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§0. Introduction.

In this paper, we give an explicit representation of the microfunction
solutions of microhyperbolic pseudodifferential equations. Microhyperbolicity is
an important notion introduced by M. Kashiwara and T. Kawai in [4], and
such equations were investigated by [4] and [5] These authors proved the
existence of the solutions in an abstract manner, using a continuation theorem
of holomorphic functions in complex domains. Our aim is to construct the
solutions explicitly to the contrary. The basic idea of our theory is due to
M. D. Bronstein [3]. We extend the arguments of microlocally in the
category of hyperfunctions, and define a very general class of operators, which
will be called Bronstein operators (see § 2 for the precise definition). For that
purpose, we employ a different formulation from that of [3]. We shall show
how the arguments of [3] can be applied when one considers the defining
functions of microfunctions. It will turn out that such an approach is successful,
and we can directly construct the solutions of microhyperbolic pseudodifferential
equations. ,

Recently K. Kataoka [6] gave an amelioration of our [Proposition 4.7 below.
He proved a more precise symbol formula for our operator theory extended in
§4. He also suggests that our theory can be understood from a wider point of
view, and that it can then be applied to boundary value problems. S. Wakabayashi
[10] investigated hyperbolic Cauchy problems in detail, also using Bronstein
theory. Recently K. Kajitani and S. Wakabayashi extended such a theory
microlocally. The author thinks that our construction is more direct, although
the basic idea is closely connected. They also gave a detailed result in the
Gevrey category, and it seems that they also look for applications to boundary
value problems.

To state the main theorem, we give some preliminaries. Let x=
(%1, x)eRXR™"* or CXC"!, and let D=d/ox. If q=Z.={0,1, 2, -}, s€R
and s>1, we denote by CIUR; 9°’(R"')] the space of 9*/(R"!) valued
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functions of C? class with respect to the x, variable. Here 9¢/(R"-!) denotes
the space of ultradistributions (see [8]). Let f(x) be a section of
CUR; 9°’(R"')] defined on a neighborhood of the origin. We consider x, as
a parameter, and take the spectrum of f(x) with respect to x’. Then we
obtain a microfunction on RX+/—1S*R™-! with a parameter x, which we
denote by [f(x)]. We denote by SS’f(x) the support of [ f(x)]. If u(x’)is a
section of 9/(R"-!) defined on a neighborhood of the origin, we also denote
by [u«(x’)] (resp. SS’uq(x’)) the spectrum of u(x’) (resp. the support of [u,(x’)]).
To avoid confusion, it may be appropriate to give a brief review about
pseudodifferential operators (i.e., microdifferential operators). Let A.(x),
acZ? 'YX Z, la|=a,+a,+ - +a,<k, be holomorphic functions defined on a
complex neighborhood X of the origin. If there exists some C>0 such that

| Aa(x)| < CF-en*i(k—]a|)!

on X, we can define a pseudodifferential operator A(x, D)= 41<s Aa(x)D*
defined at (0;0, -, 0, /—1)e4/—1 S*R™,

The principal symbol ¢.(A)x, & of A(x, D) is defined by ¢,(A)x, &)=
Shai=2 Aa(x)%. Let A(x, &) be some holomorphic function defined on a complex
conic neighborhood of (0;0, -+, 0, vV—D&T*C", If A(x, &)~ iaisr Au(x)E?,
i.e., there exists some C;>0 such that for any k’<%k we have

A, )= B, Ad2)e] S OV H k=Nl Eal

on some complex conic neighborhood of (0;0, -, 0, v/—1)&T*C" (which does
not depend on %’), then we say that A(x, &) is the total symbol of A(x, D). If
we have A,(x)=0 provided «,#0, then we denote as A(x, D)=A(x, D),
0 ,(AXx, &)=0,(A)x, &), and A(x, &) =A(x, &). In this case, we consider that
A(x, D’) is defined at 2*¥*=(0;0;0, ---, 0, v/—1)RX~/—1 S*R"*-!. From now
on we always write as A(x, &)~ , A.(x)&’* in the above sense (this time
acZ? X Z).
Now we state the main result. Let P(x, D) be written as

€0.1) P(x, D) = D{"—I-".LZ_:P”’(x, D)Di,
p2

where P¥(x, D’), 0<j<m—1, are pseudodifferential operators of order m—j
defined on a neighborhood of %*. We assume that m>=2, excluding the trivial
case m=1. Let o,(P)x, §) =P +275! o m-;(PY)(x, £)&] be the principal symbol
of P(x, D), and let §=2;(x, §), 1=j7=<m, be the roots of ¢,(P)(x, £)=0 at each
point (x, §). Abbreviating the terminology of [4], we say that P(x, D) is
microhyperbolic in the direction x, at £* if
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(0.2) Re 25(x, &) =0, 1<75m

for any (x, &) RX+/—1 S*R"-! sufficiently close to %*. Our main result is
the following

THEOREM 0.1. Assume that m=2, 1<s<2, s<m/(m—1). Let P(x, D) of
the form (0.1) be microhyperbolic in the direction x, at %*. Let f(x) be a section
of C[R; 9®'(R" 1], and u;(x’), 0=Zi<m—1, be sections of D'(R™ ') defined
on a neighborhood of the origin. Let «CRX~—1S*R™* be a small neighbor-
hood of x*, and assume that SS'f(x)Cw and SS'ux")CoNv/—1S*R"-,
0=:<m—1. Then there exist an open neighborhood w,Cw of x** and a section
u(x) of C*™[R; 9'(R" )] defined on a neighborhood of the origin such that

{ P(x, D)[u(x)] =[f(x)] on w,,

0.3 -
: Di[u(0, x")] = [ui(x"] on @NV—1S*R™*?, 0<i<m—1.

REMARK. Here we emphasize the fact again that the above microfunction
solution [u(x)] can be explicitly constructed. It will be explained in detail in § 5.

Now we give the plan of this paper.

In §1, we give a formal calculation following [3]. Then we obtain some
symbo! function the meaning of which will be explained in § 2. -

In §2, we first define a certain space of holomorphic functions, denoted by
o(£2) there. Then we show that the symbol function obtained in §1 defines an
operator acting on O(f£2). We call such an operator a Bronstein operator. For
that purpose we need to prepare several calculations concerning the Fourier
transformation in complex domains.

In §3 and §4, we give a theory concerning the composition of one pseudo-
differential operator and one Bronstein operator. For that purpose, we
investigate in § 3 how a pseudodifferential operator acts on the defining functions
of microfunctions, following the argument of J.M. Bony and P. Schapira [2].
In §4 we prove the symbol formula of such a composite operator.

In §5 we show how our theory applies to solve the Cauchy problem (0.3}

§1. A formal calculation.

In this section, we prepare some formal calculation analogous to [3]. We
do not explain the precise meaning for the moment. Several technical arguments
are due to [9]. .

Let P(x, D) be of the form (0.1) and microhyperbolic in the direction. x, at
#*=(0;0;0, -+, 0, /—1)eRx~/—1 S*R"-'. Using the local version of Bochner’s
tube theorem, it follows that if C>0 is large enough and (x, &)= C™x C*
satisfies
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C|Rex;| <1, 1<j<mn, Cllmx,| <1, 1£5<n,
oD { Cllm§;| <Imé§,, 2=<;<n-1, C(|Re&;| +1) < Imé&,, 2£;<n,
then we have
12 IRed(x, §)] < = (Im x| I, | +-=-|Re|
for 1<i<m (see [1], [7D.
Assume that (x, £)eC" X C™"! satisfies (1.1) and
(1.3) Re&, > C|Re&’|+Cllmx|- [Im&,| +C|Imé&,|V/*
+C—CY(|Imé;| —C|Imé&a )+

where ¢t,=max(¢, 0) for t&R. Throughout this paper we always assume that
m=2, 1<s<2, and s<m/(m—1). Since D, is an invertible operator at %*, we
may consider ﬁ(x, D)=P(x, D)Dz+?instead of P(x, D). Let ﬁo(x, DY=P,(x, D)Dz+*
be the principal part of ﬁ(x, D), and let Pz, D):ﬁ(x, D)—By(x, D). We have
the following

LEMMA 1.1. If (x, ) C™ X C™* satisfies (1.1) and (1.3) with large C>0, we
have

i) |Byx, &)< Cl&|I™|&,] -,
i) |Plx, &)< Cl&] ™8, ",

i) 1Pz, &) = 518G, 9.

Here ﬁo(x, &), ﬁ’(x, &), and ﬁ(x, &) denote the total symbols of the corresponding
operators.

Proor. If C>0 is large enough and |&,|=C|&,.|, we have

Bux, 1 = 161" IT 1624, 801 2 16171841
and

Bx, O] < ClIm 1™ < 21 B, 9.
Thus we obtain
1Bx, 01 2 1Pix, 91— 1Bx, )1 2 +1Px, 91 2 11611617

We next consider the case [£,|<C|§,|. From it follows that
[ Im§;| = CImé, and Re&,=C(Imé,)"%. We obtain

| Px, &)1 = lénl"*zﬁ(Reéx—Relj(x, §)) =z 2™(Reg)™ €A™
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and
| P/(x, )| £ C'(|Re&|™ '+ |Im&| ™) |&, |+

= C'@RRe&)™ 1 +2C+2)"(mE)™)|&a| "+

< CreReg)™+ ()" Regrenm) 2

where C’>0 is some constant. Noting s>1 and s(m—1)<m, we obtain
lﬁ'(x, E)|§2‘"‘“(Re€1)"‘|§n|"+2§(1/2)[f~’0(x, &) if C>0 is large enough. Now
we have |P(x, §)|=(1/2)| Px, §)| and
| By(x, &)] = 2-™(Re&)™ &, = 2™ C™(Im& )™/ | £, | ™+
2 27O |G| 2 2G| G, QED.

LEMMA 1.2. If C is large and (x, &) satisfies (1.1) and (1.3), we have
i) 10,,(1/Pyx, )] < C?|&,]-™1 &, mre-D0s, 1<j<n,

.. ~ ~ 1 .

i) 10e,Pu(x, &)/Px, O £ 51617, 1=j=n.

ProoF. From Rellich’s theorem, it follows that each 1,(x, &’) is directionary
derivable, and

102,4x(x, §)] < const.|&x],  |0g,44(x, §)] = const.

for 1=<7<n, 1sk<m, if (x, &) satisfies (1.1). (See for the proof. There is
also given a brief proof of Rellich’s theorem. See there.) If
|€,]=C|&,], we have
1 1
ar. ~~ ~
’< Po) PAK

[ax‘jzkl
1[&1— A
< Cl&l ™ &l "

Ms

IA

< Cl& ™ &al 1 2mC |&n] - 16:] 7

]

On the other hand,

axj(-},;)

if & |<C|&,| (and thus |Imé&,|<CImé,), we have
1 m la:cjzk‘
B & Re@— 1)

= < Cl&l ™€l -2mC | £ (Redy)™

< 4mC! || |§a| 1
g Cz l Sl l -m—llsn I -n+(s-1)/s

if C>0 is large enough. Thus we obtain i), and the proof of ii) is similar.
Q.E.D.

LEMMA 1.3. If C>0 is large enough and (x, &) satisfies (1.1) and (1.3), we
have

i) |02,(1/P(x, E)| < C*|&,|-™ &, -mremdis, 1<,
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i) 10:,P(x, £)/P(x, &)] < 18,177,  1<j<n.

PrOOF. From Lemma 1.1, i), we have
.Z‘ﬁ x-ﬁo .ZNI
azj(l)‘<_L13,JS4 102,P] | 4 104,P]

S TR STE ~—+ = ~
Pl | P [Pl [Pl [Pl | Pl

o~

P

We need to estimate the second term in the right hand side. Considering the

cases |&|=C|&,| and |&,|<C|&,| separately, we can estimate this term simi-
larly to Lemma 1.1 The proof of ii) is similar. Q.E.D.

If k=1, 2, 3, ---, we denote by (H), the following condition :

ConNDITION (H),. (x, &) & C"XC™ satisfies
kCIRex;| <1, kC|lmx;} <1, 1£7<n,
kC|Imé&;| <Imé&,, 2=;=n—1,
kRC(|Re&;| +1) <Imé&,, 2<57<n,
Re&, > kC|Re&’|+kC|Imx| - |Im&,|+k£C|Im&, | +LC
—(1/RC)(|Im&;| —kC|Im&x|)s .

We have (1.1), (1.3)e(H),, and (H);=H); if /=7s. It is easy to see that we have

LEMMA 1.4. Assume that 1Sk<m—1, (x, &) satisfies (H)z4, and E=C™
satisfies |&;| S C|Imé&,|Y%, 1<j<n. Then (x, £+ C"XC™ satisfies (H),.

We leave the proof of this lemma to the reader. Now we have

COROLLARY 1.5. If 1<k<m and (x, &) satisfies (H),, we have
182 B(x, £)/B(x, &)] < C¥81]g,| 181
if Bz, |Bl=F.

ProoF. We only need to prove for the case 2<k<m. Assume that
2<I<m, and that the statement is valid if k=/—1. If |B|=/ and §;#0, we
define y by y=(B8,, -+, B;—1, -, Bx). Using Cauchy integration theorem and
Lemma 1.4, we obtain

9:°P os P 07P | | a.,P
=5 = o) [+

P P P

< CHBIG, 1A,

Q.E.D.
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LEMMA 1.6. If (x, &) satisfies (H)m+1, we have
102 P(x, £)/P(x, )| < CH8I|&,]~1#1/5p)
for any BeZ%.

PrOOF. We only need to prove for the case |B|=m+1. If |&|=Cl&,],
from Cauchy integration theorem we have
8:5P ) 2|0:AP)
P | By

IA

= e - e ol - L R M Rt

é Czlﬁlﬂ!lénl—lﬁlls.

If [§1=C|&.], we have

Iaeﬁﬁ 219:°P|
P | B,

I = < 2™+ (Re&)) ™| &, TmR CIAHIBLE| ™| £q| 21 BY

< 24m+1c1ﬁ|+1ﬁ! |‘$n’ -181+m(s=-1)/s
< CURIBLE,|-1Rs, Q.E.D.

The following lemma is also easy to prove and we leave the proof to the
reader:

LEMMA 1.4'. If (x, &) satisfies (H)m+, and X< C™ satisfies | ;1 S C~1|Im&, |19/,
1=5<n, then (x+%, &) satisfies (H)m.

COROLLARY 1.7. If (x, &) satisfies (H)m+1, we have

D) 1931/B(x, §)] S C1o#ral| ] -me1| g, | -rHiaic-brs
for any acZ*!, a+0,

il) 1920:"P(x, §)/B(x, £)] < Cre1+2181a1 BI|&, | DB
for any a, B Z}.

Now let us define the formal parametrix of ﬁ(x, D).

DEFINITION 1.8. We define E\x, §), j=Z,, inductively by
1/P(x, 8, j=0,
| vl 1 1 o~ .
LY Efx, 9 S —o¢P(x, £3%Ex(x, &), szl

P(x, &) w+{gi=i al

We have the following
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ProPOSITION 1.9. If (x, &) satisfies (H)m+1, we have

i) [Eox, ) = Cl&i1"™[&al "1,

ii) [05Ej(x, )] £ COH1 (4 @) |&,| 1™ |&, | TrHce-DitGs=DIad/s
for any j€Z,, acZ?, j+|a|+0.

PrRoOF. We can prove this proposition by induction on j, using
and Corollary 1.7 Q.E.D.

REMARK. The formal summation X7, E(x, §) does not define a pseudo-
differential operator or anything like that. We explain the meaning of the
above symbol in the following sections.

§2. Definition of Bronstein operators.

We first define several function spaces. It will turn out that Bronstein
operators defined below act on these spaces. The defining function of the
solution of the Cauchy problem [0.3) will be constructed using such function
spaces (see § D).

In the rest of this paper, we fix some constants a, d,, b, and R such that
1«a<a,, aad’“P«b and 0<R<Ka;¥¢ P, We define linear functions y=7v(x)
=(1(x1), ¥o(x"), -+, ¥alx”)) and p=nE)=(n:(£1), 128", -+, Na(§)) by

X1, ]':l,
1 n-1 1 1
2.1 yi(x) = m@zxk x1+—1xn, 2<7<n—1,
1 n-1 1 .
(n—1)a kE=2xk+ n—1 Xns J=n,
and
51) ].:1,
2.2) N8 = ( En,—ak;, 257€n—-1,
n-1
$n+a EZSI:, ]:n

It is easy to see that x-§=ux,5,+ x84+ - +x.6,=y(x)-9(§) and x’-&'=x,5,+ -
+x.6,=2'(x")-9’(§), and the inverse functions are given by

Iyly ]:1;
(2.3) x;={ay,—ay;, 2=js=n-—1,
l 2 yk; ]':n’
k=2

and
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771’ J:]-;
—l‘é _l 2£57€n—1
2.4 &= a(n—1) kzznk a N> =)=n ,
1 n
n—1 k§2nk’ J=n,

respectively.

REMARK. From the definition, we have
{f’'ev—1R*; Imé,z(n—1a|Imé§,|, 2=575n—1}
Cc {fev—1R"*'; Imni§)=0, 2<7<n}

- {e’ev:‘l R™'; Imé&,> n—f_l—llméjl, 2§j§n~—1}.

This means that if u.(x’)e #(R™"!) has its singular support contained in a small
neighborhood of (0;0, ---, 0, v/—1)&4/—1 S*R™?, u,(x’) can be represented as
the boundary value of some holomorphic function defined on the “first octant”
{x’eC™1; | x| K], Imy;(x")>0, 2<7<n}. Conversely, if u,(x’) is represented
as the boundary value from this domain, then SS’u,(x)N\+/—1S*R"! is
contained in a small neighborhood of (0, -+, 0, v/—1)&4/—1S* R™! at each
x'ER"'I.

Let J;, i=1, 2, 3, be subsets of {2, 3, -:-, n} such that J;\U,UJ,={2, 3, -+, n}
is a disjoint union, and let J=(J,, J,, Js) be a 3-tuple of such subsets. For each
J, we define 2=C" by 9=\,3,, where

g, = {xERXC"‘l; aay ¢\ x,] <1,
0<a,Imy;(x)<2, a,|Rey(x")|<2, 2<j<=n,
0<ayImx,<1, a,Imx,+a,|Rex,| <1,
Imy(x)>a¢x;+R)maxssicn | Imy (x|, j€ 71,
Imyj(x/)"l"(l/ao)Reyj(x,)—xl—R>0, ].EJZ)
Imy(x")~(1/a)Rey (x")—x:—R>0, jEJ} .
We define 2=\,£2, where
Q,=1{x3,; 0<a,Imy;i(x")<1, a,|Reyi(x)| <1, 2<5<n}.

REMARK. We need to explain the meaning of these domains. For the sake

of simplicity, let us forget the condition

0<aymx, <1, aydmx,4a,|Rex,| <1
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in the above definition of 2, (and thus of £). Then the cross section of £ in
the y;(x’)-plane is the shaded domain in Figure 1. In fact, assume that for
each j, 2<7<n, y,(x’) belongs to the shaded domain. Then y,(x’) belongs to
one of the three domains I, II, and II, described there. For such a point x,
we define J=(J,, J,, Js) as follows: Let 2<j<n. If y,(x’) belongs to the
domain I, we let j belong to J,. If y;(x’) belongs to the domain II (resp. II),
we let 7 belong to J, (resp. J;). Then we have x=J,, omitting the other
conditions. Roughly speaking, £ and £ look like the “first octant”
{x€RXC™1; |x| <], Imy (x")>0, 2<j<n}. Although 2 and 2 do not cover
the first octant, they are very close to it. Let u(x) be a continuous function
defined on @ or £, holomorphic in x’, and consider the corresponding micro-
function (with a real parameter x,). Let x& R™ be near the origin, and consider
the stalk at x of the support of this microfunction. This stalk is contained in
a cone which is a little larger than {{’€+/—1 R™™*; Im7,(§)=0, 2<j<n}, and
this cone again is a small neighborhood of (0, -, 0, +/—1)e4+/—1 R*}, in the
original coordinate system.

A Im yi(x’)
7 2/a, \
/// NN
X+
/ff(\m\
&
—2/a, 4 —a(x,+R) |0 ao(x1+R)\ 2/a, > Re y,(x")

e = (ao(x1+R)max IImyi(x’)l>
ZSi;.Sjn +
Figure 1.

If s>1, we denote by ©**(2) the set of all continuous functions f(x) defined
on 2 which satisfy the following conditions:

i) For each x, fixed, f(x) is holomorphic in x’ if x&Q.
iit) f(x)=0 if x,<0.
iii) There exists some constant C>0 such that

[ f(x)] = Cexp{b(x1+R)“’“‘”géz}X(lImyj(x’)l -i/Gs=1)}

if x9,, for each J.
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We define max,es,(|Imy;(x")|/¢-2)=0 if /;=¢@. Thus the estimate required
in the above condition iii) means | f(x)|<C if /;=@. 0"%(£2) is a Banach space
whose norm is defined by

[ f(x)lloo-scy = m;lX(sup (l f(x)lexp{—b(x1+R)s"s"’ I}leg)lc(llmyj(x’)l “”‘s'”)})).

If g Z,, we define ©-2%2) by
0~25(2) = {Dif(x); f(x)=O™(D)}.

Here the derivation should be taken in the sense of distribution. We define
0-%(D), g=Z,, just in the same way (2 replaced by 2).

REMARK. Assume that u(x)=C[R; 9®/(R™*)] satisfies u(x)=0 if x,<0,
and that SS’u(x) is contained in a small neighborhood of #*. If b is large
enough, u(x) can be represented as the boundary value of some function
v(x)=0%%2). Conversely, the boundary value [v(x)] of v(x)=O>%(Q) is a
section of C°[R; 9*/(R™"Y)]. Furthermore, SS’[v(x)]N({x:} X~/ —1 S*x R*-Y) is
contained in a small neighborhood of (x;0, -+, 0, vV—1)& {x;} X~/ —1 S* R*-1
~+/—1S%* R*! for each x=R".

Let us denote the spectrum of [v(x)] also by [v(x)]. Assume that a pseudo-
differential operator P(x, D) of the form (0.1) is microhyperbolic in the direction
x; at 2%, In §5, we will prove that for any f(x)=0©"%(2), there exists some
v(x)€0%(2) which satisfies P(x, D)D2**[v(x)]=[f(x)] at #*. Using this fact
we can construct the solution of

The space 0% %) has essentially the same property as O"*R).

We define the partial Fourier transformation f(x, EN=(F grae [)x1, §) of
f(x)e0”(2) by ‘

i er =1, e ey
K

where K=(K,, K,, K,) is a 3-tuple as above, and

[y = {r'eC*; |Rey (x| <aori+aR,

Imyj(x’)-——-min(xl—l—R—ail Rey;(x")1,
0

(x‘+R><<s—1>kesz|Imnk<s'>|)(Hm)' 2 %n},

(see Figure 2).
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Im y,(x")
’/” x1+R .
/ - I = \
€
7 ¥ > Re y;(x7)
—a|(x;+R) 0 ao(x;+R)
N b s=1)/3
e = (x1+R)( ( )

s—1) 23 |[Im%,(&")]
kEK
Figure 2.

If <0, we have f(x,, &)=0. Assume that x,>0, x'€l'x, and Imz,§)=
ao|Ren (&), 2£7<n. Then we have

o= ¢ £()| < [ f(Dovrcarexpfprt R (g ) (5 Imn€n)”

JEK

+_ 3 (Imyx)Imy,E)—Rey (x)Ren N}

JEK1VKVUKy
Using |
Kzl (Imy;Im»;—Rey;Re7;)
b \G-Dis /s
é(s—l) <x1+R>(KEIImm) +ayx+R) Z IRen;|
and

K;‘\;,‘Ka(lmyjlmm—Reijenj)
< (x +R—i]Rey~|)Irnn-— > Rey;Ren;
= kiTk\ ! a, J T kR, 7 I

< (x+R) 3 Imy,,
VK3

we have the following

PropoSITION 2.1. If f(x)€0>%R2), aay“"|x,| <1, and Im9ni§)=
ao|Ren, (&N, 2£7<n, we have

@5  1f(en & S 1@l expl(c2g) " s+ R(Z )
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+aox,+R) | Ren ()] +(x,+R) 3] IImm(E’M}
K KyoVUKg
for any K. f(xi, £€)=0 if x,<0.
Let us define UCC"XC™ by

={(x, 92X C™; aRey (I <4, aollmyx)| <4, 1<j<n,
1 .
Im7,€)> 7 ao([Ren,(§) +1), 2,

Re&:>¢(3(x), 7€) —as*(|Imé&i| —ao 33 [Imyu(@I) },

where
’ Ao n
oy, n)——~—4 g [Ren;|4+— (maxllmyJ)J_Z:ZlImml

NI S

Roughly speaking, (x, §) U when (x, &’) belongs to a small conic neighborhood
of %#* and Re¢, is very large.

We say that Q(x, &) is a symbol (of a Bronstein operator) if Q(x, &) is
holomorphic on U and satisfies

(2.6) 1Q(x, &)1 < Col&1| 1+ &R 7"
with some C,>0 and /=Z, on U.

REMARK. If a and a, are large enough, the functions Ex, §), j&Z,,

defined by are symbols in the above sense. If Q(x, &) is holo-
morphic on U and satisfies

(2.6)’ 1Q(x, ) = Col&ul™ [€a1™

with some C,>0 and m’/, m"eZ., Q(x, &) is a symbol because we have
|&,]>1&,1"* on U, and thus [2.6) means

(2.6)" 1Q(x, &) = Col&,|™ eemmm g, |-,

Let Q(x, &) satisfy with [=0. We define the partial inverse Fourier
transformation Q(x, %, §)=(F¢,.:,Q)x, %, &) by

@D QGx, 21, 8) = =l P10, B,

where 0={§€C; Re&,=¢(y(x), 7/(E")+1}. It is easy to see é(x,'%l, &N=0 if
%,<0, and that we may replace this path with
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5, = {£:2C; Re&i=g(3(x), 7'€")—ai*(|Imé| —a, 5 Im7,§)) +¢, Im&, =R}

for any ¢>0, if #,>0. Here %, is a copy of x,. We define UCC*XRXC"* by
U= {<x, %1, )€ C*XRXC™; a,|Rey,(x)] <4, a,/Imy (x)| <4, 1<j<n,

0ol 1] <4, Im (87> Z-(IRen, (€| +1), 255<n}.

Then we have the following

PROPOSITION 2.2. If Q(x, &) satisfies (2.6) on U with [=0, we have
(2.8) 1Q(x, &1, &)] < 4na§/"Co| %,| 71" | £, ]~/  exp{£:(¥(x), '€}
on U. We have Cj(x, x4, €)=0 1f %,<0.

ProOOF. The second statement is trivial, and we assume %;=0. Let ¢>0
be arbitrary. If 1+|Imé,|<2a,37,|Im»n(&)]|, we have |§,|=(1/2(n—1)a,)
X1+ |Imé&,]), and thus :

(2.9) |e551Q(x, )] < 22(n—1a)"Co(l+|Im& )1
X [§a] 7" exp{Eap(3(x), 9/ (EN)Feda}.

On the other hand, if 14|Imé&|=2¢,37%./Imy,&)|, we have |Imé,|=
ao 2%, |Imn,;(&7)| and thus

(2.10)  |e"h1Q(x, &)
< Gol&al16a] = exp{ E:(3(x), 7€)

— %105 Imé, | — a0 3] [Imn,¢))+eks}

< GColéal &Rl eXp{flsb(y(X), n’(E’))—%aag(IImfxl+1)+efx}
< Coad™ | 24|V A4+ Im & )Y 611 MR " exp{ X P(¥(x), 9'(§")+ei}.
Combining and (2.10), we obtain

|5141Q(x, &)] < 2Coal/™| H2] ML+ Im, ) 11m g, -
Xexp{£:0(3(x), 7€ N+eki -

Letting ¢—0, we can prove (2.8) directly from this estimate. Q.E.D.

Now we can define Bronstein operators. If f(x)e©*%(2) and Q(x, &) satisfies
on U, we define Qz(x, D)f(x) by
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Q1) Qulx, D) = i, 67900, 1 €0fmi— ., )d3,d8

2r/ —1)* )4

where
4y ={g'eC1; Iny€)>a, Reni€)=0, j</,
Im9,&)>a,, Ren&)=—1/a)(ImnE)—a.), jE€],,
Im7,(¢)>as, Ren¢)=(1/a)my&)—a0), jei}.

Since Q(x, %, £)=0 if #,<0 and f(x,—#,, £&)=0 if x,—%,<0, the integration
is taken over 0<#%,<x,, and thus Qz(x, D)f(x)=0 if x,<0. If 0<%, <x,, x=$,
and &’<4;, from (2.5) and (2.8) we have

le®' ¥ Q(x, %1, &)f(x,—%,, &)

<Unay/"Coll f(x)ov.scar| #1177 1§, -7 40m

xexp{(<2) " stei— 1 RS 1mpe1)”

F(—%+R) 3 |Imp,E) | +-22%, 33 |Reni&")]
Jaud g 4 500,

+ (max Imy,(x")] ) 2, Im7@)

Qo

Th
a, . /s
+7a0(, 2 lImm(é)l) + 5

- Imyj<x'>1m77,-<s'>+J 3, Rey(x)Re/¢")}

J VT
< dne”ad"Coll f(x)]| 008y | By | TV &5 | TP HYT

xexp{(<2p) 7 str— 4 R tmen)

a,

- B(DImE0) — Dimy () ImyE)

25, (max [1my, (1) T 1m0}

1 /s
xexpl—7 % 3 Imy, @)+ 5(, 3 mn,e1)" .
“YJg
Note that if ¢y, €,>0, we have

(2.12) HtlfoX(—ClH-czt”s) = (s—1)s~8/G=D =D ps/s-1)

Using this inequality, we obtain
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(2 st RS mn @)+ G52 1maen1)”

— S Imy (x)Im 9 &)+ % (max [ Imydx)] )5 Im €

s Ao G2 T s R (S ma 1) = Bimy (im0}

x,
x,+R
< b(xy+R)¥ - Pmax(Imy (/)| <),
1

+ {2 (it R 1tmngenl) "'~ Dlmya) Im €}

Here we have used the assumption 6> al/*-?, Similarly, we have

1 . , a, . , 1/s
— 75,3 Imp @) a8 (3 1my,@)l)

< %(s—1)3’3/““1%13’“"’;?1 <1.

We note that

60140 < (Img)-mrm < T (RIS

j=2 n—1
Summing up, we obtain
le= ¥ Q(x, %1, &)f(x:— %, &)

< dne*ai/m Coll f (X)) 00 5¢0y | £ 7" Jli ((lan—j‘(lé,)—)-l—”n>

Xexp{b(x1+R)s/(s—1>m?lx( |Imy(x”)| _1/(3_1))} ‘

If x=, we can thus integrate (2.11), and it follows that Qx(x, D)f(x)=0® ()
co%¥() if f(x)e0"%(2). Furthermore, the above estimate shows that

(2.13) 1Qs(x, D)f(x)l00setr = ai’™ Coll f(X)ll 00>

We call Qg(x, D):0%5(2)—0"*(D) (CO*(RQ)) a Bronstein operator (in the strict
sense). More generally, let é(x, %1, &) be a continuous function defined on
Uy={(x, %, &)U ; xR} which is holomorphic in (x, &). Furthermore, assume
that 1) Q(x, %,, &) satisfies (2.8) on U,, and ii) Q(x, %, &)=0 if %,<0. Then
the integration (2.11) is well defined if x=2,C0,, and we obtain a function
Qx(x, D)f(x)=0*%(2). In this case we have

(2.13) 1Qs(x, D)f(x)lo0scr = ad’™ Coll f(x)]00- 50>
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This time we call the operator Qg(x, D):%*(2)—-0%%(Q) thus obtained a
Bronstein operator in the wider sense.

Now let Q(x, &) be holomorphic on U and satisfy with a general [ Z,.
Then the integrations and (2.11) can be defined in distribution sense with
respect to ¥,. A similar argument as above shows that Qg(x, D)f(x) thus
defined belongs to ©-%%(@). We also call this operator from ©°%(R2) to ©-5(3)
a Bronstein operator (in the strict semse). We have proved the following

PROPOSITION 2.3. i) Let Q(x, &) be holomorphic on U and satisfy (2.6) with
[=0. Then we have Qg(x, D)f(x)=0" () and (2.13) holds.

i)y Let Q(x, %1, &) be a continuous function defined on U, which is holomorphic
in (x, &). If é(x, %, &) satisfies (2.8) on U, and (:)(x, %1, £)=0 for %, <0, we
have Qg(x, D)f(x)e0*%(2) and (2.13)" holds.

iii) Let Q(x, &) be holomorphic on U and satisfy (2.6). Then we have
Qs(x, D)f(x)=0™ (%)

REMARK. If f(x)e0%%(2), we can also define the Fourier transformation
(F z-ef)E) of f(x) with respect to all the variables. We might have defined
Qz(x, D) more simply by

1
(2.14) Qalx, D)f () = g | o™ 4QUx, )T a-a/EVE

(This definition coincides with the above one.) But to get a slightly better
estimate, we prefer the above definition.

§3. Action of pseudodifferential operators.

Let A(x, &) be a total symbol of some pseudodifferential operator A(x, D)
defined at #*<RX+/—1S*R™-!. Since A(x, &) is holomorphic on a domain
containing U, A(x, &) defines a Bronstein operator Ag(x, D’): 0% (2)—0-t(H)
with some /= Z,, as was explained in §2. In this section we consider another
action of pseudodifferential operators, also on the level of the defining functions
of microfunctions. This action was defined by [2] and [4], and we discuss
following the arguments of [2].

Let I'eZ,. Let Ao (x), a’'€Z2*XZ, |a’'|=a,+ - +a,<!’, be a sequence
of holomorphic functions defined on {C|x|<1} such that

@.D | A (0)] £ CV-onti(l'—|a’ !

there. Here C>0 is some large constant. Let A(x, &) be a holomorphic func-
tion defined on {(x, &)EC X~/ —=1S*R™'; C|x|<1, 4C|&|<|&,], 2<7<n—1}
such that
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(3.2) Ax, &)~ 3 An(g™.

(See §0.) Let f(x)eO“"([}) and %,=+/—1a;!. We define Ax(x, D) f(x) for-
mally by

(3.3) Astx, D)f(x)
= 3, ADT )+ B Aw()|) " | D7 [ - d.
an20 an<0 n n

In the first summation, D* denotes the usual differential operator. In the sec-
ond summation D% denotes the usual differential operator with respect to
x"=(x,, -+, xq-1), and the integration is repeated —a,>0 times. Here we
inherit the notation As(x, D’) from [2] (X denotes the hypersurface x,=
/=1 a3"). Let us prove that [3.3) converges on 2C@. The first summation
is a finite summation of the derivatives of f(x), and thus we only need to
prove the convergence of the second summation. We first prepare the following

LEMMA 3.1. If x€Q and ¥’'=C"* satisfy
(3.4) Zo=r(Rn—xa), 0<r«1,
(3.5) %] £ —ImZ%,, 2Z;=n—-1,

then we have
i) Imy () >0, 2<;<n,
i) (xy, x’+3Ne 0.

PrROOF. i) From and it follows that

1n2 1 1 n—2
(3 > — . ~ - ~ -~ ~
Imy () 2 —— %, %y [+ —Im#, 2 (=p — 2 )ImE. > 0
for 2<7<n.
ii) From [2.1), [3.4), and [(3.5), we have
(3.6) IRey (%) < Im%,, Imy (%) < Im%,,

for 2<7<n. For each J, let us prove that if xQ, and %’ satisfy and
then (x,, x’+%)=Q,. Using i), [3.4), and [3.6), we obtain

3.7 0 < aolmy,(x'+%) <2, a,|Rey(x'+&) <2,

for 2<7<n, and
(3.8) 0 <am(x,+%,) <1, adm(x,+%,)+a.|Re(x,+%,)| <1.
From [2.1), [3.5), [3.6), and the definition of £, we obtain
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(3.9) Imy (x'+%")— ao(x:4R) | Imy«(x'+ %]
= {Imy(x)—ao(x,+R)|Imy(x")|} +{Imy (%" )—a.x,+R) | Imy;(%")|}
> Imy(2)—au(x:+R)|[Imy(%)]

(nil-g—:/%—aio)lmf,»o,

for j&/;, 2<i<n. Similarly we can prove

(3.10) Imy,-(x’+i’)+aLoReyj(x’—l—i’)—x,—R >0
for je/,, and

3.11) Imy,-(x’+£’)—aioReyj(x’—}-E')—xl——R >0

for jeJ,. (3.7)-(3.11) means that (x,, x’+%")=2,. Q.E.D.
Using Cauchy integration theory, we obtain the following

COROLLARY 3.2. If x€8 and t=r(%,—x,)+x,, 0<r<1, we have

n la®l
B12) Dz, 20+, 2o, D) S (gmamay) | @ @lenec

xexp{b(zi+R)*-Pmax(|Imy (x")| -/}

We define (A))s(x, D")f(x), j€Z,, by

(Apx(x, D)f(x) = m;%_jAa,(nS::--- LD FQ)dxn -+ do

T (x,,—t)"""*l

- '?é;rjAa,(x)Sin s G (CE

la’ |
a

Here we have omitted the finite number of terms with «,=0. If ;j=/’+1 and
xe8,;, from (3.12) we have

I(Aps(x, D) f(x)]
< 3 cremi(g=) " el @l ||

la’ 1=l —j
an<0

T xa—t| "7}

ty (—a,— DI (M= za)edl

Xexi’{b(xl—}-R)““‘l’n}ax( IImy,(x")] -1/(3-1))} .
1

Since we can take the path of integration in such a way that |x,—¢| <2Im(t—x,)
on that path, and since we have |%,—x,]|<2a;!, we obtain
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(Aste, DI S B ol -ngcm(ffc) eI AL

Xexp{p(x,+R)e-max(|Tmy (/)| ¢t}

1)l 005550

< 20V +1( ZC )

Xexp{b(xﬁ—R)‘/“‘Drr}ax( I Imyj(x/)l —1/(3—1))} ,

1

if x€8, and aq, is large enough. Thus (A4,)s(x, D")f(x)€0*%2) and we have
/ vaf 2€C , )

3.13) I(4)s(x, DY (Rlovscor < 2O (= ) VU £ 005

if j=I’+1. Since a,»>a>C, X7 +:1(4)s(x, D) f(x) converges in ©*%(2). Thus
we have proved that if A(x, &) is a symbol of a pseudodifferential operator of
order <—1, As(x, D")f(x) is well defined on the domain 2. If I’>0and A(x, &)
is a symbol satisfying it is easy to see that
As(x, DY)f(x)= =  DF((Cp)slx, D)f(x))

B’ ez+‘

187 1ST/ +1
where Cg (x, &), |B’I|£I’+1, are finite number of symbols of some pseudodif-
ferential operators whose orders are —1. Thus As(x, D) f(x) converges on £,
and we have the following

PROPOSITION 3.3. If f(x)€0%%(2), As(x, D")f(x) is well defined on 2, and
is a continuous function holomorphic in x’ (we denote by O(R) the space of such
functions).

From [(3.13), we have the following

PropoSITION 3.4. If N>O0 is large, we have

3 (A)s(x, D)f(x) € (@),

J=N+1

Furthermore, for any €>0 there exist some N and a, (which are large) such that
we have

“:’=%+1<Af)2(x’ D) f(x)

= el f(x)lleoses.

0% 3¢

REMARK. In the above arguments, we need to have shrunk the domain of
definition of the functions. This is because we do not have chosen the domain
$ to be “flat” in the terminology of [2]. But this loss does not trouble us
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at all.

IProposition 3.4] insists that the summation of very low order terms defines
a very small operator from ©"%({J) to 0%*(RQ).

Let A(x, &’) satisfy and let /=sl’+sn. We have proved in §2 that

A(x, &) defines a Bronstein operator
Ag(x, D'): 0% D) —> O~ +4(D)CO (D).
o™ 4(Q)

Thus both Az(x, D’)f(x) and Ax(x, D")f(x) are well defined on £, if f(x)eo Q).
We can prove that taking the spectrum with respect to x/, these two functions
coincides as a microfunction at z* In and [4], it is proved that
[As(x, D) f(x)]=A(x, D")[f(x)] at %*, where the latter A(x, D’) denotes the

usual pseudodifferential operator acting'to the microfunction [ f(x)]. Thus we
have

(3.14) [As(x, D)f(x)] = Az, DLF]

at £*. Since we do not use such a general fact in this paper, we omit the
proof of the above statement. Only a very special case of when A(x, §)=1

is necessary for us. Let us consider this case more precisely. We define 9,2,
2Zk<n, by

0,82 = {xeRXC"*; aal/* | x,| <1, |Rey(x)|<adx:+R), 255<n,
ao(x,+R)max [Imyy(x')| <Imy(x")<R, 2<j=n, j+k,
Imy,(x)|<R}.

Let us denote by ©(0,2), 2<k<n, the spaces of all continuous functions on
9.2, holomorphic in x’, respectively. If one takes the spectrum of such a
function, with respect to x’, one obtains a microfunction which is zero in a
neighborhood of £*. Let us denote by 1z(x, D) the Bronstein operator defined
by the symbol which is identically equal to 1. Then we have the following

PROPOSITION 3.5. If f(x)=0*%8), we have

1s(x, D)f(x) = f(x)  modulo éi 00,9).

We can directly prove this proposition. Since the proof is easy, we omit it.
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§4. Composition of a pseudodifferential operator and a Bronstein
operator.

Let A(x, D’) be a pseudodifferential operator of order // and let Qz(x, D)
be a Bronstein operator (in the strict sense). Assume that Q(x, &) satisfies
with /=0 on U. Then we have

Qx(x, D) - As(x, D)

") ————— > 0" () —————— > 0(9).

The purpose of this section is to give a calculation of the composite operator
As(x, D)Qg(x, D). We first give a preparation.
~ Assume that Q(x, &) is holomorphic on the following domain DU :

={x, e CmxCm; a2 |Rey (0] <1, 1),

as’ P Imy(x)| <1, 1=j=<n,
Im7,6)>(a0/4)|Re 7€)1 +(ao/4), 25,
Re:>(L/2¢(y(x), 7€) —ai(IImés| — a0 Shallmna)1) |-

(Roughly speaking, (x, &)ell when (x, &) belongs to a small conic neighborhood
of #* and Reé&, is very large.) We have the following

LEMMA 4.1. If (x, &)U and ¥'=C""! satisfies

1% < —2=(max [Tmy(x)1 ) +v/a (3 1€ &)™, 2=jsa-1,

2<tsn

4l = 5 (max 1y ()] )+ o=( B 160) 7,

then we have (x,, x'+%/, 5)6[7.

We leave the proof of this lemma to the reader. Cauchy integration theo-
rem gives the following

COROLLARY 4.2. If Q(x, &) is holomorphic on U and satisfies (2.6) with (=0
on U , we have

@D 195Q, O] £ Cul&il~Ealma e
X (5 (max et )+ = (B 1) )

2<isn

for any a’'eZ7 ' on U.

A trivial modification of the proof of Proposition 2.2 gives the following
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PROPOSITION 4.3. If Q(x, &) is holomorphic on U and satisfies (2.6) with
[=0 on U, we have

@4.2)  102Q(x, %1, &) < 4nal/"Co| %,| 1" |&, | "+ P a @ @)

xexp{Z:¢p(y(x), n’(EN}

X(nil (max lImyi(x’)[)_*__\/l_E(éz g, I)(l—n/s)_]a,l

25isn

~

for any a’'eZ7%"! on U.

Let A(x, &) satisfy the asymptotic expansion We assume that A, (x)=0
if |a’|<l’—N—1, for the moment (N=!’+1 is large enough). If f(x)=0"%Q),
we have

4.3)  As(x, D"Qs(x, D)f(x)

= 2 Acwp(|,

0sla

[ o0, 2, ntni— %, §)d7:02")

J

x X v A
+, 2 A0 (], § e, 51, @070, €0d5,027)
U'-Nsia' ISl Iy Iy 45JR
ap<o0
Xdxy - dx, .
It is easy to see that we can apply the chain rule to the first term, and thus
this term equals to Qx(x, D)f(x), where Qx(x, D) is a Bronstein operator defined

by the symbol

1 .., A
Qx, 8= 2 2 0k (A (x)6)0% Qx, &).
rezn-! os:xc;;zlosl' 7
We can thus easily calculate the symbol of the first term in (4.3), and we only
need to consider the second term. For this reason, we assume that a,<0 in

the asymptotic expansion from the beginning. Then we have
(4.4)  AzQsf(x)
ap-1

=B, A, e
v-NiTaisy E,J47)R (—a,—1)!

X(é‘f‘ax)a’é(xl, “ty Xneny b Xy, 5,)]?(951“‘%1, 5’)d3~51d6ldt

Snex' ¢ Qa’ . ﬁ”,r'(x: fl: $/>f(x1_£b El)dfldél .

U'-Nsla' IS_Z’SAJ
an<o0
ﬁlr+rl=av

Here we have defined @, 4. (%, ¥, §), acZ}?*XZ_, ", "€ Z%}*, by
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@a’,ﬂ",r"(x: f1) E,)
a’! fontma=tren

= AR T e, T

Let us write é(t)zé(xl, coy Xa-1, B, X1, &), to avoid a heavy notation. Integrating
by parts, we obtain

et =838 Qxy, + , Xnony by Ky EdE.

4.5 D, prplx, 1, &)
N+lyri-i-tr g’

(Xxp—1t) %n!
k=0 ﬁll‘rﬂl

e A ()8 [e(t Endéng=1-k(— 3)1:( D

aﬁ'Q(t))] o

=2y

A (x)éy'fé—N 177+

p ’ (xn t)—a -1
XS e(t—ﬁn)en —0 Najyym -t N\&2m %7
-‘En ( C) ( (_'an )

ﬁ/[' //‘
28Q(t))dt

= @}ll LB, T’+ Qi' , ﬁll.rll_l—@il LB

where

. 1
.ﬁ",r”(x: %, &)= 2, , R7\ \
Osk%_lfg-éillz—ol-l B"Wk+4a,+1)!

XL OE: n (A (x)6 0L 21 Qx )

4.6) 0%

Ntlpit-1-1 g’

@D 0% gz, £1, &) = — - Ao (2)7 e Cn-Tméng 1ok

(Xn t) “n-?
[( at)k(Ta Q(t))]t £
48) D% gz, By £ = ﬁfm. A (x)ErgzN -1+
Zn o f (Xa—1)"n71 o«
=-zp)en( QNN +1771-1 B
Xsf,f (—8,) () d)dt
Let us define @%(x, %, &), 7=1, 2, 3, by
(4.9) Oh(x, %1, &) :—v+z'§ iap D prp(x, %1, &)
: an<%
ﬁ”+r”=a"

From (4.4)-(4.9) we have
As(x, DNQg(x, D)f(x) = fi(x)+fo(x)+fs(x)

where

Fix) = SAJSR“' & Dh(x, %oy EVF(x1i— Ry, E)dF L7,

j=1,2,3. From (4.6) and we obtain
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=1

"+lal l-1871 ]
>

& Waé” E(Ap (080808 Qlx,).

(4.10) @iy',ﬁ",r"(xr f17 S,) = Y

(4.10) shows that f,(x)=QF"(x, D)f(x) where QF(x, D) is a Bronstein operator
(in the strict sense) defined by the symbol

(4.11) QM(x, )= 3 i

"
N+Uslat 12l -
l ll ‘8

08 (Aa (26108 Q(x, &).

We next consider f,(x). Note that if (x, %,, §)e U, we have
1
(En-zp)én —_——R — .
(4.12) |ectn=rntn| < exp{—|ka—al - 1Eul}.
A direct calculation using (4.2), (4.7), [4.9), and shows that
(4.13) | @%(x, %1, )] = a¥/"CoN |~V [Ea |V "4 Ry — 20 |7V
1 ~ 14 14
xexp{— g1 £ xul |al 2P, 7/ ENapets} -

If x€0,02, (x, %, &)U, and 0<%,<x;, we have

1

. Xn— =
(4.14) |£n—xa] 2 7,

’

and

(4.15) LZ:0(y(x), 9§ )]ap=2, _S_g IRen (&) +ao‘”("“1’j=§2 [ Im 7§71 .

From (4.13)-(4.15) we have
(4.16) | D%(x, %1, )| < ad/"Co(2a0)Y NI %, | 1" |&n |V

xexp{ 33 IRe7,(&)| =R 3 lIm 7€)1}
If 4,={cv—1R"";Im7,&)>a, 2<j<n}, we have

fule =, | o= ¥ O3(x, 20, €0fei— 50, 0205

From [4.14) and [Proposition 2.1 with J,=J,=@, we can easily prove that
f2(x)€0(0,2), and thus this is a negligible function (in fact we can easily prove
that f,(x) is real analytic).

Finally, let us consider fy(x). From (4.2), (4.8) and we can
directly prove

\@%(x, X1, )| < ad"CoBvV @)YV (N+ F, | V™|, | -mHUm-(N=ID/s+ 4D (s-D/s
Xexp{Z:(y(x), ’(¢'N}
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on U, Since |&,|=a, on U, we have
1940, 5,01 = a0 0) ot v
X7V Enl T exp{Z.g(¥(x), (€7D} .
We can choose N and a, large enough in such a manner that we have
(4.17) [D%(x, %1, )] < a5t £,]7Y" &, | " exp{E1(y(x), (€N} .

From Proposition 2.3 it follows that fy(x)=R{"(x, D)f(x) where R§>(x, D) is
a Bronstein operator in the wider sense, and we have [|[R§V(x, D)| o0 5¢0r-0% 52>
=<a;'. We have thus proved the following

LEMMA 4.4, If Ay (x)=0, |a’|£—N+1U'—1, we can choose N and a, (which
are very large) in such a manner that we have

As(x, D)Qa(x, D)f(x) = Q§"(x, DIf(0)+R§ (x, D)f(x)  modulo & 0@:2).

Here QF(x, D) is a Bronstein operator (in the strict semse) whose symbol is
defined by (4.11) and R§(x, D) is a Bronstein operator in the generalized sense
which satisfies

(4.18) [RE(x, D)oo scr005c0 = ag’.
Now we consider the general case without the condition A, {(x)=0,
la’| £—N+1’—1, which was assumed thus far. We define A%(x, D’) by
N
As(x, D) =;§0(Aj)z(x, D)

and A%x, D’) by A%(x, D")=As(x, D")—A5(x, D). Ax(x, D) satisfies the
assumption of and we can calculate A5(x, D)Qg(x, D) as above.
On the other hand from [Proposition 3.4 we have the following

LEMMA 4.5. If N and a, are large enough, we have

| A%(x, D)Qs(x, D)lieo.scar-005» = a5".

Combining Lemma 4.4 and Lemma 4.5, we obtain the following

PROPOSITION 4.6. Let Q(x, &) satisfy (2.6) with =0 on 0. We can choose
large N and a, in such a manner that if f(x)€0*%(8Q), we have

4.19) As(x, D)Qgs(x, D)f(x) = QF"(x, D)f(x)+R*™(x, D)f(x)
modulo g’”:;z@(akm.
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Here the symbol of QF"(x, D) is defined by (4.10), and we have

IR (x, DYoo scarnot ey < 2a5t.

We write As(x, D)Qz(x, D)=Q§(x, D)+R“*(x, D) if [4.19) holds. Prop-
osition 4.6 means that we can calculate the composite operator of Asx(x, D)
and Qpz(x, D) “approximately” by the usual chain rule. We have another ver-
sion of this proposition which is more convenient for us.

PROPOSITION 4.7. Let Q(x, &) satisfy (2.6) with [=0 on 0. We can choose
large N and a, in such a manner that if f(x)€0"*2), we have

As(x, D)Qa(x, D)f(x) = Q"(x, D)fR)+R™M(x, D)f(x)  modulo & 0(6,2).

Here Q§7(x, D) is a Bronstein operator (in the strict sense) defined by the symbol

(4.11y Ik, &)= 3 —

o FTOE Al €908 Q(x, ©),

and R¥(x, D): 0%%2)—0"%(2) satisfies

IR¥(x, D)|eo-scormotscoy < 3a3".

ProOOF. From and [4.11Y it follows that Q¥ (x, D)—Q§(x, D) is a

Bronstein operator whose symbol is

Q(N)(x) E)—G(N)<x: §)

1
= —— 9B [ -
|ﬁ'§1v B! o <A(x, £
pezl~!

A (0F )08 Qlx, €).

1B I ~N+l's|ar sl

Since A(x, &’) satisfies the asymptotic expansion [3.2), from (4.1) it follows that
there exists some C,>0 such that

QM (x, &)—QM(x, )| < CYHNI|& | H&al VY5,
on U. Since |&,|=a, on U, we have
|Q¥(x, §)—Q™M(x, ) < a7 ¥"|&|7&a] "
on U, if a, is large enough. From [Proposition 2.3, we have
1Q¥(x, D)—QE(x, D)|oo.scar-005er < a7*.

We only need to define R™¥X(x, D) by R™¥™(x, D)=R¥(x, D)+Q¥(x, D)—
Q8" (x, D). Q.E.D.
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§5. Construction of the solutions.
We first state the féllowing

THEOREM 5.1. Let a, be large enough. For any f(x)e0%%(82) there exists
some u(x)=0™(2) which satisfies

By(x, Dyu(x) = f(x)  modulo ;ézo(akg).

Before proving this theorem, we explain the precise meaning of the formal
calculation of §1. Let N>0 be large enough. We consider a finite summation
E(x, &) =32 ,E{x, &. This symbol E(x, & defines a Bronstein operator (in the
strict sense) Eg(x, D). It follows that if f(x)e0o*%(2), f’z(x, D)Eg(x, D)f(x) is
well defined on £. Let us consider the composite operator ﬁg(x, D)Eg(x, D).
We remind the reader that

Py(x, D)= Di=*Dy+ 5 (F)s(x, D)D)

where (ﬁ”’)g(x, D)=(P9)s(x, D")D2**, 0<j<m—1. Since Di**DT is only a
differential operator, the symbol of the composite operator D3*2DTEg(x, D) can
be given by the usual chain rule. If 0<;<m—1, the symbol of the operator
D{Eg(x, D) is also given by the chain rule. This symbol satisfies (4.1) on U
because of [Proposition 1.9, and thus we can calculate the symbol of
(ﬁ‘f’)z(x, D"YDJEg(x, D) using Proposition 4.7. We can choose large N and q,
in such a manner that we have

By(x, D)Es(x, D) = Ts(x, D)+T"(x, D)

where Tg(x, D) is a Bronstein operator defined by the symbol

1 ~
6.1 T(x, 8= OSZS ?agP(x, §)05E(x, &)
ZEN )
and we have |T’(x, D)| e scoy-0030y=1/4. From and we have

T =1+ 5 — 0P, 09 (x, §).

i

0sla’laN
N-ja|+1sjsSN

From [Proposition 1.9 we obtain

| T(x, §)—1| < 2™+ (2N-+m) IC¥ +4 £, 1| &, |2HmFe-DWN+DIs
Since s<2 and |£&,|=a3!, we can choose large N and a, such that

| T(x, §)—1] < 2MH(2N+m) ICV HgRrrtetC-DAEDIs| g, | 1] g, | ="
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< ag ™M &l

From [Proposition 2.3| it follows that

HlB(x, D)—‘TB(X, D)“o"’s(mao"»scm < 1/4-
Thus we obtain
Py(x, D)Eg(x, D) = 15(x, D)—F(x, D)

where |F(x, D)|ooscr-00scn<1/2. We are ready to give the following
PROOF OF THEOREM 5.1. Let f(x)e0>%(R). We define u(x)=o™%(2) by
u(x) = Ep(x, D)E)(F(x, D)y f(x).
Then we have

Pytx, Dyu(x) = (Lalx, D)=F(x, D) S(F(x, DV (x)

= f(x)  modulo ;@2@@9). Q.E.D.

Now the proof of is immediate.

PROOF OF THEOREM 0.1. Let f(x) be a section of C{R;D“’(R*')], and
let ux”), 0</<m—1, be sections of D¢/(R"-!). We may consider u(x)—
e xiuj(x’) with some ui(x")=(R" 1), 0<i<m, instead of u(x), and thus
we may assume that f(0, x/)=0, u,(x")=0, 0<;<m—1. We define f.(x) by

0
f:(x)= {
f(x) +x,=0.
Then f.(x) can be represented as the boundary value of some g.(x)=0"%Q).
By [Theorem 5.1, there exists some v.(x)=0"%$) which satisfies
By(x, Dyvs(x) = g+(x)  modulo ;5520(3,29).
Since Py(x, D)=Px(x, D)D2**, we have

Ps(x, D)us(x) = g+(x)  modulo g":sZ@(akQ)

with u.(x)=D%*?v,(x). Taking the spectrum, we obtain

P(x, D)[u(x)] = [g+(x)] = [f+(x)]

on a neighborhood of #*. Reversing the time variable x,, we can also construct
a microfunction [x_-(x)] which satisfies

P(x, D)[u-(x)] =[f-(x)]
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on a neighborhood of £*. u(x)=u.(x)+u-(x)defines a section of C°LR ; D*>'(R"~1)]
which satisfies

P(x, D)[u(x)] = [f(x)]

on a neighborhood of £*. Since P(x, D) is noncharacteristic with respect to x,,
the boundary value of u(x) is in fact a section of C*™[R; 9’/(R™-')], and we

have
D0, x] =0, 0<i<m—1. Q.E.D.
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