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1. Introduction.

It seems to be interesting to develop a method of construction of flat sur-
faces in the unit 3-sphere $S^{3}$ , since the problem of the classification of flat tori
in $S^{3}$ remains open (see Yau [6]).

There is a method which is due to Sasaki [4] and Spivak [5, pp. 139-163].

To explain the method we recall the notion of asymptotic curves. A curve $c$

on a flat surface $M$ in $S^{3}$ is called an asympiotic curve if $\sigma(\dot{c},\dot{c})=0$ , where $\sigma$

denotes the second fundamental form on $M$. It is well-known that for each
point $x\in M$, there are exactly two asymptotic curves on $M$ through the point $x$ .
They proved that one of the two curves has torsion $\tau=1$ and the other has
torsion $\tau=-1$ , and if $M$ is complete and connected, then $M$ is determined by

the two curves (see Lemma 2.2). Moreover they obtained a method of con-
struction of flat surfaces in $S^{3}$ which says that if $a_{1}$ and $a_{2}$ are curves in $S^{3}$

with torsions $\tau_{1}=1$ and $\tau_{2}=-1$ , respectively and these curves satisfy some
suitable conditions, then there exists a flat surface $M$ in $S^{3}$ such that $a_{1}$ and $a_{2}$

are asymptotic curves on $M$ (see Lemma 4.1). Infinitely many complete flat
surfaces in $S^{3}$ are constructed by this method. However it is not easy to give
a criterion for these surfaces to be compact. So it seems to be difficult to apply
this method to the problem of the classification of flat tori in $S^{3}$ .

In this paper modifying the method of Sasaki and Spivak, we establish a
new method and give a criterion for the surfaces constructed by the method to
be compact. To explain our method we introduce the notion of admissible pairs.
A pair $\Gamma=(\gamma_{1}, \gamma_{2})$ of regular curves $\gamma_{1}$ and $\gamma_{2}$ on the unit 2-sphere $S^{2}$ is called
an admissible pajr if the geodesic curvature of $\gamma_{1}$ is greater than that of $\gamma_{2}$ and
some additional conditions are satisfied (for details, see Section 4). For each
admissible pair $\Gamma$, using the Hopf fibration $p;S^{3}arrow S^{2}$ , we construct a flat sur-
face $M_{\Gamma}$ in $S^{3}$ (Theorem 4.2). Conversely we show that if $M$ is a complete con-
nected flat surface in $S^{3}$ with bounded mean curvature, then there exists an
admissible pair $\Gamma$ such that $M$ is congruent to $M_{\Gamma}$ (Theorem 4.3). Moreover
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we prove that for each admissible pair $\Gamma=(\gamma_{1}, \gamma_{2})$ , the surface $M_{\Gamma}$ is compact

iff $\Gamma$ is periodic, that is, $\gamma_{1}$ and $\gamma_{2}$ are periodic (Theorem 5.1). Consequently we
see that the problem of the classification of flat tori in $S^{3}$ completely reduces to
that of periodic admissible pairs. These results are applied to prove the follow-
ing theorems.

THEOREM A. If $M$ is a flat torus isometrically immersed in $S^{3}$ , then all the
asymptOtjc curves on $M$ are perjO&c.

THEOREM B. There exists a flat torus $M$ isometrically embedded in $S^{3}$ such
that $M$ contains no great $\alpha rcle$ in $S^{3}$ .

The outline of this paper is as follows. In Section 2 we explain a Lie group
structure on $S^{3}$ and give some basic facts on flat surfaces in $S^{3}$ . In Section 3
we consider the Hopf fibration $P:S^{3}arrow S^{2}$ and discuss the behavior of asymptotic
curves on Hopf cylinders. In Section 4 we introduce the notion of admissible
pairs and establish a method of construction of flat surfaces in $S^{3}$ . In Section 5
we give a criterion for the surfaces constructed by our method to be compact.

In Section 6 we prove Theorem A. In Section 7 we prove Theorem B.
Throughout this paper we assume that all manifolds and maps are differen-

tiable of class $C^{\infty}$ .
The author would like to express his sincere thanks to Professor S. Tanno

for valuable advices and encouragements, and to the referee for many valuable
comments.

2. Preliminaries.

Let $SU(2)$ be the group of all $2\cross 2$ unitary matrices with determinant 1.
Its Lie algebra Bu(2) consists of all $2\cross 2$ skew Hermitian matrices of trace $0$ .
The adjoint representation Ad of $SU(2)$ is given by

$Ad(a)x=a\cdot x\cdot a^{-1}$ ,

where $a\in SU(2)$ and x\in \S u(2). We define a positive definite inner product $\langle, \rangle$

on $\mathfrak{s}\mathfrak{u}(2)$ by

$\langle x, y\rangle=-\frac{1}{2}trace(x\cdot y)$ .

The inner product is invariant under the adjoint action of $SU(2)$ . We set

$e_{1}=(_{\sqrt{-1}}0\sqrt{-1}0)$ $e_{2}=(\begin{array}{ll}0 -11 0\end{array})$ , $e_{3}=(^{\sqrt{-1}}0-\sqrt{-1}0)$ .

Then $\{e_{1}, e_{2}, e_{3}\}$ is an orthonormal basis of @11(2). Note that
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$[e_{1}, e_{2}]=2e_{3}$ , $[e_{2}, e_{3}]=2e_{1}$ , $[e_{3}, e_{1}]=2e_{2}$ ,

where $[, ]$ denotes the Lie bracket on @\mbox{\boldmath $\iota$}1(2). For each $e_{i}$ , we define a left in-
variant vector field $E_{i}$ on $SU(2)$ by

$E_{i}(a)= \frac{d}{dt}\{a\cdot\exp(te_{i})\}|_{t=0}$ .

Then $\{E_{1}, E_{2}, E_{3}\}$ is a frame field on $SU(2)$ . We define a Riemannian metric $\langle, \rangle$

on $SU(2)$ by $\langle E_{i}, E_{j}\rangle=\delta_{ij}$ , where $\delta_{ij}$ is the Kronecker delta. Then $SU(2)$ is a
Riemannian manifold isometric to the unit 3-sphere $S^{3}$ . Hereafter we identify
$S^{3}$ with $SU(2)$ .

Let $L_{a}$ (resp. $R_{a}$ ) denote the left (resp. right) translation of $S^{3}$ by $a\in S^{3}$ .
Then $L_{a}$ and $R_{a}$ are isometries of $S^{3}$ . We denote by $D$ the Riemannian con-
nection on $S^{3}$ with respect to the Riemannian metric $\langle, \rangle$ . Since the metric is
bi-invariant, we obtain

(2.1) $D_{E_{i}}E_{j}= \frac{1}{2}[E_{i}, E_{j}]$ .

We choose an orientation of $S^{3}$ such that $\{E_{1}, E_{2}, E_{3}\}$ is a positive frame field.
A vector product $\cross on$ each tangent space of $S^{3}$ is defined by the metric and
the orientation in the usual way. Then we obtain

(2.2) $E_{i} \cross E_{j}=\frac{1}{2}[E_{i}, E_{j}]$ .

Let $c:Rarrow S^{3}$ be a curve in $S^{3}$ and let $\dot{c}$ be the tangent vector field of $c$ .
A vector field $v$ along the curve $c$ is called left (resp. right) invariant along $c$

if the following relation (2.3) (resp. (2.4)) holds for all $t\in R$ .
(2.3) $v(t)=\{L_{c(t)c(0)-1}\}_{*}v(0)$ ,

(2.4) $v(t)=\{R_{c(0)-1_{C(t)}}\}_{*}v(0)$ .

LEMMA 2.1. Let $v$ be a vector field along $c$ . Then
(1) $v$ is left invariant along $c$ iff $D_{t}v=\dot{c}\cross v$ ,
(2) $v$ is right invariant along $c$ iff $D_{\dot{c}}v=v\cross\dot{c}$ .

PROOF. Set $f_{i}(t)=\langle v(t), E_{i}(c(t))\rangle$ . Then by (2.1) and (2.2) we obtain

(2.5) $D_{i}v= \sum_{i=1}^{8}f_{i}’E_{i}(c)+\delta\cross v$ ,

where $f_{i}’=df_{i}/dt$ . Since $E_{i}$ is left invariant, it follows that $v$ is left invariant
along $c$ iff $f_{1},$ $f_{2}$ and $f_{3}$ are constant. Hence (2.5) implies the assertion of (1).

To prove (2) we consider a map $\tau:S^{3}arrow S^{3}$ given by
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(2.6) $\tau(a)=a^{-1}$ .
Since $\tau$ is an orientation reversing isometry of $S^{3}$ , we obtain

$D_{\tau*\delta}\tau_{*}v=\tau_{*}(D_{t}v)$ , $\tau_{*}\dot{c}\cross\tau_{*}v=\tau_{*}(v\cross\delta)$ .
Thus it follows from (1) that $\tau_{*}v$ is left invariant along $\tau(c)$ iff $D_{c}v=v\cross\dot{c}$ . It
is easy to see that $\tau_{*}v$ is left invariant along $\tau(c)$ iff $v$ is right invariant along $c$ .
Hence we have (2). Q.E.D.

Let $f:Marrow S^{3}$ be an isometric immersion of a complete connected flat surface
$M$ into $S^{3}$ . In Moore [1] it is shown that there exists a covering $T:R^{2}arrow M$

such that

$g( \frac{\partial T}{\partial t_{i}},$ $\frac{\partial T}{\partial t_{l}})=1$ , $\sigma(\frac{\partial T}{\partial t_{i}},$ $\frac{\partial T}{\partial t_{i}})=0$

for $i=1,2$ , where $g$ denotes the Riemannian metric on $M$ and $\sigma$ denotes the
second fundamental form on $M$ induced by the immersion $f$ . The covering $T$

is called an asymptotic Tchebychef net of $M$. Moreover $f\circ T:R^{2}arrow S^{3}$ becomes a
flat asymptotic Tchebychef immersion. Here we give the following

DEFINITION. An immersion $F:R^{2}arrow S^{3}$ is said to be a flat asymptOtjc Tcheby-
chef immersion (abrreviated as FAT) if $F$ induces a flat metric on $R^{2}$ and
satisfies the following

(2.7) $\langle F_{i}, F_{i}\rangle=1$ , $\langle D_{F_{i}}F_{i}, \xi\rangle=0$

for $i=1,2$ , where $F_{i}=\partial F/\partial t_{i}$ , and $\xi=F_{1}\cross F_{2}/\Vert F_{1}\cross F_{2}\Vert$ .
Following [4] and [5], we summarize basic properties of FATs. For a

FAT $F:R^{2}arrow S^{3}$ , we set

(2.8) $g_{ij}=\langle F_{i}, F_{j}\rangle$ , $h_{ij}=\langle D_{F_{i}}F_{j}, \xi\rangle$ .
By (2.7) we have $1-g_{12}^{2}>0$ , and so there exists a real valued function $\omega$ on $R^{2}$

such that

(2.9) $g_{12}=\cos\omega$ , $0<\omega<\pi$ .
Then the Gaussian curvature $K$ of the metric $g_{ij}$ satisfies

(2.10) $K=- \frac{1}{\sin\omega}(\frac{\partial^{2}\omega}{\partial t_{1}\partial t_{2}})$ .

Since $K=0$ , we obtain

(2.11) $\frac{\partial^{2}\omega}{\partial t_{1}\partial t_{2}}=0$ .
The Gauss equation implies that $h_{12}^{2}=\sin^{2}\omega>0$ . Now we assume that $h_{12}>0$ .
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Then

(2.12) $h_{12}=\sin\omega$ .
We set $n_{i}=\xi\cross F_{i}$ . Then it follows from (2.7) that there exist real valued func-
tions $\kappa_{i}$ and $\tau_{i}on_{\wedge}^{arrow}l\backslash R^{2}$ which satisfy the following Frenet formulas.

(2.13) $\{\begin{array}{l}D_{F_{i}}F_{i}=\kappa_{i}n_{i},D_{F_{i}}n_{i}=-\kappa_{i}F_{i}+\tau_{i}\xi,D_{F_{i}}\xi=-\tau_{i}n_{i}.\end{array}$

By [4] we obtain

(2.14) $\kappa_{1}=-\partial\omega/\partial t_{1}$ , $\kappa_{2}=\partial\omega/\partial t_{2}$ ,

(2.15) $\tau_{1}=1$ , $\tau_{2}=-1$ .
By (2.13) and (2.15) we obtain

(2.16) $D_{F_{1}}\xi=F_{1}\cross\xi$ , $D_{F_{2}}\xi=\xi\cross F_{2}$ .
It follows from (2.11) and (2.14) that $\kappa_{1}(t_{1}, t_{2})=\kappa_{1}(t_{1})$ and $\kappa_{2}(t_{1}, t_{2})=\kappa_{2}(t_{2})$ . Hence
the Frenet formulas imply that all curves $t_{1}\mapsto F(t_{1}, t_{2})$ are congruent each other,
and all curves $t_{2}rightarrow F(t_{1}, t_{2})$ are congruent each other. Furthermore we have the
following lemma which is proved in [5, pp. 152-154].

LEMMA 2.2. $F(t_{1}, t_{2})=F(t_{1},0)\cdot F(0,0)^{-1}\cdot F(0, t_{2})$ for all $(t_{1}, t_{2})\in R^{2}$ .
Using this lemma, we prove the following

THEOREM 2.3. Let $F$ be $a$ FAT and let $\rho$ : $R^{2}arrow R^{2}$ be a diffeomorphism such
that $F\circ\rho=F$. If $\rho(0,0)=(r_{1}, r_{2})$ , then $\rho(t_{1}, t_{2})=(t_{1}+r_{1}, t_{2}+r_{2})$ for all $(t_{1}, t_{2})\in R^{2}$ .

PROOF. Let $\tau$ be an orientation reversing isometry of $S^{3}$ . Replacing $F$ by
$\tau\cdot F$, if necessary, we may assume that $h_{12}$ is positive. To establish the theorem
it is sufficient to show that

(2.17) $\frac{\partial\rho}{\partial t_{j}}=(\delta_{1j}, \delta_{2j})$ .

Let $(x_{1}, x_{2})\in R^{2}$ and let $\rho(x_{1}, x_{2})=(y_{1}, y_{2})$ . Then it is easy to see that the curve
$t-\rangle\rho(x_{1}+t, x_{2})$ is a unit speed asymptotic curve on $R^{2}$ starting from $(y_{1}, y_{2})$ .
Hence the following four cases $(2.18)-(2.21)$ may occur.
(2.18) $\rho(x_{1}+t, x_{2})=(y_{1}+t, y_{2})$ ,

(2.19) $\rho(x_{1}+t, x_{2})=(y_{1}-t, y_{2})$ ,

(2.20) $\rho(x_{1}+t, x_{2})=(y_{1}, y_{2}+t)$ ,

(2.21) $\rho(x_{1}+t, x_{2})=(y_{1}, y_{2}-t)$ .
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Now we show that $(2.19)-(2.21)$ are impossible. Assume (2.19). Then it follows
that

(2.22) $F(x_{1}+fx_{2})=F(y_{1}-t, y_{2})$

In particular we have $F((x_{1}+y_{1})/2, x_{2})=F((x_{1}+y_{1})/2, y_{2})$ . Hence Lemma 2.2
implies that $F(t, x_{2})=F(t, y_{2})$ , and so it follows from (2.22) that

$F(x_{1}+t, x_{2})=F(y_{1}-t, x_{2})$ .
Differentiating the above relation at $t=(y_{1}-x_{1})/2$ , we have $F_{1}((x_{1}+y_{1})/2, x_{2})=0$ .
This is a contradiction.

Now we assume (2.20). We set

$c(t)=F(x_{1}+t, x_{2})$ , $v(t)=\xi(x_{1}+t, x_{2})$ ,

where $\xi=F_{1}\cross F_{2}/\Vert F_{1}\cross F_{2}\Vert$ . Then it follows from (2.16) that $D_{\dot{c}}v=\dot{c}\cross v$ . Since
$\xi\circ\rho=\pm\xi$, the assumption (2.20) implies that

$c(t)=F(y_{1}, y_{2}+t)$ , $v(t)=\pm\xi(y_{1}, y_{2}+t)$ .

So it follows from (2.16) that $D_{\dot{c}}v=v\cross\dot{c}$ . Hence $\dot{c}\cross v=v\cross\dot{c}=0$ , which is a con-
tradiction. Similarly we see that (2.21) is impossible, and so we have (2.18)

which shows that (2.17) holds for $j=1$ .
By the same way we see that (2.17) holds for $j=2$ . This completes the

proof of Theorem 2.3. Q.E.D.

Now we return to the isometric immersion $f:Marrow S^{3}$ , where $M$ is a com-
plete and connected flat surface. Let $T$ be an asymptotic Tchebychef net of $M$

and let $\rho$ : $R^{2}arrow R^{2}$ be a covering transformation of $T$ . Then it follows that $f\circ T$

is a FAT and $(f\circ T)\circ\rho=f\circ T$ . By Theorem 2.3 we see that $\rho^{*}(dt_{1}\wedge dt_{2})=dt_{1}\wedge dt_{2}$ .
So we have the following

THEOREM 2.4. Any non-orientable complete flat surface cannot be isometrically
immersed in $S^{3}$ .

3. Asymptotic curves on Hopf cylinders.

In this section we study the behavior of the asymptotic curves on Hopf
cylinders. The results of this section will be used in the subsequent sections.

We begin with a description of the Hopf fibration. Let $S^{2}=\{x\in \mathfrak{s}\mathfrak{u}(2):\Vert x\Vert$

$=1\}$ . Then the Hopf fibration $p;S^{3}arrow S^{2}$ is defined by

$p(a)=Ad(a)e_{3}$ .
For each $x\in S^{2}$ , the tangent space $T_{x}S^{2}$ is canonically identified with a linear
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subspace $x^{\perp}$ of $\mathfrak{s}\mathfrak{u}(2)$ which is given by

$x^{\perp}=\{y\in 5\mathfrak{u}(2) : \langle x, y\rangle=0\}$ .
Then the standard Riemannian metric on $S^{2}$ is induced by the inner product
$\langle, \rangle$ on Bu(2). We denote by $\nabla$ the Riemannian connection on $S^{2}$ with respect
to the standard metric. Let $S^{1}$ be a closed subgroup of $S^{3}$ given by

$S^{1}=\{a\in S^{3} : Ad(a)e_{3}=e_{3}\}$ .

Note that $S^{1}=\{\exp(te_{3}):0\leqq t<2\pi\}$ . The group $S^{1}$ acts on $S^{3}$ by the right transla-
tion and the Hopf fibration $P$ has a structure of principal $S^{1}$-bundle. For each
$a\in S^{3}$ , let $H_{a}$ be a linear subspace of $T_{a}S^{3}$ given by

$H_{a}=\{v\in T_{a}S^{3} : \langle v, E_{3}\rangle=0\}$ .
Then the correspondence $a->H_{a}$ defines a connection in the principal $S^{1}$ -bundle.
The following lemma is easily verified.

LEMMA 3.1. If $v\in H_{a}$ , then $\Vert p_{*}(v)\Vert=2\Vert v\Vert$ .
Let $c(t)$ be a curve in $S^{3}$ and let $\dot{c}(t)$ be the tangent vector of $c(t)$ . We

denote by $c’(t)$ the $2\cross 2$ matrix $(c_{ij}’(t))$ , where $c_{ij}(t)$ is the $(i, j)$-component of the
matrix $c(t)$ and $c_{ij}’=dc_{ij}/dt$ . Then $c(t)^{-1}\cdot c’(t)\in \mathfrak{s}\mathfrak{u}(2)$ and we have the follwing

LEMMA 3.2. $c(t)\in H_{c(t)}$ iff $\langle c(t)^{-1}\cdot c’(t), e_{3}\rangle=0$ .

PROOF. Set $a(s)=c(t)\cdot\exp\{s(c(t)^{-1}\cdot c’(t))\}$ . Since $a(O)=c(t)$ and $a’(O)=c’(t)$ ,

we have $\dot{a}(0)=\dot{c}(t)$ . So we see that $\langle\dot{c}(t), E_{3}\rangle=\langle\dot{a}(0), E_{3}\rangle=\langle c(t)^{-1}\cdot c’(t), e_{3}\rangle$ .
Q.E.D.

LEMMA 3.3. Let $X$ and $Y$ be vector fields on $S^{2}$ and let $\tilde{X}$ and $\tilde{Y}$ be the
horizontal lifts of $X$ and $Y$, respectjvely. Then $D_{X}\tilde{Y}$ and $\nabla_{X}Y$ are p-related.

PROOF. Consider a new metric on $S^{2}$ which is homothetic to the standard
metric and has constant Gaussian curvature 4. Then it follows from Lemma
3.1 that $p;S^{3}arrow S^{2}$ is a Riemannian submersion with respect to the new metric.
Since the new metric and the standard one induce the same Riemannian connec-
tion $\nabla$ , the assertion of Lemma 3.3 follows from [2, Lemma 1]. Q.E.D.

Let $J$ be a $(1, 1)$-tensor field on $S^{2}$ defined by

$](v)= \frac{1}{2}[x, v]$

for $v\in T_{x}S^{2}$ , where $T_{x}S^{2}$ is identified with $x^{\perp}$ . Note that $\Vert J(v)\Vert=\Vert v\Vert$ and
$\langle J(v), v\rangle=0$ . Let $\tilde{J}$ be a $(1, 1)$-tensor field on $S^{3}$ defined by

$\tilde{J}(E_{i})=E_{3}\cross E_{i}$ .
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Then it is easy to see the following

LEMMA 3.4. $p_{*}\circ\tilde{J}=J\circ p_{*}$ .

Now we consider a regular curve $\gamma:Rarrow S^{2}$ . It is known that the inverse
image $p^{-1}(\gamma)$ of the curve $\gamma$ is an immersed flat surface in $S^{3}$ . The surface
$p^{-1}(\gamma)$ is called a Hopf cylinder corresponding to $\gamma$ (see Pinkall [3]). We in-
troduce the following

DEFINITION. A curve $c:Rarrow S^{3}$ is said to be an asymptotic lift of $\gamma$ if $p\circ c=\gamma$

and $c$ is an asymptotic curve on $p^{-1}(\gamma)$ .
Let $h:Rarrow S^{3}$ be a horizontal lift of $\gamma$ and let $\theta$ be a real valued function

on $R$ . We consider a curve $c$ in $S^{3}$ defined by

(3.1) $c(t)=h(t)\cdot\exp\{\theta(t)e_{3}\}$ .
We recall the geodesic curvature $k$ of $\gamma$ which is given by

$k=\langle\nabla_{f}\dot{\gamma}, J(\dot{\gamma})\rangle/\Vert\dot{\gamma}\Vert^{3}$ .
Then we have the following

LEMMA 3.5. The curve $c$ is an asymptOtjc lift of $\gamma$ iff $\theta’=k\Vert\dot{\gamma}\Vert/2$ , where
$\theta’=d\theta/dt$ .

PROOF. Let $\xi$ be a vector field along the curve $c$ defined by

(3.2) $\xi=-\tilde{J}(\dot{c})/\Vert\tilde{J}(\dot{c})\Vert$ .
Note that $c$ is an asymptotic lift of $\gamma$ iff $\langle D_{\dot{c}}\dot{c}, \xi\rangle=0$ . So it is sufficient to show
that

(3.3) $\langle D_{\dot{c}}\dot{c}, \xi\rangle=\theta’\Vert\dot{\gamma}\Vert-\frac{1}{2}k\Vert\dot{\gamma}\Vert^{2}$ .
By (3.1) we obtain

(3.4) $\dot{c}=\{R_{\exp(\theta e_{3})}\}_{*}\dot{h}+\theta’E_{3}(c)$ .
We set $a_{i}=\langle\dot{c}, E_{i}(c)\rangle$ and $b_{i}=\langle\dot{h}, E_{i}(h)\rangle$ . Since $\tilde{J}(c)=-a_{2}E_{1}(c)+a_{1}E_{2}(c)$ and
$\Vert\tilde{J}(\dot{c})\Vert=\Vert\dot{h}\Vert$ , we obtain

(3.5) $\langle D_{\dot{c}}\dot{c}, \xi\rangle=(a_{1}’a_{2}-a_{1}a_{2}’)/\Vert\dot{h}\Vert$ .
A calculation shows that

(3.6) $\{\begin{array}{l}Ad(\exp(\theta e_{3}))e_{1}=(\cos 2\theta)e_{1}+(\sin 2\theta)e_{2},Ad(\exp(\theta e_{3}))e_{2}=-(\sin 2\theta)e_{1}+(\cos 2\theta)e_{2}.\end{array}$

This implies that
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$\{R_{\exp(\theta e_{3})}\}_{*}E_{1}(h)=(\cos 2\theta)E_{1}(c)-(\sin 2\theta)E_{2}(c)$ ,

$\{R_{expC\theta e_{3})}\}_{*}E_{2}(h)=(\sin 2\theta)E_{1}(c)+(\cos 2\theta)E_{2}(c)$ .

Thus it follows from (3.4) that

(3.7) $\{\begin{array}{l}a_{1}=b_{1} \cos 2\theta+b_{2}\sin 2\theta,a_{2}=-b_{1}\sin 2\theta+b_{2}\cos 2\theta ,a_{3}=\theta’.\end{array}$

Since $\dot{h}$ is horizontal, we have $\Vert\dot{h}\Vert^{2}=b_{1}^{2}+b_{2}^{2}$ . So it follows from (3.5) and (3.7)

that
$\langle D_{\dot{c}}\dot{c}, \xi\rangle=2\theta’\Vert\dot{h}\Vert+(b_{1}’b_{2}-b_{1}b_{2}’)/\Vert\dot{h}\Vert$ .

By Lemmas 3.1, 3.3 and 3.4, we see that

$k\Vert\dot{\gamma}\Vert^{3}=\langle\nabla_{\dot{\gamma}}\dot{\gamma}, J(\dot{\gamma})\rangle=\langle p_{*}(D_{\dot{h}}\dot{h}), p_{*}\circ\tilde{J}(\dot{h})\rangle$

$=4\langle D_{\dot{h}}\dot{h},\tilde{J}(\dot{h})\rangle=-4(b_{1}’b_{2}-b_{1}b_{2}’)$ .
Since $\Vert\dot{\gamma}\Vert=2\Vert\dot{h}\Vert$ , we have (3.3). Q.E.D.

REMARK 3.6. It follows from Lemma 3.5 that there exists an asymptotic
lift of $\gamma$ . If $c_{1}$ and $c_{2}$ are asymptotic lifts of $\gamma$ , then $c_{2}=R_{a}(c_{1})$ for some $a\in S^{1}$ .

LEMMA 3.7. SuppOse that the curve $c$ given by (3.1) is an asymptOtjc lift of
$\gamma$ . Let $\xi$ be the vector feld along $c$ pven by (3.2), and let $\alpha(t)$ denote the angle
between $\dot{c}(t)$ and $E_{3}$ such that $0<\alpha(t)<\pi$ . Then

(1) $\Vert\dot{c}\Vert$ cos $\alpha=k\Vert\dot{\gamma}\Vert/2,$ $\Vert\dot{c}\Vert$ sin $\alpha=\Vert\dot{\gamma}\Vert/2$ ,
(2) $\xi$ is left invariant along $c$ ,
(3) if $\Vert\dot{\gamma}\Vert^{2}(1+k^{2})=4$ , then $\Vert\dot{c}\Vert=1$ and $D_{\delta}\dot{c}=\alpha’(\dot{c}\cross\xi)$ .

PROOF. It follows from (3.4) that $\Vert\dot{c}\Vert$ cos $\alpha=\theta’$ and $\Vert\dot{c}\Vert$ sin $\alpha=\Vert\dot{h}\Vert$ . Thus
Lemmas 3.1 and 3.5 imply (1).

Since $\langle D_{c}\xi,\dot{c}\rangle=0$ and $\langle D_{\dot{c}}\xi, \xi\rangle=0$ , there exists a real valued function $\lambda$ on
$R$ such that $D_{\dot{c}}\xi=\lambda(\dot{c}\cross\xi)$ . Then we see that

$\langle\xi,\dot{c}\cross E_{3}\rangle=\langle\xi, D_{\dot{c}}E_{3}\rangle=-\langle D_{\delta}\xi, E_{3}\rangle$

$=\lambda\langle\xi\cross\dot{c}, E_{3}\rangle=\lambda\langle\xi,\dot{c}\cross E_{3}\rangle$ .

Since $\langle\xi,\dot{c}\cross E_{3}\rangle=\Vert\dot{c}\cross E_{3}\Vert>0$ , we have $\lambda=1$ . Hence the assertion of (2) follows
from Lemma 2.1.

Suppose that $\Vert\dot{\gamma}\Vert^{2}(1+k^{2})=4$ . Then $\Vert\dot{c}\Vert=1$ by (1). Since $\langle D_{\dot{c}}\dot{c},\dot{c}\rangle=0$ and
$\langle D_{\dot{c}}\dot{c}, \xi\rangle=0$, there exists a real valued function $\mu$ on $R$ such that $D_{\dot{c}}\dot{c}=\mu(\dot{c}\cross\xi)$ .
Differentiating cos $\alpha=\langle\dot{c}, E_{3}\rangle$ , we obtain
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$-\alpha’\sin\alpha=\langle D_{c}\dot{c}, E_{3}\rangle+\langle\dot{c}, D_{\ell}E_{3}\rangle$

$=\mu\langle\dot{c}\cross\xi, E_{3}\rangle+\langle\dot{c},\dot{c}\cross E_{3}\rangle$

$=-\mu\langle\xi,\dot{c}\cross E_{3}\rangle=-\mu\Vert\dot{c}\cross E_{3}\Vert$ .
Since $\Vert\dot{c}\cross E_{3}\Vert=\sin\alpha$ , we have $\mu=\alpha’$ . Q.E.D.

Now we discuss the periodicity of asymptotic lifts of $\gamma$ . Let $U(S^{2})$ be the
unit tangent bundle of $S^{2}$ . We identify $U(S^{2})$ with a subset of $\mathfrak{s}\mathfrak{u}(2)\cross \mathfrak{s}\mathfrak{u}(2)$ in
the usual way. Then

$U(S^{2})=\{(x, y) : \Vert x\Vert=\Vert y\Vert=1, \langle x, y\rangle=0\}$ ,

and the canonical projection $P_{1}$ : $U(S^{2})arrow S^{2}$ is given by $P_{1}(x, y)=x$ . Define
$p_{2}$ : $S^{3}arrow U(S^{2})$ by

$p_{2}(a)=(Ad(a)e_{3}, Ad(a)e_{1})$ .
Note that $P_{2}$ is a double covering and $p=p_{1}\circ p_{2}$ .

LEMMA 3.8. Let $c:Rarrow S^{3}$ be a curve in $S^{3}$ such that $p_{2}(c)=\dot{\gamma}/\Vert\dot{\gamma}\Vert$ . Then $c$

is an asympiotic lift of $\gamma$ .
PROOF. Without loss of generality we may assume that $\Vert\dot{\gamma}\Vert=1$ . Since $\dot{\gamma}=$

$\lambda\gamma,$ $\gamma’$), we obtain

(3.8) $Ad(c)e_{3}=\gamma$ ,

\langle 3.9) $Ad(c)e_{1}=\gamma’$ .
By (3.8) there exists a real valued function $\theta$ on $R$ such that $c(t)=h(t)\cdot\exp\{\theta(t)e_{3}\}$ ,
where $h$ is a horizontal lift of $\gamma$ . Then due to Lemma 3.5 we only have to
show that the geodesic curvature $k$ of $\gamma$ must be $2\theta^{f}$ . By (3.6) we obtain

$Ad(c)e_{1}=Ad(h)\{(\cos 2\theta)e_{1}+(\sin 2\theta)e_{2}\}$ ,

$Ad(c)e_{2}=Ad(h)\{-(\sin 2\theta)e_{1}+(\cos 2\theta)e_{2}\}$ .
Thus it follows from (3.9) that

$\gamma’’=2\theta’Ad(c)e_{2}+(\cos 2\theta)(Ad(h)e_{1})’+(\sin 2\theta)(Ad(h)e_{2})’$ .
Then the geodesic curvature $k$ of $\gamma$ is given by

$k= \frac{1}{2}\langle\gamma’’, [\gamma, \gamma’]\rangle=\langle\gamma’’, Ad(c)e_{2}\rangle=2\theta’+P$ ,

where $P=\langle(\cos_{t}2\theta)(Ad(h)e_{1})’+(\sin 2\theta)(Ad(h)e_{2})’, Ad(c)e_{2}\rangle$ . We see $tha^{f}$.
$P=\langle(Ad(h)e_{1})’, Ad(h)e_{2}\rangle=\langle Ad(h)[h^{-1}h’, e_{1}], Ad(h)e_{2}\rangle$

$=\langle[h^{-1}h’, e_{1}], e_{2}\rangle=\langle h^{-1}h’, [e_{1}, e_{2}]\rangle=2\langle h^{-1}h^{f}, e_{3}\rangle$ .
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Thus Lemma 3.2 implies that $P=0$ , and so $\theta’=k/2$ . Q.E.D.

THEOREM 3.9. Let $\gamma$ be a regular curve $mS^{2}$ and let $c$ be an asympfOtjc lift
of $\gamma$ . If $\gamma$ is $l$-periodic, then $c$ is $2l$-periodic.

PROOF. By Remark 3.6 and Lemma 3.8, we may assume that $p_{2}(c)=\dot{\gamma}/\Vert\dot{\gamma}\Vert$ .
This implies that $p_{2}(c)$ is l-periodic. Since $p_{2}$ is a double covering, $c$ is 2l-
periodic. Q.E.D.

4. Construction of flat surfaces in $S^{3}$ .
For $i=1,2$ , let $a_{i}$ : $Rarrow S^{3}$ be a curve in $S^{3}$ such that

a $i(0)=e$ , $\Vert\dot{a}_{i}\Vert=1$ , $\dot{a}_{1}(0)\cross\dot{a}_{2}(0)\neq 0$ ,

where $e$ denotes the unit element of the group $S^{3}$ . Define a map $F:R^{2}arrow S^{3}$ by

$F(t_{1}, t_{2})=a_{1}(t_{1})\cdot a_{2}(t_{2})$ .
We set

(4.1) $\{\begin{array}{l}\xi_{0}=\dot{a}_{1}(0)\cross\dot{a}_{2}(0)/\Vert\dot{a}_{1}(0)\cross\dot{a}_{2}(0)\Vert,\xi_{1}(t)=\{L_{a_{1}Ct)}\}_{*}\xi_{0}, \xi_{2}(t)=\{R_{a_{2}(t)}\}_{*}\xi_{0},n_{i}=\xi_{i}\cross\dot{a}_{i}, \kappa_{i}=\langle D_{\dot{a}_{i}}\dot{a}_{i}, n_{i}\rangle (i=1,2),\omega(t_{1}, t_{2})=\omega_{0}-\int_{0}^{t_{1}}\kappa_{1}(t)dt+\int_{0}^{t_{2}}\kappa_{2}(t)dt,\end{array}$

where $\omega_{0}$ denotes the angle between $\dot{a}_{1}(0)$ and $\dot{a}_{2}(0)$ such that $0<\omega_{0}<\pi$ . The
following lemma is essentially due to [4] and [5].

LBMMA 4.1. If $0<\omega<\pi$ and $\langle\dot{a}_{i}, \xi_{i}\rangle=0$ for $i=1,2$ , then the map $Fis$ $a$ FAT
such that $g_{12}=\cos\omega$ and $h_{12}=\sin\omega$ .

PROOF. Let $X_{i}$ and $Y_{i}$ be vector fields along $a_{i}$ given by

(4.2) $\{\begin{array}{l}X_{1}(t)=\{L_{a_{1}(t)}\}_{*}\dot{a}_{1}(0), X_{2}(t)=\{R_{a_{2}(t)}\}_{*}\dot{a}_{2}(0),Y_{1}(t)=\{L_{a_{1}(t)}\}_{*}n_{1}(0), Y_{2}(t)=\{R_{a_{2}Ct)}\}_{*}n_{2}(0).\end{array}$

Since $\xi_{i}=X_{i}\cross Y_{i}$ and $\langle\dot{a}_{i}, \xi_{i}\rangle=0$ , there exists a real valued function $\theta_{i}$ on $R$

such that

(4.3) a $i=(\cos\theta_{i})X_{i}+(\sin\theta_{i})Y_{i}$ , $\theta_{i}(0)=0$ .
So $n_{i}=-(\sin\theta_{l})X_{i}+(\cos\theta_{i})Y_{i}$ . Then we see that

$D_{\dot{a}_{i}}\dot{a}_{i}=\theta_{i}^{f}n_{i}+(\cos\theta_{i})D_{\dot{a}_{i}}X_{i}+(\sin\theta_{i})D_{\dot{a}_{i}}Y_{i}$

$=\theta_{i}’n_{i}\pm\dot{a}_{i}\cross\{(\cos\theta_{i})X_{i}+(\sin\theta_{i})Y_{i}\}=\theta_{i}’n_{i}$ .

It follows from (4.1) that $\kappa_{i}=\theta_{i}’$ , and so we obtain
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(4.4) $\omega(t_{1}, t_{2})=\omega_{0}-\theta_{1}(t_{1})+\theta_{2}(t_{2})$ .
By (4.2) and (4.3) we see that

$F_{i}(t_{1}, t_{2})=\{\cos\theta_{i}(t_{i})\}\Phi_{*}\dot{a}_{i}(0)+\{\sin\theta_{i}(t_{i})\}\Phi_{*}n_{i}(0)$ ,

where $F_{i}=\partial F/\partial t_{i}$ and $\Phi=L_{a_{1}(t_{1})^{\circ}}R_{a_{2}(t_{2})}$ . So it follows from (4.4) that the angle
between $F_{1}(t_{1}, t_{2})$ and $F_{2}(t_{1}, t_{2})$ is equal to $\omega(t_{1}, t_{2})$ . By the assumption that $0<$

$\omega<\pi$ , the map $F$ is an immersion such that $g_{11}=g_{22}=1$ and $g_{12}=\cos\omega$ . Since
$\partial^{2}\omega/\partial t_{1}\partial t_{2}=0$ , it follows from (2.10) that the map $F$ induces a flat metric on $R^{2}$ .
We define a vector field $\xi$ along $F$ by

$\xi(t_{1}, t_{2})=\{L_{a_{1}Ct_{1})^{\circ}}R_{a_{2}(t_{2})}\}_{*}\xi_{0}$ .
Then Lemma 2.1 implies that $D_{F_{1}}\xi=F_{1}\cross\xi$ and $D_{F_{2}}\xi=\xi\cross F_{2}$ . Since $\langle F_{i}(t_{1}, t_{2})$ ,
$\xi(t_{1}, t_{2})\rangle=\langle\dot{a}_{i}(t_{i}), \xi_{i}(t_{i})\rangle=0$ , we have $\xi=F_{1}\cross F_{2}/\Vert F_{1}\cross F_{2}\Vert$ . Therefore we see that

$h_{ii}=-\langle D_{F_{i}}\xi, F_{i}\rangle=0$ $(i=1,2)$ ,

$h_{12}=-\langle D_{F_{1}}\xi, F_{2}\rangle=\langle\xi, F_{1}\cross F_{2}\rangle=\sin\omega$ . Q.E.D.

Combining the notion of asymptotic lifts defined in the previous section with
the method of construction of FATs described in Lemma 4.1, we establish more
geometric method of constructing FATs. For the purpose we introduce the
following

DEFINITION. For $i=1,2$ , let $\gamma_{i}$ : $Rarrow S^{2}$ be a regular curve on $S^{2}$ . The pair
$\Gamma=(\gamma_{1}, \gamma_{2})$ is said to be admissible if the following conditions $(4.5)-(4.7)$ are
satisfied.

(4.5) $\gamma_{i}(0)=e_{3}$ , $\gamma_{i}’(0)/\Vert\gamma_{i}’(0)\Vert=e_{1}$ ,

(4.6) $\Vert\gamma_{i}’\Vert^{2}(1+k_{i}^{2})=4$ ,

(4.7) $k_{1}(t_{1})>k_{2}(t_{2})$ for all $(t_{1}, t_{2})\in R^{2}$ ,

where $k_{i}$ denotes the geodesic curvature of $\gamma_{i}$ .

Let $\Gamma=(\gamma_{1}, \gamma_{2})$ be an admissible pair and let $f_{\Gamma}$ : $R^{2}arrow S^{3}$ be a map defined by

(4.8) $f_{\Gamma}(t_{1}, t_{2})=c_{1}(t_{1})\cdot c_{2}(t_{2})^{-1}$ ,

where $c_{i}$ denotes the asymptotic lift of $\gamma_{i}$ such that $c_{i}(0)=e$ . Then we have
the following

THEOREM 4.2. The maP $f_{\Gamma}$ is $a$ FAT.

PROOF. Let $F=f_{\Gamma}$ and let $\alpha_{i}(t)$ be the angle between $c_{t}(t)$ and $E_{3}$ such that
$0<\alpha_{i}(t)<\pi$ . Then it follows from Lemma 3.7 that $\Vert\dot{c}_{i}\Vert=1$ and cot $\alpha_{i}=k_{i}$ . By
(4.7) we obtain
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(4.9) $0<\alpha_{2}(t_{2})-\alpha_{1}(t_{1})<\pi$ .
Set $a_{1}(t)=c_{1}(t)$ and $a_{2}(t)=c_{2}(t)^{-1}$ . Then it follows that $F(t_{1}, t_{2})=a_{1}(t_{1})\cdot a_{2}(t_{2})$ ,
$a_{i}(0)=e$ and $\Vert\dot{a}_{i}\Vert=1$ . By (4.5) we obtain

$\dot{c}_{i}(0)=\{\sin\alpha_{i}(0)\}E_{2}(e)+\{\cos\alpha_{i}(0)\}E_{3}(e)$ .
This implies that the angle $\omega_{0}$ between $\dot{a}_{1}(0)$ and $\dot{a}_{2}(0)$ is equal to $\pi-\alpha_{2}(0)+\alpha_{1}(0)$ ,
and so $\dot{a}_{1}(0)\cross\dot{a}_{2}(0)\neq 0$ by (4.9). Define $\xi_{0},$ $\xi_{i}(i),$ $n_{i}(t),$ $\kappa_{i}(t)$ and $\omega(t_{1}, t_{2})$ by (4.1).

Since $\xi_{(1}=-\tilde{J}(\dot{c}_{i}(0))/\Vert\tilde{J}(\dot{c}_{i}(0))\Vert$ , Lemma 3.7 (2) implies that

(4.10) $\xi_{1}=-I^{*}(\dot{c}_{1})/\Vert I^{*}(\dot{c}_{1})\Vert$ , $\xi_{2}=\tau_{*}(\tilde{J}(\dot{c}_{2})/\Vert\tilde{J}(\dot{c}_{2})\Vert)$ ,

where $\tau$ is given by (2.6). Hence it follows from Lemma 3.7 (3) that $D_{\dot{a}_{i}}\dot{a}_{i}=$

$-\alpha_{i}’(\xi_{i}\cross\dot{a}_{i})=-\alpha_{i}’n_{i}$ , and so $\kappa_{i}=-a_{i}’$ . Thus we see that $\omega(t_{1}, t_{2})=\pi+\alpha_{1}(t_{1})-\alpha_{2}(t_{2})$ ,
and so $0<\omega<\pi$ by (4.9). Since \langle a $i\xi_{i}\rangle$ $=0$ by (4.10), Lemma 4.1 implies that $F$

is a FAT. Q.E.D.

THEOREM 4.3. Let $F:R^{2}arrow S^{3}$ be $a$ FAT. If the mean curvature of $F$ is
bounded, then there exists an admissible Pair $\Gamma$ such that $f_{\Gamma}=\Phi\circ F$ for some iso-
metry $\Phi$ of $S^{3}$.

PROOF. We set $F_{i}=\partial F/\partial t_{i}$ , $\xi=F_{1}\cross F_{2}/\Vert F_{1}\cross F_{2}\Vert$ , $g_{ij}=\langle F_{i}, F_{j}\rangle$ and $h_{ij}=$

$\langle D_{F_{i}}F_{j}, \xi\rangle$ . Recall the maP $\tau$ given by (2.6). Replacing $F$ by $\tau\circ F$, if necessary,
we may assume that $h_{12}>0$ . Let $\omega$ be the function on $R^{2}$ defined by (2.9).

Then we obtain
$g_{11}=g_{22}=1$ , $g_{12}=\cos\omega$ ,

$h_{11}=h_{22}=0$ , $h_{12}=\sin\omega$ .
So the mean curvature $H$ of $F$ satisfies $H=-\cot\omega$ . Since $H$ is bounded, there
exists a positive number $\delta$ such that $\delta\leqq\omega\leqq\pi-\delta$ . Since $\omega$ satisfies the equation
(2.11), there exist real valued functions $\omega_{1}$ and $\omega_{2}$ such that

$\omega(t_{1}, t_{2})=\omega_{1}(t_{1})+\omega_{2}(t_{2})$ , $\frac{\delta}{2}\leqq\omega_{i}\leqq\pi-\frac{\delta}{2}$ .
Replacing $F$ by $\Phi\circ F$ for some orientation preserving isometry $\Phi$ of $S^{3}$ , we may
assume that

(4.11) $F(O, O)=e$ , $E_{1}(e)= \frac{F_{1}(0,0)\cross E_{3}}{\sin\omega_{1}(0)}=\frac{E_{3}\cross F_{2}(0,0)}{\sin\omega_{2}(0)}$ .
Then by Lemma 2.2 we obtain

(4.12) $F(t_{1}, t_{2})=F(t_{1},0)\cdot F(O, t_{2})$ .

We set
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$c_{1}(t)=F(t, 0)$ , $\xi_{1}(t)=\xi(t, 0)$ , $\alpha_{1}(t)=\omega_{1}(t)$ ,

$c_{2}(t)=\tau\circ F(0, t)$ , $\xi_{2}(t)=-\tau_{*}\xi(0, t)$ , $\alpha_{2}(t)=\pi-\omega_{2}(t)$ .

Then it is easy to see that

(4.13) $\{\begin{array}{l}c_{i}(0)=e, \Vert\dot{c}_{i}\Vert=1, \Vert\dot{c}_{i}(0)\cross E_{3}\Vert=\sin\alpha_{i}(0),\xi_{i}(0)=\dot{c}_{i}(0)\cross E_{3}/\Vert\dot{c}_{i}(0)\cross E_{3}\Vert,0<\alpha_{i}<\pi, \langle\dot{c}_{i}, \xi_{i}\rangle=0.\end{array}$

By (2.16) we obtain

(4.14) $D_{\ell_{i}}\xi_{i}=\dot{c}_{i}\cross\xi_{i}$ .

It follows from (2.13) and (2.14) that $D_{F_{1}}F_{1}=\omega_{1}’(F_{1}\cross\xi)V$ and $D_{F_{2}}F_{2}=\omega_{2}’(\xi\cross F_{2})$ . So
we obtain

(4.15) $D_{p_{t}}\dot{c}_{i}=\alpha_{i}’(\dot{c}_{i}\cross\xi_{i})$ .
Now we recall the Hopf fibration $p:S^{3}arrow S^{2}$ and define a curve $\gamma_{i}$ on $S^{2}$ by $\gamma_{\iota}$

$=p\circ c_{\ell}$ . Then by the lemma below, it follows from $(4.13)-(4.15)$ that the curve
$\gamma_{i}$ is regular and the curve $c_{i}$ is an asymptotic lift of $\gamma_{i}$ and the following rela-
tions hold.

$\Vert\dot{\gamma}_{i}\Vert=2\sin a_{i}$ , $k_{t}=\cot a_{i}$ ,

where $k_{i}$ denotes the geodesic curvature of $\gamma_{i}$ . This implies that $\Vert\gamma_{i}\Vert^{2}(1+k_{l}^{2})=4$

and $k_{1}>k_{2}$ , since $\alpha_{2}-\alpha_{1}=\pi-\omega>0$ . By (4.11) we see that $\gamma_{i}(0)=e_{3}$ and
$\gamma_{l}’(0)/\Vert\gamma_{i}’(0)\Vert=e_{1}$ . Hence $\Gamma=(\gamma_{1}, \gamma_{2})$ is an admissible pair. Then it follows from
(4.12) that $f_{\Gamma}(t_{1}, t_{2})=c_{1}(t_{1})\cdot c_{2}(t_{2})^{-1}=F(t_{1}, t_{2})$ . Q.E.D.

LEMMA 4.4. Let $\alpha$ be a real valued function on $R$ such that $0<\alpha(t)<\pi$ and
let $c:Rarrow S^{3}$ be a curve such that $c(O)=e,$ $\Vert\dot{c}(0)\cross E_{3}\Vert=\sin a(0)$ and $\Vert P\Vert=1$ . $Suk$

$po$se that there exists a vector field $\xi$ along $c$ such that $\xi(0)=\dot{c}(0)\cross E_{3}/\Vert\delta(0)\cross E_{3}\Vert$ ,
$\langle\dot{c}, \xi\rangle=0,$ $D_{i}\dot{c}=a’(\dot{c}\cross\xi)$ and $D_{i}\xi=\delta\cross\xi$ . Then the curve $\gamma=p\circ c$ on $S^{2}$ is regular
and $c$ is an asymptOtic lift of $\gamma$ . Furthermore $\Vert\dot{\gamma}\Vert=2$ sin $\alpha$ and the geodesic cur-
vature $k$ of $\gamma$ satisfies $k=\cot a$ .

PROOF. We set $a_{1}(t)=c(t)$ and $a_{2}(t)=\exp(te_{3})$ . Then it follows that $a_{i}(0)=e$ ,
$\Vert\dot{a}_{i}\Vert=1$ and $\dot{a}_{1}(0)\cross\dot{a}_{2}(0)\neq 0$ . Define $\xi_{0},$ $\xi_{i}(t)$ , $n_{i}(t),$ $\kappa_{i}(t)$ and $\omega(t_{1}, t_{2})$ by (4.1).

Since $\xi(0)=\xi_{0}$ and $\xi$ is left invariant along $c$ , we have $\xi_{1}(t)=\xi(t)$ , and so $\langle\dot{a}_{1}, \xi_{1}\rangle$

$=\langle\dot{c}, \xi\rangle=0$ . Since $E_{3}$ is invariant under the action of $S^{1}$ , we see that $\langle\dot{a}_{2}(t)$ ,
$\xi_{2}(t)\rangle=\langle E_{3}, \xi_{0}\rangle=0$ . Thus we obtain

(4.16) $\langle\dot{a}_{i}, \xi_{i}\rangle=0$ .

It follows that $\kappa_{1}=\langle D_{t}\dot{c}, \xi\cross\dot{c}\rangle=-\alpha’$ and $\kappa_{2}=0$ . By the assumption that sin $\alpha(0)$

$=\Vert\dot{c}(0)\cross E_{3}\Vert$ , the angle $\omega_{0}$ between $\dot{a}_{1}(0)$ and $\dot{a}_{2}(0)$ is equal to $\alpha(0)$ . So we see
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that

$\omega(t_{1}, t_{2})=\alpha(0)+\int_{0}^{t_{1}}\alpha^{f}(t)dt=a(t_{1})$ .

Since $0<\alpha(t)<\pi$ , we obtain

(4.17) $0<\omega(t_{1}, t_{2})<\pi$ .

Define a map $F:R^{2}arrow S^{3}$ by $F(t_{1}, t_{2})=a_{1}(t_{1})\cdot a_{2}(t_{2})$ . By (4.16) and (4.17) it follows
from Lemma 4.1 that $F$ is a FAT such that $g_{12}=\cos\omega$ and $h_{12}=\sin\omega$ . Since
$F(t_{1}, t_{2})=c(t_{1})\cdot\exp(t_{2}e_{3})$ and $\omega(t_{1}, t_{2})=\alpha(t_{1})$ , the angle between $\dot{c}(t)$ and $E_{3}$ is equal
to $\alpha(t)$ . Hence by Lemma 3.1 we have $\Vert\dot{\gamma}\Vert=\Vert p_{*}\dot{c}\Vert=2\Vert\dot{c}\Vert$ sin $\alpha=2$ sin $\alpha>0$, and
so the curve $\gamma$ is regular. Since $h_{11}=0$, it follows that $c$ is an asymptotic lift
of $\gamma$ . Furthermore, Lemma 3.7 (1) implies that $k=\cot\alpha$ . Q.E.D.

REMARK 4.5. The admissible pair $\Gamma$ constructed in the proof of Theorem
4.3 satisfies

(4.18) inf $\{k_{1}(t_{1})-k_{2}(t_{2})\}>0$ , sup $\{k_{1}(t_{1})-k_{2}(t_{2})\}<\infty$ .
Conversely let $\Gamma$ be an admissible pair which satisfies (4.18). Then it is easy
to see that the mean curvature of $f_{\Gamma}$ is bounded and the metric on $R^{2}$ induced
by $f_{\Gamma}$ is complete.

5. Periodicity of admissible pairs.

Let $\Gamma=(\gamma_{1}, \gamma_{2})$ be an admissible pair and let $f_{\Gamma}$ be a FAT defined by (4.8).

We consider a group $G(\Gamma)$ given by

$G(\Gamma)=\{\rho\in Diff(R^{2}) : f_{\Gamma}\circ\rho=f_{\Gamma}\}$ ,

where $Diff(R^{2})$ denotes the group of all diffeomorphisms of $R^{2}$ . By Theorem 2.3
the group $G(\Gamma)$ is naturally identified with a subgroup of the additive group $R^{2}$ .
It is easy to see that $G(\Gamma)$ is a discrete subgroup of $R^{2}$ , and so the quotient
space $R^{2}/G(\Gamma)$ is a 2-dimensional manifold. Let $\pi;R^{2}arrow R^{2}/G(\Gamma)$ be the canonical
projection. Then the immersion $f_{\Gamma}$ induces a flat immersion $f_{\Gamma}$ : $R^{2}/G(\Gamma)arrow S^{a}$

such that $\overline{f}_{\Gamma^{Q}}\pi=f_{\Gamma}$ .
In this section we give a criterion for the quotient space $R^{2}/G(\Gamma)$ to be

compact. To state the result we introduce the following

DEFINITION. An admissible pair $\Gamma=(\gamma_{1}, \gamma_{2})$ is said to be periodic if there
exist positive numbers $l_{1}$ and $l_{2}$ such that $\gamma_{i}$ is $l_{i}$-periodic for $i=1,2$ .

THEOREM 5.1. The quotient space $R^{2}/G(\Gamma)$ is compact iff $\Gamma$ is periodic.

To establish the theorem we need some lemmas. Let $c_{i}$ be the asymptotic
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lift of $\gamma_{t}$ such that $c_{i}(0)=e$ . Set $F=f_{\Gamma}$ and $\xi=F_{1}\cross F_{2}/\Vert F_{1}\cross F_{2}\Vert$ . Then we obtain

(5.1) $Ad(c_{i})e_{3}=\gamma_{i}$ , $Ad(c_{i})e_{1}=\gamma_{i}’/\Vert\gamma_{t}’\Vert$ ,

(5.2) $F(t_{1}, t_{2})=c_{1}(t_{1})\cdot c_{2}(t_{2})^{-1}$ .
LEMMA 5.2. Let $(l_{1}, l_{2})\in R^{2}$ . If $F(l_{1}, l_{2})=F(0,0)$ and $\xi(l_{1}, l_{2})=\xi(0,0)$ , then

$\gamma_{1}(l_{1})=\gamma_{2}(l_{2})$ and $e_{1}=\gamma_{i}’(l_{i})/\Vert\gamma_{i}’(l_{i})\Vert$ for $i=1,2$ .

PROOF. Since $F(l_{1}, l_{2})=F(0, O)=e$ , (5.2) implies that $c_{1}(l_{1})=c_{2}(l_{2})$ , and so
$\gamma_{1}(l_{1})=\gamma_{2}(l_{2})$ by (5.1). It follows from the proof of Theorem 4.2 that $F$ satisfies
$h_{12}>0$ . By (2.16) we see that $\xi$ is left invariant along $t_{1}\mapsto F(t_{1}, t_{2})$ and right
invariant along $t_{2}-arrow F(t_{1}, t_{2})$ . Thus we obtain

$\xi(l_{1}, l_{2})=\{R_{c_{2}(t_{2})-1}\}_{*}\{L_{c_{1}(t_{1})}\}_{*}\xi(0,0)$ .
Since $\xi(0,0)=E_{1}(e)$ and $c_{1}(l_{1})=c_{2}(l_{2})$ , it follows that

$E_{1}(e)=\xi(l_{1}, l_{2})=\{R_{c_{2}(t_{2})-1}\}_{*}E_{1}(c_{1}(l_{1}))$

$= \frac{d}{dt}\{c_{1}(l_{1})\cdot\exp(te_{1})\cdot c_{2}(l_{2})^{-1}\}|_{t=0}$

$= \frac{d}{dt}\{c_{i}(l_{i})\cdot\exp(te_{1})\cdot c_{i}(l_{i})^{-1}\}|_{t=0}$

$= \frac{d}{dt}$ exp $\{tAd(c_{i}(l_{i}))e_{1}\}|_{t\Rightarrow 0}$ .

This shows that $e_{1}=Ad(c_{i}(l_{i}))e_{1}$ , and so $e_{1}=\gamma_{i}’(l_{i})/\Vert\gamma_{i}’(l_{i})\Vert$ by (5.1). Q.E.D.

LEMMA 5.3. Let $(l_{1}, l_{2})\in R^{2}$ . SuppOse that $F$ satisfies
(5.3) $F(t_{1}+l_{1}, t_{2}+l_{2})=F(t_{1}, t_{2})$

for all $(t_{1}, t_{2})\in R^{2}$ . Then there exists an orientation preserving linear isometry $\phi_{i}$

of $\mathfrak{s}\mathfrak{u}(2)$ such that $\gamma_{i}(t+l_{i})=\phi_{i}(\gamma_{i}(t))$ for all $t\in R$ .

PROOF. Let $\alpha_{i}(t)$ denote the angle between $\dot{c}_{i}(t)$ and $E_{3}$ such that $0<a_{i}(t)<\pi$

and let $\omega(t_{1}, t_{2})=\pi+\alpha_{1}(t_{1})-\alpha_{2}(t_{2})$ . As in the proof of Theorem 4.2 we obtain

$\langle F_{1}, F_{2}\rangle=\cos\omega$ , $0<\omega<\pi$ .

Then it follows from (5.3) that $\omega(t_{1}+l_{1}, t_{2}+l_{2})=\omega(t_{1}, t_{2})$ for all $(t_{1}, t_{2})\in R^{2}$ . Thus
we see that

$\alpha_{1}(t_{1}+l_{1})-a_{1}(t_{1})=\alpha_{2}(t_{2}+l_{2})-\alpha_{2}(t_{2})=constant$ .

Since $a_{i}$ is bounded, $a_{i}$ is $l_{i}$-periodic. So it follows from Lemma 3.7 that $\Vert\dot{\gamma}_{i}\Vert$

and $k_{i}$ are $l_{i}$-periodic, where $k_{i}$ is the geodesic curvature of $\gamma_{i}$ . This implies
Lemma 5.3. Q.E.D.
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LEMMA 5.4. Let $(l_{1}, l_{2})\in R^{2}$ . If $F$ satisfies (5.3), then $\gamma_{i}’(t+l_{i})=\gamma_{i}’(t)$ for all
$t\in R$ .

PROOF. Let $(s_{1}, s_{2})\in R^{2}$ and let $\phi_{i}=Ad(c_{i}(s_{i})^{-1})$ . Then by (5.1) we obtain

(5.4) $\phi_{i}(\gamma_{i}(s_{i}))=e_{3}$ , $\phi_{i}(\gamma_{i}’(s_{i})/\Vert\gamma_{i}’(s_{i})\Vert)=e_{1}$ .
Let $\tilde{\gamma}_{i}$ be a regular curve on $S^{2}$ defined by

$\tilde{\gamma}_{i}(t)=\phi_{i}(\gamma_{i}(t+s_{i}))$ .
Then it follows from (5.4) that $\tilde{\Gamma}=(\tilde{\gamma}_{1},\tilde{\gamma}_{2})$ is an admissible pair. We consider
a curve $\hat{c}_{i}’$ in $S^{3}$ defined by

$\hat{c}_{i}(t)=c_{i}(s_{i})^{-1}\cdot c_{i}(t+s_{i})$ .
Then we obtain

$Ad(\tilde{c}_{i})e_{3}=\tilde{\gamma}_{i}$ , $Ad(\mathcal{E}_{i})e_{1}=\tilde{\gamma}_{i}’/\Vert\tilde{\gamma}_{i}^{f}\Vert$ .
Hence Lemma 3.8 implies that $\tilde{c}_{i}$ is an asymptotic lift of $\tilde{\gamma}_{t}$ . Since $c_{i}\sim(0)=e$ , it
follows that $f_{\tilde{\Gamma}}(t_{1}, t_{2})=c_{1}\sim(t_{1})\cdot\tilde{c}_{2}(t_{2})^{-1}$ . Set $\tilde{F}=f_{\tilde{\Gamma}}$ and $\xi=\tilde{F}_{1}\cross\tilde{F}_{2}/\Vert\tilde{F}_{1}\cross\tilde{F}_{2}\Vert$ . By (5.2)

we obtain
$\tilde{F}(t_{1}, t_{2})=c_{1}(s_{1})^{-1}\cdot F(t_{1}+s_{1}, t_{2}+s_{2})\cdot c_{2}(s_{2})$ .

So it follows from (5.3) that $F(t_{1}+l_{1}, t_{2}+l_{2})=\tilde{F}(t_{1}, t_{2})$ . In particular $F(l_{1},1_{2})=$

$R(0,0)$ and $\xi(l_{1}, l_{2})=\xi(0,0)$ . Hence Lemma 5.2 implies that

(5.5) $\tilde{\gamma}_{i}’(l_{i})/\Vert\tilde{\gamma}_{i}’(l_{i})\Vert=e_{1}$ .
Since $\tilde{\gamma}_{i}’(l_{i})=\phi_{i}(\gamma_{i}^{f}(l_{i}+s_{i}))$ , it follows from (5.1) and (5.5) that

$\gamma_{i}’(l_{i}+s_{i})=Ad(c_{i}(s_{i}))\tilde{\gamma}_{i}’(l_{i})=\Vert\tilde{\gamma}_{i}’(l_{i})\Vert Ad(c_{i}(s_{i}))e_{1}$

$=\Vert\gamma_{i}^{f}(l_{i}+s_{i})\Vert\gamma_{i}’(s_{i})/\Vert\gamma_{i}’(s_{i})\Vert$ .
By Lemma 5.3 we have $\Vert\gamma_{i}’(l_{i}+s_{i})\Vert=\Vert\gamma_{i}’(s_{i})\Vert$ . Hence $\gamma_{i}’(l_{i}+s_{i})=\gamma_{i}’(s_{i})$ . Q.E.D.

LEMMA 5.5. Let $(l_{1}, l_{2})\in R^{2}$ . If $F$ satisfies (5.3), then $\gamma_{i}$ is $l_{i}$-periodic.

PROOF. By Lemma 5.3 there exists an orientation preserving linear isometry
$\phi_{i}$ of $\mathfrak{s}\mathfrak{u}(2)$ such that

(5.6) $\gamma_{i}(t+l_{i})=\phi_{i}(\gamma_{i}(t))$ .
Differentiating (5.6), we have $\gamma_{i}’(t+l_{i})=\phi_{i}(\gamma_{i}’(t))$ . Hence Lemma 5.4 implies that

(5.7) $\gamma_{i}’(t)=\phi_{i}(\gamma_{i}’(t))$ .
Since $\gamma_{i}$ is a regular curve on $S^{2}$ , there exists $s_{t}\in R$ such that $\gamma_{i}’(0)$ and $\gamma_{i}’(s_{i})$

are linearly independent in $5\mathfrak{u}(2)$ . So it follows from (5.7) that $\phi_{i}$ must be
identity. Then (5.6) implies that $\gamma_{i}$ is $l_{i}$-periodic. Q.E.D.
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PROOF OF THEOREM 5.1. Suppose that $R^{2}/G(\Gamma)$ is compact. It is easy to
see that there exist positive numbers $l_{1}$ and $l_{2}$ such that $(l_{1}, l_{2})\in G(\Gamma)$ . Then $F$

satisfies (5.3), and so by Lemma 5.5 $\Gamma$ is periodic. Conversely suppose that $\Gamma$

is periodic. Then there exist positive numbers $l_{1}$ and $l_{2}$ such that $\gamma_{i}$ is $l_{i}$-periodic.
By Theorem 3.9 $c_{i}$ is $2l_{i}$-periodic. Then (5.2) implies that

$F(t_{1}+2l_{1}, t_{2})=F(t_{1}, t_{2}+2l_{2})=F(t_{1}, t_{2})$ .
So the group $G(\Gamma)$ contains $(2l_{1},0)$ and $(0,2l_{2})$ . Hence $R^{2}/G(\Gamma)$ is compact.
This completes the proof of Theorem 5.1.

REMARK 5.6. By Theorems 2.4, 4.2, 4.3 and 5.1, the problem of the clas-
sification of flat tori in $S^{3}$ completely reduces to that of periodic admissible pairs.

6. Proof of Theorem A.

Let $f:Marrow S^{3}$ be an isometric immersion of a compact connected flat surface
$M$ into $S^{3}$ and let $T:R^{2}arrow M$ be an asymptotic Tchebychef net. To establish
Theorem A it is sufficient to show that there exist positive numbers $s_{1}$ and $s_{2}$

such that
$T(t_{1}+s_{1}, t_{2})=T(t_{1}, t_{2}+s_{2})=T(t_{1}, t_{2})$

for all $(t_{1}, t_{2})\in R^{2}$ . Since $f\circ T$ is a FAT with bounded mean curvature, it fol-
lows from Theorem 4.3 that there exists an admissible pair $\Gamma=(\gamma_{1}, \gamma_{2})$ such that
$f\circ T=\Phi\circ f_{\Gamma}$ for some isometry $\Phi$ of $S^{3}$ . Since the covering transformation group
of $T$ is a subgroup of $G(\Gamma)$ , the quotient space $R^{2}/G(\Gamma)$ is compact. So it
follows from Theorem 5.1 that there exist positive numbers $l_{1}$ and 12 such that
$\gamma_{i}$ is $l_{i}$-periodic. Then Theorem 3.9 implies that

$f_{\Gamma}(t_{1}+2l_{1}, t_{2})=f_{\Gamma}(t_{1}, t_{2}+2l_{2})=f_{\Gamma}(t_{1}, t_{2})$ .
So it follows that

$f\circ T(O, 0)=f\circ T(2l_{1},0)=f\circ T(4l_{1},0)=\ldots$

Since $M$ is compact and $f$ is an immersion, there exist integers $m$ and $n$ such
that $m<n$ and $T(2ml_{1},0)=T(2nl_{1},0)$ . Let $p:R^{2}arrow R^{2}$ be a covering transforma-
tion of $T$ such that $\rho(2ml_{1},0)=(2nl_{1},0)$ . Since $\rho\in G(\Gamma)$ , it follows from Theorem
2. $3that\rho(t_{1}, t_{2})=(t_{1}+2(n-m)l_{1}, t_{2})$ . Now we set $s_{1}=2(n-m)l_{1}$ . Then $s_{1}>0$ and
$T(t_{1}+s_{1}, t_{2})=T(t_{1}, t_{2})$ . Similarly we obtain a positive number $s_{2}$ such that
$T(t_{1}, t_{2}+s_{2})=T(t_{1}, t_{2})$ . This completes the proof of Theorem A.

7. Proof of Theorem B.

Let $\gamma:Rarrow S^{2}$ be a regular curve on $S^{2}$ defined by
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$\gamma(\theta)=\frac{(\sin\theta)e_{1}+(1-\cos\theta)e_{2}+e_{3}}{\sqrt{3-2\cos\theta}}$ .

We introduce a real valued function $\theta(t)$ by the following relation.

$t= \frac{1}{2}\int_{0}^{\theta(t)}\Vert\gamma’\Vert\sqrt{1+k^{2}}d\theta$ ,

where $k$ denotes the geodesic curvature of $\gamma$ . We set $\gamma_{1}(t)=\gamma(\theta(t))$ . Then it is
easy to see the following

LEMMA 7.1. Let $k_{1}$ be the geodestc curvature of $\gamma_{1}$ and let 1 be a Positive
number such that $\theta(l)=2\pi$ . Then

(1) $\gamma_{1}(0)=e_{3},$ $\gamma_{1}’(0)/\Vert\gamma_{1}’(0)\Vert=e_{1}$ ,
(2) $k_{1}>0,$ $\Vert\gamma_{1}’\Vert^{2}(1+k_{1}^{2})=4$ ,
(3) $\gamma_{1}(s)=\gamma_{1}(t)$ iff $(s-t)/l$ is an integer,
(4) $\langle[\gamma_{1}(s), \gamma_{1}’(s)], \gamma_{1}(t)\rangle\geqq 0$ , with equality iff $(s-t)/l$ is an integer,
(5) $k_{1}$ is not constant.

Let $\Phi$ be an orientation reversing linear isometry of $\mathfrak{s}\downarrow\downarrow(2)$ such that

$\Phi(e_{1})=e_{1}$ , $\Phi(e_{2})=-e_{2}$ , $\Phi(e_{3})=e_{3}$ .

We set $\gamma_{2}=\Phi\circ\gamma_{1}$ . Since the geodesic curvature $k_{2}$ of $\gamma_{2}$ satisfies $k_{2}(t)=-k_{1}(t)$ ,

it follows from Lemma 7.1 (1) $-(3)$ that $\Gamma=(\gamma_{\iota}, \gamma_{2})$ is a periodic admissible pair.
By Theorem 5.1 we have an immersed flat torus $\overline{f}_{\Gamma}$ : $R^{2}/G(\Gamma)arrow S^{3}$ . The follow-
ing lemma implies that $\overline{f}_{\Gamma}$ is an embedding.

LEMMA 7.2. $f_{\Gamma}(s_{1}, s_{2})=f_{\Gamma}(t_{1}, t_{2})$ iff $(s_{1}-t_{1}, s_{2}-t_{2})\in G(\Gamma)$ .

PROOF. Let $c_{i}$ be the asymptotic lift of $\gamma_{i}$ such that $c_{i}(0)=e$ . Since
$\gamma_{i}$ : $[0, l]arrow S^{2}$ is a simple closed curve, $\dot{\gamma}_{i}/\Vert\dot{\gamma}_{i}\Vert$ : $[0, l]arrow U(S^{2})$ becomes the generator
of the fundamental group of $U(S^{2})$ , where $U(S^{2})$ denotes the unit tangent bundle
of $S^{2}$ . Hence Lemma 3.8 shows that

(7.1) $c_{i}(t+l)=-c_{i}(t)$ for all $t\in R$ .
Suppose that $f_{\Gamma}(s_{1}, s_{2})=f_{\Gamma}(t_{1}, t_{2})$ . Then by (4.8) we have $c_{1}(s_{1})=a\cdot c_{2}(s_{2})$ , where
$a=c_{1}(t_{1})\cdot c_{2}(t_{2})^{-1}$ . So it follows from (5.1) that $\gamma_{1}(s_{1})=Ad(a)\gamma_{2}(s_{2}),$ $\gamma_{1}(t_{1})=Ad(a)\gamma_{2}(t_{2})$

and $\gamma_{1}’(s_{1})=PAd(a)\gamma_{2}’(s_{2})$ , where $P=\Vert\gamma_{1}’(s_{1})\Vert/\Vert\gamma_{2}’(s_{2})\Vert$ . This implies that

$\langle[\gamma_{1}(s_{1}), \gamma_{1}’(s_{1})], \gamma_{1}(t_{1})\rangle=P\langle[\gamma_{2}(s_{2}), \gamma_{2}’(s_{2})], \gamma_{2}(t_{2})\rangle$

$=-P\langle[\gamma_{1}(s_{2}), \gamma_{1}^{f}(s_{2})], \gamma_{1}(t_{2})\rangle$ .

By Lemma 7.1 (4) there exist integers $n_{1}$ and $n_{2}$ such that $s_{i}-t_{i}=n_{i}l$ . Then
(7.1) shows that $c_{i}(s_{i})=(-1)^{n_{i}}c_{i}(t_{i})$ . Hence $f_{\Gamma}(s_{1}, s_{2})=(-1)^{n_{1}+n_{2}}f_{\Gamma}(t_{1}, t_{2})$ , and so
$(-1)^{n_{1}+n_{2}}=1$ . By (7.1) we obtain
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$f_{\Gamma}(x_{1}+n_{1}l, x_{2}+n_{2}l)=f_{\Gamma}(x_{1}, x_{2})$

for all $(x_{1}, x_{2})\in R^{2}$ . Hence $(s_{1}-t_{1}, s_{2}-t_{2})\in G(\Gamma)$ . Conversely suppose that $(s_{1}-t_{1}$ ,
$s_{2}-t_{2})\in G(\Gamma)$ . Then by the definition of $G(\Gamma)$ we see that $f_{\Gamma}(s_{1}, s_{2})=f_{\Gamma}(t_{1}, t_{2})$ .

Q.E.D.

Let $M$ be the image of the embedding fr. To establish Theorem $B$ it is
sufficient to show that $M$ contains no great circle in $S^{3}$ . Suppose that $M$ con-
tains a great circle $c$ . Then $c$ is an asymptotic curve on $M$. So it follows from
Lemma 2.2 that $c$ is congruent to $c_{1}$ or $c_{2}^{-1}$ . Hence either $c_{1}$ or $c_{2}$ must be a
great circle in $S^{3}$ . Since $k_{2}=-k_{1}$ , it follows from Lemma 3.7 that $k_{1}$ is con-
stant. This contradicts Lemma 7.1 (5).
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