Space curves of genus 7 and degree 8 on a non-singular cubic surface with stable normal bundle

By Tomoaki ONO

(Received Jan. 5, 1987)

Introduction.

D. Perrin showed in [8] that the normal bundles of curves of degree $s^{2}-1$ which are linked to a line by two surfaces of degree s in P^{3} are semi-stable. In the case of $s=3$, the above curves have genus 7 and degree 8 . In this paper, we shall show that the normal bundles of general non-singular curves of genus 7 and degree 8 on a non-singular cubic surface in \boldsymbol{P}^{3} are stable (Theorem (2.3)).

In $\S 1$ we determine divisor classes of non-singular curves of genus 7 and degree 8 on a non-singular cubic surface in \boldsymbol{P}^{3}. In $\S 2$ we evaluate the number of isolated singular points of a cubic surface containing the above curve Lemma (2.2)). This evaluation plays an important role in the proof of Theorem (2.3). In $\S 3$ we give examples of non-singular curves of genus 7 and degree 8 with non-stable normal bundle. In $\S 4$ we consider a few projectively normal curves on a non-singular cubic surface which are not contained in any quadric surface.

Notation. Throughout this paper we shall work over the ground field \boldsymbol{C} and \boldsymbol{C}^{*} denotes the multiplicative group of \boldsymbol{C}. Let X be a non-singular projective variety and let E be a vector bundle on X.
$h^{i}(X, E):=\operatorname{dim}_{c} H^{i}(X, E)$; the dimension of $H^{i}(X, E)$,
$H^{i}(X, E)^{\vee} ;$ the dual vector space of $H^{i}(X, E)$,
$E^{*}:=\operatorname{Hom}_{O_{X}}\left(E, \mathcal{O}_{X}\right)$; the dual vector bundle of E.

Moreover, if C is a curve on a surface S in P^{3}, we use the same symbol C for the corresponding divisor class on S.
I_{C}; the ideal sheaf of C in P^{3},
N_{C}; the normal sheaf of C in \boldsymbol{P}^{3},
$N_{C / S}$; the normal sheaf of C in S.

§ 1. Curves on a cubic surface.

Let S be a non-singular cubic surface in the projective space \boldsymbol{P}^{3}. Then S is obtained from \boldsymbol{P}^{2} by blowing-up six points p_{1}, \cdots, p_{6} which are not on a conic and no three of which are collinear. We denote by E_{i} the exceptional curve corresponding to $p_{i}(i=1, \cdots, 6)$, and \widetilde{L} the total transform of a line in \boldsymbol{P}^{2}. Let $e_{i} \in \operatorname{Pic} S(i=1, \cdots, 6)$ be the divisor class of E_{i}. Let $l \in \operatorname{Pic} S$ be the divisor class of \widetilde{L}. Then Pic S is the free abelian group generated by l, e_{1}, \cdots, e_{6} and the intersection pairing on Pic S is given by

$$
l^{2}=1, \quad e_{i}^{2}=-1, \quad l \cdot e_{i}=0, \quad e_{i} \cdot e_{j}=0 \quad \text { for } \quad i \neq j
$$

For any divisor class $D=a l-\sum b_{i} e_{i}$ where a, b_{1}, \cdots, b_{6} are integers, we have

$$
\begin{aligned}
& d=3 a-\sum b_{i}, \\
& p_{a}(D)=(a-1)(a-2) / 2-\sum b_{i}\left(b_{i}-1\right) / 2
\end{aligned}
$$

where $d=D \cdot H\left(H:=3 l-\sum e_{i}\right.$; the divisor class of a hyperplane section) and $p_{a}(D)$ is the arithmetic genus of D.

Definition (1.1). A divisor class $D=a l-\sum b_{i} e_{i}$ on S is said to be of type $\left(a, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right)$.

Lemma (1.2) ([6], p. 405). Let $D=a l-\sum b_{i} e_{i}$ be a divisor class on the cubic surface S and suppose that $b_{1} \geqq b_{2} \geqq \cdots \geqq b_{6}>0$ and $a \geqq b_{1}+b_{2}+b_{5}$. Then D is very ample.

Let C be a non-singular irreducible curve of genus 7 and degree 8 in P^{3}. We have an exact sequence

$$
0 \longrightarrow I_{C}(3) \longrightarrow \mathcal{O}_{P^{3}}(3) \longrightarrow \mathcal{O}_{C}(3) \longrightarrow 0
$$

This gives a long exact sequence of cohomology groups:
(1.a) $\quad 0 \longrightarrow H^{0}\left(\boldsymbol{P}^{3}, I_{C}(3)\right) \longrightarrow H^{0}\left(\boldsymbol{P}^{3}, \mathcal{O}_{P^{3}}(3)\right) \longrightarrow H^{0}\left(C, \mathcal{O}_{C}(3)\right) \longrightarrow \cdots$.

Since $\operatorname{deg} \mathcal{O}_{C}(-3) \otimes w_{C}<0$ where w_{C} is the canonical sheaf of C, we have $h^{1}\left(C, \mathcal{O}_{C}(3)\right)=0$. Then $h^{0}\left(C, \mathcal{O}_{C}(3)\right)=18$ by the Riemann-Roch theorem. By (1.a) we get

$$
h^{0}\left(\boldsymbol{P}^{3}, I_{C}(3)\right) \geqq h^{0}\left(\boldsymbol{P}^{3}, \mathcal{O}_{\boldsymbol{P}}(3)\right)-h^{0}\left(C, \mathcal{O}_{C}(3)\right)=20-18=2
$$

Therefore there are two distinct irreducible cubic surfaces containing C. Let $S^{\prime}, S^{\prime \prime}$ be irreducible cubic surfaces containing C. Then the total intersection of S^{\prime} and $S^{\prime \prime}$ is $C \cup L$, where L is a line. From now on we assume $S^{\prime \prime}$ is a non-singular cubic surface and replace S by $S^{\prime \prime}$. The divisor L on S has one of the following types:

$$
(0,-1,0,0,0,0,0), \quad(1,0,0,0,0,1,1), \quad(2,0,1,1,1,1,1) .
$$

On the other hand, the divisor $C+L$ is of type $(9,3,3,3,3,3,3)$. Therefore the divisor C on S is one of the following types:

$$
\begin{array}{ll}
(9,4,3,3,3,3,3) & \text { if } L \text { is of type }(0,-1,0,0,0,0,0), \\
(8,3,3,3,3,2,2) & \text { if } L \text { is of type }(1,0,0,0,0,1,1), \\
(7,3,2,2,2,2,2) & \text { if } L \text { is of type }(2,0,1,1,1,1,1) .
\end{array}
$$

Since any of the other classes in the list can be transformed to the class $(7,3$, $2,2,2,2,2)$ by a change in the choice of E_{1}, \cdots, E_{6}, we shall take C to belong to the class $(7,3,2,2,2,2,2)$. We have $\mathcal{O}_{S}(C)$ is very ample by Lemma (1.2), and $\operatorname{deg}(C \cdot L)=4$.

Lemma (1.3). Let C be a non-singular irreducible curve of genus 7 and degree 8 on a non-singular cubic surface S in $\boldsymbol{P}^{\mathbf{3}}$. Then it is nonhyperelliptic.

Proof. By the adjunction formula for C on S

$$
\begin{equation*}
w_{C} \cong w_{S} \otimes \Theta_{S}(C) \otimes \mathcal{O}_{C} \cong \sigma_{S}(-H+C) \otimes \Theta_{C} . \tag{1.b}
\end{equation*}
$$

Since the divisor class $-H+C$ is of type ($4,2,1,1,1,1,1$), it is very ample by Lemma (1.2) and so $\mathcal{O}_{s}(-H+C) \otimes \mathcal{O}_{C}$ is very ample on C. Therefore w_{C} is very ample by (1.b). Hence C is nonhyperelliptic.

§ 2. Stability of normal bundle N_{C}.

Let C be as in $\S 1$. An effective divisor D of type ($7,3,2,2,2,2,2$) is arithmetically Cohen-Macaulay by Watanabe's result [9] and so $\operatorname{dim} H^{0}\left(\boldsymbol{P}^{3}, I_{D}(3)\right)$ $=\operatorname{deg} D-p_{a}(D)+1=2$. We consider the following exact sequence

$$
\begin{equation*}
0 \longrightarrow I_{C}^{2}(3) \longrightarrow I_{C}(3) \longrightarrow N_{C}^{*}(3) \longrightarrow 0 . \tag{2.a}
\end{equation*}
$$

This gives rise to a homomorphism

$$
f: H^{0}\left(\boldsymbol{P}^{3}, I_{C}(3)\right) \longrightarrow H^{0}\left(C, N_{c}^{*}(3)\right) .
$$

Lemma (2.1). The homomorphism f is isomorphic. Moreover,

$$
\operatorname{dim} H^{0}\left(C, N_{C}^{*}(3)\right)=\operatorname{dim} H^{0}\left(\boldsymbol{P}^{3}, I_{C}(3)\right)=2 .
$$

Proof. No cubic can be singular at every point of $C_{2}^{*}(\operatorname{see}=(2 . *))$. Hence $H^{0}\left(\boldsymbol{P}^{3}, I_{c}^{2}(3)\right)=0$, and the homomorphism f is injective. To compute ${ }^{*} h^{0}\left(C, N_{c}^{*}(3)\right)$, we consider the following exact sequence

$$
0 \longrightarrow N_{C / S} \longrightarrow N_{C} \longrightarrow N_{S / P^{3}} \mid C \longrightarrow 0 .
$$

By tensoring $\mathcal{O}_{c}(3)$ the dual sequence of the above, we obtain an exact sequence

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow N_{C}^{*}(3) \longrightarrow N_{C}^{*} / s(3) \longrightarrow 0 .
$$

From the above sequence, we have

$$
\begin{equation*}
h^{0}\left(C, N_{C}^{*}(3)\right) \leqq h^{0}\left(C, \mathcal{O}_{C}\right)+h^{0}\left(C, N_{C}^{*} / S(3)\right) . \tag{2.b}
\end{equation*}
$$

On the other hand, $N_{C / S}^{*}(3) \cong \mathcal{O}_{C}(L \mid C)$ where L is $3 H-C$. Next, we consider the following exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(L-C) \longrightarrow \mathcal{O}_{S}(L) \longrightarrow \mathcal{O}_{C}(L \mid C) \longrightarrow 0
$$

We get an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(L-C)\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(L)\right) \longrightarrow H^{0}\left(C, \mathcal{O}_{C}(L \mid C)\right) \\
& \longrightarrow H^{1}\left(S, \mathcal{O}_{S}(L-C)\right) \longrightarrow \cdots .
\end{aligned}
$$

Since $-(L-C)$ is of type ($5,3,1,1,1,1,1$), this divisor is very ample by Lemma (1.2). Hence we have $h^{i}\left(S, \mathcal{O}_{S}(L-C)\right)=0(i=0,1)$ by the Kodaira vanishing theorem. Therefore we have

$$
\begin{equation*}
H^{0}\left(S, \mathcal{O}_{S}(L)\right) \xrightarrow{\sim} H^{0}\left(C, \mathcal{O}_{C}(L \mid C)\right) . \tag{2.c}
\end{equation*}
$$

Since $h^{0}\left(S, \mathcal{O}_{S}(L)\right)=1$, we get $h^{0}\left(C, \mathcal{O}_{c}(L \mid C)\right)=1$ by (2.c). Hence $h^{0}\left(C, N_{C}^{*}(3)\right) \leqq$ $1+1=2$ by (2.b), which implies the surjectivity of f.

We shall consider cubic surfaces containing C. By the homomorphism f, any homogeneous polynomial of degree 3 which vanishes on C defines a section s of $N_{C}^{*}(3)$. It follows from (2.a) that a section s is zero precisely at the singular points of the corresponding cubic surface S^{\prime} which lie on C. We have the following geometric lemma.

Lemma (2.2). Let C be a general irreducible non-singular curve of genus 7 and degree 8 on a non-singular cubic surface S in \boldsymbol{P}^{3}. Then irreducible cubic surfaces containing C have isolated singular points at most one.

Proof. The following fact is well-known:

$$
\begin{equation*}
\binom{\text { every irreducible cubic surface has either only }}{\text { isolated singular points or a singu'ar line. }} \tag{2.*}
\end{equation*}
$$

By the above fact we have only to consider a family of irreducible cubic surfaces with either only isolated singular points or a singular line.

Define a subvariety I as follows:

$$
\begin{gathered}
I \subset \boldsymbol{G} \times\left|\mathcal{O}_{\boldsymbol{P}_{3}}(3)\right| \\
I=\left\{\left(\Lambda, S^{\prime}\right) \mid \Lambda \subset S^{\prime}\right\}
\end{gathered}
$$

where \boldsymbol{G} is the Grassmannian $\boldsymbol{G}(1,3)$ of lines in \boldsymbol{P}^{3} and $\left|\mathcal{O}_{\boldsymbol{P}}(3)\right|$ is the 19dimensional projective space consisting of cubic surfaces. We shall consider the following diagram:

Let Δ be a family of irreducible cubic surfaces with isolated singular points at least 2. By J. W. Bruce and C. T. C. Wall's result (see [2]) we can see

$$
\operatorname{codim} \Delta=2 \quad \text { in } \quad\left|\mathcal{O}_{P 3}(3)\right|
$$

Put $P_{A}=p_{2}\left(p_{1}^{-1}(\Lambda)\right)$ for $\Lambda \in \boldsymbol{G}$. Then P_{A} is a 15 -dimensional linear subvariety of $\left|\mathcal{O}_{P^{3}}(3)\right|$. Here we must show the following fact:

$$
\begin{equation*}
\text { For any } \Lambda \in \boldsymbol{G}, \quad \operatorname{codim}\left(P_{A} \cap \Delta\right) \geqq 2 \text { in } P_{A} \text {. } \tag{2.d}
\end{equation*}
$$

Assume $\operatorname{codim}\left(P_{\Lambda} \cap \Delta\right) \leqq 1$ in P_{Λ}. For any $\Lambda^{\prime} \in \boldsymbol{G}$, there is a projective transformation Ψ of P^{3} such that $\Psi(\Lambda)=\Lambda^{\prime}$. And also we have $\Psi\left(S^{\prime}\right) \in P_{A^{\prime}} \cap \Delta$ for any $S^{\prime} \in P_{\Lambda} \cap \Delta$. By the aboves,

$$
\operatorname{dim}\left(P_{\Lambda} \cap \Delta\right)=\operatorname{dim}\left(P_{\Lambda^{\prime}} \cap \Delta\right) \quad \text { for any } \quad \Lambda^{\prime} \in \boldsymbol{G}
$$

Hence $\operatorname{dim} p_{2}^{-1}(\Delta) \geqq \operatorname{dim}\left(P_{A} \cap \Delta\right)+\operatorname{dim} \boldsymbol{G} \geqq 14+4=18$. On the other hand, $p_{2}^{-1}\left(S^{\prime}\right)$ is a finite set of lines on S^{\prime} for any $S^{\prime} \in \Delta$ and hence $\operatorname{dim} p_{2}^{-1}(\Delta)=17$. This is a contradiction.

Next, we consider a family of irreducible cubic surfaces with a singular line. Let ($x_{0}: \cdots: x_{3}$) be a system of homogeneous coordinates of P^{3}. Take a line Λ in \boldsymbol{P}^{3}. By a change of coordinates, we may assume that Λ is defined by the equation $x_{0}=x_{1}=0$. Let S^{\prime} be an irreducible cubic surface with the singular line Λ. Then, it is easy to show that S^{\prime} is defined by the following equation:

$$
F_{3}\left(x_{0}, x_{1}\right)+x_{2} F_{2}\left(x_{0}, x_{1}\right)+x_{3} G_{2}\left(x_{0}, x_{1}\right)=0
$$

where F_{i} (resp. G_{i}) is a homogeneous polynomial of degree i in x_{0}, x_{1} ([2], p. 252). And the cubic forms $F_{3}\left(x_{0}, x_{1}\right)+\cdots+x_{3} G_{2}\left(x_{0}, x_{1}\right)$ have 10 coefficients. Let F_{A} be a family of irreducible cubic surfaces with the singular line Λ. By the above fact, we have $\operatorname{dim} F_{\Lambda} \leqq 9$. Let F be a family of irreducible cubic surfaces with a singular line, i. e., $F:=\bigcup_{\Lambda \in G} F_{\Lambda}$. By a similar argument to the one in (2.d), we have

$$
\operatorname{dim} F_{\Lambda}=\operatorname{dim} F_{\Lambda^{\prime}} \quad \text { for any } \quad \Lambda, \Lambda^{\prime} \in \boldsymbol{G}
$$

By the aboves we get

$$
\operatorname{dim} F \cap P_{\Lambda} \leqq \operatorname{dim} F_{\Lambda}+\operatorname{dim} \boldsymbol{G} \leqq 9+4=13
$$

Therefore we obtain

$$
\operatorname{codim} F \cap P_{\Lambda} \geqq 2 \quad \text { in } \quad P_{\Lambda}
$$

Let D be an effective divisor of type ($7,3,2,2,2,2,2$), and L be a line of type $(2,0,1,1,1,1,1)$ on S. Then, for any $S^{\prime}(\neq S) \in H^{0}\left(\boldsymbol{P}^{3}, I_{D}(3)\right)-\{0\} / \boldsymbol{C}^{*}$, we have $S \cap S^{\prime}=D \cup L$. Define a mapping Φ as follows:

where P_{L}^{*} is a projective space consisting of lines in P_{L} through the point S of $\left|\mathcal{O}_{P^{3}}(3)\right|$, and $D^{\prime *}=H^{0}\left(\boldsymbol{P}^{3}, I_{D^{\prime}}(3)\right)-\{0\} / \boldsymbol{C}^{*}$ is a line through the point S. Then Φ is an isomorphism between projective spaces. Since $|D|$ is very ample, there is a non-empty Zariski open set U consisting of non-singular curves in $|D|$. Let U^{*} be $\Phi(U)$. Then U^{*} is a non-empty Zariski open subset of P_{L}^{*}. Put $\mathrm{Co}^{*}=\left\{D^{*} \in P_{L}^{*} \mid D^{\prime *} \cap(\Delta \cup F) \neq \varnothing\right\}$. Then $\operatorname{codim} \mathrm{Co}^{*} \geqq 1$ in P_{L}^{*} by (2.d) and (2.d'). Hence $P_{L}^{*}-\overline{\mathrm{Co}^{*}}$ is a non-empty Zariski open subset of P_{L}^{*}, where $\overline{\mathrm{Co}^{*}}$ is the Zariski closure of Co*. Therefore $U^{*} \cap\left(P_{\boldsymbol{L}}^{*}-\overline{\mathbf{C o}^{*}}\right)$ is a non-empty Zariski open subset of P_{L}^{*}. By the above construction, we have

$$
C^{*} \cap(\Delta \cup F)=\varnothing
$$

for any non-singular curve $C \in U \cap \Phi^{-1}\left(P_{L}^{*}-\overline{\mathrm{Co}^{*}}\right) \subset|D|$, i. e.,

$$
S^{\prime} \notin \Delta \cup F
$$

for any $S^{\prime} \in H^{0}\left(\boldsymbol{P}^{3}, I_{C}(3)\right)-\{0\} / \boldsymbol{C}^{*}$. Therefore we get the required result.
THEOREM (2.3). Let C be a general non-singular curve of genus 7 and degree 8 lying on a non-singular cubic surface S in \boldsymbol{P}^{3}. Then the normal bundle of C in \boldsymbol{P}^{3} is stable.

Proof. In order to show that N_{C} is stable, it is sufficient to show that $N_{C}^{*}(3)$ has no line subbundle of degree 2 or greater, because we have

$$
\begin{aligned}
\left(\operatorname{deg} N_{C}^{*}(3)\right) / 2 & =\operatorname{deg} \mathcal{O}_{C}(3)-\left(\operatorname{deg} N_{C}\right) / 2 \\
& =\operatorname{deg} \mathcal{O}_{C}(3)-\left(\operatorname{deg} w_{C} \otimes w_{P^{3}}^{*}\right) / 2 \\
& =24-(12+32) / 2=2
\end{aligned}
$$

Let C be as in Lemma (2.2). Since $\mathcal{O}_{S}(C)$ is very ample, we may assume that
$C \cap L=\{$ distinct 4 points $\}$.

Suppose that $N_{c}^{*}(3)$ has a line subbundle E of degree 2 or greater. Then the canonical homomorphism

$$
g: E \longrightarrow N_{C}^{*} / s(3)
$$

is injective. Therefore we have

$$
h^{0}(C, E) \leqq h^{0}\left(C, N_{C / S}^{*}(3)\right)=1
$$

Hence we shall consider the following two cases.
Case (1). Suppose that $h^{0}(C, E)=0$. Let E^{\prime} be the quotient line bundle $N_{C}^{*}(3) / E$. By the above assumption, the homomorphism

$$
\varphi: \quad H^{0}\left(C, N_{\delta}^{*}(3)\right) \longrightarrow H^{0}\left(C, E^{\prime}\right)
$$

is injective. Since $h^{0}\left(C, N_{C}^{*}(3)\right)=2$, the dimension of the vector space $\operatorname{Im}(\varphi)$ is 2. Therefore the dimension of a linear system on C corresponding to the subspace $\operatorname{Im}(\varphi) \cong H^{0}\left(C, E^{\prime}\right)$ is 1 . Hence, E^{\prime} has at least degree 3 , since C is neither rational nor hyperelliptic by Lemma (1.3). So we obtain

$$
\operatorname{deg} E=\operatorname{deg}\left(N_{C}^{*}(3)\right)-\operatorname{deg} E^{\prime} \leqq 4-3=1
$$

This is a contradiction.
Case (2). Suppose that $h^{0}(C, E)=1$. We consider the following diagram :

Take a non-zero section τ of E. It corresponds to an irreducible cubic surface S^{\prime} containing C. Then we obtain
$\{$ zeroes of $\tau\} \cong\left\{\right.$ the singular points of S^{\prime} which lie on $\left.C\right\}$.
Moreover, by the injective homomorphism $g: E \rightarrow N_{C / S}^{*}(3) \cong \mathcal{O}_{C}(L \mid C)$ and (2.e) we get

$$
\{\text { zeroes of } \tau\}=\{\text { distinct } r \text { points }\}
$$

where $r=\operatorname{deg} E$. Hence we have
$\operatorname{deg} E \leqq \#\left\{\right.$ the singular points of S^{\prime} which lie on $\left.C\right\}$
where $\#\}$ means the number of elements of sets. By virtue of Lemma (2.2) S^{\prime} has only isolated singular points at most one. Therefore, we have $\operatorname{deg} E \leqq 1$. This is a contradiction.

§3. Examples of non-stable normal bundle.

In this section we shall give examples of curves of genus 7 and degree 8 with non-stable normal bundle.

First we consider a cubic surface S with two double points. See [5] for details. We take 6-points p_{1}, \cdots, p_{6} of \boldsymbol{P}^{2} as follows:
(a) the points p_{2}, p_{3}, p_{4} lie on the line L_{1},
(b) the points p_{2}, p_{5}, p_{6} lie on the line $L_{2}\left(\neq L_{1}\right)$,
(c) the points $\left\{p_{i}\right\}$ are in general position apart from the aboves.

Let X be the non-singular surface obtained by blowing-up of \boldsymbol{P}^{2} at the points p_{1}, \cdots, p_{6}. The notation for the generators of Pic $X \cong \boldsymbol{Z}^{\oplus 7}$, divisors on X and their intersection pairing are same as in $\S 1$. Let K_{X} be the canonical divisor class of X. Then $\left|-K_{X}\right|$ is base-point free. Hence it defines a morphism $v: X \rightarrow \boldsymbol{P}^{3}$. Put $S=v(X)$. Then the morphism v has the following properties:
(1) $v\left(\widetilde{L}_{i}\right)=x_{i}$ and $x_{1} \neq x_{2}$, where \widetilde{L}_{i} is the strict transform of L_{i}.
(2) $v: X-\widetilde{L}_{1} \cup \widetilde{L}_{2} \rightarrow S-\left\{x_{1}, x_{2}\right\}$ is an isomorphism.
(3) Each point x_{i} is a double point of S.

Lemma (3.1). Let C be a non-singular curve on X. If C meets each $\tilde{L}_{i}(i=1,2)$ transversely at only one point, then $v(C)$ is a non-singular curve through each singular point $x_{i}(i=1,2)$.

Proof. See [3].
Let D be the divisor class on X of type (7,3,2,2,2,2,2). Then $p_{a}(D)=7$ and $D \cdot H=8$, where H is the anti-canonical divisor class $-K_{X}$. It is easy to show that there are non-singular curves in $|D|$.

Lemma (3.2). Let C be a non-singular curve in $|D|$. Then $v(C)$ is a nonsingular curve through each singular point $x_{i}(i=1,2)$ of S.

Proof. Since \widetilde{L}_{1} is of type $(1,0,1,1,1,0,0)$ and \widetilde{L}_{2} is of type $(1,0,1,0$, $0,1,1$), we have $C \cdot \widetilde{L}_{i}=1$. Therefore the statement is obvious from Lemma (3.1).

Proposition (3.3). Let C be as in the above lemma and $N_{v(C)}$ be the normal bundle of $v(C)$ in \boldsymbol{P}^{3}. Then $N_{v(C)}$ is not stable.

Proof. Since $v(C)$ is a non-singular curve, the normal sheaf $N_{v(C) / S}$ is locally free, and so $N_{u(C) / S}$ is a line subbundle of $N_{v(C)}$. We have an exact sequence

$$
0 \longrightarrow v_{*}\left(N_{C / X}\right) \xrightarrow{\psi} N_{v(C) / S} \longrightarrow F \longrightarrow 0
$$

Since ψ is an isomorphism outside singular points $\left\{x_{1}, x_{2}\right\}$, we get $\operatorname{Supp} F=$
$\left\{x_{1}, x_{2}\right\}$. Hence we get an inequality

$$
\operatorname{deg} N_{v(C) / S} \geqq \operatorname{deg} v_{*}\left(N_{C / X}\right)+2=C^{2}+2=22 .
$$

On the other hand, we have

$$
\left(\operatorname{deg} N_{v(C)}\right) / 2=2(C \cdot H)+p_{a}(C)-1=22 .
$$

Therefore $\operatorname{deg} N_{v(C) / s} \geqq\left(\operatorname{deg} N_{v(C)}\right) / 2$, i. e., $N_{v(C)}$ is not stable.

§4. Some comments.

Let $D_{s}^{0}(g)$ be the first integer d such that there is a non-singular irreducible curve C in P^{3} of genus g, degree d with stable normal bundle and with $H^{1}\left(C, N_{C}\right)=0([4])$.

First we shall claim $D_{s}^{0}(7)=8$. It is known that $8 \leqq D_{s}^{0}(7) \leqq 10$ (see [4]). Let C be a general non-singular irreducible curve of genus 7 and degree 8 on a non-singular cubic surface S in \boldsymbol{P}^{3}. From Theorem (2.3) it is sufficient to show that $H^{1}\left(C, N_{C}\right)=0$. We consider the following exact sequence

$$
\begin{equation*}
0 \longrightarrow N_{C / S} \longrightarrow N_{C} \longrightarrow N_{S / P 3} \mid C \longrightarrow 0 . \tag{4.a}
\end{equation*}
$$

This gives an exact sequence of cohomology groups:

$$
\cdots \longrightarrow H^{1}\left(N_{C / S}\right) \longrightarrow H^{1}\left(N_{C}\right) \longrightarrow H^{1}\left(N_{S / \mathbf{P}^{\mathbf{P}}} \mid C\right) \longrightarrow \cdots
$$

By Serre duality $H^{1}\left(N_{C / S}\right) \cong H^{0}\left(N_{C / S}^{*} \otimes w_{C}\right)^{\vee}$ and $H^{1}\left(N_{S / P^{3}} \mid C\right) \cong H^{0}\left(N_{S / P 3}^{*} \otimes w_{C}\right)^{v}$. Since $\operatorname{deg} N_{C}^{*} / s \otimes w_{C}=\operatorname{deg} \mathcal{O}_{C}(-1)<0$ and $\operatorname{deg} N_{S}^{*} / P^{3} \otimes w_{C}=\operatorname{deg} w_{C}(-3)<0$, we have $H^{1}\left(N_{C / S}\right)=H^{1}\left(N_{S / P} \mid C\right)=0$. Hence $H^{1}\left(N_{C}\right)=0$.

Next we shall consider projectively normal curves on a non-singular cubic surface in \boldsymbol{P}^{3}. Let C be a non-singular curve of genus g and degree d on a non-singular cubic surface such that C is not contained in any quadric surface. Moreover we assume that C is projectively normal and that $g \leqq d$. The second condition is a necessary condition for the stability of N_{C}. This is due to (4.a). We consider the following exact sequence

$$
0 \longrightarrow I_{C}(2) \longrightarrow \mathcal{O}_{P 3}(2) \longrightarrow \mathcal{O}_{C}(2) \longrightarrow 0 .
$$

We have an exact sequence of cohomology groups:
$0 \longrightarrow H^{0}\left(\boldsymbol{P}^{3}, I_{C}(2)\right) \longrightarrow H^{0}\left(\boldsymbol{P}^{3}, \mathcal{O}_{\boldsymbol{P}^{3}}(2)\right) \longrightarrow H^{0}\left(C, \mathcal{O}_{C}(2)\right) \longrightarrow H^{1}\left(\boldsymbol{P}^{3}, I_{C}(2)\right) \longrightarrow \cdots$.
By hypothesis we obtain $h^{0}\left(\boldsymbol{P}^{3}, I_{C}(2)\right)=h^{1}\left(\boldsymbol{P}^{3}, I_{C}(2)\right)=0$, and so $h^{0}\left(C, \mathcal{O}_{C}(2)\right)=$ $h^{0}\left(\boldsymbol{P}^{3}, \mathcal{O}_{P 3}(2)\right)=10$. By the Riemann-Roch theorem we have $h^{0}\left(C, \mathcal{O}_{C}(2)\right)=2 d-g$ +1 , and so $g=2 d-9$. Under the condition that $g \leqq d$, we have the following integral solutions

$$
(g, d)=(1,5),(3,6),(5,7),(7,8),(9,9)
$$

But a quintic curve of genus 1 isn't projectively normal. Therefore we shall exclude (1,5). Conversely, there are such curves with above (g, d) (cf. [9]).

From the results of [3], [1], [7] and Theorem (2.3), normal bundles of general (resp. all) projectively normal curves on a non-singular cubic surface with above (g, d) are stable. By the results of [4] and $D_{s}^{0}(7)=8$, we have $D_{s}^{0}(g)=d$ for above (g, d).

g	3	5	7	9
$D_{s}^{\mathbf{0}}$	6	7	8	9

Finally, we claim $D_{s}^{0}(8) \leqq 10$. It follows from Theorem 2 (e) in [4] immediately.

References

[1] E. Ballico and Ph. Ellia, Some more examples of curves in \boldsymbol{P}^{3} with stable normal bundle, J. Reine Angew. Math., 350 (1984), 87-93.
[2] J.W. Bruce and C.T.C. Wall, On the classification of cubic surfaces, J. London Math. Soc., 19 (1979), 245-256.
[3] Ph. Ellia, Exemples de courbes de \boldsymbol{P}^{3} à fibré normal semi-stable, stable, Math. Ann., 264 (1983), 389-396.
[4] G. Ellingsrud and A. Hirschowitz, Sur le fibré normal des courbes gauches, C.R. Acad. Sci. Paris, Sér. I, 299 (1984), 245-248.
[5] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
[6] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., 52, Springer, 1977.
[7] P.E. Newstead, A space curve whose normal bundle is stable, J. London Math. Soc., 28 (1983), 428-434.
[8] D. Perrin, Courbes passant par k points généraux de $\boldsymbol{P}^{3} ; h^{0}$-stabilité, C.R. Acad. Sci. Paris, Sér. I, 299 (1984), 879-882.
[9] M. Watanabe, On projective normality of space curves on a non-singular cubic surface in \boldsymbol{P}^{3}, Tokyo J. Math., 4 (1981), 331-341.

Tomoaki Ono
Department of Mathematics
Science University of Tokyo
Wakamiya-cho 26
Shinjuku-ku, Tokyo 162
Japan

