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Let Y be a normal projective surface over C. A ruled fibrationon Y over
a smooth curve B is a surjective morphism p:Y—B such that the general fibre
is isomorphic to P!. We have the notion of exceptional curves of the first
kind in the category of normal surfaces. Namely, an irreducible curve C on
Y is called an exceptional curve of the first kind if KyC<0 and C®*<0, where
the Ky denotes a canonical divisor on Y. Cf. [S3]. A minimal ruled fibration
will mean a ruled fibration whose fibres contain no exceptional curves of the
first kind. Given a ruled fibration on Y, contract successively all exceptional
curves of the first kind in fibres, then we obtain a minimal ruled fibration. In
this paper we study the structure of a normal surface Y having a minimal
ruled fibration over a curve B of genus g.

In §1 we consider the structure of singular fibres. It turns out that every
singular fibre is necessarily a multiple fibre and contains one or two singular
points of Y. To describe a singular fibre, we observe the weighted dual graph
of the inverse image of the singular fibre on the minimal resolution of Y. In
§2 we introduce a nonnegative rational number z, which measures the amount
of Sing(Y). We have the formula: K3=81—g)—4r. Suppose that Y has
singular fibres f; with multiplicities ms, =1, ---, k. Then we show that
t=>3(1—1/m;). In §3 we define the invariants s,=@Q for positive integers n.
The first invariant s=s, is defined to be the minimum of the self-intersection
numbers of all sections in the ruled fibration. Provided that Y is singular, we
prove the inequality: s<g+7—1. Recall that for the smooth case a theorem of
Nagata says that s<g. Similarly, we define the invariants s, to be.1/n?
of the minimum of the self intersection numbers of all effective divisors of
degree n over B. We show that s,<2g/(n+1)+7. The invariant sy =inf{s,}
plays an important role in the numerical criterion for an ample divisor. In §4
we consider the anti-Kodaira dimension £-%(Y). We give a classification of Y
in terms of £-%(Y) together with the numerical type of the anticanonical divisor
—Ky. For the smooth case, this was done in [S1], [S3]. We also deal with
the question when Y admits another ruled fibration or an elliptic fibration. We
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finally prove that Y becomes a normal del Pezzo surface (i.e., a normal surface
with ample anticanonical divisor) if and only if either ¥ admits another minimal
ruled fibration, or Y contains an exceptional curve of the first kind in the above
sense.

NOTATION AND CONVENTIONS. We use the notation and the results in the
previous papers [S2], [S3]. Let Y be a normal surface. A divisor will mean a
Weil divisor. Let Div(Y) denote the group of divisors on Y. We employ the Q-
valued intersection theory on Div(Y), which was introduced by Mumford. We
denote by ~ (resp. =) the linear equivalence (resp. numerical equivalence) on
Div(Y). For a divisor D, we denote by ©(D) the corresponding divisorial sheaf.
We mean by £(D, Y) the D-dimension of Y. A divisor D is nef if DC=0 for
all irreducible curves C on Y, and is pseudoeffective if DP=0 for all nef divisors
Pon Y. We say that D is ample if some positive multiple of D becomes an
ample Cartier divisor in the usual sense.

In the previous papers [S3], [S4], a2 minimal ruled fibration is also called
a P!fibration. But some authors use it to mean a ruled fibration. To avoid
confusion we employ “minimal ruled fibration” in this paper. A smooth pro-
jective surface with a minimal ruled fibration is known to be a P!-bundle over
the base curve. As usual, such a surface is called a geometrically ruled surface.
See [H2], [M] for the general theory of geometrically ruled surfaces.

§1. Singular fibres.

Let D be the unit disc. Let us consider a normal surface Y having a
minimal ruled fibration p:Y—D. In this section, we describe the structure of
singular fibres. Let f denote the fibre over 0. More precisely, we define f to
be the Cartier divisor p*(0) where (0) is regarded as a divisor on D. We say
that f is a regular fibre if f does not meet Sing(Y) and f=P' Otherwise,
we say that f is a singular fibre. We have seen in that f contains no
exceptional curves of the first kind if and only if Supp(f) is irreducible. The
argument is as follows. Suppose that Supp(f) is reducible, so that f=>m;F;
where the F; are irreducible. The connectedness of Supp(f) implies that F%<0
for all 7. Since Ky (Zm;F;)=Kyf=-—2, there must exist at least one component
F; with KyF;<0. This F; would be an exceptional curve of the first kind.
Thus the fibre f has the form:

(1.1 f=mF  (Fis irreducible)

where the positive integer m is called the multiplicity of f. The fibre f is a
multiple fibre if m=2. If m=1, then we get (Ky+f)f=—2 and so we infer
from Lemma 1 in [S4] that f is a regular fibre. We conclude therefore that
there are only multiple singular fibres.
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To describe singular fibres, we fix the notation:

o :(—a)-curve, e : (—2)-curve, *: (—1)-curve.
Here a (—a)-curve is a smooth rational curve with self-intersection number —a.
Given positive integers a,, -, a,, we define the continued fraction:
1
Lay, -, an]l = ai—
(12‘_’
1
an

We write [ay, -+, a,]=d/e where the d and e are mutually prime positive
integers. If a;=2 for all 7, then the sequence {a,, ---, a,} is uniquely deter-
mined by the pair (d, e¢) with 0<e<d. Consider the linear equations of inde-
terminates X, -+, Xat1:

Xj+1:anj—Xj—1, ]:1, er, N,
Let {w;} be the solution satisfying the conditions: w,=c¢, w,+;=0. Then we
find that w,=cd.

THEOREM 1.2. Let p:Y—D be a munimal ruled fibration of a normal surface
Y over the unit disc D. Suppose that it has a singular fibve f over Oc=D. If
7w X—Y is the minimal resolution of Y, then

(i) the curvesin n=*(f) consist of a tree of PYswith the following weighted
dual graph:

""alan ’—a2n2T T _aknkT

_‘aui _‘azxi i — Qg
— %
(A
— Qi

t

axn1 a“z

where a;;22, a;;=2 for all 7,7 and t=0,
(ii) if [au, -, Gin,J=d:/ey, then

Lan, -, aini] =d,/(d—e)),
and for =2, if [@s, -+, Qin,]=di/e:, then
[:a;h Ty a%n'i—ly a;"'t_].] = di/(di—ei>)

(ii1) the multiplicity of f is equal to the product T1%-.d..
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DEFINITION 1.3. In the above case, the singular fibre f is said to be of
type {(dy, e1), -+, (ds, €w), t}.

PrOOF. We may assume that there are no singular fibres other than f.
Since @=pen: X—D is a ruled fibration, by contracting (—1)-curves in its
fibres, it factors through a P'-bundle T—D:

(1.4) Y o T

Let [ be the fibre of T—D over 0. Then z*f=¢* and = '(f)=¢ (). We
observe the process of blowing ups in X—7T. Following Fujita [F1], p. 520, a
blowing up over [ is called subdivisional (type D, for short) if it is performed
at one of the points where two curves over [ meet together, otherwise it is
called sprouting (type S, for short).

Write f=mF as in (1.1). Let F be the strict transform of F by z. We
see that F is a (—1)-curve. Indeed, since m=~'(f) is reducible, F?<0, also
KyF<KyF=—2/m<0, hence F is a (—1)-curve. Therefore, in every inter-
mediate step of X—T7T, there are no mutually disjoint (—1)-curves over [. By
this reason, the first two blowing ups should be the following :

type S type D

lo * * o o

0
After this step, there is only one (—1)-curve over [, and every blowing up must
be performed on that (—1)-curve. We write the order of types of blowing ups
over [ in ¢:

SD--DS--SD - D ee--. S---SD---DS---S
—— Y N—— v N——\—
1 to T2 133 Tk ¢

where 7,1 and t=0. After the first »,-times type D blowing ups, one has
the dual graph:

T “alni

+“an

O—— oo 6 e O——k

’ ’
—Qin} —apn
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where a,;=2, a1;=2, and n,+n;=1+r,. Next, after f,-times type S blowing
ups followed by r,-times type D blowing ups, we arrive at the following dual
graph :

—alan T —Qzq,

— a5 % — s

O—— o o o --'——-O——-—*

’ ’ ’ 4
—Qyng —Qy; —qany —

where a,;=2, a;;=2 and n,+n;=t,+r,. Continuing the process of blowing ups
in this way, we finally obtain the assertion (i).
By induction, the assertion (ii) follows from the following

LEMMA 1.5. If positive integers ai, -+, Gn, G1, ***, Gy Satisfy the condition :
[ay, -, ap]*+[al, ~, ay]'=1,
then the following equality holds:
[a,+1, ay, -+, a1 '+[2, al, =, a1t =

To prove (iii), we name the curves as follows

Em‘r T TEW

J_ A4 w_L._w_*

Eml Eknk Ei
Since f=n«(n*f)=n4(p*)), the multiplicity m is equal to the coefficientof *F in
the divisor ¢*/. Write
¥ = Zmy;E i+ ZmiEl 4+ XmEi+mE.
By checking step by step, we see the following relations:

my = -=m,=m
— ’ J—
Miny = Min; =1

Min; = ménvi for =2, ---, k.



254 F. Sakal

Since (¢p*))E,;;=0 for all j, the sequence of integers {m,;} with mm:m;né is a
solution of the equations: X;;;=a;X;—X;-1 with my, 4,=0, m,,=1. As we
have seen before, we get m,,=d,. Thus mznzzmgné:dl. Similarly, the equa-
tions: (¢*))E,;=0 imply that {m,;} with ms,=msn, is a solution of the equations:
Xin=0a4;X;—X;-1 with myn,01=0, ms,,=d,. Hence my=d,d,, and it follows
that msn,=—d,d.. Repeating the calculation in this way, we can show that m=
IT%-.d.. J

REMARK 1.6. In case k=1, the weighted dual graph is uniquely determined
by the type. But in case k=2, this is not the case. For instance, the following
is of type {2, 1), (2, 1), 0} for every r=1.

i

r -3

REMARK 1.7. If t=0, f contains two singularities of Y, and if ¢=1, then
f contains one singularity of Y. Note that f contains only rational double
points if and only if f is of type {(2, 1), ¢t} with t=0.

§2. The invariant 7.

Let Y be a normal projective surface having a minimal ruled fibration p:Y
— B over a smooth curve B of genus g. We know that Y carries only rational
singularities ([S3], Lemma 4.6). Let m: X—Y be the minimal resolution of Y.
Let Sing(Y)={y,, --, v:} and A=>]A; where each A; denotes the exceptional
set 7-!(y;). Let »; be the determinant of the intersection matrix of all irreduci-
ble components of A;, and let »=L1 c. m.(r;).

LEMMA 2.1. Let v be as above. Then
(i) DD'e(1/r)Z for D, D’'eDiv(Y),
(i) »D is a Cartier divisor for every DeDiv(Y).

ProOF. (i) follows directly from the definition of intersection numbers

([S2]). (ii) follows from Theorem in [S2]. O

There exists an effective Q-divisor 4 supported on A satisfying the relation:
n*Ky=Ky+4. Cf.[S2]. Decompose 4=34; as Supp(d;)CA;. For each
singular point y;, we define

23 = -po(A)+4D
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where p(A;) denotes the number of irreducible components of A;. Note that
7(¥:)€Q, which is possibly negative and that 7(y;) depends only on the weighted
dual graph of A;. Define

=7Y) = 2(ys)

where the summation is taken over all singularities. Since each y; is a rational
singularity, 47(y;) is equal to the (generalized) Milnor number g(y;) defined in
[S2]. The Noether formula (4.7) in gives

(2.2) ¥ =8(1—g)—4r.

LeMMA 2.3. 7=0.

PROOF. See [S1], Proposition 5, where it is shown that K$}<8(1—g). In
Remark 2.10 below we give another simple proof. O

Each singular fibre contains one or two singular points of Y. Cf. §1. For
a singular fibre f, define

o(f) = yZ (yq).

=

ExaMmPLE 2.4. (i) If f is of type {(d, e), 0}, then z(f)=1—1/d. To see

this, consider the following action of G=Z/dZ on P'X P’

P'XP'—— P'xP?

U] ]

(z, w) —> Lz, Cw)
where { is a primitive d-th root of unity. The action has four fixed points.
The induced ruled fibration on the quotient Y =P'X P!/G is minimal and has
two singular fibres fi, f. of type {(d, e), 0}. It follows from that K=
8—4(zr(fO)+7(f2). But

K} =1/d)K%1,p1 =8/d.

So this implies that =(f,)=7(f,)=1-—1/d.
(i) If f is of type {(d, 1), t}, then =(f)=(d+t)(d—1)/d".

THEOREM 2.5. Let Y be a normal projective surface with a minimal ruled
fibration. Let f be a singular fibre of the ruled fibration, and let m denote its
multiplicity. Then

1

The equality holds if and only if f is of type {(m, e), O} for some e.

PRrROOF. Since the question is local, it suffices to consider the case in which
p:Y—P' has one singular fibre f of the given type and one singular fibre f’



256 F. Sakal

of type {(m, 1), 0}. Choose inhomogeneous coordinate z on P! so that f is
over 0 and f’ is over co. Take an m-fold covering P'sw—z=w™=P'. Let ¥
be the normalization of the fibre product Y XptP!. Then Y has an induced
ruled fibration (not necessarily minimal) without multiple fibres. We see that
K §~,_§8. Indeed, let 7—»)7'0 be successive contractions of exceptional curves of
the first kind in fibres, so that ¥, has a minimal ruled fibration. Then K <K §~,U

unless Y=V,. But by Lemma 2.3, K§~,0§8. Note that the cyclic group G=

Z/mZ acts on ¥ and Y=Y/G. By construction G has only a finite number of
points with nontrivial stabilizers, and so K{=(1/m)KZ%. Since =(f)=1—1/m,
it follows that

2 kp =811y,

and hence (f)=1-—1/m as desired. In case o(f)=1—1/m, we have K3=8 in
the above argument. We infer from this that Visa geometrically ruled sur-
face and that f has two cyclic quotient singularities. It follows easily that f
is of type {(m, e), 0} for some e. Conversely, if f is of type {(m, e), 0}, then
the multiplicity of f is equal to m and 7(f)=1—1/m (Example
2.4). O

Let fi, ---, fr be the set of singular fibres, and let m; denote the multi-
plicity of f; for each 7. If f; is over x;= B, then f,=p*(x;)=mF;. Of course

7= 2t(fi).
COROLLARY 2.6. T= 2(1— 1 )
Mg

In particular, ©=0 if and only if Y is smooth.

A divisor D on Y is said to be of degree n over B if Df=n where f is a
fibre. An irreducible curve is called an n-section (n>0) if it is of degree » over
B. A section will mean a l-section.

LEMMA 2.7. Let D be a divisor of degree 0 over B. Then there exists a
Q-divisor d on B such that

D ~ p*b.

In this case, d has the form:

b= byt (= )

1
where b, Div(B) with O(d,)= pxO(D) and 0= n;<m; for all 1.

ProOF. Consider a commutative diagram :



Ruled fibrations 257

7 ¢
2.8) Y/ .cD\T

PN

B

where T is a geometrically ruled surface over B. Namely, ¢ consists of suc-
cessive contractions of (—1)-curves contained in fibres of @. Cf. [I.4). By
definition ([S2]), #*D=D~+Z where D is the strict transform of D and the Z
is a Q-divisor supported on A. Write ﬁ-—go*D’—i—G where D’ is a divisor on T
of degree 0 over B and the G is a divisor supported on the exceptional set of
¢. It is well known that there is a divisor " on B such that D’~¢*d’. Note
that g:0(D)H=0o("). Cf. [H2]. Thus z*D~®*p'4+G+Z. It follows that D~
p*¥0’+mxG. Since Supp(G)Cx~*(\Uf;), we have mG=2niF; for some nicZ.
Write n}=n; modm; with 0<n;<m; for each 7, and set by=b"-+((ni—n:)/mi)x:
eDiv(B). Setting db=0"+2(n;/m;)x;, we get the required linear equivalence:
D~ p*v. Clearly, p«O(D)=0(d,). O

PROPOSITION 2.9. Let p:Y—B be a mimimal ruled fibration on a normal

surface Y over a curve B of genus g. Let D be a divisor on Y of degree n
(>0) over B. Then there exists a Q-divisor ¢(D) on B satisfying:

nKy ~ —2D+ p*(n(t+e(D)))

where ¥ is a canonical divisor on B. In particular, we have

2

KyD = n(Zg—Z—l-‘r— ZZ )

and
2

dege(D) = 22 +z.

PROOF. Since nKy+2D is of degree 0 over B, the existence of e(D) follows
from Lemma 2.7. Since (nKy+2D)*=0, it follows that

nKyD = ——i—rﬁK{f—-Dz = n*(deg(®)+17)—D?

(by [2.2) .
Thanks to the definition of e(D) we have
nKyD = —2D*+n*(deg(f+e(D))) .

Combining these together we obtain the remaining formulae. O
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REMARK 2.10. We give a simple proof of the fact: (i) z=0, (ii) z=0 if
and only if Y is smooth. Cf. Lemma 2.3 and Corollary 2.6l Take a section C
on Y, then by [Proposition 2.9, (Ky+C)C=2g—2+7. To see (i) it is sufficient
to show that (Ky+C)C=2g—2. Let C be the strict transform of C on the
minimal resolution X of Y. We have seen in [S4], Lemma 1 that (Ky+C)C=
(Kx+C)C. This gives the required inequality, because C is smooth and so
(Kx+C)C=2g—2. (ii) Suppose that z=0. Then (Ky+C)C=(Kx+C)C, which
implies that C does not meet Sing(Y) ([S4], Lemma 1). This is however pos-
sible only if Y is smooth, for otherwise there would be multiple fibres.

In the subsequent sections we use the following

LEMMA 2.11. Let Y be a normal surface with a minimal ruled fibration over
a curve B. Let D be a divisor on Y of nonnegative degree over B. Suppose that
D*=0, KyD=<0. Then

(1) there exists an effective Q-divisor D’ such that D'=D,

(ii) furthermore, in case B=P', we have (D, Y)=0.

PrOOF. Let X, m, @ be as in [2.8), and let » be as in Lemma 2.1. Apply-
ing the proof of Claim 6.5 in [S3] to .L=0(x*(rD)), we see that there exists a
degree zero divisor a on B such that H(X, £L&QO(P*a))+#0. Take I'e|.LRQO(D*a)],
and let D’=(1/r)nsl’. Since dega=0, we have D’=D. If in addition B=P?,
then a=0, and so |*D|#@. O

§3. The invariants s,.

Let Y, p, B have the same meaning asin § 2. For a positive integer n, we
define a rational number s, by

S, =35,) = min{ I:; }

where the minimum is taken over all effective divisors D of degree n over B.
For simplicity write s=s;, so s is equal to the minimum of the self-intersection
numbers of all sections. A section b attaining the minimum s is called a base
section (or a minimal section).

LEMMA 3.1. The above minimum actually exists.

Proor. By Lemma 2.1, D?*/n*<(1/rn®)Z. So it suffices to show that D?/n?
is bounded below. This is clear if D?*>=0 for all D. We therefore consider the
case in which there exists an irreducible curve C, with C2<0. Let n, be the
degree of C, over B. Let D be an arbitrary effective divisor of degree n over
B. We can write D=kC,+ D’ with £=0, where the D’ does not contain C, as
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its component. If n’ denotes the degree of D’ over B, then of course, n'=
n—=kn,. Since D’Cy=0 and (n,D’—n’C,)?*=0, we have niD’?=—n’?C% Thus

2
D*z k*C3HD™ = (n3k®—n') ——fl;’ :
0

and hence

D (1- 2n’)C% e

2g 2 = 5,2 °
n n / nk ne

LEMMA 3.2. With the above notation, we have

(i) there exists at most one irreducible curve with negative self-intersection
number,

(ii) if thereis an ny-section C, with C3=0, then s,=$,, for all n and s,=s,,
if nolm,

(iii) ¢f s=0, then s,=s for all n>0,

(iv) if $>0, then s,=—s for all n=2,

(v) if s>0, then s,=—t for all n=2.

PrROOF. (i)-(iv) follow immediately from the proof of Lemma 3.1. We
prove (v). If 5,20 for all n=2, then (v) holds trivially. Suppose that s,,<0
for some n,=2. Choose 7, minimal with this property. By the proof of
3.1, there is an ne-section C, with C3<0, so that s,,=C§/ni. Apply the Hur-
witz formula to the ramified covering map Cvo—>B where C o is the normalization
of C,. Then we infer that (Ky+C,)Co=n,2g—2). By [Proposition 2.9, we have

1
(Ky-+Co)Co = n0(2g—2+‘r)+<1——ﬁ;>C§ .

It follows that

—T
no—‘l

C
Sp, =

0 n

v

= -7 (because n,=2).

oN

With the help of (ii) we conclude that s,=s,,=—7 if n=n,. By the choice of
n,, of course s,=0 if n<n,. O

ExaMPLE 3.3. We give an example with s>0, 5,<0. On the rational ruled
surface F,=P(©@0(—1)) over P!, there is a smooth 2-section Ce&|2b+2f]
where the b is the base section. Let P be a point on C where C— P! ramifies.
Blow up 7-times over P at the points where the strict transforms of C meet
the (—1)-curves. Contract all curves over the fibre passing through P except
the remaining last (—1)-curve. Then we get a minimal ruled fibration Y— P!,
We see that Y has a singular fibre of type {(2, 1), 5}, so that s=3/4, r=7/4.
If C, denotes the strict transform of C on Y, then C, is again a 2-section with

¢2=—-3, and so s,=—3/4. In this example, s=r—1. See below.
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REMARK 3.4. In case Y is smooth, if s>0, then s,=0 for all n>0 (for
instance by Lemma 3.2, (v)). However, in the positive characteristic case, this

is not the case. See [H2], Exercise 2.15, where an example (ch(k)=3) with
s=1, s;=—1 can be found.

THEOREM 3.5. Let Y be a normal projective surface with a minimal ruled
fibration over a curve B of genus g. Then

11 2ng . .
. ;[n—{—l] (f n is odd),
(i) sp =7+ 2 ng

;[n—l-l] (Gf n is even),
(ii) if Y s singular, then

s< gtr—1.

PrOOF. We first consider the smooth case. Let T be a geometrically ruled
surface P(&) defined by a rank 2 vector bundle & on B. By virtue of the ob-
servation in [H1], p. 51, there is a one to one correspondence between effective
devisors D, having no fibre components, of degree » over B and invertible
sheaves .£ on B which is a subline bundle of the n-th symmetric power S"&.
The correspondence is given by

D — £ = p(O0r(n)Q0(—D)) G S"&.
Furthermore, by using the computation in [H1], p. 52, we obtain

2

D 2
(3.6) e dege— ;deg.,f .

Choose D so that D?/n® attains the minimum s,(T). In this case, D contains
no fibre components, and the corresponding . is a maximal subline bundle of
S*&. Note that rank S"¢=n-+1, degS*¢=(1/2)n(n+1)deg&. The Theorem in
applied to S™& yields the inequality :
n+1
2

(ndeg&—2deg L) < ng.

Thus

2ng
— < | -
ndeg&—2deg L = [ 1 ]

Also if 7n is even, we have

1 ng
_— — <
5 (ndege—2deg L) < [ | ] .

Substituting to these inequalities, we get
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i[ 2ng ] if 7 is odd,

1
(3.7) D= D] T
27 ng . .
—n—[ p— ] if n is even.

Now we pass to the singular case. Let X, m, T, ¢ have the same meaning

as in
CLaiM 3.8. $S:(V) Z s.(TM)+r.

PROOF. Let D be an effective divisor on T of degree n over B such that
so(T)=D%/n?. Let D be the strict transform of D on X, and let D’ denote the
image of D on Y. Then

’2

N

n

—2g—2tr— %(KX-I-A)D—

<2g—2+7r— %KXE

DZ
nz

= 47 =s,(T)+7.
This claim together with yields the assertion (i).

Finally we prove (ii). We can choose T as s(T)<g—1 under the assump-
tion that Y is singular. By we have always s(T)<g. Suppose that s(T)
=g. Since Y is singular, there must be a point P on T over which ¢ is not
isomorphic. In case s(T)=g, Lemma 4.4 in (see also [M]) guarantees
that there exists a base section passing through P. Let T--->T’ be the ele-
mentary transformation of T° at P. It is easy to check that X—T’ is still a
morphism, and that s(T/)=g—1. Therefore, by replacing T° with T/, we can
make s(T)<g—1. Consequently, the assertion (ii) follows from Claim 3.8. O

COROLLARY 3.9. When g=1, we have

S, = T7—

{ 0 in case g=1
1 in case g=0
for every n under the condition that Y is singular.
Proor. In the proof of (ii), if g=1, we can make as s(T7)=<0. It follows

from (iii) that s,(T)=s(T) for all n>>0. So by the inequality (ii),
s;(=r (if g=1), =7v—1 (if g=0). O
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Now we define the following invariant:
Sy = inf{s,}

where the infimum is taken over all positive integers n. The following properties
of sy are immediate from

LEMMA 3.10. (i) If there is an ne-section C, with C{=0, then $x=S,,. In
particular, if s=<0, then sy=s,

(ii) if $>0, then sxy=—s and sx=—T7,

(ili) 7f $4<0, then there exists a unique irreducible curve C, with Ci<0, and
in this case, Sx=Sy5, where ny=the degree of C, over B.

LEMMA 3.11. Let D be a divisor of degree n (n>0) over B. Then D is nef
if and only if D?/n*=—s.

Proor. Clearly, DF>0 for a fibre component F. So D is nef if DC=0
for all irreducible curves C of positive degree over B. Let C be an effective
divisor of degree k£ (£>0) over B. Then

nk s D? C?
DC——T( o ).
If D*/n*=—s4, then it follows that DC=0. Conversely, assume that D is nef.
By the definition of si, for any >0, there exists an effective divisor C such
that s =<C%*/k*<syx+¢ where k=the degree of C over B. Since D is nef,
DC=0, and so D*/n*=—C?/k*>—sy—e. Letting ¢e—0, we find that D*/n?= —sx.

g

PROPOSITION 3.12. The invariant sy is a nonpositive rational number.

Proor. First we show that s,=<0. Assume to the contrary that s.>0.
We can find a divisor D of positive degree over B such that 0>D?/n?>—s,,
where n=the degree of D over B. To see this, take an ample divisor H on Y.
Choose a rational number a as H2<2ah< H®*+sxh® where h is the degree of H
over B. Let N be a positive integer such that Na is integral. Then the divi-
sor D=N(H—af) satisfies the above condition. By Lemma 3.11, this D is nef,
and hence we must have D*20. This is a contradiction. The rationality of sy
is now clear from (iii) in [Lemma 3 10. O

We say that Y is of finite type if sy=s,, for some n,, and is of infinite
type otherwise. Note that if s4x<0, then Y is of finite type. In case s4=0,
there occur both types.

ExAMPLE 3.13. Let B be a curve of genus =2. It is known that there
exists a rank2 vector bundle € on B such that all its symmetric powers S*&
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are stable. Cf. [H1], Theorem 10.5. Let T=P(&). In this case, s,(T)>0 for
all n, and so T is of infinite type.

LemMMA 3.14. If —Ky is pseudoeffective, then Y is of finite type.

ProorF. We have only to consider the case: s,=0. Take a divisor D of
positive degree over B such that D*=0. By [Lemma 3.11, D is nef, and so
KyD=0, because —Ky is pseudoeffective. By Lemma 211, there exists an effec-
tive @-divisor D’ such that D’=D, and hence D=0 in this situation, which
implies that Y is of finite type. [ '

A divisor D is numerically positive if DC>0 for all irreducible curves C on
Y. Also D is numerically ample if D is numerically positive and D*>0. In
our case, since Y has only rational singularities, D is ample if and only if it is
numerically ample (Nakai criterion).

PROPOSITION 3.15. Let Y be a normal surface with a minimal ruled fibra-
tion. Let b be a base section, and f a fibre. Let D=nb+af be a divisor on Y.
Then ‘

(i) D isnumerically positive if and only if n>0, a>—(n/2)(s+sx) (in case Y
is of finite type), or n>0, a=—ns/2 (in case Y is of infinite type, and so sx=0).

(ii) D is ample (resp. nef) if and only if n>0, a>—(n/2)(s+sx) (resp. n=0,
az=—(n/2)(s+sx)).

(iii) D 7s pseudoeffective if and only if n=0, a=—(n/2)(s—sx).

Proor. For the smooth case, see [H2], p. 382. See also [L], [SI]. Of
course Df=n. Also if C is an effective divisor of degree 2>0 over B, then
DC=k(a+(n/2)(s+ C%/k?). Therefore, (i) follows from the definition of sx. Also
we see the criterion for the nefness. Since D*=2n(a+ns/2) and s, <0, in view
of (i), we get the criterion for the ampleness. To see (iii), take a divisor C=
E(b—(1/2)s+sx)f) for a suitable positive integer k. By (ii), C is nef. Since
DC=k(a+(n/2)(s—sx)), the condition: a=—(n/2)(s—sx) is necessary for the
pseudo-effectiveness. The other implication is an easy consequence of (ii). O

REMARK 3.16. We claim that Y contains an exceptional curve of the first
kind if and only if g=0, s£<0, 7<2+4s4. Indeed, we know that there is an
irreducible curve C, with C2<0 if and only if s4<0. By [Proposition 2.9, K3C,
=n,2g—2—sx+7) where n,=the degree of C, over B. So KyC,<0 if and only
if 2g—2—sx+7<0. Since s4<0, this is equivalent to the condition: g=0, 7<
2454 We give a series of examples. Consider F, with a base section b, and
construct two singular fibres of types {(d;, 1), 0} and {(d,, 1), 0}. Let Y be the
resulting normal surface. One can make the configuration as follows:
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\ © —1\
Vs
2 dl""l i —1
—_—) ) 1
(—2)-curves | d—1
-1 4 (—2)-curves

2T 4

Fi.

Here b is the strict transform of b. Let C, be the image of b on Y. Then
KyCy= —2/d,, Ci= —(d,—dy)/d.d,.

So if d,>d,, then C, is an exceptional curve of the first kind.

§4. The anti-Kodaira dimension.

Let Y be a normal surface having a minimal ruled fibration p: Y—B over
a curve B of genus g. We study the anti-Kodaira dimension £~*(Y), which is
defined to be x(—Ky, Y). Cf.[S1],[S3]. Recall the numerical type of a divisor
Don Y. We say that D is of type (a) if D is not pseudoeffective. In case D
is pseudoeffective, let D=P+N be the Zariski decomposition ([S2]) where
P is a nef Q-divisor. We have three types: (b) P=0, (¢) P?=0, P=0, (d) P?>0.

We first consider the numerical type of the anticanonical divisor —Ky. We
fix a base section b on Y. In view of [Proposition 2.9 it follows that

—Ky =20—(2g—24s+1)f.

By [Proposition 3.15, we obtain the following criteria:

1) { — Ky is pseudoeffective &= 2g—2+s4+7 =0
4.

— Ky is nef & 2g—2—sy+7t=0.

Suppose now that — Ky is pseudoeffective, but not nef. This is the case in which
$x<2g8—24+1=—s4 In particular, s4«<0. So there exists an irreducible curve
C, with Ci<0. If n, is the degree of C,over B, then s,=C3/nl. See
3.10. With the notation of [Proposition 2.9, set e,=e(C,). Note that dege,=
sx+7. The Zariski decomposition: —Ky=P+N is given by

2g—2+7\ Cy

N:(l— )
P:—“Ky"‘N.

?
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Furthermore, we have the linear equivalence:

mPr —pi(ni(tten) + (14221 e,

*

Also,
P = (28—2+s4+7)" -
—Sx
Therefore, if P?=0, then 2g—2+s4.+7=0, and hence
4.2) noP ~ — p*(no(f+ey)) .

Suppose next that — Ky is nef. By 2g—2—sx+7=0, and so either g=0,
T—54=2, or g=1, =0, s4,=0. By Ki=0eor=2(1—g). So —Ky is of
type (¢) in the following cases (i) g=0, =2, s4=0, (ii) g=1, 7=0, sx=0.

As a consequence, we obtain the following

LEMMA 4.3. The numerical type of —Ky is given by the following table:

Type 2g—24syx+7 Sk
(a) >0
(b) 0 <0

g=0, =2
(©) 0 0 {

g=1, =0
(d) <0

We now consider the anti-Kodaira dimension £~ %(Y").

Type (a). In this case, we have automatically £ }(Y)=—oc0.

Type (b). Using we see that £~ '(Y)=0 if ¥+e¢, is a torsion element,
i.e., there exists a positive integer m such that m(f+e,)~0, and that £~ (Y)=
—oco otherwise.

Type (c). For the case in which g=1, r=0, since Y is smooth, the previous
results in [S1], [S3] imply that £#7*(Y) can take 0 and 1. For the case in which
g=0, v=2, by Lemma 2.1, we see that £ (Y)=0. Since —Kj is nef and
K3=0, we see that £ '(Y)#2. See Example 4.5 below for examples with
£ (Y)=0 and 1.

Type (d). It is known that £ *(Y)=2.

Summarizing we obtain the following

THEOREM 4.4. Let Y be a normal projective surface with a minimal ruled
fibration over a curve of genus g. Then the classification of Y in terms of k(Y
s given as follows:
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(YY) Type 2g~2+s;_<+r Sk Structure
{ (a) >0
.—OO |
(b) 0 | <0 f+¢, is not a torsion
(b) 0 <0 f-+e, is a torsion
0 { | g:o, f:Z
() 0 0
g=1, z=0
‘ g=0, r=2
1 (c) 0 0
g=1, =0
2 (dy ! <0
i

ExampPLE 4.5. Take a smooth cubic CCP? Choose a point P,=C, which
is not a flex. There are four distinct points P,, ---, P, such that the lines P P;
are tangent to C. Blow up P, so that the resulting surface is F';. In this
case, every line passing through P, corresponds to a fibre. Blow up over each
point P; in the following way. First blow up at P; and then blow up at the
point where the (—1)-curve meets the strict transform of C. Locally we have

the following picture:

One of the (—2)-curves is the strict transform of the line P,P;. By contracting
the eight (—2)-curves, we get a normal surface Y with a minimal ruled fibra-
tion. There are four singular fibres of type {(2, 1), 0}. The strict transform
Coof C on Y is a smooth elliptic curve. Note that C, is a 2-section with
t=0. We have g=0, t=2, s4+=0. Let P, be a flex on C. We claim that

1 if (P,—Px) is a torsion element in Pic(C),
(YY) =

0 otherwise.
Indeed, by construction we find that Ky~—C,. Clearly, C, is isomorphic to C,
and with this isomorphism the normal sheaf J1¢,=0(C,)X0O¢, corresponds to the
sheaf O(3(P,—P.)). The assertion is then a consequence of Proposition 3.3 in

[S3].
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We give a criterion for the case in which Y admits another ruled fibration
or an elliptic fibration. We begin with the following general result.

LEMMA 4.6. Let D be a nef Cartier divisor on a normal surface Y. Suppose
that (D, Y)=1. Then '

(i) if KyD<QO, then |mD| for some positive integer m defines a ruled fibra-
tion on Y,

(ii) if KyD=0, then |mD| for some positive integer m defines an elliptic
fibration on Y.

ProoF. We use a theorem of Zariski in the form in [F2], Theorem [4.1),
which implies that ©(mD) is generated by global sections for some m>0. It
follows from this that the map defined by |mD| provides a fibration onto a
curve for some large m. Let f denote its general fibre. We find that Kyf<0
or =0, according as KyD<0 or =0. Accordingly, f is a smooth rational curve
or a smooth elliptic curve. O

PROPOSITION 4.7. Let p:Y—B be a minimal ruled fibration on a normal
surface Y over a curve B of genus g. Then Y admits another ruled fibration if
and only if g=0, <2 and s4x=0. In this case, v=2(1—1/n) for some positive
integer n.

PROOF. Suppose that Y has another ruled fibration. Let [ be its general
fibore. Let f be a fibre of p. Since [=P', we must have g=0. If we define
n=fl, then by Proposition 2.9, Kyl=n(r—2). Since Kyl=-—2, it follows that
r=2(1—1/n). Since [2=0, we infer that s,=0 and s«=0. Cf. (i).

Conversely, assume that g=0, 7<2 and s,=0. Thanks to [4.1), we see that
—Ky is nef. It follows from that Y is of finite type. Since sx=0,
this means that there exists an n,-section [, with (=0 for some #n,. In par-
ticular, Kylo=n,7—2)<0. The Riemann-Roch theorem implies that &(l,, Y)=1.
So by there exists a ruled fibration on ¥ such that [, is a fibre. [

ExaMPLE 4.8, (i) In the example in Remark 3.16, if d,=d,=d, then we
have the invariants: g=0, t=2(1—1/d), s=s4=0.

(ii) Starting from P!'X P!, construct a singular fibre of type {(d, 1), d}.
In this case, we have g=0, t=2(1—1/d) and s=s4,=0. Cf. Example 2.4, (ii).

PROPOSITION 4.9. Let Y be a normal surface with a minimal ruled fibration
over a curve B of genus g. Then Y admits an elliptic fibration if and only if

PROOF. In view of if £-1(Y)=1, then —Ky is nef and K3=0.
We infer from that ¥ has an elliptic fibration.
Conversely, assume that Y has an elliptic fibration. Let C be its general
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fibre. Set n=fC>0. By [Proposition 2.9, KyC=n(2g—2+7t), because C*=0.
Since Ky C=0, we find that 2g—2+7t=0. There occur two cases (i) g=1, 7=0,
(ii) g=0, =2. In either case, by — Ky is of type (¢) and £~ XY)
=0. We therefore are able to find an effective divisor De|—mKy] for some
m>0. Since DC=0, D is contained in fibres of the elliptic fibration. We infer
from this that each connected component of D is proportional to a fibre of the
elliptic fibration. It follows that £ (Y )=1. O

Let us observe when the anticanonical divisor —Kj is ample. Recall that
in the smooth case, only P*X P* and F, have this property among geometrically
ruled surfaces. We infer from [Proposition 3.15 that — Ky is ample ©2g—2—sx«
+7<0= g=0, 7<2+4s4. There aretwo cases: (i) s4=0, (ii) sx<0. If s4=0,
we infer from [Proposition 4.7] that ¥ admits another minimal ruled fibration and
that t=2(1—1/n) for some positive integer n. If s4«<<0, by Remark 3.16, Y
contains an exceptional curve of the first kind. Summarizing we obtain the
following :

THEOREM 4.10. Let Y be a normal projective surface with a minimal ruled
fibration. Then the anticanonical divisor —Ky is ample if and only if either

(i) Y admits two distinct minimal ruled fibrations, or

(ii) Y contains an exceptional curve of the first kind.

CONCLUDING REMARK 4.11. We refer to Fujita and Gurjar-Miyanishi
for related topics on open surfaces.
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Added in Proof (Correction to the paper [S4]). As we have seen in this
paper, a minimal ruled fibration on a normal surface may have multiple fibres.
For this reason, in the proof of Theorem 1, type(a) in [S4], we insert the
following : Let f=mF be a fibre with multiplicity m. Since (Ky+H)f<0, Hf =1,
we find that Ky F<—1, F?=0, which implies that KxF=-—2, F?=0. It follows
that KyF=—2. On the other hand, Kyf=m(KyF)=—2. So we must have
m=1.

Accordingly, we correct the statement (ii) of Proposition 2 in [S4] as follows.

(ii) the singular fibre is obtained by contracting all (—2)-curves in the follow-
ing configurations:

(ii-1) the same as in [S4],

(ii-2)
—2
-2 —1
(ii-3)
(—2)-curves -1
4 A~ \
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