J. Math. Soc. Japan Vol. 40, No. 3, 1988

Space curves of genus 7 and degree 8 on a non-singular cubic surface with stable normal bundle

By Tomoaki ONO

(Received Jan. 5, 1987)

Introduction.

D. Perrin showed in [8] that the normal bundles of curves of degree s^2-1 which are linked to a line by two surfaces of degree s in P^3 are semi-stable. In the case of s=3, the above curves have genus 7 and degree 8. In this paper, we shall show that the normal bundles of general non-singular curves of genus 7 and degree 8 on a non-singular cubic surface in P^3 are stable (Theorem (2.3)).

In §1 we determine divisor classes of non-singular curves of genus 7 and degree 8 on a non-singular cubic surface in P^3 . In §2 we evaluate the number of isolated singular points of a cubic surface containing the above curve (Lemma (2.2)). This evaluation plays an important role in the proof of Theorem (2.3). In §3 we give examples of non-singular curves of genus 7 and degree 8 with non-stable normal bundle. In §4 we consider a few projectively normal curves on a non-singular cubic surface which are not contained in any quadric surface.

NOTATION. Throughout this paper we shall work over the ground field C and C^* denotes the multiplicative group of C. Let X be a non-singular projective variety and let E be a vector bundle on X.

 $h^{i}(X, E) := \dim_{C} H^{i}(X, E);$ the dimension of $H^{i}(X, E),$ $H^{i}(X, E)^{\vee};$ the dual vector space of $H^{i}(X, E),$

 $E^* := \operatorname{Hom}_{\mathcal{O}_X}(E, \mathcal{O}_X)$; the dual vector bundle of E.

Moreover, if C is a curve on a surface S in P^3 , we use the same symbol C for the corresponding divisor class on S.

 I_c ; the ideal sheaf of C in P^3 , N_c ; the normal sheaf of C in P^3 , $N_{C/S}$; the normal sheaf of C in S.

§1. Curves on a cubic surface.

Let S be a non-singular cubic surface in the projective space P^3 . Then S is obtained from P^2 by blowing-up six points p_1, \dots, p_6 which are not on a conic and no three of which are collinear. We denote by E_i the exceptional curve corresponding to p_i $(i=1, \dots, 6)$, and \tilde{L} the total transform of a line in P^2 . Let $e_i \in \text{Pic } S$ $(i=1, \dots, 6)$ be the divisor class of E_i . Let $l \in \text{Pic } S$ be the divisor class of \tilde{L} . Then Pic S is the free abelian group generated by l, e_1, \dots, e_6 and the intersection pairing on Pic S is given by

$$l^2 = 1$$
, $e_i^2 = -1$, $l \cdot e_i = 0$, $e_i \cdot e_j = 0$ for $i \neq j$.

For any divisor class $D=al-\sum b_ie_i$ where a, b_1, \dots, b_6 are integers, we have

$$\begin{split} & d = 3a - \sum b_i, \\ & p_a(D) = (a-1)(a-2)/2 - \sum b_i(b_i-1)/2 \end{split}$$

where $d=D \cdot H(H:=3l-\sum e_i)$; the divisor class of a hyperplane section) and $p_a(D)$ is the arithmetic genus of D.

DEFINITION (1.1). A divisor class $D=al-\sum b_i e_i$ on S is said to be of type $(a, b_1, b_2, b_3, b_4, b_5, b_6)$.

LEMMA (1.2) ([6], p. 405). Let $D=al-\sum b_ie_i$ be a divisor class on the cubic surface S and suppose that $b_1 \ge b_2 \ge \cdots \ge b_6 > 0$ and $a \ge b_1 + b_2 + b_5$. Then D is very ample.

Let C be a non-singular irreducible curve of genus 7 and degree 8 in P^3 . We have an exact sequence

$$0 \longrightarrow I_{\mathcal{C}}(3) \longrightarrow \mathcal{O}_{P^3}(3) \longrightarrow \mathcal{O}_{\mathcal{C}}(3) \longrightarrow 0.$$

This gives a long exact sequence of cohomology groups:

$$(1.a) \qquad 0 \longrightarrow H^{0}(\mathbf{P}^{3}, I_{\mathcal{C}}(3)) \longrightarrow H^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(3)) \longrightarrow H^{0}(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(3)) \longrightarrow \cdots$$

Since deg $\mathcal{O}_C(-3)\otimes w_C < 0$ where w_C is the canonical sheaf of C, we have $h^1(C, \mathcal{O}_C(3))=0$. Then $h^0(C, \mathcal{O}_C(3))=18$ by the Riemann-Roch theorem. By (1.a) we get

$$h^{0}(\mathbf{P}^{3}, I_{C}(3)) \geq h^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(3)) - h^{0}(C, \mathcal{O}_{C}(3)) = 20 - 18 = 2.$$

Therefore there are two distinct irreducible cubic surfaces containing C. Let S', S'' be irreducible cubic surfaces containing C. Then the total intersection of S' and S'' is $C \cup L$, where L is a line. From now on we assume S'' is a non-singular cubic surface and replace S by S''. The divisor L on S has one of the following types:

Space curves

$$(0, -1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 1), (2, 0, 1, 1, 1, 1, 1).$$

On the other hand, the divisor C+L is of type (9, 3, 3, 3, 3, 3, 3). Therefore the divisor C on S is one of the following types:

$$(9, 4, 3, 3, 3, 3, 3)$$
if L is of type $(0, -1, 0, 0, 0, 0, 0)$, $(8, 3, 3, 3, 3, 2, 2)$ if L is of type $(1, 0, 0, 0, 0, 1, 1)$, $(7, 3, 2, 2, 2, 2, 2, 2)$ if L is of type $(2, 0, 1, 1, 1, 1, 1)$.

Since any of the other classes in the list can be transformed to the class (7, 3, 2, 2, 2, 2, 2) by a change in the choice of E_1, \dots, E_6 , we shall take C to belong to the class (7, 3, 2, 2, 2, 2, 2). We have $\mathcal{O}_S(C)$ is very ample by Lemma (1.2), and deg $(C \cdot L) = 4$.

LEMMA (1.3). Let C be a non-singular irreducible curve of genus 7 and degree 8 on a non-singular cubic surface S in P^3 . Then it is nonhyperelliptic.

PROOF. By the adjunction formula for C on S

(1.b)
$$w_C \cong w_S \otimes \mathcal{O}_S(C) \otimes \mathcal{O}_C \cong \mathcal{O}_S(-H+C) \otimes \mathcal{O}_C.$$

Since the divisor class -H+C is of type (4, 2, 1, 1, 1, 1, 1), it is very ample by Lemma (1.2) and so $\mathcal{O}_{\mathcal{S}}(-H+C)\otimes \mathcal{O}_{\mathcal{C}}$ is very ample on C. Therefore $w_{\mathcal{C}}$ is very ample by (1.b). Hence C is nonhyperelliptic.

§2. Stability of normal bundle N_c .

Let C be as in §1. An effective divisor D of type (7, 3, 2, 2, 2, 2, 2) is arithmetically Cohen-Macaulay by Watanabe's result [9] and so dim $H^{0}(\mathbf{P}^{3}, I_{D}(3))$ =deg $D - p_{a}(D) + 1 = 2$. We consider the following exact sequence

(2.a)
$$0 \longrightarrow I_c^2(3) \longrightarrow I_c(3) \longrightarrow N_c^*(3) \longrightarrow 0.$$

This gives rise to a homomorphism

$$f: H^{0}(\mathbf{P}^{3}, I_{\mathcal{C}}(3)) \longrightarrow H^{0}(\mathcal{C}, N^{*}_{\mathcal{C}}(3)).$$

LEMMA (2.1). The homomorphism f is isomorphic. Moreover,

dim
$$H^{0}(C, N_{C}^{*}(3)) = \dim H^{0}(P^{3}, I_{C}(3)) = 2.$$

PROOF. No cubic can be singular at every point of $C_{\mathbf{L}}^{*}(see_{\mathbf{Z}}(2,*))$. Hence $H^{0}(\mathbf{P}^{3}, I_{C}^{2}(3))=0$, and the homomorphism f is injective. To compute $h^{0}(C, N_{C}^{*}(3))$, we consider the following exact sequence

$$0 \longrightarrow N_{C/S} \longrightarrow N_C \longrightarrow N_{S/P^3} | C \longrightarrow 0.$$

By tensoring $\mathcal{O}_{\mathcal{C}}(3)$ the dual sequence of the above, we obtain an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathcal{C}} \longrightarrow N^*_{\mathcal{C}}(3) \longrightarrow N^*_{\mathcal{C}/\mathcal{S}}(3) \longrightarrow 0.$$

From the above sequence, we have

(2.b)
$$h^{0}(C, N^{*}_{C}(3)) \leq h^{0}(C, \mathcal{O}_{C}) + h^{0}(C, N^{*}_{C/S}(3))$$

On the other hand, $N^*_{C/S}(3) \cong \mathcal{O}_C(L \mid C)$ where L is 3H - C. Next, we consider the following exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathcal{S}}(L-C) \longrightarrow \mathcal{O}_{\mathcal{S}}(L) \longrightarrow \mathcal{O}_{\mathcal{C}}(L \mid C) \longrightarrow 0.$$

We get an exact sequence

$$0 \longrightarrow H^{0}(S, \mathcal{O}_{S}(L-C)) \longrightarrow H^{0}(S, \mathcal{O}_{S}(L)) \longrightarrow H^{0}(C, \mathcal{O}_{C}(L \mid C))$$
$$\longrightarrow H^{1}(S, \mathcal{O}_{S}(L-C)) \longrightarrow \cdots.$$

Since -(L-C) is of type (5, 3, 1, 1, 1, 1, 1), this divisor is very ample by Lemma (1.2). Hence we have $h^i(S, \mathcal{O}_S(L-C))=0$ (i=0, 1) by the Kodaira vanishing theorem. Therefore we have

(2.c)
$$H^{0}(S, \mathcal{O}_{S}(L)) \xrightarrow{\sim} H^{0}(C, \mathcal{O}_{C}(L \mid C)).$$

Since $h^{\circ}(S, \mathcal{O}_{S}(L))=1$, we get $h^{\circ}(C, \mathcal{O}_{C}(L | C))=1$ by (2.c). Hence $h^{\circ}(C, N^{*}_{C}(3)) \leq 1+1=2$ by (2.b), which implies the surjectivity of f.

We shall consider cubic surfaces containing C. By the homomorphism f, any homogeneous polynomial of degree 3 which vanishes on C defines a section s of $N_C^*(3)$. It follows from (2.a) that a section s is zero precisely at the singular points of the corresponding cubic surface S' which lie on C. We have the following geometric lemma.

LEMMA (2.2). Let C be a general irreducible non-singular curve of genus 7 and degree 8 on a non-singular cubic surface S in P^3 . Then irreducible cubic surfaces containing C have isolated singular points at most one.

PROOF. The following fact is well-known:

(2.*) (every irreducible cubic surface has either only isolated singular points or a singular line.)

By the above fact we have only to consider a family of irreducible cubic surfaces with either only isolated singular points or a singular line.

Define a subvariety I as follows:

$$I \subset G \times |\mathcal{O}_{P3}(3)|,$$
$$I = \{(\Lambda, S') | \Lambda \subset S'\},$$

Space curves

where G is the Grassmannian G(1, 3) of lines in P^3 and $|\mathcal{O}_{P^3}(3)|$ is the 19dimensional projective space consisting of cubic surfaces. We shall consider the following diagram:

Let Δ be a family of irreducible cubic surfaces with isolated singular points at least 2. By J.W. Bruce and C.T.C. Wall's result (see [2]) we can see

$$\operatorname{codim} \Delta = 2$$
 in $|\mathcal{O}_{P^3}(3)|$.

Put $P_{\Lambda} = p_2(p_1^{-1}(\Lambda))$ for $\Lambda \in G$. Then P_{Λ} is a 15-dimensional linear subvariety of $|\mathcal{O}_{P^3}(3)|$. Here we must show the following fact:

(2.d) For any
$$\Lambda \in G$$
, $\operatorname{codim}(P_{\Lambda} \cap A) \geq 2$ in P_{Λ} .

Assume $\operatorname{codim}(P_A \cap \mathcal{A}) \leq 1$ in P_A . For any $\Lambda' \in G$, there is a projective transformation Ψ of P^3 such that $\Psi(\Lambda) = \Lambda'$. And also we have $\Psi(S') \in P_{\Lambda'} \cap \mathcal{A}$ for any $S' \in P_A \cap \mathcal{A}$. By the aboves,

$$\dim(P_A \cap \varDelta) = \dim(P_{A'} \cap \varDelta) \quad \text{for any} \quad \Lambda' \in G.$$

Hence dim $p_2^{-1}(\varDelta) \ge \dim(P_{\varDelta} \cap \varDelta) + \dim G \ge 14 + 4 = 18$. On the other hand, $p_2^{-1}(S')$ is a finite set of lines on S' for any $S' \in \varDelta$ and hence dim $p_2^{-1}(\varDelta) = 17$. This is a contradiction.

Next, we consider a family of irreducible cubic surfaces with a singular line. Let $(x_0:\dots:x_3)$ be a system of homogeneous coordinates of P^3 . Take a line Λ in P^3 . By a change of coordinates, we may assume that Λ is defined by the equation $x_0=x_1=0$. Let S' be an irreducible cubic surface with the singular line Λ . Then, it is easy to show that S' is defined by the following equation:

$$F_3(x_0, x_1) + x_2F_2(x_0, x_1) + x_3G_2(x_0, x_1) = 0$$

where F_i (resp. G_i) is a homogeneous polynomial of degree i in $x_0, x_1([2], p. 252)$. And the cubic forms $F_3(x_0, x_1) + \dots + x_3G_2(x_0, x_1)$ have 10 coefficients. Let F_A be a family of irreducible cubic surfaces with the singular line Λ . By the above fact, we have dim $F_A \leq 9$. Let F be a family of irreducible cubic surfaces with a singular line, i.e., $F := \bigcup_{A \in G} F_A$. By a similar argument to the one in (2.d), we have

$$\dim F_A = \dim F_{A'} \quad \text{for any} \quad A, A' \in G.$$

By the aboves we get

 $\dim F \cap P_A \leq \dim F_A + \dim G \leq 9 + 4 = 13.$

Therefore we obtain

(2.d') $\operatorname{codim} F \cap P_A \geq 2$ in P_A .

Let D be an effective divisor of type (7, 3, 2, 2, 2, 2, 2), and L be a line of type (2, 0, 1, 1, 1, 1, 1) on S. Then, for any $S'(\neq S) \in H^0(\mathbf{P}^3, I_D(3)) - \{0\}/C^*$, we have $S \cap S' = D \cup L$. Define a mapping Φ as follows:

where P_L^* is a projective space consisting of lines in P_L through the point S of $|\mathcal{O}_{P^3}(3)|$, and $D'^* = H^0(\mathbf{P}^3, I_{D'}(3)) - \{0\}/C^*$ is a line through the point S. Then Φ is an isomorphism between projective spaces. Since |D| is very ample, there is a non-empty Zariski open set U consisting of non-singular curves in |D|. Let U^* be $\Phi(U)$. Then U^* is a non-empty Zariski open subset of P_L^* . Put $\operatorname{Co}^* = \{D'^* \in P_L^* | D'^* \cap (A \cup F) \neq \emptyset\}$. Then $\operatorname{codim} \operatorname{Co}^* \ge 1$ in P_L^* by (2.d) and (2.d'). Hence $P_L^* - \overline{\operatorname{Co}^*}$ is a non-empty Zariski open subset of P_L^* . By the above construction, we have

 $C^* \cap (\varDelta \cup F) = \emptyset$

for any non-singular curve $C \in U \cap \Phi^{-1}(P_L^* - \overline{\operatorname{Co}^*}) \subset |D|$, i.e.,

 $S' \notin \Delta \cup F$

for any $S' \in H^0(\mathbf{P}^3, I_C(3)) - \{0\}/C^*$. Therefore we get the required result.

THEOREM (2.3). Let C be a general non-singular curve of genus 7 and degree 8 lying on a non-singular cubic surface S in P^3 . Then the normal bundle of C in P^3 is stable.

PROOF. In order to show that N_c is stable, it is sufficient to show that $N_c^*(3)$ has no line subbundle of degree 2 or greater, because we have

$$(\deg N_{c}^{*}(3))/2 = \deg \mathcal{O}_{c}(3) - (\deg N_{c})/2$$
$$= \deg \mathcal{O}_{c}(3) - (\deg w_{c} \otimes w_{P^{3}}^{*})/2$$
$$= 24 - (12 + 32)/2 = 2.$$

Let C be as in Lemma (2.2). Since $\mathcal{O}_{\mathcal{S}}(C)$ is very ample, we may assume that (2.e) $C \cap L = \{\text{distinct 4 points}\}.$

Space curves

Suppose that $N_{\mathcal{C}}^*(3)$ has a line subbundle E of degree 2 or greater. Then the canonical homomorphism

$$g: E \longrightarrow N^*_{C/S}(3)$$

is injective. Therefore we have

$$h^{0}(C, E) \leq h^{0}(C, N^{*}_{C/S}(3)) = 1.$$

Hence we shall consider the following two cases.

Case (1). Suppose that $h^{0}(C, E)=0$. Let E' be the quotient line bundle $N_{c}^{*}(3)/E$. By the above assumption, the homomorphism

$$\varphi: H^{0}(C, N^{*}_{C}(3)) \longrightarrow H^{0}(C, E')$$

is injective. Since $h^{0}(C, N^{*}_{C}(3))=2$, the dimension of the vector space $\operatorname{Im}(\varphi)$ is 2. Therefore the dimension of a linear system on C corresponding to the subspace $\operatorname{Im}(\varphi) \subseteq H^{0}(C, E')$ is 1. Hence, E' has at least degree 3, since C is neither rational nor hyperelliptic by Lemma (1.3). So we obtain

$$\deg E = \deg(N_c^*(3)) - \deg E' \le 4 - 3 = 1.$$

This is a contradiction.

Case (2). Suppose that $h^{0}(C, E)=1$. We consider the following diagram:

$$H^{0}(C, E) \longrightarrow H^{0}(C, N^{*}_{C}(3))$$

$$\downarrow^{\uparrow}_{H^{0}(\mathbf{P}^{3}, I_{C}(3)),$$

Take a non-zero section τ of E. It corresponds to an irreducible cubic surface S' containing C. Then we obtain

{zeroes of τ } \subseteq {the singular points of S' which lie on C}.

Moreover, by the injective homomorphism $g: E \to N^*_{C/S}(3) \cong \mathcal{O}_C(L \mid C)$ and (2.e) we get

$$\{\text{zeroes of } \tau\} = \{\text{distinct } r \text{ points}\}$$

where $r = \deg E$. Hence we have

deg $E \leq$ #{the singular points of S' which lie on C}

where $\#\{\ \}$ means the number of elements of sets. By virtue of Lemma (2.2) S' has only isolated singular points at most one. Therefore, we have deg $E \leq 1$. This is a contradiction.

T. Ono

§3. Examples of non-stable normal bundle.

In this section we shall give examples of curves of genus 7 and degree 8 with non-stable normal bundle.

First we consider a cubic surface S with two double points. See [5] for details. We take 6-points p_1, \dots, p_6 of P^2 as follows:

- (a) the points p_2 , p_3 , p_4 lie on the line L_1 ,
- (b) the points p_2 , p_5 , p_6 lie on the line $L_2 (\neq L_1)$,
- (c) the points $\{p_i\}$ are in general position apart from the aboves.

Let X be the non-singular surface obtained by blowing-up of P^2 at the points p_1, \dots, p_6 . The notation for the generators of $\operatorname{Pic} X \cong Z^{\oplus 7}$, divisors on X and their intersection pairing are same as in § 1. Let K_X be the canonical divisor class of X. Then $|-K_X|$ is base-point free. Hence it defines a morphism $v: X \to P^3$. Put S = v(X). Then the morphism v has the following properties:

- (1) $v(\tilde{L}_i) = x_i$ and $x_1 \neq x_2$, where \tilde{L}_i is the strict transform of L_i .
- (2) $v: X \to \widetilde{L}_1 \cup \widetilde{L}_2 \to S \to \{x_1, x_2\}$ is an isomorphism.
- (3) Each point x_i is a double point of S.

LEMMA (3.1). Let C be a non-singular curve on X. If C meets each \tilde{L}_i (i=1, 2) transversely at only one point, then v(C) is a non-singular curve through each singular point x_i (i=1, 2).

PROOF. See [3].

Let D be the divisor class on X of type (7, 3, 2, 2, 2, 2, 2). Then $p_a(D)=7$ and $D \cdot H=8$, where H is the anti-canonical divisor class $-K_X$. It is easy to show that there are non-singular curves in |D|.

LEMMA (3.2). Let C be a non-singular curve in |D|. Then v(C) is a non-singular curve through each singular point x_i (i=1, 2) of S.

PROOF. Since \tilde{L}_1 is of type (1, 0, 1, 1, 1, 0, 0) and \tilde{L}_2 is of type (1, 0, 1, 0, 0, 1, 1), we have $C \cdot \tilde{L}_i = 1$. Therefore the statement is obvious from Lemma (3.1).

PROPOSITION (3.3). Let C be as in the above lemma and $N_{v(C)}$ be the normal bundle of v(C) in \mathbf{P}^3 . Then $N_{v(C)}$ is not stable.

PROOF. Since v(C) is a non-singular curve, the normal sheaf $N_{v(C)/S}$ is locally free, and so $N_{v(C)/S}$ is a line subbundle of $N_{v(C)}$. We have an exact sequence

$$0 \longrightarrow v_*(N_{C/X}) \xrightarrow{\psi} N_{v(C)/S} \longrightarrow F \longrightarrow 0.$$

Since ϕ is an isomorphism outside singular points $\{x_1, x_2\}$, we get Supp F =

422

 $\{x_1, x_2\}$. Hence we get an inequality

 $\deg N_{v(C)/S} \ge \deg v_*(N_{C/X}) + 2 = C^2 + 2 = 22.$

On the other hand, we have

$$(\deg N_{v(C)})/2 = 2(C \cdot H) + p_a(C) - 1 = 22.$$

Therefore deg $N_{v(C)/s} \ge (\text{deg } N_{v(C)})/2$, i.e., $N_{v(C)}$ is not stable.

§4. Some comments.

Let $D_s^0(g)$ be the first integer d such that there is a non-singular irreducible curve C in P^3 of genus g, degree d with stable normal bundle and with $H^1(C, N_c)=0$ ([4]).

First we shall claim $D_s^0(7)=8$. It is known that $8 \le D_s^0(7) \le 10$ (see [4]). Let *C* be a general non-singular irreducible curve of genus 7 and degree 8 on a non-singular cubic surface *S* in P^3 . From Theorem (2.3) it is sufficient to show that $H^1(C, N_c)=0$. We consider the following exact sequence

$$(4.a) 0 \longrightarrow N_{C/S} \longrightarrow N_C \longrightarrow N_{S/P^3} | C \longrightarrow 0.$$

This gives an exact sequence of cohomology groups:

$$\cdots \longrightarrow H^1(N_{C/S}) \longrightarrow H^1(N_C) \longrightarrow H^1(N_{S/P^3} | C) \longrightarrow \cdots.$$

By Serre duality $H^1(N_{C/S}) \cong H^0(N_{C/S}^* \otimes w_C)^{\vee}$ and $H^1(N_{S/P^3} | C) \cong H^0(N_{S/P^3}^* \otimes w_C)^{\vee}$. Since deg $N_{C/S}^* \otimes w_C = \deg \mathcal{O}_C(-1) < 0$ and deg $N_{S/P^3}^* \otimes w_C = \deg w_C(-3) < 0$, we have $H^1(N_{C/S}) = H^1(N_{S/P^3} | C) = 0$. Hence $H^1(N_C) = 0$.

Next we shall consider projectively normal curves on a non-singular cubic surface in P^3 . Let C be a non-singular curve of genus g and degree d on a non-singular cubic surface such that C is not contained in any quadric surface. Moreover we assume that C is projectively normal and that $g \leq d$. The second condition is a necessary condition for the stability of N_c . This is due to (4.a). We consider the following exact sequence

$$0 \longrightarrow I_{\mathcal{C}}(2) \longrightarrow \mathcal{O}_{P^{3}}(2) \longrightarrow \mathcal{O}_{\mathcal{C}}(2) \longrightarrow 0.$$

We have an exact sequence of cohomology groups:

$$0 \longrightarrow H^{0}(\mathbf{P}^{3}, I_{\mathcal{C}}(2)) \longrightarrow H^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2)) \longrightarrow H^{0}(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(2)) \longrightarrow H^{1}(\mathbf{P}^{3}, I_{\mathcal{C}}(2)) \longrightarrow \cdots$$

By hypothesis we obtain $h^{0}(\mathbf{P}^{3}, I_{C}(2)) = h^{1}(\mathbf{P}^{3}, I_{C}(2)) = 0$, and so $h^{0}(C, \mathcal{O}_{C}(2)) = h^{0}(\mathbf{P}^{3}, \mathcal{O}_{\mathbf{P}^{3}}(2)) = 10$. By the Riemann-Roch theorem we have $h^{0}(C, \mathcal{O}_{C}(2)) = 2d - g + 1$, and so g = 2d - 9. Under the condition that $g \leq d$, we have the following integral solutions

T. Ono

$$(g, d) = (1, 5), (3, 6), (5, 7), (7, 8), (9, 9).$$

But a quintic curve of genus 1 isn't projectively normal. Therefore we shall exclude (1, 5). Conversely, there are such curves with above (g, d) (cf. [9]).

From the results of [3], [1], [7] and Theorem (2.3), normal bundles of general (resp. all) projectively normal curves on a non-singular cubic surface with above (g, d) are stable. By the results of [4] and $D_s^0(7)=8$, we have $D_s^0(g)=d$ for above (g, d).

g	3	5	7	9
D_s^0	6	7	8	9

Finally, we claim $D_s^0(8) \leq 10$. It follows from Theorem 2 (e) in [4] immediately.

References

- E. Ballico and Ph. Ellia, Some more examples of curves in P³ with stable normal bundle, J. Reine Angew. Math., 350 (1984), 87-93.
- [2] J.W. Bruce and C.T.C. Wall, On the classification of cubic surfaces, J. London Math. Soc., 19 (1979), 245-256.
- [3] Ph. Ellia, Exemples de courbes de P³ à fibré normal semi-stable, stable, Math. Ann., 264 (1983), 389-396.
- [4] G. Ellingsrud and A. Hirschowitz, Sur le fibré normal des courbes gauches, C.R. Acad. Sci. Paris, Sér. I, 299 (1984), 245-248.
- [5] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
- [6] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer, 1977.
- P.E. Newstead, A space curve whose normal bundle is stable, J. London Math. Soc., 28 (1983), 428-434.
- [8] D. Perrin, Courbes passant par k points généraux de P³; h⁰-stabilité, C.R. Acad. Sci. Paris, Sér. I, 299 (1984), 879-882.
- [9] M. Watanabe, On projective normality of space curves on a non-singular cubic surface in P³, Tokyo J. Math., 4 (1981), 331-341.

Tomoaki Ono

Department of Mathematics Science University of Tokyo Wakamiya-cho 26 Shinjuku-ku, Tokyo 162 Japan