Maximal toral action on aspherical manifolds $\Gamma \setminus G/K$ and G/H

By Tsuyoshi WATABE

(Received Sept. 11, 1985) (Revised April 13, 1987)

Introduction.

In this note, we shall consider only topological actions. For a closed aspherical manifold M, it is well known that if a compact connected Lie group G acts on M effectively, then G is a toral group T^s with $s \leq \text{rank}$ of the center $z(\pi_1(M))$ of the fundamental group $\pi_1(M)$ of M (Theorem 5.6 in [4]). In [5], it was conjectured that if M is a closed aspherical manifold, then

(1) $z(\pi_1(M))$ is finitely generated, say of rank k,

(2) there exists a toral group T^{k} acting effectively on M.

These have been verified in many cases. For examples, if M is a smooth manifold admitting a Riemannian metric with non-positive sectional curvature or if M is a nilmanifold, then (1) and (2) hold (see $\lceil 10 \rceil$).

In this note, we shall prove the following

THEOREM A. The conjectures (1) and (2) hold for aspherical manifold of type $\Gamma \setminus G/K$, where G is a connected non-compact Lie group, K a maximal compact subgroup of G and Γ a torsion free discrete uniform subgroup of G.

THEOREM B. The conjectures (1) and (2) hold for a compact homogeneous aspherical manifold G/H, where G is a connected non-compact Lie group and H a closed subgroup of G.

In this note, we shall use the following notations;

1. Z, R and C denote the ring of integers, the field of real numbers and the field of complex numbers, respectively.

2. \tilde{G} denotes the universal covering of a Lie group G and $\pi: \tilde{G} \rightarrow G$ the covering projection.

3. G° denotes the identity component of a Lie group G.

4. z(G) denotes the center of a group G.

5. Lie group is assumed to be connected unless the contrary is stated.

1. Preliminaries.

Let G be a simply connected non-compact Lie group. Then it is well known that G is a semi-direct product of a simply connected semisimple subgroup S and its radical R. Thus every element of G is uniquely written as a product $rs \ (r \in R, s \in S)$ and the product of r_1s_1 and r_2s_2 is given by $(r_1s_1)(r_2s_2) =$ $r_1s_1r_2s_1^{-1}s_1s_2$ and we have the following split exact sequence;

$$1 \longrightarrow R \longrightarrow G \xleftarrow{p}{i} S \longrightarrow 1.$$

Let Γ be a torsion free discrete uniform subgroup of G and K a maximal compact subgroup of G. It is easy to show that K is semisimple and $R \cap K=1$. Since Γ is torsion free, $\Gamma \cap K=1$. When one considers the manifold $\Gamma \setminus G/K$, it is sufficient to consider the case when S contains no compact normal factors. We list some lemmas which are needed in the sequel.

LEMMA 1 (Corollary 8.28 in [11]). (1) $\Gamma_R = \Gamma \cap R$ is a discrete uniform subgroup of R.

(2) $p(\Gamma)$ is a discrete uniform subgroup of S.

LEMMA 2 (Corollary 5.18 in [11]). Let G be a semisimple Lie group without compact normal subgroup and H a closed subgroup with the property (S) (e.g. G/H has a finite invariant measure). Then the centralizer of H in G is equal to z(G). In particular, z(H) is contained in z(G).

LEMMA 3 (Theorems 2.1 and 2.11 in [11]). (1) Let N be a simply connected nilpotent Lie group and Γ a closed uniform subgroup of N. Then there are no proper connected closed subgroups of N containing Γ .

(2) Let N and V be two nilpotent simply connected groups and let H be a uniform subgroup of N. Then any continuous homomorphism $f: H \rightarrow V$ can be extended in a unique manner to a continuous homomorphism $\tilde{f}: N \rightarrow V$.

LEMMA 4 (Theorem 1.1 of Chap. VI in [9]). Let \underline{g} be a non-compact semisimple Lie algebra over \mathbf{R} and $\underline{g} = \underline{k} + \underline{p}$ a Cartan decomposition of \underline{g} . Suppose (G, K) is any pair associated with (\underline{g}, θ) , where $\theta(T+X) = T - X(X \in \underline{p}, T \in \underline{k})$ is an involutive automorphism of \underline{g} . Then we have

- (1) K is connected, closed and contains z(G),
- (2) K is compact if and only if z(G) is finite.

LEMMA 5 (Theorem 2.3 in Section 2 in Chap. IV in [13]). Let (G, K) be the pair as in Lemma 4. Then K is its own normalizer and the centralizer $C_G(K)$ of K in G is z(K).

LEMMA 6. Let G be a semisimple Lie group and $\pi: \widetilde{G} \rightarrow G$ the universal cover-

ing. Then $z(\tilde{G})$ is equal to $\pi^{-1}(z(G))$.

PROOF. Let $x \in \pi^{-1}(z(G))$ and consider the continuous map $c_x : \tilde{G} \to \tilde{G}$ defined by $c_x(y) = xyx^{-1}y^{-1}$. Since $\pi(xyx^{-1}y^{-1}) = 1$, $\operatorname{Im} c_x \subseteq \operatorname{Ker} \pi$. Ker π being discrete, $c_x(\tilde{G}) = 1$ and hence $xyx^{-1}y^{-1} = 1$, which implies $x \in z(\tilde{G})$. Conversely let $x \in z(\tilde{G})$. Then $\pi(x) \in z(G)$, which implies $x \in \pi^{-1}(z(G))$. Q. E. D.

LEMMA 7. Let G be a non-compact simple Lie group. Suppose $z(\tilde{G})$ is not finite. Then we have

(1) $z(\tilde{G})$ is contained as a lattice in a subgroup L of \tilde{G} , which is isomorphic to **R**, and

(2) Let \overline{K} be a maximal compact subgroup of \widetilde{G} . Then L is contained in the centralizer of \overline{K} in \widetilde{G} .

PROOF. The following arguments are due to Chap. VI, WI, X in [9]. Since $z(\tilde{G})$ is not finite, G is $PSL(2, \mathbb{R})$ (or its finite covering group), SU(p, q), $SO^*(2n)$, $Sp(n, \mathbb{R})$, $SO_0(2, q)$, E_6 , or E_7 . Let K be a subgroup of G such that the pair (G, K) has the property of Lemmas 4 and 5. Then G/K is an irreducible Hermitian space and z(K) is SO(2). It follows from Lemma 6 that z(G) is contained in $L = \pi^{-1}(z(K))$, which is isomorphic to \mathbb{R} . This proves (1). It follows from arguments in Chap. X in [9] (see pp. 451-455 in [9]) that $\pi^{-1}(K)$ is isomorphic to $\overline{K} \times \mathbb{R}$, where \overline{K} is a maximal compact subgroup of \tilde{G} . Since $z(K) = c_G(K)$, we have $\pi(xyx^{-1}) = \pi(y)$ for every $y \in \overline{K}$ and $x \in L$. This implies that the image of the continuous map $c: \overline{K} \times L \to \tilde{G}$ defined by $c(y, x) = xyx^{-1}y^{-1}$ is contained in Ker π . Since Ker π is discrete and $\overline{K} \times L$ is connected, we have c(y, x)=1. This completes the proof of Lemma 7. Q. E. D.

We shall recall some results about solvable Lie groups. Let R be a simply connected solvable Lie group and Γ a discrete uniform subgroup of R. It is well known that there is an exact sequence

$$1 \longrightarrow N \longrightarrow R \longrightarrow \mathbf{R}^s \longrightarrow 1,$$

where N is the nilradical of R. It is easy to see that there is a sequence of subgroups of R;

$$N = R_0 \subseteq R_1 \subseteq \cdots \subseteq R_s = R$$

such that $R_{i+1} = R_i \rtimes R_i$ (semidirect product), where $R_i = R$. In the following, we write the addition of R multiplicatively. Define $\Gamma_i = \Gamma \cap R_i$, $z_{i-1} = z(\Gamma_i) \cap \Gamma_{i-1}$ and $p_i: R_i \to R_i$ the natural projection. Put $\Gamma_N = \Gamma_0$ and $z_N = z_0$. We may write an element of R_i in the form;

$$nx_1x_2\cdots x_i=n\prod^i x_j \qquad (n\in N, x_j\in \mathbf{R}_j).$$

We have the following

LEMMA 8. (1) Γ_i is a discrete uniform subgroup of R_i . (2) $p_i(\Gamma_i)$ is a discrete uniform subgroup of R_i .

This follows from the standard arguments about Lie group theory (see Chap. 3 in [3] and [11]).

LEMMA 9. Let N be a simply connected nilpotent Lie group and Γ_N is a discrete uniform subgroup of N. Suppose $z(\Gamma_N) = \mathbb{Z}^n$. Then there exists a subgroup N_0 of N which is isomorphic to \mathbb{R}^n and contains $z(\Gamma_N)$ as a lattice.

This follows from Lemma 3.

LEMMA 10. Let R be a simply connected solvable Lie group, Γ a discrete uniform subgroup of R, N the nilradical of R and N₀ the subgroup of N which has the property in Lemma 9 for $\Gamma_N = N \cap \Gamma$ and $z(\Gamma) \cap \Gamma_N$. Then we have rx = xrfor every $r \in \Gamma$ and $x \in N_0$.

PROOF. Consider the inner automorphism $c_r: R \to R$. Since $z(\Gamma) \cap \Gamma_N \subseteq z(\Gamma)$, we have $z(\Gamma) \cap \Gamma_N \subseteq N_0 \cap c_r(N_0)$. It follows from a result in [11] (Lemma 2.4 in [11]) that $N_0 \cap c_r(N_0)$ is connected and hence $N_0 \cap c_r(N_0) = N_0$, which implies $c_r(N_0) = N_0$. Q. E. D.

LEMMA 11. (1) Let Γ be a group satisfying the exact sequence;

 $1 \longrightarrow Z^t \longrightarrow \Gamma \longrightarrow Z^s \longrightarrow 1.$

Then there exists a simply connected solvable Lie group R and a closed subgroup D of R such that $\pi_1(R/D) = \Gamma$.

(2) Let Γ , R and D be as above. Assume $z(\Gamma)$ is not trivial. Then there exist closed subgroups D_1 and D_2 of R which satisfy

i) $D_1 \triangleleft D$ and $D_1/D_1^0 = z(\Gamma) = \mathbf{Z}^k$,

ii) D_2/D_1^0 is isomorphic to \mathbf{R}^k

and

iii) $z(\Gamma)$ is contained in D_2/D_1^0 as a lattice.

PROOF. The following arguments are due to [1] (Chap. III, Section 5 in [1]).

(1) The arguments in [1] (see p. 245) show that there exists a commutative diagram in which the horizontal sequences are exact;

Let D be the subgroup of R generated by the image of Γ and the subgroup I

of $Z^t \times C$ consisting of purely imaginary vectors. Then D is closed in R and $\pi_1(R/D) = D/D^0 = D/I = \Gamma$.

(2) Let D_1 be the subgroup of R generated by $z(\Gamma)$ and I. $z(\Gamma)$ satisfies the following exact sequence;

$$1 \longrightarrow Z^{\iota'} \longrightarrow z(\Gamma) \longrightarrow Z^{s'} \longrightarrow 1.$$

It is easy to construct the following commutative diagram;

$$1 \longrightarrow \mathbf{Z}^{\iota'} \longrightarrow z(\Gamma) \longrightarrow \mathbf{Z}^{s'} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \mathbf{Z}^{\iota'} \otimes \mathbf{R} \longrightarrow \mathbf{Z}^{k} \otimes \mathbf{R} \longrightarrow \mathbf{Z}^{s'} \otimes \mathbf{R} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \mathbf{Z}^{\iota'} \otimes \mathbf{C} \longrightarrow \mathbf{R} \longrightarrow \mathbf{Z}^{s'} \otimes \mathbf{R} \longrightarrow 1,$$

where $z(\Gamma) = \mathbb{Z}^k$. Now let D_2 be the subgroup of R generated by $\mathbb{Z}^k \otimes \mathbb{R}$ and I. Then $D_2/D_1^0 = \mathbb{R}^k$ and $z(\Gamma)$ is a lattice of D_2/D_1^0 . Q. E. D.

Now we shall consider $M=\Gamma \setminus G/K$, where G is a non-simply connected non-compact Lie group, K a maximal compact subgroup and Γ a torsion free discrete uniform subgroup of G. Let $\pi: \tilde{G} \to G$ be the universal covering of G. Then Ker $\pi = \pi_1(G) = \pi_1(K) \cong \mathbb{Z}^r \times F$, where F is a finite abelian group. Since $\tilde{K} = \pi^{-1}(K)$ is the universal covering of K, $\tilde{K} \cong \mathbb{R}^r \times \overline{K}$, where \overline{K} is a simply connected compact semisimple Lie group. Put $\tilde{\Gamma} = \pi^{-1}(\Gamma)$.

We have the following

LEMMA 12. Z^r and F are central subgroups of G.

This follows from the fact that $\pi_1(G)$ is a central subgroup of \tilde{G} . Let $\tilde{G} = \tilde{R} \cdot \tilde{S}$ be the Levi-decomposition of \tilde{G} . Define $\tilde{G}^*, \tilde{S}^*, \tilde{\Gamma}^*, \tilde{K}^*$ and \overline{K}^* by ()*=()/F. Clearly $\tilde{G} = \tilde{R} \cdot \tilde{S}^*$ is the Levi-decomposition of \tilde{G}^* . We have the following

LEMMA 13.
$$ilde{\Gamma}^* \cap g \widetilde{K}^* g^{-1} = Z^r$$
 for every $g \in ilde{G}^*$.

PROOF. Consider the following commutative diagram in which every horizontal sequence is exact.

where $\bar{g} = \pi^*(g)$, $\pi^* : \tilde{G}^* \to G$ the homomorphism induced by π . Since $\tilde{\Gamma}^*$ and Γ are torsion free and $\bar{g}K\bar{g}^{-1}$ is compact, $\tilde{\Gamma}^* \cap g\tilde{K}^*g^{-1}$ is equal to Z^r . Q.E.D.

LEMMA 14. (1) $\Gamma \subseteq G/K$ is homeomorphic to $\tilde{\Gamma}^* \subseteq \tilde{G}^*/\tilde{K}^*$.

(2) The natural map $q: \tilde{G}^*/\bar{K}^* \to \tilde{G}^*/\bar{K}^*$ is a principal $\mathbf{R}^r = \tilde{K}^*/\bar{K}^*$ -bundle.

(3) The map q induces a map $\tilde{q}: \tilde{\Gamma}^* \setminus \tilde{G}^* / \overline{K}^* \to \tilde{\Gamma}^* \setminus \tilde{G}^* / \widetilde{K}^*$ which is a principal $T^r = \mathbb{Z}^r \setminus \widetilde{K}^* / \overline{K}^*$ -bundle.

PROOF. We omit the proof of (1) and (2). It is clear that \tilde{q} is a fiber bundle with typical fiber $(\tilde{\Gamma}^* \cap K^*) \setminus \tilde{K}^* / \overline{K}^* = \mathbf{Z}^r \setminus \tilde{K}^* / \overline{K}^*$. Consider $\mathbf{Z}^r \setminus \tilde{K}^* / \overline{K}^*$ as an *r*-dimensional torus T^r and define a T^r -action on $\tilde{\Gamma}^* \setminus \tilde{G}^* / \overline{K}^*$ by the formula;

$$(\mathbf{Z}^r k \overline{K}^*)(\widetilde{\Gamma}^* g \overline{K}^*) = \widetilde{\Gamma}^* g k^{-1} \overline{K}^*.$$

The well-definedness follows from the fact that $\overline{K}^* \lhd \widetilde{K}^*$ and Lemma 12. The action is free. In fact,

$$(\mathbf{Z}^{r}k_{1}\overline{K}^{*})(\widetilde{\Gamma}^{*}g\overline{K}^{*}) = \widetilde{\Gamma}^{*}g\overline{K}^{*} \Rightarrow \widetilde{\Gamma}^{*}gk^{-1}\overline{K}^{*} = \widetilde{\Gamma}^{*}g\overline{K}^{*} \Rightarrow gk_{1}^{-1} = xgk'$$
$$(k' \in \overline{K}^{*}, x \in \widetilde{\Gamma}^{*})$$
$$x = gk_{1}^{-1}k'^{-1}g^{-1} \in \widetilde{\Gamma}^{*} \cap g\widetilde{K}^{*}g^{-1}.$$

It follows from Lemma 13 that we have $k_1^{-1} = g^{-1}xgk' \in \mathbb{Z}^r \overline{K}^*$, which implies that $\mathbb{Z}^r k_1 \overline{K}^* = 1$ in $\mathbb{Z}^r \setminus \widetilde{K}^* / \overline{K}^*$. It is clear that the orbit space of $\widetilde{\Gamma}^* \setminus \widetilde{G}^* / \overline{K}^*$ by $\mathbb{Z}^r \setminus \widetilde{K}^* / \overline{K}^*$ is $\widetilde{\Gamma}^* \setminus \widetilde{G}^* / \widetilde{K}^*$. Q. E. D.

2. The proof of Theorem A when G is simply connected.

In this section, we shall prove Theorem A when G is simply connected. As in Section 1, let $G = R \circ S$ be the Levi-decomposition and $p: G \rightarrow S$ the projection. We have the following exact sequence;

$$1 \longrightarrow \Gamma_R \longrightarrow \Gamma \longrightarrow p(\Gamma) \longrightarrow 1.$$

It follows from this exact sequence that we have the following exact sequence;

$$1 \longrightarrow z(\Gamma) \cap \Gamma_R \longrightarrow z(\Gamma) \longrightarrow p(z(\Gamma)) \longrightarrow 1.$$

It is clear that $z(\Gamma) \cap \Gamma_R \subseteq z(\Gamma_R)$ and $p(z(\Gamma)) \subseteq z(p(\Gamma))$. Since Γ_R is poly-Z group (see [11]), $z(\Gamma) \cap \Gamma_R$ is also a poly-Z group and hence finitely generated. It follows from a result in [11] (Corollary 5.18 in [11]) that $z(p(\Gamma))$ is finitely generated abelian group and hence isomorphic to Z^k for some integer k. We have the following

PROPOSITION 15. (1) The map $G \rightarrow R \times S$; $g=rs \rightarrow (r, s)$ is a homeomorphism. (2) The map $f_1: G/K \rightarrow R \times (S/K)$; $rsK \rightarrow (r, sK)$ is a homeomorphism.

(3) The natural map $\Gamma_R \setminus G/K \to \Gamma \setminus G/K$ is a regular covering map with the group $p(\Gamma)$ of covering transformations and hence $\Gamma \setminus G/K \cong p(\Gamma) \setminus (\Gamma_R \setminus G/K)$.

(4) The map $g: \Gamma_R \setminus G/K \to (\Gamma_R \setminus R) \times (S/K); \Gamma_R rsK \to (\Gamma_R r, sK)$ is a homeo-

morphism.

Since these are proved immediately, we shall omit the proof. Define the action of $p(\Gamma)$ on $(\Gamma_R \setminus R) \times (S/K)$ by

$$(\Gamma_R rs)(\Gamma_R r_1, s_1 K) = (\Gamma_R rsr_1 s^{-1}, ss_1 K).$$

Then the map g is $p(\Gamma)$ -equivariant (note the action of $p(\Gamma) \cong \Gamma_R \setminus \Gamma$ on $\Gamma_R \setminus G/K$ is given by $(\Gamma_R rs)(\Gamma_R gK) = \Gamma_R rsgK)$. In fact,

$$(\Gamma_R rs)(g(\Gamma_R r_1 s_1 K)) = (\Gamma_R rs)(\Gamma_R r_1, s_1 K) = (\Gamma_R rsr_1 s^{-1}, ss_1 K) = g((\Gamma_R rs)(\Gamma_R r_1 s_1 K)).$$

It follows that we have the following

PROPOSITION 16. $\Gamma \subseteq G/K$ is homeomorphic to $p(\Gamma) \subseteq ((\Gamma_R \subseteq R) \times (S/K))$.

Now we shall define a maximal toral action on $N=\Gamma \subseteq G/K$. We devide the definition into two steps.

The first step; Let $z(\Gamma) \cap R = \mathbb{Z}^n$. We define an action of T^n on $\Gamma_R \setminus R$, which is compatible with the action $p(\Gamma)$.

The second step; Let $p(z(\Gamma)) = \mathbb{Z}^m$. We define an action of $T^m \times T^n$ on $\Gamma \setminus G/K$.

1. The first step. Let R be a simply connected solvable Lie group and Γ a torsion free discrete uniform subgroup of R. As noted above, we have an exact sequence;

$$1 \longrightarrow N \longrightarrow R \longrightarrow R^s \longrightarrow 1,$$

where N is the nilradical of R. First consider the case of s=1. We have the following commutative diagram;

$$1 \longrightarrow \Gamma_N \longrightarrow \Gamma \longrightarrow p(\Gamma) \longrightarrow 1$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$1 \longrightarrow z_N \longrightarrow z(\Gamma) \longrightarrow p(z(\Gamma)) \longrightarrow 1.$$

By the same arguments as in Propositions 15 and 16, we have the following

PROPOSITION 17. (1) The map $g: \Gamma_N \setminus R \to (\Gamma_N \setminus N) \times R$; $\Gamma_N nx \to (\Gamma_N n, x)$ is a homeomorphism.

(2) The natural map $\Gamma_N \setminus R \to \Gamma \setminus R$ is a regular covering map with the group $p(\Gamma)$ of covering transformations and hence $\Gamma \setminus R \cong p(\Gamma) \setminus (\Gamma_N \setminus R)$.

(3) Define an action of $p(\Gamma) \cong \Gamma_N \setminus \Gamma$ on $(\Gamma_N \setminus N) \times \mathbf{R}$ by the formula;

$$(\Gamma_N n x)(\Gamma_N n_1 x_1) = (\Gamma_N n x n_1 x^{-1}, x x_1).$$

Then this is well defined and induces a homeomorphism $h: \Gamma \setminus R \cong p(\Gamma) \setminus ((\Gamma_N \setminus N) \times R)$.

It follows from Lemma 9 there exists a subgroup N_0 of N such that (i) $N_0 \subseteq \mathbf{R}^u$ $(u=\operatorname{rank} z_N)$

and

(ii) $z_N \subseteq N_0$ as a lattice.

Now we define an action of $T^u = z_N \setminus N_0$ on $\Gamma \setminus R$.

(1) Define an action of T^u on $(\Gamma_N \setminus N) \times \mathbf{R}$ by the formula;

$$(z_N n)(\Gamma_N n_1, x) = (\Gamma_N n n_1, x).$$

This action is easily proved to be well defined and effective.

(2) This action is commutative with the action of $p(\Gamma)$. In fact, we have

$$\begin{split} & (\Gamma_N n x)((z_N n_1)(\Gamma_N n_2, x_2)) = (\Gamma_N n x)(\Gamma_N n_1 n_2, x_2) \\ &= (\Gamma_N n x n_1 n_2 x^{-1}, x x_2) = (\Gamma_N n x n_1 x^{-1} x x_2 x^{-1}, x x_2) \\ &= (\Gamma_N n_1 n x n_2 x^{-1}, x x_2) \qquad (\text{see Lemma 9}) \\ &= (z_N n_1)(\Gamma_N n x n_2 x^{-1}, x x_2) \qquad (\text{see Lemma 10}) \\ &= (z_N n_1)((\Gamma_N n x)(\Gamma_N n_2, x_2)). \end{split}$$

It follows from (1) and (2) that we have defined an action of T^u on $\Gamma \ R$.

It is clear that $p(z(\Gamma)) = \mathbb{Z}$ or 1. When $p(z(\Gamma)) = \mathbb{Z}$, define $A = p(z(\Gamma)) \otimes \mathbb{R}$. Then $A/p(z(\Gamma)) = T^1$. We can define an action of $T^u \times T^1$ on $\Gamma \setminus \mathbb{R}$ as follows.

(1) Define an action of $T^u \times A$ on $(\Gamma_N \setminus N) \times \mathbf{R}$ by the formula;

$$(z_N n, x)(\Gamma_N n_1, x_1) = (\Gamma_N n x_1, x_1 x^{-1}).$$

This action is proved easily to be well defined and effectively.

(2) Define an action of $T^u \times A$ on $\Gamma_N \setminus R$ by the formula;

$$(z_N n, x)(\Gamma_N n_1, x_1) = \Gamma_N n n_1 x_1 x^{-1}.$$

This is well defined. In fact,

$$\begin{split} \Gamma_{N}n_{2}x_{2} &= \Gamma_{N}n_{1}x_{1} \implies n_{2}x_{2} = n'n_{1}x_{1} \qquad (n' \in \Gamma_{N}) \\ &\implies nn_{2}x_{2}x^{-1} = nn'n_{1}x_{1}x^{-1} = n'nn_{1}x_{1}x^{-1} \qquad (by \text{ Lemma 9}) \\ &\implies (z_{N}n, x)(\Gamma_{N}n_{2}, x_{2}) = \Gamma_{N}nn_{2}x_{2} = \Gamma_{N}nn_{1}x^{-1} \\ &= (z_{N}n, x)(\Gamma_{N}n_{1}x_{1}). \end{split}$$

(3) The homeomorphism $g: \Gamma_N \setminus R \to (\Gamma_N \setminus N) \times R$ is $(T^u \times A)$ -equivariant. In fact,

$$g((z_N n, x)(\Gamma_N n_1 x_1)) = g(\Gamma_N n n_1 x_1 x^{-1}) = (\Gamma_N n n_1, x_1 x^{-1})$$

= $(z_N n, x)(\Gamma_N n_1, x_1) = (z_N n, x)(g(\Gamma_N n_1 x_1)).$

It follows from (1) and (3) that the action of $T^{u} \times A$ on $\Gamma_{N} \setminus R$ is effective.

(4) The action of $T^u \times A$ on $\Gamma_N \setminus R$ is commutative with the action of $p(\Gamma) \cong \Gamma_N \setminus \Gamma$. To prove this, we need the following lemma;

LEMMA 18. $xn_1x^{-1} = n_1$ for every $x \in p(\Gamma)$ and $n_1 \in N_0$.

PROOF. This follows from Lemma 3 and the following commutative diagram;

$$1 \longrightarrow \Gamma_N \longrightarrow \Gamma \longrightarrow p(\Gamma) \longrightarrow 1$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$1 \longrightarrow z_N \longrightarrow z(\Gamma) \longrightarrow p(z(\Gamma)) \longrightarrow 1.$$
 Q. E. D.

Now we shall prove the assertion (4).

$$(\Gamma_N nx)((z_N n_1, x_1)(\Gamma_N n_2 x_2)) = (\Gamma_N nx)(\Gamma_N n_1 n_2 x_2 x_1^{-1})$$

= $\Gamma_N nx n_1 n_2 x_2 x_1^{-1} = \Gamma_N nn_1 x n_2 x^{-1} x x_2 x_1^{-1}$ (by Lemma 18)
= $\Gamma_N n_1 nx n_2 x^{-1} x x_2 x_1^{-1}$ (by Lemma 10)
= $(z_N n_1, x_1)((\Gamma_N nx)(\Gamma_N n_2 x_2)).$

(5) The group $p(z(\Gamma))$ acts trivially on $p(\Gamma) \setminus (\Gamma_N \setminus R)$. In fact, denote an element of $p(\Gamma) \setminus (\Gamma_N \setminus R)$ by $[\Gamma_N nx]$. Recall $m[\Gamma_N nx] = [\Gamma_N nxm^{-1}]$ $(m \in p(z(\Gamma)))$ = $[\Gamma_N nm^{-1}x]$ (**R** is abelian). Since $p(nm^{-1}n^{-1}m)=1$, we have $nm^{-1}n^{-1}m=z \in \Gamma_N$ and hence $nm^{-1}=zm^{-1}n$. Thus we have $[\Gamma_N nm^{-1}x] = [\Gamma_N m^{-1}nx] = [(\Gamma_N m^{-1})(\Gamma_N nx)]$ = $[\Gamma_N nx]$.

Next we shall consider the general case. Recall the exact sequence;

$$1 \longrightarrow N \longrightarrow R \longrightarrow \mathbf{R}^s \longrightarrow 1.$$

As noted in Section 1, we have a sequence of subgroups of R;

$$N = R_0 \subset R_1 \subset \cdots \subset R_s = R$$

such that $R_i = R_{i-1} \rtimes R_i$ $(R_i = R)$.

As in Section 1, we define $\Gamma_i = \Gamma \cap R_i$, $z_{i-1} = z(\Gamma_i) \cap \Gamma_{i-1}$ and $p_i: R_i \to R_i$. If $e_i = \operatorname{rank} p_i(z(\Gamma_i))$, then we define $A_i = p_i(z(\Gamma_i)) \otimes R$. Clearly $p_i(z(\Gamma_i)) \wedge A_i = T^1$. By the same arguments as in the case of s = 1, we have the following;

- PROPOSITION 19. (1) $\Gamma_{i+1} \setminus R_{i+1} \cong p_{i+1}(\Gamma_{i+1}) \setminus (\Gamma_i \setminus R_{i+1}).$ (2) $\Gamma_i \setminus R_{i+1} \cong (\Gamma_i \setminus R_i) \times \mathbf{R}_{i+1}.$ (2) $R_i \to R_{i+1} \cong (\Gamma_i \setminus R_i) \times (\Gamma_i \to R_i) \to \mathbf{R}_i$
- (3) $\Gamma_{i+1} \setminus R_{i+1} \cong p_{i+1}(\Gamma_{i+1}) \setminus ((\Gamma_i \setminus R_i) \times R_{i+1}).$

Assume $\Gamma_i \ R_i$ admits an action of $T^u \times T^{e_1} \times \cdots \times T^{e_i}$, where $T^u = z_N \ N_0$ and $T^{e_j} = p(z(\Gamma_j)) \ A_j$ $(e_j \neq 0)$, induced by the action of $T^u \times A^{e_1} \times \cdots \times A^{e_i}$ on $(\Gamma_{i-1} \ R_{i-1}) \times R_i$ given by the formula;

$$(z_N n, \prod_{j=1}^{i} x_j)(\Gamma_{i-1} n_1 \prod_{j=1}^{i} y_j, z) = (\Gamma_{i-1} n n_1 \prod_{j=1}^{i-1} y_j x_j^{-1}, z x_i).$$

If we regard $\Gamma_i \setminus R_i$ as $p_i(\Gamma_i) \setminus (\Gamma_{i-1} \setminus R_i)$, the above action is given by the formula;

$$(z_N n, \prod_{j=1}^{i} x_j)(\Gamma_{i-1} n_1 \prod_{j=1}^{i} y_j) = \Gamma_{i-1} n n_1 \prod_{j=1}^{i} y_j x_j^{-1}.$$

Now we define an action of $T^u \times A^{e_1} \times \cdots \times A^{e_{i+1}}$ on $(\Gamma_i \setminus R_i) \times R_{i+1}$ by the formula;

(*)
$$(z_N n, \prod_{j=1}^{i+1} x_j)(\Gamma_i n_1 \prod_{j=1}^{i} y_j, z) = (\Gamma_i n n_1 \prod_{j=1}^{i} y_j x_j^{-1}, z x_{i+1}^{-1})$$

We should prove that this action is commutative with the action of $p_{i+1}(\Gamma_{i+1}) \cong \Gamma_i \smallsetminus \Gamma_{i+1}$ on $(\Gamma_i \smallsetminus R_i) \times R_{i+1}$ given by the formula;

(**)
$$(\Gamma_i n_1 \prod_{j=1}^{i+1} y_j)(\Gamma_i n_2 \prod_{j=1}^{i} z_j, w) = (\Gamma_i n_1 \prod_{j=1}^{i} y_j y_{i+1} n_2 \prod_{j=1}^{i} z_j y_{i+1}^{-1}, y_{i+1} w).$$

We note the following

PROPOSITION 20.

(1)
$$(\Gamma_i n_1 \prod_{j=1}^{i} y_j)(\Gamma_i n_2 \prod_{j=1}^{i} z_j) = \Gamma_i n_1 n'_2 \prod_{j=1}^{i-1} (y_j (y_{j+1} \cdots y_i) z_j (y_{j+1} \cdots y_i)^{-1}) y_i z_i,$$

where $n_i \in N$, y_j , $z_j \in R_j$ and $(\prod_{i=1}^{i} y_j)n_2 = n'_2(\prod_{i=1}^{i} y_j)$.

(2) For every $j=1, 2, \dots, i$ and $k \ge j, x_j y_k = y_k x_j$, where $x_j \in A_j, y_k \in p_k(\Gamma_k)$.

PROOF. (1) follows from direct computations and (2) follows from the fact that the action of $p_k(\Gamma_k)$ on $z(\Gamma_j)$ and hence the action of $p_k(z(\Gamma_k))$ induced by conjugation is trivial.

Now the proof of the commutativity of (*) and (**) is as follows; Put $y_{j+1,i} = y_{j+1}y_{j+2} \cdots y_i$ and $\overline{z}_j = y_{j+1}z_jy_{j+1}^{-1}$.

$$\begin{split} &(z_N n, \prod_{i=1}^{i+1} x_j)((\Gamma_i n_1 \prod_{i=1}^{i+1} y_j)(\Gamma_i n_2 \prod_{i=2}^{i} z_j, w)) \\ &= (z_N n, \prod_{i=1}^{i+1} x_j)(\Gamma_i n_1 \prod_{i=2}^{i} y_j y_{i+1} n_2 \prod_{i=2}^{i} z_j y_{i+1}^{-1}, y_{i+1} w) \\ &= (z_N n, \prod_{i=1}^{i+1} x_j)(\Gamma_i n_1 n_2' \prod_{i=2}^{i} y_j \prod_{j=1,i=1}^{i} \overline{z}_j, y_{i+1} w) \\ &= (\Gamma_i n n_1 n_2' \prod_{i=1}^{i-1} y_j y_{j+1,i} \overline{z}_j y_{j+1,i}^{-1} x_j^{-1} y_i \overline{z}_i x_i^{-1}, y_{i+1} w x_{i+1}^{-1}) \\ &= (\Gamma_i n_1 \prod_{i=2}^{i+1} y_j)((z_N n, \prod_{i=1}^{i+1} x_j)(\Gamma_i n_2 \prod_{i=2}^{i} z_j, w)). \end{split}$$

We shall omit the proofs of the well-definedness, effectivity and triviality of the restriction of (**) to $p_{i+1}(z(\Gamma_{i+1}))$. Thus we have defined an action of $T^u \times A^{e_1} \times \cdots \times A^{e_{i+1}}$. By induction, we have completed the first step.

2. The second step. We shall define a maximal toral action on $\Gamma \ G/K$, where $G = R \circ S$. Consider the case when S contains no normal factor \tilde{U} , where U is one of groups listed in Lemma 7. Then, since $z(p(\Gamma))$ is discrete, rank $z(\Gamma) = \operatorname{rank}(\Gamma_R \cap z(\Gamma))$. Put rank $(\Gamma_R \cap z(\Gamma)) = k$. By the arguments at the first step, a k-dimensional toral group $T^k = T^u \times T^{e_1} \times \cdots \times T^{e_s}$ acts on $\Gamma_R \setminus R$ as follows;

$$(*) \qquad (z_N n, \prod_{j=1}^{s} [x_j])(\Gamma_R n_1 \prod_{j=1}^{s} y_j) = \Gamma_R n n_1 \prod_{j=1}^{s} y_j x_j^{-1},$$

where $[x_j]$ denotes an element of $\mathbb{Z} \setminus A_{j}^{e_j}$. Note that if $e_j = 0$ then $x_j = 1$. Define

an action of T^{k} on $(\Gamma_{R} \setminus R) \times (S/K)$ by

(**)
$$(z_N n, \prod [x_j])(\Gamma_R n_1 \prod y_j, wK) = (\Gamma_R n n_1 \prod y_j x_j^{-1}, wK).$$

It is easy to show that this action is well defined and effective. The commutativity with the action of $p(\Gamma)$ follows from the same arguments at the first step and the following lemma.

LEMMA 21. (1) $vx_jv^{-1}=x_j$ for every $x_j \in A_j$ and $v \in p(\Gamma)$. (2) vn=nv for every $n \in N_0$ and $v \in p(\Gamma)$.

PROOF. This follows from the fact that the action of $p(\Gamma)$ on $z(\Gamma)$ by conjugation is trivial and Lemma 3. Q. E. D.

Thus we have defined an action of T^{k} on $\Gamma \subseteq G/K$.

In general, S is decomposed into a product $S_1 \times A$, where A is a product of \tilde{U} , where U is one of groups listed in Lemma 7 and S_1 contains no factors of these groups. Then we have $p(z(\Gamma)) = Z^a \times F$ (F is a finite abelian group). It follows from results in Section 1 that there exists a subgroup \mathbb{R}^a of A which contains \mathbb{Z}^a as a lattice.

Let $T^{k} = T^{u} \times T^{e_{1}} \times \cdots \times T^{e_{s}}$ denote the toral group in the case of A=1. Define an action of $T^{k} \times \mathbb{R}^{a}$ on $\Gamma_{R} \setminus G/K$ by the formula;

$$(z_N n, \prod_{j=1}^{n} [x_j], u)(\Gamma_R n_1 \prod_{j=1}^{n} z_j v K) = \Gamma_R n n_1 \prod_{j=1}^{n} z_j x_j^{-1} v u^{-1} K,$$

where $u \in \mathbb{R}^{a}$. In the following, we omit the index s in Π . This is well defined; in fact,

$$\Gamma_{R}n'_{1}\Pi z'_{j}v' = \Gamma_{R}n_{1}\Pi z_{j}v$$

$$\Rightarrow n'_{1}\Pi z'_{j}v' = rn_{1}\Pi z_{j}vw \quad (r \in \Gamma_{R}, w \in K)$$

$$\Rightarrow nn'_{1}\Pi z'_{j}x_{j}^{-1}v'u^{-1} = nn'_{1}\Pi z'_{j}v'x_{j}^{-1}u^{-1}$$

$$= nrn_{1}\Pi z_{j}vwx_{j}^{-1}u^{-1}$$

$$= rnn_{1}\Pi z_{j}x_{j}^{-1}vwu^{-1} \quad (by \text{ Lemma 7})$$

 $\Rightarrow (z_N n, \prod [x_j])(\Gamma_R n_1 \prod z_j v) = (z_N n, \prod [x_j])(\Gamma_R n'_1 \prod z'_j v').$

Next define an action of $T^{k} \times \mathbb{R}^{a}$ on $(\Gamma_{R} \setminus \mathbb{R}) \times (S/K)$ by the formula;

$$(z_N n, \prod [x_j], v)(\Gamma_R n_1 \prod z_j, sK) = (\Gamma_R n n_1 \prod z_j x_j^{-1}, sv^{-1}K).$$

It is easy to see that this is well defined. The homeomorphism $g: \Gamma_R \setminus G/K \to (\Gamma_R \setminus R) \times (S/K)$ is $(T^k \times R^a)$ -equivariant. In fact, we have

$$g((z_N n, \Pi[x_j], v)(\Gamma_R n_1 \Pi z_j sK)) = g(\Gamma_R n n_1 \Pi z_j x_j^{-1} s v^{-1} K)$$

= $(\Gamma_R n n_1 \Pi z_j x_j^{-1}, s v^{-1} K) = (z_N n, \Pi[x_j], v)(g(\Gamma_R n_1 \Pi z_j sK)).$

It can also be proved that the action of $T^k \times \mathbf{R}^a$ on $(\Gamma_R \setminus R) \times (S/K)$ is effective. In fact, assume $(z_N n, \prod [x_j], v)(\Gamma_R n_1 \prod z_j, sK) = (\Gamma_R n_1, \prod z_j, sK)$ for every $(\Gamma_R n_1, \prod z_j, sK)$. Then we have $n_1 \prod z_j = rnn_1 \prod z_j x_j^{-1}$ and $s = sv^{-1}w$ ($w \in K, r \in \Gamma_R$) and hence $v = w \in \mathbb{R}^a \cap K = 1$. If we choose $n_1 \prod z_j = 1$, then $rn \prod x_j^{-1} = 1$ and $n \prod x_j^{-1} \in z_N \times \prod p_i(z(\Gamma_R))$ which implies $(z_N n, \prod [x_j]) = 1$. This proves that the action of $T^k \times \mathbb{R}^a$ on $\Gamma_R \setminus G/K$ is effective. Moreover the action is commutative with the action of $p(\Gamma)$. In fact,

$$\begin{split} &(z_N n, \prod [x_j], v)((\Gamma_R n_1 \prod y_j u)(\Gamma_R n_2 \prod z_j wK)) \\ &= (z_N n, \prod [x_j], v)(\Gamma_R n_1 \prod y_j u n_2 \prod z_j u^{-1} uwK) \\ &= (z_N n, \prod [x_j], v)(\Gamma_R n_1 n'_2 \prod y_j \prod u z_j u^{-1} uwK) \\ &= (z_N n, \prod [x_j], v)(\Gamma_R n_1 n'_2 \prod^{s-1} y_j y_{j+1,s} \bar{z}_j y_{j+1,s}^{-1} y_s \bar{z}_s uwK) \\ &\quad (\text{note } y_{j+1,s} = y_{j+1} \cdots y_s, \bar{z}_j = u z_j u^{-1}) \\ &= (\Gamma_R n n_1 n'_2 \prod^{s-1} y_j y_{j+1,s} \bar{z}_j y_{j+1,s}^{-1} x_j^{-1} y_s \bar{z}_s x_s^{-1} uwv^{-1}K) \\ &= (\Gamma_R n n_1 n'_2 \prod y_j \prod u (z_j x_j^{-1}) u^{-1} uwv^{-1}K) \\ &= (\Gamma_R n_1 \prod y_j u)((z_N n, \prod [x_j], v)(\Gamma_R n_2 \prod z_j wK)). \end{split}$$

It follows that $T^k \times \mathbb{R}^a$ acts on $p(\Gamma) \setminus (\Gamma_R \setminus G/K)$. We shall prove that \mathbb{Z}^a acts trivially on $p(\Gamma) \setminus (\Gamma_R \setminus G/K)$. Let element of $p(\Gamma) \setminus (\Gamma_R \setminus G/K)$ be written as $[\Gamma_R n \prod z_j wK]$. Recall $m[\Gamma_R n \prod z_j wK] = [\Gamma_R n \prod z_j wm^{-1}]$ for $m \in \mathbb{Z}^a$. Since $m \in \mathbb{Z}^a$ $\subset z(p(\Gamma)) \subset z(S), wm^{-1} = m^{-1}w$ and hence we have $m[\Gamma_R n \prod z_j wK] = [\Gamma_R \prod z_j m^{-1}wK]$. Because $p((n \prod z_j)m^{-1}(n \prod z_j)^{-1}m) = 1$, we have $(n \prod z_j)m^{-1}(n \prod z_j)^{-1}m = z \in \Gamma_R$ and hence $[\Gamma_R n \prod z_j m^{-1}wK] = [\Gamma_R m^{-1}(n \prod z_j)wK] = [\Gamma_R n \prod z_j wK]$. This implies that $T^k \times T^a$ acts on $\Gamma \setminus G/K$ effectively. Thus we have proved Theorem A when G is simply connected.

3. The proof of Theorem A when G is not simply connected.

In this section, we shall prove Theorem A when G is not simply connected. We use the same notations as in Section 1. As noted in Section 1, $\tilde{G}^* = \tilde{R} \cdot \tilde{S}^*$, $\tilde{R} \cap \tilde{S}^* = 1$ and \bar{K}^* is a maximal compact subgroup of \tilde{G}^* . Then the same arguments as in Section 2 show that $z(\tilde{\Gamma}^*) = z(\pi_1(\tilde{\Gamma}^* \setminus \tilde{G}^*/\bar{K}^*))$ is finitely generated, say of rank k' and $\tilde{\Gamma}^* \setminus \tilde{G}^*/\bar{K}^*$ admits an action of $T^{k'}$. Note that $z(\tilde{\Gamma}^*) \cong$ $Z^r \times z(\Gamma)$. In fact, as noted in Section 1, we have an exact sequence;

$$1 \longrightarrow \mathbf{Z}^r \longrightarrow \tilde{\Gamma}^* \longrightarrow \Gamma \longrightarrow 1,$$

where Z^r is a central subgroup of $\tilde{\Gamma}^*$. It follows that $z(\tilde{\Gamma}^*) \cong Z^r \times z(\Gamma)$. As noted above, $\tilde{\Gamma}^* \setminus \tilde{G}^* / \bar{K}^*$ admits an action of $T^k \times T^r$. It is easy to see that the restriction of the acton of $T^k \times T^r$ to T^r coincides with the principal action of T^r on $\tilde{\Gamma}^* \setminus \tilde{G}^* / \bar{K}^*$. This implies that $\tilde{\Gamma}^* \setminus \tilde{G}^* / \tilde{K}^*$ admits an action of T^k . Thus we have completed the proof of Theorem A.

4. The proof of Theorem B.

Let M=G/H be a compact aspherical manifold. When G is not simply connected, let \tilde{G} be the universal covering of G. Then G/H is homeomorphic to $\tilde{G}/\pi^{-1}(H)$. Thus it is sufficient to consider the case when G is simply connected. Therefore any maximal compact subgroup K of G is simply connected and semisimple. Let N be the subgroup that acts trivially on G/H. Then $N \subset H$ and N is normal in G. Since only a torus among the compact connected Lie group can act effectively on G/H, K is contained in N. Now we have G/H=(G/N)/(H/N), so we can assume that N=1, and hence K=1. This means G is homeomorphic to \mathbb{R}^n for some n. Thus if dim H=0, then M is a manifold of type of $\Gamma \setminus G/K$. Hence Theorem B holds. Next we assume dim H>0. The following facts are known (see [8]).

1. H° is solvable.

2. Let $F=N_G(H^0)$, $H_1=F^0H$ and $G_1=H_1^0/(H_1^0\cap H^0)$. Then G/H_1 is homeomorphic to a torus T^n and we have a fiber bundle; $G_1/\Gamma_1 \rightarrow G/H \rightarrow G/H_1$, where $\Gamma_1=(H_1^0\cap H)/(H_1^0\cap H)^0$.

3. G_1 is simply connected.

Since G/H_1 is aspherical and dim $H_1^0 > 0$, H_1^0 is also solvable and hence G_1 is solvable. It follows from a result in [11] (Proposition 3.10 in [11]) that Γ_1 is poly-Z group. It follows from 2 that we have the following exact sequence;

$$1 \longrightarrow \Gamma_1 \longrightarrow H/H^0 \longrightarrow H_1/H_1^0 \longrightarrow 1,$$

where $H_1/H_1^0 = \mathbb{Z}^n$. Γ_1 being a poly- \mathbb{Z} group, H/H^0 is also poly- \mathbb{Z} group. In other words, M is a closed aspherical manifold with poly- \mathbb{Z} fundamental group. If dim $M \neq 3$, 4, then Theorem B follows from a result in [10] (see Chap. 5 in [10]).

Now we shall consider the case when dim M=3 or 4.

In his paper ([16], [17]), V.V. Gorvatsevich has determined all 3 or 4dimensional homogeneous manifolds. They are given as follows;

- 1. Torus T^3 or T^4 .
- 2. $\widetilde{SL}(2, \mathbf{R})/\Gamma$, Γ : a lattice.
- 3. $(\widetilde{SL}(2, \mathbf{R})/\Gamma) \times S^1$.
- 4. Solvmanifolds.

Since Theorem B holds for manifolds of type (1), (2) and (3). It is sufficient to consider only manifold M=R/D, where R is a simply connected solvable Lie group and D a closed subgroup of R. Let N be the nilradical of R. Then we have a fiber bundle

$$(#) \quad ND/D \longrightarrow R/D \longrightarrow R/ND$$

where $ND/N = N/N \cap D$ and R/ND is a torus (see [2]). It follows that we have the following exact sequence of fundamental groups;

 $(*) \quad 1 \longrightarrow N \cap D/(N \cap D)^{\scriptscriptstyle 0} \longrightarrow D/D^{\scriptscriptstyle 0} \longrightarrow D/N \cap D \longrightarrow 1, \text{ where } D/N \cap D = \mathbf{Z}^{\scriptscriptstyle 3}.$

LEMMA 22. (1) If dim R/D=3, then the sequence (*) is given by $1\rightarrow \mathbb{Z}^t \rightarrow D/D^0 \rightarrow \mathbb{Z}^s \rightarrow 1$, where t+s=3.

(2) If dim R/D=4 and s>1, then (*) is given by $1\rightarrow \mathbb{Z}^t\rightarrow D/D^0\rightarrow \mathbb{Z}^s\rightarrow 1$, where t+s=4.

This follows immediately from the fact that the fiber $N/N \cap D$ is a circle, or 2-dimensional torus.

First we shall consider the case when dim R/D=3 or 4 and $s\geq 2$. Put $\Gamma=D/D^0$. It follows from Lemma 11 that there exists a simply connected solvable Lie group S and a closed subgroup C of S such that $\pi_1(S/C)=\Gamma$ and that if $z(\Gamma)\neq 1$, then there exist closed subgroups C_1 and C_2 of S which satisfy

1) $C_1 \triangleleft C$ and $C_1/C^0 = z(\Gamma)$,

2) $C_2/C^0 = \mathbf{R}^k$ $(k = \operatorname{rank} z(\Gamma)),$

and

3) $z(\Gamma)$ is contained in C_2/C^0 as a lattice.

Consider the toral group $T^{k} = (C_{2}/C^{0})/(C_{1}/C^{0}) = C_{2}/C_{1}$. Define an action of T^{k} on S/C by $(xC_{1})(yC) = yx^{-1}C$. To show that this is well defined, we need the following

LEMMA 23. We have $x^{-1}yxy^{-1} \in C^0$ for every $y \in C$ and $x \in C_2$.

PROOF. Consider the homomorphism $c_y: S \to S$ defined by $c_y(s) = ysy^{-1}$. This homomorphism leaves C and C^0 invariant, and hence c_y induces an automorphism $\bar{c}_y: C/C^0 \to C/C^0$. Since C_1/C^0 is the center of C/C^0 , \bar{c}_y is the identity. Let $c_y(C_2)$ be denoted by C'_2 . Then c_y induces an automorphism $C_2/C^0 \to C'_2/C^0$. Both C_2/C^0 and C'_2/C^0 contain C_1/C^0 as a lattice. It follows from Lemma 3 that C_2/C^0 and C'_2/C^0 are equal, and $\bar{c}_y: C_2/C^0 \to C_2/C^0$ is the identity. This implies $\bar{c}_y(xC^0) = yxy^{-1}C^0 = xC^0$ and hence $x^{-1}yxy^{-1} \in C^0$. Q. E. D.

COROLLARY. $yx^{-1} = x^{-1}y \pmod{C}$ for every $y \in C$ and $x \in C_2$.

Now we can show that the action of T^{k} on S/C defined above is well defined as follows.

$$\begin{aligned} x_1C_1 &= x_2C_1 \Rightarrow x_2 = x_1x \ (x \in C_1) \Rightarrow (x_2C_1)(yC) = yx^{-1}x_1^{-1}C \\ &= yx_1^{-1}x^{-1}zC \ (z \in C^0) = yx_1^{-1}x^{-1}C = (x_1C_1)(yC). \\ y_1C_1 &= y_2C_1 \Rightarrow y_2 = y_1y \ (y \in C) \Rightarrow (xC_1)(y_2C) = y_2x^{-1}C \\ &= y_1yx^{-1}C = y_1x^{-1}C = (xC_1)(y_1C). \end{aligned}$$

This action is effective. In fact, assume $(xC_1)(yC) = yC$ for every y. Then we

have $yx^{-1}C = yC$ and hence $x \in C \cap C_2$, which implies $xC_2 = C_1$.

Since two solvmanifolds with isomorphic fundamental group are homeomorphic (see [2]), R/D and S/C are homeomorphic and hence R/D admits a maximal toral action.

Lastly we shall consider the case when dim R/D=4, s=1 and $N/(N\cap D)$ is not a torus. The natural action of N on $R/D(x(rD)=rx^{-1}D)$ has the unique orbit type $N/(N\cap D)$ of dimension 1. It is well known that M is homeomorphic to $\mathbf{R} \times_{\mathbf{Z}}(N/(N\cap D))$, where Z acts on $\mathbf{R} \times (N/(N\cap D))$ as follows;

$$n(v, x(N \cap D)) = (v - n, h^n(x(N \cap D))).$$

where $h: N/(N \cap D) \to N/(N \cap D)$ is an N-equivariant homeomorphism, i.e. $h(x(N \cap D)) = xx_0^{-1}(N \cap D), x_0 \in N_N(N \cap D)$ (=the normalizer of $N \cap D$ in N). Put $N \cap D = K$. Note that $K^0 = N \cap D^0$. Consider the exact sequence of the fundamental groups of (#);

$$1 \longrightarrow \pi \xrightarrow{\alpha} \Gamma \xrightarrow{\beta} Z \longrightarrow 1,$$

where $\Gamma = D/D^0$ and $\pi = K/K^0$. Since K is a closed uniform subgroup of N, K^0 is a normal subgroup of N (Corollary to Theorem 2.3 in [11]). Hence it follows from a result in [12] (see the table 1 in [12]) that π is isomorphic to $(\mathbf{Z} \times \mathbf{Z}) \times_{\phi} \mathbf{Z}$, where $\phi: \mathbf{Z} \rightarrow \operatorname{Aut}(\mathbf{Z} \times \mathbf{Z}); 1 \rightarrow \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$. It can be easily shown that the center $z(\pi)$ is given by $z(\pi) = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \in \mathbf{Z} \times \mathbf{Z} \right\}$ (note that we may assume $k \neq 0$).

We shall consider the special case in which $\pi \cap z(\Gamma) = z(\pi)$, in other words, $\beta(z(\pi))=1$. It follows from Lemma 11 that there exist closed subgroups N_1 and N_2 of N such that

(i) $N_1 \subset K$ and $N_1/K^0 = \mathbf{Z} = \mathbf{Z}(\Gamma) \cap \pi$.

(ii) $K^{\circ} \subset N_2$, $N_2/K^{\circ} = \mathbf{R}$ and N_1/K° is a lattice of N_2/K° .

Consider the action of $T^1 = (N_2/K^0)/(N_1/K^0) = N_2/N_1$ on N_2/K defined by (n_2N_1) $(nK) = nn_2^{-1}K$. We show that this action is compatible with homeomorphism h. In fact, we have

$$(n_2N_1)(h(xK)) = (n_2N_1)(xx_0^{-1}K) = xx_0^{-1}n_2^{-1}K \text{ and } h((n_2N_1)(xK)) = h(xn_2^{-1}K) = xn_2^{-1}x_0^{-1}K.$$

It follows from the following lemma that we have $x_0n_2x_0^{-1}n_2^{-1} \in K$, which implies that h is equivariant under the action of T^1 .

LEMMA 24. $n_2^{-1} x_0 n_2 x_0^{-1} \in K$ for every $n_2 \in N_2$.

PROOF. Consider the homomorphism $c_{x_0}: K/K^0 \to K/K^0$ defined by $c_{x_0}(kK^0) = x_0kx_0^{-1}K^0$. Clearly c_{x_0} induces the identity on N_1/K^0 . Since $c_{x_0}(N_2/K^0)$ and N_2/K^0 contain N_1/K^0 as a lattice, it follows from Lemma 3 that c_{x_0} is the

identity on N_2/K^0 , in other words, $x_0n_2^{-1}K^0 = n_2K^0$ for every $n_2 \in N_2$. Q. E. D.

Next we shall consider the general case; i.e. $\beta(z(\pi)) = \mathbb{Z}$. Let $\beta(z(\Gamma)) = n_0 \mathbb{Z} \subset \mathbb{Z}$. Define an action of \mathbb{R} on $\mathbb{R} \times_{\mathbb{Z}}(N/K)$ by the formula;

$$t[x, nK] = [x+t, nK],$$

where [x, nK] denotes the orbit of (x, nK). It is easy to see that this action is well defined. It is also proved that $\beta(z(\Gamma))=n_0 \mathbb{Z}$ is the ineffective kernel of this action. In fact, we have

$$n_0[x, nK] = [x+n_0, nK] = [x, nx_0^{n_0}K].$$

The following lemma shows that $[x, nx_0^{n_0}K] = [x, nK]$, which implies that the group R/n_0Z acts on $R \times_Z(N/K)$.

LEMMA 25. $[x, nx_0^{n_0}K] = [x, nK].$

PROOF. Consider the following commutative diagram;

$$1 \longrightarrow \pi \longrightarrow \Gamma \longrightarrow Z \longrightarrow 1$$

$$K/K^{0} \qquad \uparrow \qquad \uparrow$$

$$1 \longrightarrow z(\Gamma) \cap \pi \longrightarrow z(\Gamma) \longrightarrow \beta(z(\Gamma)) \longrightarrow 1.$$

$$\|n_{0}Z$$

Because the lower exact sequence is central, $n_0 Z$ acts on $z(\Gamma) \cap \pi$ trivially, i.e. $n_0(n_1 K^0) = n_1 x_0^{n_0} K^0 = n_1 K^0$. In particular, we have $x_0^{-n_0} K^0 = K^0$ and hence $x_0^{n_0} K^0 = K^0$. Q. E. D.

It is not difficult to show that the action of $\mathbf{R}/n_0\mathbf{Z}$ is commutative with the action of T^1 and $(\mathbf{R}/n_0\mathbf{Z}) \times T^1$ acts on $\mathbf{R} \times_{\mathbf{Z}}(N/K)$. Thus $M = \mathbf{R} \times_{\mathbf{Z}}(N/K)$ admits a maximal torus action. This completes the proof of Theorem B.

ACKNOWLEDGMENT: The author would like thank Prof. F. Raymond and the referee for their valuable suggestions.

References

- L. Auslander, An exposition of the structure of solvmanifolds, Part I; Algebraic theory, Bull. Amer. Math. Soc., 79 (1973), 227-261.
- [2] L. Auslander and R. H. Szczarba, Vector bundles over tori and non-compact solvmanifolds, Amer. J. Math., 97 (1975), 260-281.
- [3] N. Bourbaki, Groupes et algebres de Lie, Chap. 1, 2 et 3, Herman, Paris, 1968.
- [4] P.E. Conner and F. Raymond, Actions of comapct Lie groups on aspherical manifolds, Topology of manifolds, Proc. Inst. Univ. of Geogia, Athens, 1970, pp. 227-264.
- [5] —, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bull. Amer. Math. Soc., 83 (1977), 36-85.

Maximal toral action

- [6] V.V. Gorbatsevich, Three dimensional homogeneous spaces, Sibirsk Mat. Zh., 18 (1977), 280-293; English Transl. in Siberian Math. J., 18 (1977).
- [7] _____, The classification of four dimensional compact homogeneous spaces, Uspekhi Mat. Nauk, 32 (1977), no. 2, (1984), 207-208, (Russian).
- [8] _____, On aspherical homogeneous spaces, Mat. Sb., 100 (1974), 248-265, (Russian).
- [9] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
- [10] K.B. Lee and F. Raymond, Geometric realization of group extension by the Seifert construction, Contemp. Math., 36 (1985), 367-425.
- [11] M.S. Raghunathan, Discrete subgroups of Lie groups, Springer, 1972.
- [12] F. Raymond and T. Vasques, 3-manifolds whose universal covering are Lie groups, Topology Appl., 12 (1981), 161-179.
- [13] O. Loos, Symmetric spaces I, Benjamin, New York, 1969.

Tsuyoshi WATABE

Department of Mathematics Faculty of Science, Niigata University, Niigata Japan