{R} r_{1}, s_{1} K\right)=\left(\Gamma_{R} r s r_{1} s^{-1}, s s_{1} K\right)
$$

Then the map g is $p(\Gamma)$-equivariant (note the action of $p(\Gamma) \cong \Gamma_{R} \backslash \Gamma$ on $\Gamma_{R} \backslash G / K$ is given by $\left.\left(\Gamma_{R} r s\right)\left(\Gamma_{R} g K\right)=\Gamma_{R} r s g K\right)$. In fact,

$$
\left(\Gamma_{R} r s\right)\left(g\left(\Gamma_{R} r_{1} s_{1} K\right)\right)=\left(\Gamma_{R} r s\right)\left(\Gamma_{R} r_{1}, s_{1} K\right)=\left(\Gamma_{R} r s r_{1} s^{-1}, s s_{1} K\right)=g\left(\left(\Gamma_{R} r s\right)\left(\Gamma_{R} r_{1} s_{1} K\right)\right) .
$$

It follows that we have the following
Proposition 16. $\quad \Gamma \backslash G / K$ is homeomorphic to $p(\Gamma) \backslash\left(\left(\Gamma_{R} \backslash R\right) \times(S / K)\right)$.
Now we shall define a maximal toral action on $N=\Gamma \backslash G / K$. We devide the definition into two steps.

The first step; Let $z(\Gamma) \cap R=\boldsymbol{Z}^{n}$. We define an action of T^{n} on $\Gamma_{R} \backslash R$, which is compatible with the action $p(\Gamma)$.

The second step; Let $p(z(\Gamma))=\boldsymbol{Z}^{m}$. We define an action of $T^{m} \times T^{n}$ on $\Gamma \backslash G / K$.

1. The first step. Let R be a simply connected solvable Lie group and Γ a torsion free discrete uniform subgroup of R. As noted above, we have an exact sequence;

$$
1 \longrightarrow N \longrightarrow R \longrightarrow \boldsymbol{R}^{s} \longrightarrow 1,
$$

where N is the nilradical of R. First consider the case of $s=1$. We have the following commutative diagram;

By the same arguments as in Propositions 15 and 16, we have the following
Proposition 17. (1) The map $g: \Gamma_{N} \backslash R \rightarrow\left(\Gamma_{N} \backslash N\right) \times \boldsymbol{R} ; \Gamma_{N} n x \rightarrow\left(\Gamma_{N} n, x\right)$ is a homeomorphism.
(2) The natural map $\Gamma_{N} \backslash R \rightarrow \Gamma \backslash R$ is a regular covering map with the group $p(\Gamma)$ of covering transformations and hence $\Gamma \backslash R \cong p(\Gamma) \backslash\left(\Gamma_{N} \backslash R\right)$.
(3) Define an action of $p(\Gamma) \cong \Gamma_{N} \backslash \Gamma$ on $\left(\Gamma_{N} \backslash N\right) \times \boldsymbol{R}$ by the formula;

$$
\left(\Gamma_{N} n x\right)\left(\Gamma_{N} n_{1} x_{1}\right)=\left(\Gamma_{N} n x n_{1} x^{-1}, x x_{1}\right) .
$$

Then this is well defined and induces a homeomorphism $h: \Gamma \backslash R \cong p(\Gamma) \backslash\left(\left(\Gamma_{N} \backslash N\right)\right.$ $\times \boldsymbol{R}$).

It follows from Lemma 9 there exists a subgroup N_{0} of N such that
(i) $N_{0} \cong \boldsymbol{R}^{u}\left(u=\operatorname{rank} z_{N}\right)$
and
(ii) $z_{N} \cong N_{0}$ as a lattice.

Now we define an action of $T^{u}=z_{N} \backslash N_{0}$ on $\Gamma \backslash R$.
(1) Define an action of T^{u} on $\left(\Gamma_{N} \backslash N\right) \times \boldsymbol{R}$ by the formula;

$$
\left(z_{N} n\right)\left(\Gamma_{N} n_{1}, x\right)=\left(\Gamma_{N} n n_{1}, x\right) .
$$

This action is easily proved to be well defined and effective.
(2) This action is commutative with the action of $p(\Gamma)$. In fact, we have

$$
\begin{array}{ll}
& \left(\Gamma_{N} n x\right)\left(\left(z_{N} n_{1}\right)\left(\Gamma_{N} n_{2}, x_{2}\right)\right)=\left(\Gamma_{N} n x\right)\left(\Gamma_{N} n_{1} n_{2}, x_{2}\right) \\
=\left(\Gamma_{N} n x n_{1} n_{2} x^{-1}, x x_{2}\right)=\left(\Gamma_{N} n x n_{1} x^{-1} x x_{2} x^{-1}, x x_{2}\right) \\
=\left(\Gamma_{N} n_{1} n x n_{2} x^{-1}, x x_{2}\right) & \text { (see Lemma 9) } \\
=\left(z_{N} n_{1}\right)\left(\Gamma_{N} n x n_{2} x^{-1}, x x_{2}\right) & \text { (see Lemma 10) } \\
=\left(z_{N} n_{1}\right)\left(\left(\Gamma_{N} n x\right)\left(\Gamma_{N} n_{2}, x_{2}\right)\right) . &
\end{array}
$$

It follows from (1) and (2) that we have defined an action of T^{u} on $\Gamma \backslash R$.
It is clear that $p(z(\Gamma))=\boldsymbol{Z}$ or 1 . When $p(z(\Gamma))=\boldsymbol{Z}$, define $A=p(z(\Gamma)) \otimes \boldsymbol{R}$. Then $A / p(z(\Gamma))=T^{1}$. We can define an action of $T^{u} \times T^{1}$ on $\Gamma \backslash R$ as follows.
(1) Define an action of $T^{u} \times A$ on $\left(\Gamma_{N} \backslash N\right) \times \boldsymbol{R}$ by the formula;

$$
\left(z_{N} n, x\right)\left(\Gamma_{N} n_{1}, x_{1}\right)=\left(\Gamma_{N} n x_{1}, x_{1} x^{-1}\right)
$$

This action is proved easily to be well defined and effectively.
(2) Define an action of $T^{u} \times A$ on $\Gamma_{N} \backslash R$ by the formula;

$$
\left(z_{N} n, x\right)\left(\Gamma_{N} n_{1}, x_{1}\right)=\Gamma_{N} n n_{1} x_{1} x^{-1} .
$$

This is well defined. In fact,

$$
\begin{aligned}
\Gamma_{N} n_{2} x_{2}=\Gamma_{N} n_{1} x_{1} & \Rightarrow n_{2} x_{2}=n^{\prime} n_{1} x_{1} \quad\left(n^{\prime} \in \Gamma_{N}\right) \\
\Rightarrow & \left.n n_{2} x_{2} x^{-1}=n n^{\prime} n_{1} x_{1} x^{-1}=n^{\prime} n n_{1} x_{1} x^{-1} \quad \text { (by Lemma } 9\right) \\
\Rightarrow & \left(z_{N} n, x\right)\left(\Gamma_{N} n_{2}, x_{2}\right)=\Gamma_{N} n n_{2} x_{2}=\Gamma_{N} n n_{1} x^{-1} \\
& =\left(z_{N} n, x\right)\left(\Gamma_{N} n_{1} x_{1}\right) .
\end{aligned}
$$

(3) The homeomorphism $g: \Gamma_{N} \backslash R \rightarrow\left(\Gamma_{N} \backslash N\right) \times \boldsymbol{R}$ is $\left(T^{u} \times A\right)$-equivariant. In fact,

$$
\begin{aligned}
& g\left(\left(z_{N} n, x\right)\left(\Gamma_{N} n_{1} x_{1}\right)\right)=g\left(\Gamma_{N} n n_{1} x_{1} x^{-1}\right)=\left(\Gamma_{N} n n_{1}, x_{1} x^{-1}\right) \\
& =\left(z_{N} n, x\right)\left(\Gamma_{N} n_{1}, x_{1}\right)=\left(z_{N} n, x\right)\left(g\left(\Gamma_{N} n_{1} x_{1}\right)\right) .
\end{aligned}
$$

It follows from (1) and (3) that the action of $T^{u} \times A$ on $\Gamma_{N} \backslash R$ is effective.
(4) The action of $T^{u} \times A$ on $\Gamma_{N} \backslash R$ is commutative with the action of $p(\Gamma)$ $\cong \Gamma_{N} \backslash \Gamma$. To prove this, we need the following lemma;

Lemma 18. $x n_{1} x^{-1}=n_{1}$ for every $x \in p(\Gamma)$ and $n_{1} \in N_{0}$.
Proof. This follows from Lemma 3 and the following commutative diagram;

Q.E.D.

Now we shall prove the assertion (4).

$$
\begin{array}{ll}
\left(\Gamma_{N} n x\right)\left(\left(z_{N} n_{1}, x_{1}\right)\left(\Gamma_{N} n_{2} x_{2}\right)\right)=\left(\Gamma_{N} n x\right)\left(\Gamma_{N} n_{1} n_{2} x_{2} x_{1}^{-1}\right) \\
=\Gamma_{N} n x n_{1} n_{2} x_{2} x_{1}^{-1}=\Gamma_{N} n n_{1} x n_{2} x^{-1} x x_{2} x_{1}^{-1} & \text { (by Lemma 18) } \\
=\Gamma_{N} n_{1} n x n_{2} x^{-1} x x_{2} x_{1}^{-1} & \text { (by Lemma 10) } \\
=\left(z_{N} n_{1}, x_{1}\right)\left(\left(\Gamma_{N} n x\right)\left(\Gamma_{N} n_{2} x_{2}\right)\right) . &
\end{array}
$$

(5) The group $p(z(\Gamma))$ acts trivially on $p(\Gamma) \backslash\left(\Gamma_{N} \backslash R\right)$. In fact, denote an element of $p(\Gamma) \backslash\left(\Gamma_{N} \backslash R\right)$ by $\left[\Gamma_{N} n x\right]$. Recall $m\left[\Gamma_{N} n x\right]=\left[\Gamma_{N} n x m^{-1}\right](m \in p(z(\Gamma)))$ $=\left[\Gamma_{N} n m^{-1} x\right]\left(\boldsymbol{R}\right.$ is abelian). Since $p\left(n m^{-1} n^{-1} m\right)=1$, we have $n m^{-1} n^{-1} m=z \in \Gamma_{N}$ and hence $n m^{-1}=z m^{-1} n$. Thus we have $\left[\Gamma_{N} n m^{-1} x\right]=\left[\Gamma_{N} m^{-1} n x\right]=\left[\left(\Gamma_{N} m^{-1}\right)\left(\Gamma_{N} n x\right)\right]$ $=\left[\Gamma_{N} n x\right]$.

Next we shall consider the general case. Recall the exact sequence;

$$
1 \longrightarrow N \longrightarrow R \longrightarrow \boldsymbol{R}^{s} \longrightarrow 1 .
$$

As noted in Section 1, we have a sequence of subgroups of R;

$$
N=R_{0} \subset R_{1} \subset \cdots \subset R_{s}=R
$$

such that $R_{i}=R_{i-1} \rtimes \boldsymbol{R}_{i}\left(\boldsymbol{R}_{i}=\boldsymbol{R}\right)$.
As in Section 1, we define $\Gamma_{i}=\Gamma \cap R_{i}, z_{i-1}=z\left(\Gamma_{i}\right) \cap \Gamma_{i-1}$ and $p_{i}: R_{i} \rightarrow \boldsymbol{R}_{i}$. If $e_{i}=\operatorname{rank} p_{i}\left(z\left(\Gamma_{i}\right)\right)$, then we define $A_{i}=p_{i}\left(z\left(\Gamma_{i}\right)\right) \otimes \boldsymbol{R}$. Clearly $p_{i}\left(z\left(\Gamma_{i}\right)\right) \backslash A_{i}=T^{1}$. By the same arguments as in the case of $s=1$, we have the following;

Proposition 19. (1) $\Gamma_{i+1} \backslash R_{i+1} \cong p_{i+1}\left(\Gamma_{i+1}\right) \backslash\left(\Gamma_{i} \backslash R_{i+1}\right)$.
(2) $\Gamma_{i} \backslash R_{i+1} \cong\left(\Gamma_{i} \backslash R_{i}\right) \times \boldsymbol{R}_{i+1}$.
(3) $\Gamma_{i+1} \backslash R_{i+1} \cong p_{i+1}\left(\Gamma_{i+1}\right) \backslash\left(\left(\Gamma_{i} \backslash R_{i}\right) \times \boldsymbol{R}_{i+1}\right)$.

Assume $\Gamma_{i} \backslash R_{i}$ admits an action of $T^{u} \times T^{e_{1}} \times \cdots \times T^{e_{i}}$, where $T^{u}=z_{N} \backslash N_{0}$ and $T^{e_{j}}=p\left(z\left(\Gamma_{j}\right)\right) \backslash A_{j}\left(e_{j} \neq 0\right)$, induced by the action of $T^{u} \times A^{e_{1}} \times \cdots \times A^{e_{i}}$ on $\left(\Gamma_{i-1} \backslash R_{i-1}\right) \times \boldsymbol{R}_{i}$ given by the formula;

$$
\left(z_{N} n, \stackrel{i}{\Pi} x_{j}\right)\left(\Gamma_{i-1} n_{1}{ }_{\Pi}^{i} y_{j}, z\right)=\left(\Gamma_{i-1} n n_{1} \Pi y_{j}^{i-1} x_{j}^{-1}, z x_{i}\right)
$$

If we regard $\Gamma_{i} \backslash R_{i}$ as $p_{i}\left(\Gamma_{i}\right) \backslash\left(\Gamma_{i-1} \backslash R_{i}\right)$, the above action is given by the formula ;

$$
\left(z_{N} n, \stackrel{i}{\Pi} x_{j}\right)\left(\Gamma_{i-1} n_{1} \stackrel{i}{\Pi} y_{j}\right)=\Gamma_{i-1} n n_{1} \stackrel{i}{\Pi} y_{j} x_{j}^{-1}
$$

Now we define an action of $T^{u} \times A^{e_{1}} \times \cdots \times A^{e_{i+1}}$ on $\left(\Gamma_{i} \backslash R_{i}\right) \times \boldsymbol{R}_{i+1}$ by the formula;
(*)

$$
\left(z_{N} n, \stackrel{i+1}{\Pi} x_{j}\right)\left(\Gamma_{i} n_{1} \stackrel{i}{\Pi} y_{j}, z\right)=\left(\Gamma_{i} n n_{1} \stackrel{i}{\Pi} y_{j} x_{j}^{-1}, z x_{i+1}^{-1}\right)
$$

We should prove that this action is commutative with the action of $p_{i+1}\left(\Gamma_{i+1}\right)$ $\cong \Gamma_{i} \backslash \Gamma_{i+1}$ on $\left(\Gamma_{i} \backslash R_{i}\right) \times \boldsymbol{R}_{i+1}$ given by the formula;
(**) $\quad\left(\Gamma_{i} n_{1} \stackrel{i+1}{\Pi} y_{j}\right)\left(\Gamma_{i} n_{2} \stackrel{i}{\Pi} z_{j}, w\right)=\left(\Gamma_{i} n_{1} \stackrel{i}{\Pi} y_{j} y_{i+1} n_{2} \stackrel{i}{\Pi} z_{j} y_{i+1}^{-1}, y_{i+1} w\right)$.
We note the following
Proposition 20.
(1) $\left(\Gamma_{i} n_{1} \Pi_{i}^{i} y_{j}\right)\left(\Gamma_{i} n_{2} \stackrel{i}{\Pi} z_{j}\right)=\Gamma_{i} n_{1} n_{2}^{\prime} \prod^{i-1}\left(y_{j}\left(y_{j+1} \cdots y_{i}\right) z_{j}\left(y_{j+1} \cdots y_{i}\right)^{-1}\right) y_{i} z_{i}$, where $n_{i} \in N, y_{j}, z_{j} \in \boldsymbol{R}_{j}$ and $\left(\Pi^{i} y_{j}\right) n_{2}=n_{2}^{\prime}\left(\Pi^{i} y_{j}\right)$.
(2) For every $j=1,2, \cdots, i$ and $k \geqq j, x_{j} y_{k}=y_{k} x_{j}$, where $x_{j} \in A_{j}, y_{k} \in p_{k}\left(\Gamma_{k}\right)$.

Proof. (1) follows from direct computations and (2) follows from the fact that the action of $p_{k}\left(\Gamma_{k}\right)$ on $z\left(\Gamma_{j}\right)$ and hence the action of $p_{k}\left(z\left(\Gamma_{k}\right)\right)$ induced by conjugation is trivial.

Now the proof of the commutativity of (*) and (**) is as follows; Put $y_{j+1, i}=y_{j+1} y_{j+2} \cdots y_{i}$ and $\bar{z}_{j}=y_{j+1} z_{j} y_{j+1}^{-1}$.

$$
\begin{aligned}
& \left(z_{N} n, \stackrel{i+1}{\Pi} x_{j}\right)\left(\left(\Gamma_{i} n_{1} \stackrel{i+1}{\Pi} y_{j}\right)\left(\Gamma_{i} n_{2} \stackrel{i}{\Pi} z_{j}, w\right)\right) \\
& =\left(z_{N} n, \stackrel{i+1}{\Pi} x_{j}\right)\left(\Gamma_{i} n_{1} \stackrel{i}{\Pi} y_{j} y_{i+1} n_{2} \stackrel{i}{\Pi} z_{j} y_{i+1}^{-1}, y_{i+1} w\right) \\
& =\left(z_{N} n, \stackrel{i+1}{\Pi} x_{j}\right)\left(\Gamma_{i} n_{1} n_{2}^{\prime}{ }_{\Pi}^{i} y_{j} \stackrel{i}{\Pi} \bar{z}_{j}, y_{i+1} w\right) \\
& =\left(\Gamma_{i} n n_{1} n_{2}^{\prime}{ }^{i-1} y_{j} y_{j+1, i} \bar{z}_{j} y_{j+1, i}^{-1} x_{j}^{-1} y_{i} \bar{z}_{i} x_{i}^{-1}, y_{i+1} w x_{i+1}^{-1}\right) \\
& =\left(\Gamma_{i} n_{1}{ }_{\Pi}^{i+1} y_{j}\right)\left(\left(z_{N} n, \stackrel{i+1}{\Pi} x_{j}\right)\left(\Gamma_{i} n_{2} \Pi_{!}^{i} z_{j}, w\right)\right) .
\end{aligned}
$$

We shall omit the proofs of the well-definedness, effectivity and triviality of the restriction of $(* *)$ to $p_{i+1}\left(z\left(\Gamma_{i+1}\right)\right)$. Thus we have defined an action of $T^{u} \times A^{e_{1}}$ $\times \cdots \times A^{e_{i+1}}$. By induction, we have completed the first step.
2. The second step. We shall define a maximal toral action on $\Gamma \backslash G / K$, where $G=R \circ S$. Consider the case when S contains no normal factor \tilde{U}, where U is one of groups listed in Lemma 7. Then, since $z(p(\Gamma))$ is discrete, $\operatorname{rank} z(\Gamma)=\operatorname{rank}\left(\Gamma_{R} \cap z(\Gamma)\right)$. Put $\operatorname{rank}\left(\Gamma_{R} \cap z(\Gamma)\right)=k$. By the arguments at the first step, a k-dimensional toral group $T^{k}=T^{u} \times T^{e_{1}} \times \cdots \times T^{e_{s}}$ acts on $\Gamma_{R} \backslash R$ as follows;

$$
\begin{equation*}
\left(z_{N} n, \stackrel{s}{\Pi}\left[x_{j}\right]\right)\left(\Gamma_{R} n_{1} \stackrel{s}{\Pi} y_{j}\right)=\Gamma_{R} n n_{1} \stackrel{s}{\Pi} y_{j} x_{j}^{-1} \tag{*}
\end{equation*}
$$

where $\left[x_{j}\right]$ denotes an element of $\boldsymbol{Z} \backslash A_{j}^{e_{j}}$. Note that if $e_{j}=0$ then $x_{j}=1$. Define
an action of T^{k} on $\left(\Gamma_{R} \backslash R\right) \times(S / K)$ by

$$
\begin{equation*}
\left(z_{N} n, \stackrel{s}{\Pi}\left[x_{j}\right]\right)\left(\Gamma_{R} n_{1} \Pi^{s} y_{j}, w K\right)=\left(\Gamma_{R} n n_{1} \stackrel{s}{\Pi} y_{j} x_{j}^{-1}, w K\right) \tag{**}
\end{equation*}
$$

It is easy to show that this action is well defined and effective. The commutativity with the action of $p(\Gamma)$ follows from the same arguments at the first step and the following lemma.

Lemma 21. (1) $v x_{j} v^{-1}=x_{j}$ for every $x_{j} \in A_{j}$ and $v \in p(\Gamma)$.
(2) $v n=n v$ for every $n \in N_{0}$ and $v \in p(\Gamma)$.

Proof. This follows from the fact that the action of $p(\Gamma)$ on $z(\Gamma)$ by conjugation is trivial and Lemma 3,
Q.E.D.

Thus we have defined an action of T^{k} on $\Gamma \backslash G / K$.
In general, S is decomposed into a product $S_{1} \times A$, where A is a product of \tilde{U}, where U is one of groups listed in Lemma 7 and S_{1} contains no factors of these groups. Then we have $p(z(\Gamma))=\boldsymbol{Z}^{a} \times F$ (F is a finite abelian group). It follows from results in Section 1 that there exists a subgroup \boldsymbol{R}^{a} of A which contains \boldsymbol{Z}^{a} as a lattice.

Let $T^{k}=T^{u} \times T^{e_{1}} \times \cdots \times T^{e_{s}}$ denote the toral group in the case of $A=1$. Define an action of $T^{k} \times \boldsymbol{R}^{a}$ on $\Gamma_{R} \backslash G / K$ by the formula;

$$
\left(z_{N} n, \stackrel{s}{\Pi}\left[x_{j}\right], u\right)\left(\Gamma_{R} n_{1} \Pi_{\Lambda}^{s} z_{j} v K\right)=\Gamma_{R} n n_{1} \stackrel{s}{\Pi} z_{j} x_{j}^{-1} v u^{-1} K
$$

where $u \in \boldsymbol{R}^{a}$. In the following, we omit the index s in $\mathbf{\Pi}^{\mathbf{s}}$. This is well defined; in fact,

$$
\begin{aligned}
& \Gamma_{R} n_{1}^{\prime} \Pi z_{j}^{\prime} v^{\prime}=\Gamma_{R} n_{1} \Pi z_{j} v \\
& \Rightarrow n_{1}^{\prime} \Pi z_{j}^{\prime} v^{\prime}=r n_{1} \Pi z_{j} v w \quad\left(r \in \Gamma_{R}, w \in K\right) \\
& \Rightarrow n n_{1}^{\prime} \Pi z_{j}^{\prime} x_{j}^{-1} v^{\prime} u^{-1}=n n_{1}^{\prime} \Pi z_{j}^{\prime} v^{\prime} x_{j}^{-1} u^{-1} \\
& \\
& =n r n_{1} \Pi z_{j} v w x_{j}^{-1} u^{-1} \\
& \quad=r n n_{1} \Pi z_{j} x_{j}^{-1} v w u^{-1} \quad(\text { by Lemma 7) }
\end{aligned} \begin{aligned}
\Rightarrow\left(z_{N} n, \Pi\left[x_{j}\right]\right)\left(\Gamma_{R} n_{1} \Pi z_{j} v\right)=\left(z_{N} n, \Pi\left[x_{j}\right]\right)\left(\Gamma_{R} n_{1}^{\prime} \Pi z_{j}^{\prime} v^{\prime}\right) .
\end{aligned}
$$

Next define an action of $T^{k} \times \boldsymbol{R}^{a}$ on $\left(\Gamma_{R} \backslash R\right) \times(S / K)$ by the formula;

$$
\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{1} \Pi z_{j}, s K\right)=\left(\Gamma_{R} n n_{1} \Pi z_{j} x_{j}^{-1}, s v^{-1} K\right)
$$

It is easy to see that this is well defined. The homeomorphism $g: \Gamma_{R} \backslash G / K \rightarrow$ $\left(\Gamma_{R} \backslash R\right) \times(S / K)$ is ($T^{k} \times \boldsymbol{R}^{a}$)-equivariant. In fact, we have

$$
\begin{aligned}
& g\left(\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{1} \Pi z_{j} s K\right)\right)=g\left(\Gamma_{R} n n_{1} \Pi z_{j} x_{j}^{-1} s v^{-1} K\right) \\
& =\left(\Gamma_{R} n n_{1} \Pi z_{j} x_{j}^{-1}, s v^{-1} K\right)=\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(g\left(\Gamma_{R} n_{1} \Pi z_{j} S K\right)\right) .
\end{aligned}
$$

It can also be proved that the action of $T^{k} \times \boldsymbol{R}^{a}$ on $\left(\Gamma_{R} \backslash R\right) \times(S / K)$ is effective. In fact, assume $\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{1} \Pi z_{j}, s K\right)=\left(\Gamma_{R} n_{1}, \Pi z_{j}, s K\right)$ for every
$\left(\Gamma_{R} n_{1}, \Pi z_{j}, s K\right)$. Then we have $n_{1} \Pi z_{j}=r n n_{1} \Pi z_{j} x_{j}^{-1}$ and $s=s v^{-1} w\left(w \in K, r \in \Gamma_{R}\right)$ and hence $v=w \in \boldsymbol{R}^{a} \cap K=1$. If we choose $n_{1} \Pi z_{j}=1$, then $r n \Pi x_{j}^{-1}=1$ and $n \Pi x_{j}^{-1} \in z_{N} \times \Pi p_{i}\left(z\left(\Gamma_{R}\right)\right)$ which implies $\left(z_{N} n, \Pi\left[x_{j}\right]\right)=1$. This proves that the action of $T^{k} \times \boldsymbol{R}^{a}$ on $\Gamma_{R} \backslash G / K$ is effective. Moreover the action is commutative with the action of $p(\Gamma)$. In fact,

$$
\begin{aligned}
& \left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\left(\Gamma_{R} n_{1} \Pi y_{j} u\right)\left(\Gamma_{R} n_{2} \Pi z_{j} w K\right)\right) \\
& =\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{1} \Pi y_{j} u n_{2} \Pi z_{j} u^{-1} u w K\right) \\
& =\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{1} n_{2}^{\prime} \Pi y_{j} \Pi u z_{j} u^{-1} u w K\right) \\
& =\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{1} n_{2}^{s-1} \Pi y_{j} y_{j+1, s} \bar{z}_{j} y_{j+1, s}^{-1} y_{s} \bar{z}_{s} u w K\right) \\
& \quad\left(\text { note } y_{j+1, s}=y_{j+1} \cdots y_{s}, \bar{z}_{j}=u z_{j} u^{-1}\right) \\
& =\left(\Gamma_{R} n n_{1} n_{2}^{s-1} \Pi y_{j} y_{j+1, s} \bar{z}_{j} y_{j+1, s}^{-1} x_{j}^{-1} y_{s} \bar{z}_{s} x_{s}^{-1} u w v^{-1} K\right) \\
& \left.=\left(\Gamma_{R} n n_{1} n_{2}^{\prime} \Pi y_{j} \Pi u\left(z_{j} x_{j}^{-1}\right) u^{-1} u w v^{-1} K\right) \quad \text { (note that } u x_{j}=x_{j} u\right) \\
& = \\
& \left(\Gamma_{R} n_{1} \Pi y_{j} u\right)\left(\left(z_{N} n, \Pi\left[x_{j}\right], v\right)\left(\Gamma_{R} n_{2} \Pi z_{j} w K\right)\right) .
\end{aligned}
$$

It follows that $T^{k} \times \boldsymbol{R}^{a}$ acts on $p(\Gamma) \backslash\left(\Gamma_{\boldsymbol{R}} \backslash G / K\right)$. We shall prove that \boldsymbol{Z}^{a} acts trivially on $p(\Gamma) \backslash\left(\Gamma_{R} \backslash G / K\right)$. Let element of $p(\Gamma) \backslash\left(\Gamma_{R} \backslash G / K\right)$ be written as $\left[\Gamma_{R} n \Pi z_{j} w K\right]$. Recall $m\left[\Gamma_{R} n \Pi z_{j} w K\right]=\left[\Gamma_{R} n \Pi z_{j} w m^{-1}\right]$ for $m \in \boldsymbol{Z}^{a}$. Since $m \in \boldsymbol{Z}^{a}$ $\subset z(p(\Gamma)) \subset z(S), w m^{-1}=m^{-1} w$ and hence we have $m\left[\Gamma_{R} n \Pi z_{j} w K\right]=\left[\Gamma_{R} \Pi z_{j} m^{-1} w K\right]$. Because $p\left(\left(n \Pi z_{j}\right) m^{-1}\left(n \Pi z_{j}\right)^{-1} m\right)=1$, we have $\left(n \Pi z_{j}\right) m^{-1}\left(n \Pi z_{j}\right)^{-1} m=z \in \Gamma_{R}$ and hence $\left[\Gamma_{R} n \Pi z_{j} m^{-1} w K\right]=\left[\Gamma_{R} m^{-1}\left(n \Pi z_{j}\right) w K\right]=\left[\Gamma_{R} n \Pi z_{j} w K\right]$. This implies that $T^{k} \times T^{a}$ acts on $\Gamma \backslash G / K$ effectively. Thus we have proved Theorem A when G is simply connected.

3. The proof of Theorem \mathbf{A} when G is not simply connected.

In this section, we shall prove Theorem A when G is not simply connected. We use the same notations as in Section 1. As noted in Section 1, $\tilde{G}^{*}=\tilde{R} \cdot \tilde{S}^{*}$, $\tilde{R} \cap \tilde{S}^{*}=1$ and \bar{K}^{*} is a maximal compact subgroup of \tilde{G}^{*}. Then the same arguments as in Section 2 show that $z\left(\tilde{\Gamma}^{*}\right)=z\left(\pi_{1}\left(\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \bar{K}^{*}\right)\right)$ is finitely generated, say of rank k^{\prime} and $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \bar{K}^{*}$ admits an action of $T^{k^{\prime}}$. Note that $z\left(\tilde{\Gamma}^{*}\right) \cong$ $\boldsymbol{Z}^{r} \times z(\Gamma)$. In fact, as noted in Section 1, we have an exact sequence;

$$
1 \longrightarrow \boldsymbol{Z}^{r} \longrightarrow \tilde{\Gamma}^{*} \longrightarrow \Gamma \longrightarrow 1,
$$

where \boldsymbol{Z}^{r} is a central subgroup of $\tilde{\Gamma}^{*}$. It follows that $z\left(\tilde{\Gamma}^{*}\right) \cong \boldsymbol{Z}^{r} \times z(\Gamma)$. As noted above, $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \bar{K}^{*}$ admits an action of $T^{k} \times T^{r}$. It is easy to see that the restriction of the acton of $T^{k} \times T^{r}$ to T^{r} coincides with the principal action of T^{r} on $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \bar{K}^{*}$. This implies that $\tilde{\Gamma}^{*} \backslash \tilde{G}^{*} / \tilde{K}^{*}$ admits an action of T^{k}. Thus we have completed the proof of Theorem A.

4. The proof of Theorem B.

Let $M=G / H$ be a compact aspherical manifold. When G is not simply connected, let \tilde{G} be the universal covering of G. Then G / H is homeomorphic to $\tilde{G} / \pi^{-1}(H)$. Thus it is sufficient to consider the case when G is simply connected. Therefore any maximal compact subgroup K of G is simply connected and semisimple. Let N be the subgroup that acts trivially on G / H. Then $N \subset H$ and N is normal in G. Since only a torus among the compact connected Lie group can act effectively on $G / H, K$ is contained in N. Now we have $G / H=$ $(G / N) /(H / N)$, so we can assume that $N=1$, and hence $K=1$. This means G is homeomorphic to \boldsymbol{R}^{n} for some n. Thus if $\operatorname{dim} H=0$, then M is a manifold of type of $\Gamma \backslash G / K$. Hence Theorem B holds. Next we assume $\operatorname{dim} H>0$. The following facts are known (see [8]).

1. H^{0} is solvable.
2. Let $F=N_{G}\left(H^{0}\right), H_{1}=F^{0} H$ and $G_{1}=H_{1}^{0} /\left(H_{1}^{0} \cap H^{0}\right)$. Then G / H_{1} is homeomorphic to a torus T^{n} and we have a fiber bundle; $G_{1} / \Gamma_{1} \rightarrow G / H \rightarrow G / H_{1}$, where $\Gamma_{1}=\left(H_{1}^{0} \cap H\right) /\left(H_{1}^{0} \cap H\right)^{0}$.
3. G_{1} is simply connected.

Since G / H_{1} is aspherical and $\operatorname{dim} H_{1}^{0}>0, H_{1}^{0}$ is also solvable and hence G_{1} is solvable. It follows from a result in [11] (Proposition 3.10 in [11]) that Γ_{1} is poly- \boldsymbol{Z} group. It follows from 2 that we have the following exact sequence;

$$
1 \longrightarrow \Gamma_{1} \longrightarrow H / H^{0} \longrightarrow H_{1} / H_{1}^{0} \longrightarrow 1,
$$

where $H_{1} / H_{1}^{0}=\boldsymbol{Z}^{n}$. $\quad \Gamma_{1}$ being a poly- \boldsymbol{Z} group, H / H^{0} is also poly- \boldsymbol{Z} group. In other words, M is a closed aspherical manifold with poly- \boldsymbol{Z} fundamental group. If $\operatorname{dim} M \neq 3,4$, then Theorem B follows from a result in [10] (see Chap. 5 in [10]).

Now we shall consider the case when $\operatorname{dim} M=3$ or 4 .
In his paper ([16], [17]), V.V. Gorvatsevich has determined all 3 or 4dimensional homogeneous manifolds. They are given as follows;

1. Torus T^{3} or T^{4}.
2. $\widetilde{S L}(2, \boldsymbol{R}) / \Gamma, \quad \Gamma$: a lattice.
3. $(\widetilde{S L}(2, \boldsymbol{R}) / \Gamma) \times S^{1}$.
4. Solvmanifolds.

Since Theorem B holds for manifolds of type (1), (2) and (3). It is sufficient to consider only manifold $M=R / D$, where R is a simply connected solvable Lie group and D a closed subgroup of R. Let N be the nilradical of R. Then we have a fiber bundle

$$
(\#) \quad N D / D \longrightarrow R / D \longrightarrow R / N D
$$

where $N D / N=N / N \cap D$ and $R / N D$ is a torus (see [2]). It follows that we have the following exact sequence of fundamental groups;
$(*) \quad 1 \longrightarrow N \cap D /(N \cap D)^{0} \longrightarrow D / D^{0} \longrightarrow D / N \cap D \longrightarrow 1$, where $D / N \cap D=\boldsymbol{Z}^{s}$.
Lemma 22. (1) If $\operatorname{dim} R / D=3$, then the sequence (*) is given by $1 \rightarrow \boldsymbol{Z}^{t} \rightarrow$ $D / D^{0} \rightarrow \boldsymbol{Z}^{s} \rightarrow 1$, where $t+s=3$.
(2) If $\operatorname{dim} R / D=4$ and $s>1$, then (*) is given by $1 \rightarrow \boldsymbol{Z}^{t} \rightarrow D / D^{0} \rightarrow \boldsymbol{Z}^{s} \rightarrow 1$, where $t+s=4$.

This follows immediately from the fact that the fiber $N / N \cap D$ is a circle, or 2-dimensional torus.

First we shall consider the case when $\operatorname{dim} R / D=3$ or 4 and $s \geqq 2$. Put $\Gamma=D / D^{0}$. It follows from Lemma11 that there exists a simply connected solvable Lie group S and a closed subgroup C of S such that $\pi_{1}(S / C)=\Gamma$ and that if $z(\Gamma) \neq 1$, then there exist closed subgroups C_{1} and C_{2} of S which satisfy

1) $C_{1} \triangleleft C$ and $C_{1} / C^{0}=z(\Gamma)$,
2) $C_{2} / C^{0}=\boldsymbol{R}^{k} \quad(k=\operatorname{rank} z(\Gamma))$,
and
3) $z(\Gamma)$ is contained in C_{2} / C^{0} as a lattice.

Consider the toral group $T^{k}=\left(C_{2} / C^{0}\right) /\left(C_{1} / C^{0}\right)=C_{2} / C_{1}$. Define an action of T^{k} on S / C by $\left(x C_{1}\right)(y C)=y x^{-1} C$. To show that this is well defined, we need the following

Lemma 23. We have $x^{-1} y x y^{-1} \in C^{0}$ for every $y \in C$ and $x \in C_{2}$.
Proof. Consider the homomorphism $c_{y}: S \rightarrow S$ defined by $c_{y}(s)=y s y^{-1}$. This homomorphism leaves C and C^{0} invariant, and hence c_{y} induces an automorphism $\bar{c}_{y}: C / C^{0} \rightarrow C / C^{0}$. Since C_{1} / C^{0} is the center of $C / C^{0}, \bar{c}_{y}$ is the identity. Let $c_{y}\left(C_{2}\right)$ be denoted by C_{2}^{\prime}. Then c_{y} induces an automorphism $C_{2} / C^{0} \rightarrow C_{2}^{\prime} / C^{0}$. Both C_{2} / C^{0} and C_{2}^{\prime} / C^{0} contain C_{1} / C^{0} as a lattice. It follows from Lemma 3 that C_{2} / C^{0} and C_{2}^{\prime} / C^{0} are equal, and $\bar{c}_{y}: C_{2} / C^{0} \rightarrow C_{2} / C^{0}$ is the identity. This implies $\bar{c}_{y}\left(x C^{0}\right)=y x y^{-1} C^{0}=x C^{0}$ and hence $x^{-1} y x y^{-1} \in C^{0}$.
Q.E.D.

Corollary. $y x^{-1}=x^{-1} y(\bmod C)$ for every $y \in C$ and $x \in C_{2}$.
Now we can show that the action of T^{k} on S / C defined above is well defined as follows.

$$
\begin{aligned}
x_{1} C_{1} & =x_{2} C_{1} \Rightarrow x_{2}=x_{1} x\left(x \in C_{1}\right) \Rightarrow\left(x_{2} C_{1}\right)(y C)=y x^{-1} x_{1}^{-1} C \\
& =y x_{1}^{-1} x^{-1} z C\left(z \in C^{0}\right)=y x_{1}^{-1} x^{-1} C=\left(x_{1} C_{1}\right)(y C) . \\
y_{1} C_{1} & =y_{2} C_{1} \Rightarrow y_{2}=y_{1} y(y \in C) \Rightarrow\left(x C_{1}\right)\left(y_{2} C\right)=y_{2} x^{-1} C \\
& =y_{1} y x^{-1} C=y_{1} x^{-1} C=\left(x C_{1}\right)\left(y_{1} C\right) .
\end{aligned}
$$

This action is effective. In fact, assume $\left(x C_{1}\right)(y C)=y C$ for every y. Then we
have $y x^{-1} C=y C$ and hence $x \in C \cap C_{2}$, which implies $x C_{2}=C_{1}$.
Since two solvmanifolds with isomorphic fundamental group are homeomorphic (see [2]), R / D and S / C are homeomorphic and hence R / D admits a maximal toral action.

Lastly we shall consider the case when $\operatorname{dim} R / D=4, s=1$ and $N /(N \cap D)$ is not a torus. The natural action of N on $R / D\left(x(r D)=r x^{-1} D\right)$ has the unique orbit type $N /(N \cap D)$ of dimension 1. It is well known that M is homeomorphic to $\boldsymbol{R} \times{ }_{\boldsymbol{z}}(N /(N \cap D)$), where \boldsymbol{Z} acts on $\boldsymbol{R} \times(N /(N \cap D))$ as follows;

$$
n(v, x(N \cap D))=\left(v-n, h^{n}(x(N \cap D))\right)
$$

where $h: N /(N \cap D) \rightarrow N /(N \cap D)$ is an N-equivariant homeomorphism, i.e. $h(x(N \cap D))=x x_{0}^{-1}(N \cap D), x_{0} \in N_{N}(N \cap D)$ ($=$ the normalizer of $N \cap D$ in N). Put $N \cap D=K$. Note that $K^{0}=N \cap D^{0}$. Consider the exact sequence of the fundamental groups of (\#);

$$
1 \longrightarrow \pi \xrightarrow{\alpha} \Gamma \xrightarrow{\beta} \boldsymbol{Z} \longrightarrow 1
$$

where $\Gamma=D / D^{0}$ and $\pi=K / K^{0}$. Since K is a closed uniform subgroup of N, K^{0} is a normal subgroup of N (Corollary to Theorem 2.3 in [11]). Hence it follows from a result in [12] (see the table 1 in [12]) that π is isomorphic to $(\boldsymbol{Z} \times \boldsymbol{Z}) \times_{\phi} \boldsymbol{Z}$, where $\phi: \boldsymbol{Z} \rightarrow \operatorname{Aut}(\boldsymbol{Z} \times \boldsymbol{Z}) ; 1 \rightarrow\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$. It can be easily shown that the center $z(\pi)$ is given by $z(\boldsymbol{\pi})=\left\{\binom{\boldsymbol{x}}{0} \in \boldsymbol{Z} \times \boldsymbol{Z}\right\}$ (note that we may assume $k \neq 0$).

We shall consider the special case in which $\pi \cap z(\Gamma)=z(\pi)$, in other words, $\beta(z(\pi))=1$. It follows from Lemma 11 that there exist closed subgroups N_{1} and N_{2} of N such that
(i) $N_{1} \subset K$ and $N_{1} / K^{0}=\boldsymbol{Z}=z(\Gamma) \cap \pi$.
(ii) $K^{0} \subset N_{2}, N_{2} / K^{0}=\boldsymbol{R}$ and N_{1} / K^{0} is a lattice of N_{2} / K^{0}.

Consider the action of $T^{1}=\left(N_{2} / K^{0}\right) /\left(N_{1} / K^{0}\right)=N_{2} / N_{1}$ on N_{2} / K defined by ($n_{2} N_{1}$) $(n K)=n n_{2}^{-1} K$. We show that this action is compatible with homeomorphism h. In fact, we have

$$
\begin{aligned}
& \left(n_{2} N_{1}\right)(h(x K))=\left(n_{2} N_{1}\right)\left(x x_{0}^{-1} K\right)=x x_{0}^{-1} n_{2}^{-1} K \quad \text { and } \\
& h\left(\left(n_{2} N_{1}\right)(x K)\right)=h\left(x n_{2}^{-1} K\right)=x n_{2}^{-1} x_{0}^{-1} K .
\end{aligned}
$$

It follows from the following lemma that we have $x_{0} n_{2} x_{0}^{-1} n_{2}^{-1} \in K$, which implies that h is equivariant under the action of T^{1}.

Lemma 24. $n_{2}^{-1} x_{0} n_{2} x_{0}^{-1} \in K$ for every $n_{2} \in N_{2}$.
Proof. Consider the homomorphism $c_{x_{0}}: K / K^{0} \rightarrow K / K^{0}$ defined by $c_{x_{0}}\left(k K^{0}\right)$ $=x_{0} k x_{0}^{-1} K^{0}$. Clearly $c_{x_{0}}$ induces the identity on N_{1} / K^{0}. Since $c_{x_{0}}\left(N_{2} / K^{0}\right)$ and N_{2} / K^{0} contain N_{1} / K^{0} as a lattice, it follows from Lemma 3 that $c_{x_{0}}$ is the
identity on N_{2} / K^{0}, in other words, $x_{0} n_{2}^{-1} K^{0}=n_{2} K^{0}$ for every $n_{2} \in N_{2}$. Q.E.D.
Next we shall consider the general case; i.e. $\beta(z(\pi))=\boldsymbol{Z}$. Let $\beta(z(\Gamma))=$ $n_{0} \boldsymbol{Z} \subset \boldsymbol{Z}$. Define an action of \boldsymbol{R} on $\boldsymbol{R} \times_{\boldsymbol{z}}(N / K)$ by the formula;

$$
t[x, n K]=[x+t, n K],
$$

where $[x, n K]$ denotes the orbit of $(x, n K)$. It is easy to see that this action is well defined. It is also proved that $\beta(z(\Gamma))=n_{0} \boldsymbol{Z}$ is the ineffective kernel of this action. In fact, we have

$$
n_{0}[x, n K]=\left[x+n_{0}, n K\right]=\left[x, n x_{0}^{n_{0}} K\right] .
$$

The following lemma shows that $\left[x, n x_{0}^{n_{0}} K\right]=[x, n K]$, which implies that the group $\boldsymbol{R} / n_{0} \boldsymbol{Z}$ acts on $\boldsymbol{R} \times{ }_{\boldsymbol{z}}(N / K)$.

Lemma 25. $\quad\left[x, n x_{0}^{n_{0}} K\right]=[x, n K]$.
Proof. Consider the following commutative diagram;

Because the lower exact sequence is central, $n_{0} \boldsymbol{Z}$ acts on $z(\Gamma) \cap \pi$ trivially, i. e. $n_{0}\left(n_{1} K^{0}\right)=n_{1} x_{0}^{n_{0}} K^{0}=n_{1} K^{0}$. In particular, we have $x_{0}^{-n_{0}} K^{0}=K^{0}$ and hence $x_{0}^{n_{0}} K^{0}$ $=K^{0}$.
Q. E. D.

It is not difficult to show that the action of $\boldsymbol{R} / n_{0} \boldsymbol{Z}$ is commutative with the action of T^{1} and $\left(\boldsymbol{R} / n_{0} \boldsymbol{Z}\right) \times T^{1}$ acts on $\boldsymbol{R} \times{ }_{z}(N / K)$. Thus $M=\boldsymbol{R} \times{ }_{z}(N / K)$ admits a maximal torus action. This completes the proof of Theorem B.

Acknowledgment: The author would like thank Prof. F. Raymond and the referee for their valuable suggestions.

References

[1] L. Auslander, An exposition of the structure of solvmanifolds, Part I; Algebraic theory, Bull. Amer. Math. Soc., 79 (1973), 227-261.
[2] L. Auslander and R.H. Szczarba, Vector bundles over tori and non-compact solvmanifolds, Amer. J. Math., 97 (1975), 260-281.
[3] N. Bourbaki, Groupes et algebres de Lie, Chap. 1, 2 et 3, Herman, Paris, 1968.
[4] P.E. Conner and F. Raymond, Actions of comapct Lie groups on aspherical manifolds, Topology of manifolds, Proc. Inst. Univ. of Geogia, Athens, 1970, pp. 227-264.
[5] —, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83 (1977), 36-85.
[6] V.V. Gorbatsevich, Three dimensional homogeneous spaces, Sibirsk Mat. Zh., 18 (1977), 280-293 ; English Transl. in Siberian Math. J., 18 (1977).
[7] -, The classification of four dimensional compact homogeneous spaces, Uspekhi Mat. Nauk, 32 (1977), no. 2, (1984), 207-208, (Russian).
[8] -_, On aspherical homogeneous spaces, Mat. Sb., 100 (1974), 248-265, (Russian).
[9] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
[10] K. B. Lee and F. Raymond, Geometric realization of group extension by the Seifert construction, Contemp. Math., 36 (1985), 367-425.
[11] M.S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972.
[12] F. Raymond and T. Vasques, 3-manifolds whose universal covering are Lie groups, Topology Appl., 12 (1981), 161-179.
[13] O. Loos, Symmetric spaces I, Benjamin, New York, 1969.

Tsuyoshi Watabe
Department of Mathematics
Faculty of Science,
Niigata University,
Niigata
Japan

