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1. Introduction.

Let @=(d/dm)(d/dx) be a generalized diffusion operator on an interval S
and p(#, x, y) the elementary solution of the generalized diffusion equation

1.1 ou(t, x)/ot = Gut, x), t>0, xS,

in the sense of McKean [11]. We note that p(¢, x, y)dm(y) is the transition
probability of the generalized diffusion process having & as the generator. In
this paper we study the asymptotic behavior of p(f, x, y) for large ¢ under the

condition that & is transient, i.e. Sop(t, x, ¥)dt<oo, and m(x) varies regularly

near the end points of S.

In the previous paper [12], we discussed the same problem for recurrent .
The results there verified rigorously long time tails, i.e. {7 7-decay of moments
with <1, for multiplicative stochastic processes in statistical physics. Recently
Y. Okabe studied the asymptotic behavior of the correlation functions of
stationary solutions for Stokes-Boussinesq-Langevin equations in order to observe
Alder-Wainwright effect, i.e. t~*2-decay of velocity autocorrelation function for
hard sphere. Our results here for transient & give an explanation for such
long time tails of the type ¢7 with y=1 from the point of view of one-dimen-
sional generalized diffusion processes.

In we obtained a criterion, in terms of m, for the convergence of the

integral Sltrp(t, x, y)dt. By using it, we can get a rough asymptotic behavior

of p(t, x, v) for large time . Namely, let S=(,, {;) with —co</,</,<c0 and
suppose that one of the following assumptions (A.1), (A.2) and (A.3) is satisfied,
where 0<p<1, L(x) is a slowly varying function, and the symbol a(x)~b(x)
as x—a stands for lim,_.a(x)/b(x)=1.

(A.1): [l]<eo, 1=1, 2, there exists the limit #=lim, . .|m{—1/x)/m{,+1/x)|
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[0, <o), and m(x) satisfies
(1.2) |m{l,+1/x)] ~ x*°* L(x) as x—oo,

(A.2): [;>—o0, [,=o0, there exists the limit lim,..|x*m(x)/m(l;+1/x)|=0, and
is satisfied.

(A.3): [;>—o0, [,=co, there exists the limit r=lim,..|x*m(x)/m{,+1/x)|<
(0, o], and m(x) satisfies

(1.3) m(x) ~ x"° 1 L(x) as x—oo

Then it follows from [17; Theorem 1] that, for y<p, the integral Sjotfp(t, X, y)dt

converges, whence p(t, x, y)=o(t7"') as t—oo. Our aim is to give the follow-
ing explicit asymptotic formula in the above case.

(1.4) pt, x, y) ~c(x, y~°"Y/K{t)  as t—oo,
uniformly in x, y€[a, b], a, bES,

where c¢(x, y) is given by (2.3) below and K(f) is a slowly varying function
satisfying the asymptotic relation [2.4).

If an extra condition is assumed in the case of (A.3) (see (A.3) below),
then we obtain a stronger formula
(1.5) pt, x, y) ~ ColoXx—U)Xy—I)t"?71/K(t)  as t—oo,

uniformly in x, ye({,, al, a<S,

where C,(p) is a positive constant given by [2.2). Further, in this case, it holds
that

(16) Tuf(x) = | plt, %, )FG)dm(y)
~ cz<p><x—zl><zp+1K<t>>-1§sf<y><y—zl>dm<y> as t—co

for every f such that f(y)(y—[,)eL*S, m). We will also consider the asymp-
totic behavior of T,f(x) as t—co for regularly varying functions f such that
FXy—l)&E LS, m).

As was shown in [12], if ® is recurrent, there exists the limit d=
limg.eo|m(x)/m(—x)| (0, ], and if m(x) satisfies [1.3), then

1.7) P, x, 3) ~ Ds,t? T K(t) as t—oo, x, yES,

where D;,=C,(0)"1—p)/I'(1+4p)(1+5-°). This shows a sharp contrast with
(1.4). In transient case, a particle starting in the interior hits the boundary /,
or {, and disappears up to a finite time, or approaches the boundary /, or [,
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ultimately, with positive probability. The difference between [1.4) and [(1.7)
depends on this fact. ‘

Our results owe to some asymptotic theorem for Krein’s correspondence.
Krein’s one to one correspondence between spectral functions and strings m(x)’s
plays an important role in the theory of one-dimensional generalized diffusion
operators, and many asymptotic theorems for the correspondence have been
already obtained ([4], [5], [7]1, [8], [9] etc.). Most of those are related
to the recurrent case. What we need in our case is that for the transient case,
which we will also give in this paper.

We will describe our results in § 2. The definition of the elementary solu-
tion will be given in §3. In §4 we will discuss an asymptotic theorem for
Krein’s correspondence. Our results will be proved in §5.

2. Main results.

Let S=(/;, I,) be an open interval with —oo</,</,<o and m(x) be a real
valued nontrivial right continuous nondecreasing function on it. We may assume
that 0<S and m(0)=0 without loss of generality. We denote the induced mea-
sure by dm(x). Given a function u on S, we set u(l)=lim,_,, zesu(x), =1, 2,
and wu*(x)=lim, ,{u(x+¢e)—u(x)}/e, if there exist the limits. The integral

b+
S is always read as S

a+

r —S(b according as a<b or a>b. Let D(®)be
,a)

(a,b]
the space of all functions we LS, m) which have continuous versions u (we
use the same symbol) satisfying the following two conditions:

a) There are two complex constants A, B and a function Sue L*(S, m) such
that

u(x) = A+ Bx +S::(x—y)(55u(y)dm(y), xES.
b) For each i=1, 2, if /,+m(l;) is finite, then u(/;)=0.

We then define the generalized diffusion operator & from D(®) into LS, m)
by D(®)2u— SucsL¥S, m). Due to S. Watanabe’s argument ([18], see also
[9]), the above setting includes not only the absorbing boundary condition but
also all cases of reflecting or sticky elastic ones for regular boundaries. Indeed,
if I, is the regular boundary with the boundary condition &,u(l,)—@.u*(l,)+
0;8u(l,)=0, where 6,+60,+8,=1, §;=0, ;=1, 3 and §,>0 (such boundary con-
dition is called the sticky elastic one in the case #,>0), then we reset S=
(l,—8,/86,, 1,), extend m(x) by setting m(x)=m(l,)—80s/0, for 1,—80,/0,<x=l,,
and take the right continuous modification. Here and hereafter we use the
conventions 1/c0c=0, +a/0=200, 0otag=o00, —cotag=-—co, 0"%=o0 and oo~%=(
for a>0.
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Now the elementary solution p(t, x, y) of the generalized diffusion equation
is defined following McKean (see §3 below for details). @& is called
rvecurrent or transient if Sjp(t, x, y)dt=cc or <oo for any x, y=S, respectively.

It will be seen in the next section that & is transient if and only if |/;] < for
7=1 or 2.
For 0<p<1 and x, yES, let

(2.1) Ci(p) = {p(+p)}* /1 (p),
(2.2) Calp) = {o(1—p)}¢ /1 (0),
Ci(p)la— 1) {0 (x—1,)(y—1)+(—x)l.—y)}, if (A.1) holds,
(2.3) c(x, »)=1 Cy«p), if (A.2) holds,
P Ci(0)+ ColoXx =1y —11), if (A.3) holds.

Besides the assumptions (A.1), (A.2) and (A.3), we are also concerned with
the following assumptions.

(A.2) : All conditions in (A.2) are fulfilled and m(x)~xfL.(x) as x—oco for some
B>0 and some slowly varying function L,(x).

(A.3) HS‘: (y—1)"2m(y)dy>—oco, l,=co and is satisfied.
1

The condition 11+S: m(y)dy>—oo implies that the boundary [/, is either the reg-
1

ular boundary with the absorbing boundary condition or the sticky elastic one,
or the exit boundary in the sense of Feller (see also [3; §4.6]). Further
note that (A.3)” implies (A.3) with T=o0,

Given a p=(0, 1) and an L(x) in the condition or [1.3), let K(x) be
another slowly varying function such that

(2.4) hﬁrg Kx)VeL(xPK(x)) = }}E{,} L(x)°K(x*eL(x))=1.

Throughout this paper, slowly varying functions L, K etc. are real valued,
positive, locally bounded functions defined on R such that lim,..L{(cx)/L(x)=1
for any ¢>0.

THEOREM 1. If one of the assumptions (A.1), (A.2) and (A.3) is satisfied,
then (1.4) holds.

THEOREM 2. If (A.2) or (A.3) is satisfied, then
(2.5) lirrtl sup t* T K(1) sug i, x, M)y < oo, X, aES,
—00 asyoo

THEOREM 3. Assume (A.3). Then (1.5) as well as the following (2.6) holds.



Transient generalized diffusion equations 565

(2.6) lirrtl sup tP 1 K(t) sxég b, x, ¥/ (y—1) < oo, xS,
~oo v
Further (1.6) s valid for every f such that f(y)}y—I1,)= LS, m).

Finally we consider the asymptotic behavior of T,f(x) for f satisfying
2.7 f)Xy—lh) € LNy, a), mNLY(S, m), L<a<oo,
(2.8) f(x)~ x"L ((x) as x—oo

where L, is a slowly varying function. Note that implies y=—1/p. By
means of [14; Corollary 1], we get

(2.9) T f(x) ~ (x—I )P0 Vg(t) as t—oo, x&85,

provided (A.3) and y=1—1/p are satisfied, where «(¢) is a slowly varying func-
tion given by

(2.10) #(t) = {p(l—p)} I (oy+ DI (p+1)7" L ,t* KK .
We show that (2.9) also holds for —1/p<y<1-—1/p.

THEOREM 4. Suppose (2.7), (2.8) and (A.3)’. Then (2.9) is valid for —1/p
<y<l1—1/p. Further (2.9) is still valid for y=—1/p if k() is replaced by the
following one.

tPK(
1

210 K6 = - (=) o) KWy L)Ly

3. Preliminaries.

We define the elementary solution p(t, x, y) of the generalized diffusion

equation following [3], and [19]. Let S and m(x) be those mentioned
at the beginning of §2. For each i=1, 2, 2&C, let ¢,(x, ) be the solution of

the integral equation

3.1) 0ix, )= 2—z'+(z'—l)x+,2g::(x—y)go,~(y, Adm(y) , xES.
Then, for each a>0 and /=1, 2, there exists the limit

(3.2) hia) = (*1)ixa}if1;es%(x’ a)/¢i(x, a).

We set

1/h(e) = 1/h(a)+1/hs@), hu(a)= h(a),
hao(a) = —(h(@)+hy(a)), hpla) = hau(a) = —h(a)/hy(a).

The functions h;f{a), i, j=1, 2, can be analytically continued to C~\(—oo, 0].
The spectral measures g;j, ¢, j=1, 2, are defined by
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. 122 S
0ifL, &) = lim ;Sllﬂmhij(—l—\/—ls)dz,

for all continuity points 2,<<4,. The matrix valued measure [¢;;]; j-1,» iS SYym-
metric nonnegative definite. Now the elementary solution of the generalized
diffusion equation is given by

33)  ptx 0= 3 (" olx, ~Dely, ~Daudd), 10, x, yES.
In particular, if 11+S: m(y)dy>—oo, then (3.3) is reduced to
1

(3.4) P, x, )= S;e'“gb(x, =Py, —Aadd) , >0, x,yeS,
where ¢(x, 4) is given by
(3.5) O(x, A) = —@u(ls, Dpi(x, DFoi(ly, Dy, 1),
and ¢ is a Borel measure on (0, o) satisfying the following relations.
¢i(ly, —a(dA) = 01,(dA),
(3.6) — (L, —Da(ly, —A)a(dR) = 0,x(d) = a2(dA),
@i(ly, —A)a(dR) = a,5(dA).
We also define the Green function G(a, x, y) of by
3.7 Gla, x, y)= G(a, v, x) = h(@)ux, a)ux(y, a), a>0, x<y, x, y&S,

where u(x, a)=¢\(x, a)+(=1)"¢y(x, a)/hia), i=1,2, a>0, x=S. u(x, a)
[resp. u.(x, @)] is positive and nondecreasing [resp. nonincreasing] in xS (see
[8]. Denote the Laplace transform of p(¢, x, y) by G(a, x, y):

(3.8) é(a, X, y)= S:Oe‘“”p(t, x, y)dt, a>0, x,yeS.

We should notice that G(a, x, ¥) is not necessarily identical with 5(0{, X, Y
Indeed, we need a correction function @(x, y) to combine G(a, x, y¥) and
é(a, x,y). Let I, k=1,2,-- be the disjoint open intervals such that
S\Supp (dm)=\_=11, and the end points (if exist) belong to Supp{dm)\J{l;, l,}.
For each x, yeS with x=<y, we set

(x—x: )0 x2—)/(Xa—x1), —oo0<Lx;<x,< 0,
O(x, »)=D(, x)=4 x—x;, —oo < x; < Xp=00,
X2—Y, —oo=x,<x,< 0,

if x, yel,=[xi, x.] for some I,# @, and =0 otherwise. Then it holds that
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(3.9) Gla, x, 9)=G(a, x, »)+0(x, ), a>0, x, yES
(see [12; Lemma 1]).
For each a<S, let

(xe—3)/(x:—a), X< o0,

]_, X;=00 ,

Va(» = {

if a, yely=[x., xo], a#x, for some [,#@, and =0 otherwise. Then there
exists a nonnegative function ¢.(t, v), t>0, y=(a, l,) such that

B10)  uly, @ude, @)= | eqlt, DALY, 3E(a, ), a>0.
Hence, by means of (3.7) and [3.8),

B.11)  p@, x, y) = Szp(t—s, x, a)qa(s, ¥)ds+D(x, a)qa(t, y)+pt, x, a)¥ (D),

>0, H<xZa<y<ly,
(see [12; §3] for details).
We next observe some estimates of ¢.(x, ). Due to [6; (2.27)], for i=1, 2,
xeS, 2eC,

(3.12) loi(x, )| < expv/2]Axm(x)],

(3.13) l@o(x, D] £ | x|expy/2]Axm(x)],

(3.14) loi(x, H—1| £ [Axm(x)| expa/2]Axm(x)],

(3.15) lpox, D)—x| < |2x*m(x)|expv/2]| dxm(x)].

It is also easy to see that, if HS? m(y)dy>—co, then ¢(x, 2) defined by
satisfies '

(3.16) lp(x, D] < |x—li]e B1¥e

G.17) lp(x, H—(x—I)| < [21(x—1)M(x)e! 117

for xS, 1€C, where M(x):glz(m(x)—m(y))dy.
1

Finally we note that @ is transient if and only if /,>—o or [,<co. Indeed,
since ¢,(x, Dpi(x, D—ei(x, Dpy(x, H=1, xS, 1€C, we get by

hi(a) = ’S:igol(x, a)dx|, i=1,2, a>0,

from which limg,0hi(a)=|l;], =1, 2. By using this and (3.7), [3.8), [3.9), we
see that & is transient if and only if limg,.h(a)<co, which is equivalent to
11>_'°O or 12<00_
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4. Asymptotic theorem for Krein’s correspondence.

In this section we give some asymptotic theorems for Krein’s correspondence.
The arguments of Krein’s correspondence are due to and [9]. Let m(x) be
a nonnegative right continuous nondecreasing function on [0, o] such that
m(x)%£oe and m(o)=co, We denote the totality of such m by #H. For me M,
we always set m(0—)=0 and consider the solution ¢ x, A) of the following
integral equation

@D g, D=2—i+G—Dx+A] (x—2)puy, Ddm(y),  0=x<L,
where =1, 2, A€C, and [=sup{x: m(x)<eo}. Set
hla) = ligrll 0ux, a)/pi(x, a) = S:gol(x, a)%dx a>0.

h is called the characteristic function of m and the correspondence me M — h is
called Krein’s correspondence. Let % be the class of functions 2 on (0, o)
such that

h(a) = c+S:° (@+D0(dd), a>0.
for some ¢=0 and some nonnegative Borel measure ¢ on [0, o) satisfying
S[o )(l+2)‘la(dk)< o, It is well known that Krein’s correspondence me M—h

is a one to one map from M onto 4 (see [6], e.g.). From now on we denote
Krein’s correspondence by me Mo hedl. It is easy to see that

¢ = inf{x>0: m(x)>0},
= lim h(a) = o+ (" 2'a(d2).
In the following, 0<p<1, and L(x) and K(x) are slowly varying functions
satisfying

THEOREM 4.1 (Kasahara [7]). Let meM o hsH and |=oco. Then the fol-
lowing (4.2) and (4.3) are equivalent each other.

4.2) m(x) ~ x¥e-1L(x) as x—oo ,
4.3) ha) ~ {o/T1—p)Cop)la?K(1/a)  as al0.

Now we will establish a version of [Theorem 411 corresponding to the case
where [<co. The proof for the sufficiency of the first assertion (i) of the fol-
lowing theorem is due to Y. Okabe.

THEOREM 4.2. Let me Mo hed and [<co. () The integral I =
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S:dxgjm(y)dy converges if and only if there exists the limit J=lim,,({—h(a))/a
<oo, Then 2I=]. (ii) The following (4.4) and (4.5) are equivalent each other.
4.4) m(l—1/x) ~ x*e+ L(x) as x—oo,
4.5) [—h(a)~ p7'I'(1—p)Ci(p)a’/K(1/a) as al0.

Proor. (i) First note that, by means of

lim (p.(x, @)—1/a = | (x—y)dm(y) = | ‘m()dy.

Assume [<<oco. Since, for each a>0, ¢,(x, @) is nondecreasing and ¢,(x, a)=1,
x=0, we get by
(pi(x, a)—1D)/api(x, a) < 2(p:(x, a)—1)/api(x, )

= 28z+(x—y)gol(y, a)dm(y)/ ¢ (x, a)

= 2{ " y)dm(y) = 2\ m(y)dy

By the assumption the last term is integrable on [0, /). Therefore it follows
from Lebesgue’s dominated convergence theorem that

J = tim (= h(@)/a = | tim {(pi(x, @)—1)/agi(x, a)}dx
1 x
=2 dx|m(ndy =21 < 0.

Conversely, if J<oo, then in view of Fatou’s lemma,

00 > J = lim(I—h(a))/a
= S: limJiglf {(@i(x, )—1)/ag¥x, a)}dx

- ZS;de:m( 9y = 21 .

Applying the first half of the proof, we have j=2I.

(ii) Let m~'(x) be the right continuous inverse function of x—m(x). Further,
let p(x):-l""g:{l—m‘l(y)}zdy and p-(x) be the inverse function of x—u(x).
Then it holds that

(4.6) ﬂ"m(l—l/x):l'QS ydn=1/y),  1/ISE<c.

1/, x

In view of [6; (12.5)] or [9; (1.10)], m(x)eH—1/ahla)=4. By virtue of
[10; (2)] or [9; (1.11)], we get
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4.7) mo(x) = Im~Yop~(x)/{l—m e p ™ (x)} € M
<« ha) = (—h(a))/lal(a) € 4 .

Noting we now find that (4.4) is equivalent to

pem(i—1/x) ~ 73 (14 p)(1—p) ' x4 =#7° L(x) as x—oo,
Further, this is equivalent to
(4.8) mx) ~ ¢ x?! P K (x) as x—oo,

where ¢, =0 {(1—p)/(1+p)}*/¢*-# and K,(x) is a slowly varying function
such that

4.9) lim K, (x) =70 L(xP! PP K (x))

= lim L(x)?/=OK (x-e/eL(x)=1.

X -0

and assure that (4.8) is equivalent to

(4.10) hola) ~ c,a? ' Ky(1/ax) as a0,

where ¢,=["*{p(1+p)}°T'(1—p)/I'(1+p) and K,(x) is a slowly varying function
satisfying

4.11) &1{1;10 Ki(x)' o Ky(xt =0 K (x))

= lim Ky(x)" K (x' 0 Ky(x)) = 1.

X —o0

Incidentally, if two slowly varying functions r,(x) and r,(x) satisfy the asymp-
totic relation
Hm 7 () 77 (x"r(x)) = Hm r(x)r(xtr(x) = 1
X 00

for some y>0, then
lim # (xV)ry(x) = 1
(see [16; (1.38) and Lemma 1.10]). Therefore [2.4), and (4.11) imply that
lim K(x)Ky(x)=1.

Z =00

Thus (4.10) is equivalent to q.e.d.

5. Proof of Theofems.

Throughout this section, we assume that one of the assumptions (A.1l),
(A.2) and (A.3) is satisfied. Let us recall ha), i=1, 2, defined by First
we note
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LEMMA 5.1. The assumptions (A.1), (A.2) and (A.3) imply the following (5.1)
and (5.3), (6.1) and (5.4) with v=0, and (5.2) and (5.4), respectively.

(.1) —l,—hy(@) ~ p I (1—p)Ci(p)a?/K(1/a)  as a 0.
(5.2) ho(a) ~ {p/I'(1—p)Cx(p)ta ?K(1/a) as @ 0.
(5.3) lim (J;—ho(@))/(—bi— hi(a) = 0° .

(5.4) gr}g (—lL—hy(a)hs(a) = 77°Ci(p)/ Cs(p) .

PROOF. Put m(x)=—m(—x), 0£x<—1;, =00, —[;<x< o0, and my(x)=m(x),
0<x<ly, =0, [,<x<, Taking the right continuous modification of m,;, we
notice m;S M h;=4, i=1, 2. Therefore it is obvious that [resp. (1.3)]
implies [resp. (5.2)] by means of [resp. Theorem 4.1].

Let U(x) and Vi(x) be the inverse functions of x»—»S:mi(y)dy and x—

Iii-1lz Y R .
xgo dySomi(z)dz, respectively, 7=1, 2. Then

lim V,(x)/Vu(x)=10, if =0 in (A.1),
if (A.2) holds,
if r=oc0 in (A.3).

By using [9; Theorem 2.3] and [17; Proposition 4.17, we have positive constants
¢;, =1, 2 such that

lim VCe)/Ux() = {

’

¢1 £ ho(a)/Us(l/a) £ ¢c;, a>0, if [y=00,
Clé{lljl—hj<a)}vj(l/a)§c2, a>07 if Iljl<ooy

j=1, 2. Consequently, (A.1) with =0, (A.2), and (A.3) with 7=co imply
with =0, (5.4) with v=0, and with 7=o0, respectively.

Assume 0<f0< o in (A.1) or 0<r<co in (A.3). Let:=2, =46 in case (A.1l),
and /=1, d=7"! in case (A.3). Then

mi(|li|—1/x) ~ oxe+* L{x) as x—oo,
Noting with 6L(x) in place of L(x), we get by [Theorem 4.2,
llil —hia)~ 6 p ' ['(1—p)Ci(p)a’/K(1/a) as a 0.

Hence [resp. (5.4)] is also valid for 0<<@<oo [resp. 0<r<co] in case
(A.1) [resp. (A.3)]. q.e.d.

We turn to the asymptotic estimate of the Green function G(a, x, y) as
al0.

LEMMA 5.2. [t holds that as a |0,
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(6.5) GO+, x, y)—G(a, x, )~ p ' ['1—p)c(x, y)a*/K1/a), x, YES.

PrROOF. Let a>0 and x<y, x, y=S. Then by means of (3.7),
GO+, 5, N=Gla, %, )= D 1da, x,9), if h<oo,

GO+, x, 9)—Gla, x, )= 2 Jda, %,9), if bh=oo,
where

Ii(a, x, 3) = (h(a)+h(a))({ — hi(a)p(x, a)—1)—@ux, a)+x}
X {h(@)pi(y, a)— ¢y, @)}
—(hy(@)+x){ho(a)pi(y, @)—1)—@y(y, a)+31),
I(a, x, 3) = (la— 1) (h(a)+ he(a))(—l,— hy(a))
XA{l— L)X hola@)— y)—(x— 1) — )},
Ia, x, y) = (la—1) " (hi(@)+ha(a)) (l— hol@))(x— L)Xy —1),
Jila, x, ) = ho(a)(hy(a)+ha(a)) (—hi(a)p:(x, a)—D{p(y, a)— ¢y, @)/ hoa)}
—(@ax, @)= x){1—@:(y, @)/ ho(a)} —(hi(@)+@ax, a))pi(y, a)—1)),
Jea, x, 3) = ho(a)hi(a)+ha(a)) (—l—h(a)){1— ey, a)/ho(a)},
Jola, x, ¥) = (hla)+ho(a)) (x—L)@s(y, a)+hi(a)).
We put

g0 = mody, 9w =" (—ywdn(z).

Note that by
Li{? {ou(x, @)—1}/a = &(x), ggrg {@ax, @)—x}/a = 9(x).

Since lim,, h(a)=1|/;|, i=1, 2, it holds that as a |0,

I(a, x, y) ~ all;—1) " ({L&(x)— p(x)} = 3)+ {1:6(3)— ()} —x)),
La, x, y) ~ (—=Li—hy(a))(lz— x )l —3)/(l.— 11},

I(a, x, y) ~ (b—h(@)x—ULXy—0)/(l.— 1),

S, x, ¥) ~ a{li&(x)—n(x)+& )L —x)},

Jola, x, ) ~ —li—hi(a),

Jola, x, y)~ hy(a) (x—0)y—1).

Combining these asymptotic estimates with those in Lemma 5.1, we have (5.5).
The proof for the case x>y is just the same as above. g.e.d.
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The idea of the following proof is due to S. Kotani.

PROPOSITION 5.3.

(5.6) g{m I K)p@, x, y)=c(x, ¥), x,y<S.

ProoF. (The present proof which is simpler than the original one is due to

@, x, x) P, x, YN .
p(t, 3, %) Bt ¥, y)) 18 non-

negative definite and the derivative dP(¢, x, ¥)/dt is nonpositive definite for all
t>0 and x, yS. Further, putting g(e, x, y)=G0+, x, y)—G(a, x, y), we get

S. Kotani.) We note that the matrix P(t, x, y):(

gla, x, x) gla, x,‘y))
ga, y, x) gla, y, y)’
It is easy to see that Hardy-Littlewood-Karamata theorem ([16; Theorem 2.3],

e.g.) is available for matrix valued functions. Therefore follows from
immediately. g.e.d.

aS:e‘“‘dtS:oP(t, x, y)ds = ( a>0, x,yES.

Next we will study the asymptotic behaviors of spectral measures. By
means of (3.3) and Proposition 5.3,

5.7) 2t 0, 0) = S:o_e‘“ou(dk)fvc(o, Ot-o-1/K(t)  as t—oo.

Accordingly, by Hardy-Littlewood-Karamata theorem,
(5.8) 01:([0, 2]) ~ (c(0, 0)/I'(p+2))2°*'/K(1/2)  as A]0.

We also get
LEMMA 5.4. It holds that as t—oo,
(5.9) [" e 0z, =203, =Dty ~ 0, 00~/ K,
uniformly in x, y€[a, b], a, beS.

Proor. Fix a, bES and put ¢;=Supzecre,s3(2|xm(x)|)"2. Then, by means

of [(3.12) and (3.14),
o SUp loi(x, Doy, A)—1]

= asSgggbI%(x, AD—1l1e(y, 2)I+a§§}§5§b lpi(y, H—1|
=< cilalexp{2e,v 1Al }
Therefore, by virtue of [5.7) and (5.8},
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sup

asx, ysb

)
0-

K| e px, —Dpiy, —Dau(dd—c(0, 0|

< cite K@) | exp{—at+ 26/ oD+ KO e ,(dd—c(0, 0)

0-—
—0 as t—oo

Thus follows. q.e.d.

Next we put

Cile)0r+1)l—1)2, in case (A.1),

A=10, in case (A.2),
Cip), in case (A.3).
LEMMA 5.5.
(5.10) lkifl;l A K(1/ 2020, 1) = A/ (p+2).
G.11) lim tﬂ+1K(t)§:°+e—“on(dz) —A.
(5.12) ltljn t”“K(t)S:e‘“sDz(x, — Ay, —A)o2(dh) = Axy,

uniformly in x, y€[a, b], a, bES.
Proor. Let a>0. Then, by using [17; (5.7)],
[ a0y 10d) = a({hu@)+ o)) ==t ).
First we consider the case (A.1). By means of [5.1) and [5.3),
S:+(R(a+2))“‘azz(d2) = {=lL—h(a)+l:—ha)}/(hi(a)+ha(a))l—11)
~ o' ['(1—p)Ci(p) O+ 1)l — 1) P! /K(1/a)  as a 0.
In view of Tauberian theorem on Stieltjes transform ([16; Theorem 2.5], e.g.),
g::u“'dzz(du) ~ {pl(p+1)}*CipX0°+1)Xl.—11)222/K(1/2) as 4]0,

from which follows.
Next assume (A.2). Then,

02((0, 2]) = 2225::@(2—!— u)) ' 0e(du) < 22(hy(D)+he(D)! < 22/h5(4) .
By virtue of and with 7=0,
AP K(1/2)055((0, A1) < 247 °K(1/2)/ho(d) — 0  as 410.
Thus is valid.
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Suppose (A.3). Then by (5.2) and by the fact A,(0+)=—1,,

[ et ) 10utdd = ah@)+ Ay

~ p 'I'(1—p)Csxp)a’*/K(1/a) as alO.
By using Tauberian theorem on Stieltjes transform again, we get
is obvious by and Abelian theorem.

follows in the same way as in [Lemma 5.4 by using [3.13) and [3.15)
g.e.d.

PROOF OF THEOREM 1. In order to derive from we observe the
asymptotic behavior of ¢;,. We use an idea in to do it.

First we note that ¢,;({0})=0, 7, j=1, 2, because of (5.6} The measure g,
is not necessarily nonnegative but of bounded variation. Therefore ¢, is ex-
pressed as ¢,,—=0,—d,, Where ¢;, i=1,2 are nonnegative Borel measures on
[0, ) and Suppe:N\Suppe.=@.

For any fixed sequence {{,} such that ¢,—> o, we set &M™A)=
15 K(ta)a (0, 2/t.1), EP(A=t5"K(ta)a:(0, A/t:]), ¢, j=1, 2, A>0. Since ¢}(E)
S0u(E)o(E)S(01(E)+02(E))/2 for Borel sets EC[0, «), we find that £{"(4)
SEPA)+HEPR), 2=0, as well as

(5.13) S"e-“dem) < S”e-“ds;;w(z), s>0, i=1,2.
o+ j=1,2

0+

In view of [5.8) and [5.10), we can choose a subsequence {n,} and nondecreas-
ing functions &¥(2), =1, 2, on [0, ) such that &{*#’(1)—&¥(1) for every con-
tinuity point 2 of &% We will show that

(5.14) E5(A) = EXA)—8%(Q) = BI'(p+2) 124, i>0,
where

CilpX—0rl—1)1,—1)*, in case (A.1),

B={0, in case (A.2),

—Cy(p)y, in case (A.3).

By virtue of [5.7), (5.1} and [5.13), the sequence {[” ¢~dg(*»(®)}_is bounded.
In view of [2; Ch. 13, Theorem 2a],

Sw e Rdgm i (2) —> Sm e dgRR), >0, i=1,2.
0+ o+

Combining this with (3.12)-(3.15), by the same argument as in Lemma 5.4, we
see that

G15) | e Fgutn, — 3/t oy, —3/ta JEERD —> 5|7 e rraena),

uniformly in x, y€[a, b], a, beS, s>0.
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By means of [Proposition 5.3, [5.9),

Note that ¢,,=0,, and hence & (A)=E&5P(A).

and (5.15),

c(x, y)s=¢t = (c(0, 0)+Axy)s"’"1+(x+y)S;e'“dﬁ‘z(l), x, y&S8, s>0.

By a simple calculation, ¢(x, ¥)—c(0, 0)—Axy=B(x+y), from which

Bs-p-t = S“’ e BdER(), s>0.
+

This means

% is independent of choice of {t,} and by a standard argument, we get

lim tP“K(t)S: e~ 24p,(x, —Dpo(y, —A)a1a(dA) = By,
—00 +

uniformly in x, y[a, b], a, b=S.

This coupled With 5.9) and [(5.12) gives us the assertion of the theorem. q.e.d.
PROOF OF THEOREM 2. Note that the assumption of is satisfied.

Further note that, for each x&S, there are ¢,>0 and #,>0 such that, for t=¢,

and y=x,
Pt %, 9) £ 2172 %, DHe—x/kON([] s, 5, Dds+0, 1),

where £k(t) is the inverse function of t—itm(t), >0 (see [14; Lemma 4.2]).
Therefore, by means of and [3.9),
bt % /Y S D2, 7 D ately—2/stkOH(] B, x, 0ds+0(, )
< p@t/2, x, x)/a+(ci/th()GO0+, x, x),
for t=t, and y=max{x, a}. By virtue of [1.4),
11_’12 LPHK)p(t/2, x, x) < oo
Since lim sup;.. ho(1/8)/ k(t)<co (see [9; Theorem 2.3]), we have by [Lemma 51

lir? supt?K(t)/k(t) < oo

Thus [2.5) follows. g.e.d.
PROOF OF THEOREM 3. We notice that (A.3) with z=co holds. and

imply is deduced from [(1.5), and Lebesgue’s dominated

convergence theorem. Hence it is enough to show
We use the expression (3.4). Noting the relation and we see

o0, A= "puts, =27t 0u(d) ~ (CloV T+ /K(1/D) a5 210,
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By Abelian theorem
S:+e“‘a(d2) ~ CoO)-0K(E)  as t—co.
Fix an a€S arbitrarily. Then by virtue of [3.16) and [3.17),
L Sup_ 19(x, Dy, D/ —L)y—1)—1|
= sup |¢(x, D—(x—)| |y, DI/(x—l:)Xy—11)
1<z, ysa
+ sup |¢(y, H—(—WI/(y—1)
i<z, ¥sa
< 2M(a)| 2] ¥ @121,

Therefore
L SUD_ KO, 5, )/ Gx—L)y—1)—Calp)]
< 2M(@)P KD | Aexp{—At—2M(@)}ho(dd)+ [t K@) e a(dl—Cilp)
—>0 as t—oo

?

which implies q.e.d.

We turn to the proof of [Theorem 4. In the following, we assume all the
conditions in Let k(x) be the inverse function of x—xm(x), x=0,
as in the proof of [Theorem 2. Then it holds that

(5.16) k(x)~ x?K(x) as x—oo
(5.17) FCRCMU(x)) ~ x07-0H L (R(DK(x) ™ as x—o0 .
For any fixed a=S, we set
Fey = sfon), x>a.
Due to [14; Lemma 5.17,
lim F(x)/xf(x)m(x) = (1—p)/(1+p7), it y>—1/p,
lim F(xo)/{ 3 L)Ly = 1/p—=1,  if 1=—1/p.
Therefore, by means of (5.16) and [5.17),
(G.18) Lm0 PRtk = {p(1—p)} 7P T () T p7+2)

Since lim,_..F(x)=c0 by the assumption of the theorem, we also have, by (5.16)

and
(5.19) lim (t0+ K(£))/t72x(t) = 0.,
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For any ¢>0 with m(c)>0, let m{x)=m(cx)/m(c), {,/c<x<oo. Then the
condition [(1.3) implies

lim m9(x) = m*(x) = x'/¢-?, x=0.

C—00

We denote ¢.(t, ) in (3.10) by ¢, ¥) and ¢%(t, y) if m is replaced by m®
and m*, respectively. Then it holds that

(5.20) qot, ¥) = q{®/em(c), y/c)/emlc), t, y>0,
(5.2 g, y) = Cy(p)yt~rtexp{—p(l—p)y*/rt-'}, t, ¥y>0.

Now we give

PROOF OF THEOREM 4. It suffices to show (2.9) for x=0. The argument
for the case —1/p<y<l1—1/p is similar to that in [14]. So we omit the proof
for that case. Suppose y=-—1/p, whence f&L'((a, «), m). Fix a sufficiently
large a=Supp(dm) so that f is positive on (a, ). Put

T s = (6, 0, 0 G)am(y) +{ 12, 0, )1 (3)dm()
=T+ T).
Since [ 1 F0IG—t)dm(z)<es, asserts that

Tut) ~ CoX—b)er KO fO)y—ldm(y)  as t—eo.

By this and [(5.19)
Pm T/t 7Dty =0,

In order to get (2.9), we only have to show
(5.22) To(t) ~ (=17 V() as t—oo .
We decompose T,(t) for each u<(0, 1) and >0 as

Tut) = (gg%;g o ) P 0, 005, ()

a
ut=s<t utss<t

+@(O’ O)<Sa<y57k(t)+Snk(!)<y<°°)f(y)q0(t, y)dm(y)
= Hy(t, w+Hy(t, n, w)+Hy(t, n, w)+H(t, 9)+Hst, n)
Since p(¢, 0, 0) is nonincreasing in ¢,

Hit, w) < pel—w), 0,0[” f)dmx)| auts, 1)ds .

Combining this with [1.4), [14; (3.16)] and [5.19), we get
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(5.23) lim H(t, u)/t°? 7 k()= 0.
By using
1 nk(t)+
Hitt, 7, w)= | pe1—s), 0, 005" " F3)gs (s, 3/ ktNam().

In view of [14; 4.7)], [5.21), [3.8), and [(3.9), for any £<(0, 1), there is #,>0
such that

(I-e)Cx(p)exp{—p(l—p)n"*u"} k() F (n k)" (—L,—9(0, 0))
= Hilt, 9, u)
= (14+eCo)u™ kO F (kO (—L—00,0),  t=t.
Since lim,..F(cx)/F(c)=1 as in [14; Lemma 5.1], we see that
LiP;I 17’1?;1 li?}inf Hy(t, , )/t k()" 'F(k(1))
2 (1—-e)CalpX—1,—9(0, 0)),
lim lim lim sup Hy(t, n, u)/t" k(t)*F (k(t))

utl 740 fmo
< (14+8)Ca(p)X(—1—D(0, 0)).
In the same way as above,
(1—8)Cy(p)(0, 0) < %13,1 li?}‘inf Hy(t, )/t k()F (k@)
< }]igl lim sup Hi(t, )/t k()™ F (k(®))

= (14-6)Co(0)9(0, 0).
Hence, by means of
(5.24) (A—e)—1) liﬁl 1i£r01 lirzn inf { Hy(t, 3, w)+H(t, 0)}/tP7Pk(t)
‘ utl g ~00
< 1i£r11 1i£r01 1ir£1 sup { Hy(t, 9, u)+H(t, n)}/t°TVk(t)
% 7 —00

= (1+€>(—“11) .

Notice that we can repeat the argument for [14; (4.18)] in this case, too.

Therefore by and
lirrcljoup Hy(t, , w)/t f(R@)m(E®))

< (—4—0(0, 0) max | "yqt(s, y)dm*(y) < eo.
uss§s1ly

Since lim,_F(x)/xf(x)m(x)=c (see [14; Lemma 5.1]), we obtain by
%im Hy(t, n, u)/t°Pet)=0.
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By the same argument as above,
lim Hy(, 5, w)/t*7"k(t) = 0.

Combining these estimates with and [5.24), we arrive at g.e.d.

ExXAMPLE 5.6 (Elastic Brownian motion). Let us consider the differential
operator L=d*/2dx* on (0, ). We impose the boundary condition ,u(0)—
G,ut(0)+68,.Lu(0)=0, where 0,+6,+6,=1, 0,20, i=1, 3, §,>0, or 6,—1=6,=
6.=0. Set [,=—40,/60, and m(x)=2x, x=0, =—0,/0,, [,<x<0. As was noted
in §2, £ reduces to 8=(d/dm)(d/dx) on ([, o). The diffusion process having
& as the generator is called the elastic Brownian motion in the case that 0<6,
<1 and 6,=0. If 6,=0, then & is recurrent and the asymptotic behaviors of
p, x, y) and T,f(x) were observed in and [14]. So we only consider
the case 0<@,<1. Suppose that (y—0)f(y)eL(({,, a), m), [,<a<oo, and f(x)
~x" as x—oo. Since the assumption (A.3)’ is satisfied, it follows from Theorems
3 and 4 that, for any a, xS,

lim su N, 2)/(y—liNz—1)—Qr)" 12722 =0,

t-ee 1<y, 28

lim sup *2 sup p(t, x, ¥)/(y—1;) < oo,
t—oo y>l

Co(Rrm) Y3 (x—1I %2, r<—2,
T f(x)~1 @r) V3 (x—Ll)t*" log t, r=-2,
2(T+1)/Zn—1/21"(7,/2+1)(x_ll)t(7~1)/2 , T>___2 ,

as t—oo, where Co=25jf(y)(y—11)dy it 6,=1, ZZS:fU)(y—ll)dy+f(0)03/0z if
0<6,<1.
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