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Introduction.

D. Perrin showed in [8] that the normal bundles of curves of degree $s^{2}-1$

which are linked to a line by two surfaces of degree $s$ in $P^{3}$ are semi-stable.
In the case of $s=3$, the above curves have genus 7 and degree 8. In this paper,
we shall show that the normal bundles of general non-singular curves of genus
7 and degree 8 on a non-singular cubic surface in $P^{3}$ are stable (Theorem (2.3)).

In \S 1 we determine divisor classes of non-singular curves of genus 7 and
degree 8 on a non-singular cubic surface in $P^{3}$. In \S 2 we evaluate the number
of isolated singular points of a cubic surface containing the above curve (Lemma
(2.2)). This evaluation plays an important role in the proof of Theorem (2.3).

In \S 3 we give examples of non-singular curves of genus 7 and degree 8 with
non-stable normal bundle. In \S 4 we consider a few projectively normal curves
on a non-singular cubic surface which are not contained in any quadric surface.

NOTATION. Throughout this paper we shall work over the ground field $C$

and $C^{*}$ denotes the multiplicative group of $C$ . Let $X$ be a non-singular pro-
jective variety and let $E$ be a vector bundle on $X$.

$h^{i}(X, E)$ $:=\dim_{C}H^{i}(X, E)$ ; the dimension of $H^{i}(X, E)$ ,

$H^{i}(X, E)^{\vee};$ the dual vector space of $H^{i}(X, E)$ ,

$E^{*}$ $:=Hom_{\mathcal{O}_{X}}(E, O_{X})$ ; the dual vector bundle of $E$ .
Moreover, if $C$ is a curve on a surface $S$ in $P^{3}$ , we use the same symbol $C$ for
the corresponding divisor class on $S$ .

$I_{C}$ ; the ideal sheaf of $C$ in $P^{3}$ ,

$N_{C}$ ; the normal sheaf of $C$ in $P^{3}$ ,

$N_{C/S}$ ; the normal sheaf of $C$ in $S$ .
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\S 1. Curves on a cubic surface.

Let $S$ be a non-singular cubic surface in the projective space $P^{3}$ . Then $S$

is obtained from $P^{2}$ by blowing-up six points $p_{1},$ $\cdots$ , $p_{6}$ which are not on a
conic and no three of which are collinear. We denote by $E_{i}$ the exceptional
curve corresponding to $p_{i}$ $(i=1, \cdots , 6)$ , and $\tilde{L}$ the total transform of a line in
$P^{2}$ . Let $e_{i}\in PicS$ $(i=1, \cdots , 6)$ be the divisor class of $E_{i}$ . Let $l\in PicS$ be the
divisor class of $\tilde{L}$ . Then Pic $S$ is the free abelian group generated by $l,$ $e_{1},$ $\cdots$ ,

$e_{6}$ and the intersection pairing on Pic $S$ is given by

$l^{2}=1$ , $e_{i}^{2}=-1$ , $l\cdot e_{i}=0$ , $e_{i}\cdot e_{j}=0$ for $i\neq j$ .
For any divisor class $D=al-\Sigma b_{i}e_{i}$ where $a,$ $b_{1},$ $\cdots$ , $b_{6}$ are integers, we have

$d=3a-\Sigma b_{i}$ ,

$p_{a}(D)=(a-1)(a-2)/2-\Sigma b_{i}(b_{i}-1)/2$

where $d=D\cdot H$ ( $H:=3l-\Sigma e_{i}$ ; the divisor class of a hyperplane section) and
$P_{a}(D)$ is the arithmetic genus of $D$ .

DEFINITION (1.1). A divisor class $D=al- \sum b_{i}e_{i}$ on $S$ is said to be of type
$(a, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6})$ .

LEMMA (1.2) ([6], p. 405). Let $D=al- \sum b_{i}e_{i}$ be a divisor class on the cubic
surface $S$ and suPpose that $b_{1}\geqq b_{2}\geqq\cdots\geqq b_{6}>0$ and $a\geqq b_{1}+b_{2}+b_{5}$ . Then $D$ is very
ample.

Let $C$ be a non-singular irreducible curve of genus 7 and degree 8 in $P^{3}$ .
We have an exact sequence

$0arrow I_{C}(3)arrow \mathcal{O}_{P^{3}}(3)arrow \mathcal{O}_{C}(3)arrow 0$ .
This gives a long exact sequence of cohomology groups:

(1.a) $0arrow H^{0}(P^{3}, I_{C}(3))arrow H^{0}(P^{3}, O_{P3}(3))arrow H^{0}(C, \mathcal{O}_{C}(3))arrow\cdots$ .
Since $\deg O_{C}(-3)\otimes w_{C}<0$ where $w_{C}$ is the canonical sheaf of $C$ , we have
$h^{1}(C, O_{C}(3))=0$ . Then $h^{0}(C, O_{C}(3))=18$ by the Riemann-Roch theorem. By (1.a)

we get

$h^{0}(P^{3}, I_{C}(3))\geqq h^{0}(P^{3}, O_{P3}(3))-h^{0}(C, O_{C}(3))=20-18=2$ .
Therefore there are two distinct irreducible cubic surfaces containing $C$ . Let
$S’,$ $S’$ be irreducible cubic surfaces containing $C$ . Then the total intersection
of $S’$ and $S’$ is $C\cup L$ , where $L$ is a line. From now on we assume $S$“ is a
non-singular cubic surface and replace $S$ by $S’’$ . The divisor $L$ on $S$ has one
of the following types:
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$(0, -1,0,0,0,0,0)$ , $(1, 0,0,0,0,1,1)$ , $(2, 0,1,1,1,1,1)$ .
On the other hand, the divisor $C+L$ is of type (9, 3, 3, 3, 3, 3, 3). Therefore
the divisor $C$ on $S$ is one of the following types:

(9, 4, 3, 3, 3, 3, 3) if $L$ is of type $(0, -1,0,0,0,0,0)$ ,

(8, 3, 3, 3, 3, 2, 2) if $L$ is of type $(1, 0,0,0,0,1,1)$ ,

(7, 3, 2, 2, 2, 2, 2) if $L$ is of type $(2, 0,1,1,1,1,1)$ .
Since any of the other classes in the list can be transformed to the class (7, 3,
2, 2, 2, 2, 2) by a change in the choice of $E_{1},$ $\cdots$ , $E_{6}$ , we shall take $C$ to belong
to the class (7, 3, 2, 2, 2, 2, 2). We have $O_{S}(C)$ is very ample by Lemma (1.2),

and $\deg(C\cdot L)=4$ .
LEMMA (1.3). Let $C$ be a non-singular irreducible curve of genus 7 and degree

8 on a non-srngular cubic surface $S$ in $P^{3}$ . Then it is nmhyPerelliptic.

PROOF. By the adjunction formula for $C$ on $S$

(1. b) $w_{C}\cong w_{S}\otimes \mathcal{O}_{S}(C)\otimes \mathcal{O}_{C}\cong O_{S}(-H+C)\otimes O_{C}$ .
Since the divisor class $-H+C$ is of type (4, 2, 1, 1, 1, 1, 1), it is very ample by
Lemma (1.2) and so $O_{S}(-H+C)\otimes \mathcal{O}_{C}$ is very ample on $C$ . Therefore $w_{C}$ is
very ample by (1.b). Hence $C$ is nonhyperelliptic.

\S 2. Stability of normal bundle $N_{C}$ .
Let $C$ be as in \S 1. An effective divisor $D$ of type (7, 3, 2, 2, 2, 2, 2) is

arithmetically Cohen-Macaulay by Watanabe’s result [9] and so dim $H^{0}(P^{3}, I_{D}(3))$

$=\deg D-p_{a}(D)+1=2$ . We consider the following exact sequence

(2.a) $0arrow I_{C}^{2}(3)arrow I_{C}(3)arrow N\delta(3)arrow 0$ .
This gives rise to a homomorphism

$f$ : $H^{0}(P^{3}, I_{C}(3))arrow H^{0}(C, N_{C}^{*}(3))$ .
LEMMA (2.1). The homomorPhism $f$ is isomorPhic. Moreover,

$\dim\dot{H}^{0}(C, N_{C}^{*}(3))=\dim H^{0}(P^{3}, I_{C}(3))=2$ .
PROOF. No cubic can be singular at every point of $C:(see_{-}^{-}\wedge\neg(2.*))$ . Hence

$H^{0}(P^{3}, I\partial(3))=0$ , and the homomorphism $f$ is injective. $To_{-}^{-}compute_{-}^{\neg}h^{0}(C, N\delta(3))$ ,
we consider the following exact sequence

$0arrow N_{C/S}arrow N_{C}arrow N_{S/P^{3}}|Carrow 0$ .
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By tensoring $O_{C}(3)$ the dual sequence of the above, we obtain an exact sequence

$0arrow O_{C}arrow N_{C}^{*}(3)arrow N_{C/S}^{*}(3)arrow 0$ .
From the above sequence, we have

(2.b) $h^{0}(C, N_{c}^{*}(3))\leqq h^{0}(C, O_{C})+h^{0}(C, N_{c/S}^{*}(3))$ .
On the other hand, $N_{c/S}^{*}(3)\cong \mathcal{O}_{C}(L|C)$ where $L$ is 3$H-C$ . Next, we consider
the following exact sequence

$0arrow O_{S}(L-C)arrow O_{S}(L)arrow O_{C}(L|C)arrow 0$ .
We get an exact sequence

$0arrow H^{0}(S, O_{S}(L-C))arrow H^{0}(S, O_{S}(L))arrow H^{0}(C, O_{C}(L|C))$

$arrow H^{1}(S, O_{S}(L-C))arrow\cdots$ .
Since $-(L-C)$ is of type (5, 3, 1, 1, 1, 1, 1), this divisor is very ample by Lemma
(1.2). Hence we have $h^{i}(S, O_{S}(L-C))=0(i=0,1)$ by the Kodaira vanishing
theorem. Therefore we have

(2.c) $H^{0}(S, O_{S}(L))arrow^{\sim}H^{0}(C, O_{C}(L|C))$ .
Since $h^{0}(S, O_{S}(L))=1$ , we get $h^{0}(C, O_{C}(L|C))=1$ by (2.c). Hence $h^{0}(C, N_{c}^{*}(3))\leqq$

$1+1=2$ by (2.b), which implies the surjectivity of $f$.
We shall consider cubic surfaces containing $C$ . By the homomorphism $f$ ,

any homogeneous polynomial of degree 3 which vanishes on $C$ defines a section
$s$ of $N_{c}^{*}(3)$ . It follows from (2.a) that a section $s$ is zero precisely at the singular
points of the corresponding cubic surface $S’$ which lie on $C$ . We have the fol-
lowing geometric lemma.

LEMMA (2.2). Let $C$ be a general irreducible non-singular curve of genus 7
and degree 8 on a non-singular cubic surface $S$ in $P^{3}$ . Then irreducible cubic
surfaces containing $C$ have isolated singular Points at most one.

PROOF. The following fact is well-known:

\langle $2.*)$ $(_{isolated\alpha ngularp\alpha nts}^{everyirredu\alpha blecubic}ora\alpha ngu’arlinesurfaceha_{\text{m}}s\dot{\alpha}theronly)$

By the above fact we have only to consider a family of irreducible cubic sur-
faces with either only isolated singular points or a singular line.

Define a subvariety $I$ as follows:

$I\subset G\cross|O_{P3}(3)|$ ,

$I=\{(\Lambda, S’)|\Lambda\subset S’\}$ ,
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where $G$ is the Grassmannian $G(1,3)$ of lines in $P^{3}$ and $|O_{P3}(3)|$ is the 19-
dimensional projective space consisting of cubic surfaces. We shall consider
the following diagram:

Let $\Delta$ be a family of irreducible cubic surfaces with isolated singular points at
least 2. By J. W. Bruce and C. T. C. Wall’s result (see [2]) we can see

codim $\Delta=2$ in $|O_{p3}(3)|$ .

Put $P_{\Lambda}=p_{2}(p_{1}^{-1}(\Lambda))$ for $\Lambda\in G$. Then $P_{\Lambda}$ is a 15-dimensional linear subvariety of
$|O_{P3}(3)|$ . Here we must show the following fact:

(2.d) For any $\Lambda\in G$ , $co\dim(P_{\Lambda}\cap\Delta)\geqq 2$ in $P_{\Lambda}$ .

Assume $co\dim(P_{\Lambda}\cap\Delta)\leqq 1$ in $P_{\Lambda}$ . For any $\Lambda’\in G$, there is a projective trans-
formation $\Psi$ of $P^{3}$ such that $\Psi(\Lambda)=\Lambda’$ . And also we have $\Psi(S’)\in P_{\Lambda’}\cap\Delta$ for
any $S’\in P_{\Lambda}\cap\Delta$ . By the aboves,

$\dim(P_{\Lambda}\cap\Delta)=\dim(P_{\Lambda’}\cap\Delta)$ for any $\Lambda’\in G$ .
Hence dim $p_{2}^{-1}(\Delta)\geqq\dim(P_{\Lambda}\cap\Delta)+\dim G\geqq 14+4=18$ . On the other hand, $p_{2}^{-1}(S’)$

is a finite set of lines on $S’$ for any $S’\in\Delta$ and hence dim $p_{2}^{-1}(\Delta)=17$ . This is
a contradiction.

Next, we consider a family of irreducible cubic surfaces with a singular
line. Let $(x_{0}$ ; $\cdots$ : $x_{3})$ be a system of homogeneous coordinates of $P^{3}$ . Take a
line $\Lambda$ in $P^{3}$ . By a change of coordinates, we may assume that $\Lambda$ is defined
by the equation $x_{0}=x_{1}=0$ . Let $S’$ be an irreducible cubic surface with the
singular line $\Lambda$ . Then, it is easy to show that $S’$ is defined by the following
equation:

$F_{3}(x_{0}, x_{1})+x_{2}F_{2}(x_{0}, x_{1})+x_{3}G_{2}(x_{0}, x_{1})=0$

where $F_{i}$ (resp. $G_{i}$) is a homogeneous polynomial of degree $i$ in $x_{0},$ $x_{1}$ ([2], $p$ .
252). And the cubic forms $F_{3}(x_{0}, x_{1})+\cdots+x_{3}G_{2}(x_{0}, x_{1})$ have 10 coefficients. Let
$F_{\Lambda}$ be a family of irreducible cubic surfaces with the singular line $\Lambda$ . By the
above fact, we have dim $F_{\Lambda}\leqq 9$ . Let $F$ be a family of irreducible cubic surfaces
with a singular line, $i.e.,$

$F:=_{\Lambda} \bigcup_{\in G}F_{\Lambda}$ . By a similar argument to the one in (2.d),

we have

dim $F_{\Lambda}=\dim F_{\Lambda’}$ for any $\Lambda,$ $\Lambda’\in G$ .
By the aboves we get
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dim $F\cap P_{\Lambda}\leqq\dim F_{\Lambda}+\dim G\leqq 9+4=13$ .

Therefore we obtain

$($2. $d’)$ codim $F\cap P_{\Lambda}\geqq 2$ in $P_{\Lambda}$ .
Let $D$ be an effective divisor of type (7, 3, 2, 2, 2, 2, 2), and $L$ be a line of

type $(2, 0,1,1,1,1,1)$ on $S$ . Then, for any $S’(\neq S)\in H^{0}(P^{3}, I_{D}(3))-\{O\}/C^{*}$ , we
have $S\cap S’=D\cup L$ . Define a mapping $\Phi$ as follows:

$\Phi$ : $|D|-arrow P_{L}^{*}$

$(\cup \Downarrow)$

$D’arrow D^{\prime*}$

where $P_{L}^{*}$ is a projective space consisting of lines in $P_{L}$ through the point $S$ of
$|O_{P^{3}}(3)|$ , and $D^{\prime*}=H^{0}(P^{3}, I_{D’}(3))-\{O\}/C^{*}$ is a line through the point $S$ . Then
$\Phi$ is an isomorphism between projective spaces. Since $|D|$ is very ample, there
is a non-empty Zariski open set $U$ consisting of non-singular curves in $|D|$ .
Let $U^{*}$ be $\Phi(U)$ . Then $U^{*}$ is a non-empty Zariski open subset of $P_{L}^{*}$ . Put
$Co^{*}=\{D^{\prime*}\in P_{L}^{*}|D^{\prime*}\cap(\Delta\cup F)\neq\emptyset\}$ . Then codim $Co^{*}\geqq 1$ in $P_{L}^{*}$ by (2.d) and $($2. $d’)$ .
Hence $P_{L}^{*}-\overline{Co^{*}}$ is a non-empty Zariski open subset of $P_{L}^{*}$ , where $\overline{Co^{*}}$ is the
Zariski closure of $Co^{*}$ . Therefore $U^{*}\cap(P_{L}^{*}-\overline{Co^{*}})$ is a non-empty Zariski open
subset of $P_{L}^{*}$ . By the above construction, we have

$C^{*}\cap(\Delta\cup F)=\emptyset$

for any non-singular curve $C\in U\cap\Phi^{-1}(P_{L}^{*}-\overline{Co^{*}})\subset|D|,$ $i$ . $e.$ ,

$S’\not\in\Delta\cup F$

for any $S’\in H^{0}(P^{3}, I_{C}(3))-\{O\}/C^{*}$ . Therefore we get the required result.

THEOREM (2.3). Let $C$ be a general non-srngular curve of genus 7 and degree
8 lying on a non-singular cubic surface $S$ in $P^{3}$ . Then the normal bundle of $C$ in
$P^{3}$ is stable.

PROOF. In order to show that $N_{c}$ is stable, it is sufficient to show that
$N\delta(3)$ has no line subbundle of degree 2 or greater, because we have

$(\deg N\delta(3))/2=\deg O_{C}(3)-(\deg N_{c})/2$

$=\deg O_{C}(3)-(\deg w_{C}\otimes w_{P^{3}}^{*})/2$

$=24-(12+32)/2=2$ .
Let $C$ be as in Lemma (2.2). Since $O_{S}(C)$ is very ample, we may assume that

(2.e) $C\cap L=$ {distinct 4 points}.
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Suppose that $N_{c}^{*}(3)$ has a line subbundle $E$ of degree 2 or greater. Then the
canonical homomorphism

$g:Earrow N\delta_{/S}(3)$

is injective. Therefore we have

$h^{0}(C, E)\leqq h^{0}(C, N_{C/S}^{*}(3))=1$ .
Hence we shall consider the following two cases.

Case (1). Suppose that $h^{0}(C, E)=0$ . Let $E’$ be the quotient line bundle
$N_{C}^{*}(3)/E$ . By the above assumption, the homomorphism

$\varphi$ : $H^{0}(C, N_{C}^{*}(3))arrow H^{0}(C, E’)$

is injective. Since $h^{0}(C, N_{c}^{*}(3))=2$ , the dimension of the vector space ${\rm Im}(\varphi)$ is
2. Therefore the dimension of a linear system on $C$ corresponding to the
subspace ${\rm Im}(\varphi)\subseteqq H^{0}(C, E’)$ is 1. Hence, $E’$ has at least degree 3, since $C$ is
neither rational nor hyperelliptic by Lemma (1.3). So we obtain

deg $E=\deg(N_{c}^{*}(3))-\deg E’\leqq 4-3=1$ .
This is a contradiction.

Case (2). Suppose that $h^{0}(C, E)=1$ . We consider the following diagram:

$H^{0}(C, E)=H^{0}(C, N_{c}^{*}(3))$

$1\uparrow$

$H^{0}(P^{3}, I_{C}(3))$ .
Take a non-zero section $\tau$ of $E$ . It corresponds to an irreducible cubic surface
$S’$ containing $C$ . Then we obtain

{zeroes of $\tau$ } $\subseteqq$ {the singular points of $S’$ which lie on $C$ }.

Moreover, by the injective homomorphism $g:Earrow N_{C/S}^{*}(3)\cong O_{C}(L|C)$ and (2.e)

we get

{zeroes of $\tau$ } $=$ {distinct $r$ points}

where $r=\deg E$ . Hence we have

deg $E\leqq\#$ {the singular points of $S’$ which lie on $C$ }

where $\#\{$ $\}$ means the number of elements of sets. By virtue of Lemma (2.2)
$S’$ has only isolated singular points at most one. Therefore, we have deg $E\leqq 1$ .
This is a contradiction.
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\S 3. Examples of non-stable normal bundle.

In this section we shall give examples of curves of genus 7 and degree 8
with non-stable normal bundle.

First we consider a cubic surface $S$ with two double points. See [5] for
details. We take 6-points $p_{1},$ $\cdots$ , $p_{6}$ of $P^{2}$ as follows:

(a) the points $p_{2},$ $p_{3},$ $p_{4}$ lie on the line $L_{1}$ ,
(b) the points $p_{2},$ $p_{5},$ $p_{6}$ lie on the line $L_{2}(\neq L_{1})$ ,
(c) the points $\{p_{i}\}$ are in general position apart from the aboves.

Let $X$ be the non-singular surface obtained by blowing-up of $P^{2}$ at the points
$p_{1},$ $\cdots$ $p_{6}$ . The notation for the generators of Pic $X\cong Z^{\oplus 7}$ , divisors on $X$ and
their intersection pairing are same as in \S 1. Let $K_{X}$ be the canonical divisor
class of $X$. Then $|-K_{X}|$ is base-point free. Hence it defines a morphism
$v:Xarrow P^{3}$ . Put $S=v(X)$ . Then the morphism $v$ has the following properties:

(1) $v(\tilde{L}_{t})=x_{i}$ and $x_{1}\neq x_{2}$ , where $\tilde{L}_{i}$ is the strict transform of $L_{i}$ .
(2) $v:X-\tilde{L}_{1}\cup\tilde{L}_{2}arrow S-\{x_{1}, x_{2}\}$ is an isomorphism.
(3) Each point $x_{i}$ is a double point of $S$ .

LEMMA (3.1). Let $C$ be a non-singular curve on X. If $C$ meets each
$\tilde{L}_{i}(i=1,2)$ transversely at only one point, then $v(C)$ is a non-srngular curve through
each szngular pojnt $x_{i}(i=1,2)$ .

PROOF. See [3].

Let $D$ be the divisor class on $X$ of type (7, 3, 2, 2, 2, 2, 2). Then $p_{a}(D)=7$

and $D\cdot H=8$ , where $H$ is the anti-canonical divisor class $-K_{X}$ . It is easy to
show that there are non-singular curves in $|D|$ .

LEMMA (3.2). Let $C$ be a non-srngular curve in $|D|$ . Then $v(C)$ is a non-
singular curve through each $srn_{5}$ular point $x_{i}(i=1,2)$ of $S$ .

PROOF. Since $\tilde{L}_{1}$ is of type $(1, 0,1,1,1,0,0)$ and $\tilde{L}_{2}$ is of type (1, $0,1,0$ ,
$0,1,1)$ , we have $C\cdot\tilde{L}_{i}=1$ . Therefore the statement is obvious from Lemma
(3.1).

PROPOSITION (3.3). Let $C$ be as in the above lemma and $N_{\iota(C)}$ be the normal
bundle of $v(C)$ in F. Then $N_{v(C)}$ is not stable.

PROOF. Since $v(C)$ is a non-singular curve, the normal sheaf $N_{v(C)/S}$ is
locally free, and so $N_{\iota CC)/S}$ is a line subbundle of $N_{v(C)}$ . We have an exact
sequence

$\psi$

$0arrow v_{*}(N_{c/x})arrow N_{v(C)/S}arrow Farrow 0$ .

Since $\psi$ is an isomorphism outside singular points $\{x_{1}, x_{2}\}$ , we get Supp $F=$
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$\{x_{1}, x_{2}\}$ . Hence we get an inequality

$\deg N_{vCC)/S}\geqq\deg v_{*}(N_{C/X})+2=C^{2}+2=22$ .

On the other hand, we have

$(\deg N_{vCC)})/2=2(C\cdot H)+P_{a}(C)-1=22$ .
Therefore $\deg N_{v(C)/S}\geqq(\deg N_{v(C)})/2,$ $i$ . $e.,$ $N_{\iota(C)}$ is not stable.

\S 4. Some comments.

Let $D_{s}^{0}(g)$ be the first integer $d$ such that there is a non-singular irreducible
curve $C$ in $P^{3}$ of genus $g$ , degree $d$ with stable normal bundle and with
$H^{1}(C, N_{C})=0([4])$ .

First we shall claim $D_{s}^{0}(7)=8$ . It is known that $8\leqq D_{s}^{0}(7)\leqq 10$ (see [4]). Let
$C$ be a general non-singular irreducible curve of genus 7 and degree 8 on a
non-singular cubic surface $S$ in $P^{3}$ . From Theorem (2.3) it is sufficient to show
that $H^{1}(C, N_{C})=0$ . We consider the following exact sequence

(4. a) $0arrow N_{C/S}arrow N_{C}arrow N_{S/P^{3}}|Carrow 0$ .

This gives an exact sequence of cohomology groups:

$...arrow H^{1}(N_{C/S})arrow H^{1}(N_{C})arrow H^{1}(N_{S/P^{3}}|C)arrow\cdots$ .
By Serre duality $H^{1}(N_{C/S})\cong H^{0}(N\partial_{/s}\otimes w_{C})^{\vee}$ and $H^{1}(N_{S/P^{3}}|C)\cong H^{0}(N8_{/P^{3}}\otimes w_{C})^{\vee}$ .
Since deg $N_{c/S}^{*}\otimes w_{C}=\deg O_{C}(-1)<0$ and deg $N_{S/P^{3}}^{*}\otimes w_{C}=\deg w_{C}(-3)<0$ , we have
$H^{1}(N_{C/S})=H^{1}(N_{s/P^{3}}|C)=0$ . Hence $H^{1}(N_{C})=0$ .

Next we shall consider projectively normal curves on a non-singular cubic
surface in $P^{3}$ . Let $C$ be a non-singular curve of genus $g$ and degree $d$ on a
non-singular cubic surface such that $C$ is not contained in any quadric surface.
Moreover we assume that $C$ is projectively normal and that $g\leqq d$ . The second
condition is a necessary condition for the stability of $N_{c}$ . This is due to (4.a).

We consider the following exact sequence

$0arrow I_{C}(2)arrow \mathcal{O}_{P^{3}}(2)arrow \mathcal{O}_{C}(2)arrow 0$ .

We have an exact sequence of cohomology groups:

$0arrow H^{0}(P^{3}, I_{C}(2))arrow H^{0}(P^{3}, O_{P^{3}}(2))arrow H^{0}(C, \mathcal{O}_{C}(2))arrow H^{1}(P^{3}, I_{c}(2))arrow\cdots$ .
By hypothesis we obtain $h^{0}(P^{3}, I_{C}(2))=h^{1}(P^{3}, I_{c}(2))=0$ , and so $h^{0}(C, o_{c}(2))=$

$h^{0}(P^{3}, O_{p3}(2))=10$ . By the Riemann-Roch theorem we have $h^{0}(C, \mathcal{O}_{C}(2))=2d-g$

$+1$ , and so $g=2d-9$ . Under the condition that $g\leqq d$ , we have the following
integral solutions
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$(g, d)=(1,5),$ $(3,6),$ $(5,7),$ $(7,8),$ $(9,9)$ .
But a quintic curve of genus 1 isn’t projectively normal. Therefore we shall
exclude $(1, 5)$ . Conversely, there are such curves with above $(g, d)$ (cf. [9]).

From the results of [3], [1], [7] and Theorem (2.3), normal bundles of
general (resp. all) projectively normal curves on a non-singular cubic surface
with above $(g, d)$ are stable. By the results of [4] and $D(7)=8$ , we have
$D_{s}^{0}(g)=d$ for above $(g, d)$ .

$\overline{|_{D\S}^{g}-|_{6789}^{3579}-}|$

Finally, we claim $D_{s}^{0}(8)\leqq 10$ . It follows from Theorem 2 (e) in [4] im-
mediately.
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