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Introduction.

Let $M$ be a connected complete Riemannian manifold without boundary. lt
is known that the existence of a convex function imposes a strong restriction
on the topology of $M$. In fact, according to Greene and Shiohama [7], [8] and
to Bangert [1] for a special case, if $M$ admits a locally nonconstant convex
function, then it is diffeomorphic to the normal bundle of a submanifold. In
particular, $M$ is noncompact. The author has shown in the previous work [22]

that the same conclusion is still valid for a locally quasiconvex function, which
is a generalization of convex functions. In this paper, we consider more general
function concerning convexity. We say that a continuous function $f:Marrow R$ is
a locally convex filtration if it is locally nonconstant and if all sublevel sets
$M^{a}=\{x;f(x)\leqq a\}$ are locally convex in $M$. This is a natural generalization of
convex functions and locally quasiconvex functions. It should be noted that
some compact manifolds admit such filtrations. For example, the function $f$

on the unit sphere $S^{n}$ in $R^{n+1}$ defined by $f(x^{1}, \cdots , x^{n+1})=-(x^{n+1})^{2}$ provides
such an example. The purpose of the present paper is to characterize the geo-
metric structure of the filtrations, and to classify the topological structure of
manifolds admitting the filtrations of a certain type.

Let $H_{f}^{*}$ be the union of level components of $f$ intersecting the closure of
the local maximum set $H_{f}$ of $f$. Under a certain regularity condition on $f$, we
shall prove that $H_{f}$ is (if it is not empty) a locally finite union of totally geodestc
hypersurfaces and the complement $H_{f}^{*}-H_{f}$ is a Lipschjtz submanifold (Theorem
2.3), and that each connected component of $M-H_{f}^{*}$ is homeomorphic(diffeomorphic

if the boundary of the compOnent is smooth) to the normal bundle of a submani-
fold (Theorem 3.1). This is an extension of the works [1], [7], [8] and [22]
stated in the beginning.

On the other hand, to treat the classification problem, it will be needed to
restrict our filtrations to have a nice property because any complete surface has
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a regular filtration (Example 1.3). We say that $f$ is nice if $H_{f}^{*}$ has no branch
points, or equivalently, if $H_{f}^{*}=H_{f}$ and it is a manifold. Then we shall obtain
that the diffeomorphism classes of compact Riemannian manifolds admitting nice
filtrations can be classified into certain four types (Theorem 4.3). In the non-
compact case, however, it seems to us that the nicety condition does not inter-
fere with the topological structure so as in the compact case. In fact, it will
be seen that every noncompact surface has a nice Pltration for a Riemannian
metric. In this situation, we shall prove that the absolute value of the Euler
characteristic of a noncompact surface not homeomorphic to $R^{2}$ is equal to the
minimum number of connected comp0nents of $H_{f}$ when $f$ runs over all nice filtra-
tions for all metrics admitting such filtrations (Theorem 4.4). For stnct nice
filtrations, as corollaries to Theorem 4.3 and 4.4, we shall obtain that a compact
Riemannian manifold admitting a stnct nice filtration is homeomorphic to a sphere
or its quotient by a $Z_{2}$ action (Corollary 5.2), and that a noncompact orientable
surface admits a stnct nice filtration for a metric if and only if the genus of
the surface is zero (Corollary 5.3).

In the proof, we shall develop convex analysis and Morse theory for the
filtrations.

\S 1. Definition.

Let $A$ be a subset of M. $A$ is called convex if every two points in $A$ are
joined by a unique minimal geodesic and if it lies in A. $A$ is called locally
convex if every point in the closure $\overline{A}$ has a neighborhood $U$ such that $A\cap U$ is
convex. For subsets $A\subset B\subset M,$ $A$ is called totally convex in $B$ if every two
points in $A$ can be joined by at least one geodesic in $B$ and if each of these
geodesics lies in $A$ . We summarize some local properties of a locally convex
set. See [6], [19], [20] and also [4] for the details.

Let $A$ be a closed connected locally convex set in $M$. Then in the induced
topology, $A$ carries a manifold structure with (possibly empty) Lipschitz boundary
$\partial A$ . The interior IntA is a smooth totally geodesic submanifold. The tangent
cone $C_{p}(A)$ of $A$ at a point $p$ in $A$ is by definition the set

$\{0\}\cup$ { $v\in T_{p}M;\exp_{p}tv\in Int$ $A$ for all sufficiently small $t>0$ },

where exp$p:T_{p}Marrow M$ is the exponential mapping on the tangent space $T_{p}M$.
The cone $C_{p}(A)$ is a convex cone. If the point $p$ lies in $\partial A$ , then the cone
$C_{p}(A)$ is included in an open half space of the subspace spanned by $C_{p}(A)$ . If
$C_{p}(A)$ has the form of an open half space, then $p$ is called a smooth point of
$\partial A$ . Since $\partial A$ is Lipschitz, almost all points in $\partial A$ are smooth with respect to
the $(m-1)$-dimensional Hausdorff measure, $m=\dim A$ . A tangent vector $v$ in
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$T_{p}M,$ $p\in A$ , is called normal to $A$ if $\langle v, w\rangle\leqq 0$ for all $w$ in $C_{p}(A)$ . The set
$\nu(A)$ of all normal vectors to $A$ , which is equipped with the induced topology
from the tangent bundle of $M$, is called the normal bundle of $A$ in $M$. A
closed locally convex set $A$ has an open neighborhood $U$ with the following
properties:

(i) The boundary $\partial U$ is of class $C^{1}$ .
(ii) $\overline{U}$ is simply covered by minimal geodesics from points in $\partial U$ to $A$ , and

these geodesics are transversal to $\partial U$ .
An open set with these properties is called a tubular neighborhood of $A$ . If

$A$ is compact, the proof of the existence of such $U$ is standard. For the non-
compact case, see [21], \S 6, proof of Theorem A. By the property (ii), $U$ is
homeomorphic to $\nu(A)$ . We impose a differentiable structure on $\nu(A)$ by the
requirement that the homeomorphism is a diffeomorphism. This is independent
of the choice of $U$.

The following elementary lemma will be needed in the next section.

LEMMA 1.1. Let $A$ be locally convex and $B$ convex. Then each connected
compment of $A\cap B$ is convex.

Now we define our filtration once again for completeness.

DEFINITION 1.2. We say that a function $f:Marrow R$ is a locally convex filtra-
tion if the following conditions are satisfied:

(i) $f$ is continuous and locally nonconstant.
(ii) Each sublevel set $M^{a}$ is locally convex,

where a function is called locally nonconstant if it is nonconstant on every non-
empty open subset.

EXAMPLE 1.3. Let $M$ have dimension two or constant sectional curvature.
Then $M$ can be triangulated with small simplices and with totally geodesic
$(n-1)$-simplices, where $n=\dim M$. We can easily construct a locally convex
filtration on $M$ such that the maximum set coincides with the $(n-1)$-skelton.

We do not know whether every manifold has a metric on which a locally
convex filtration exists. For a locally convex filtration $f$ on $M$, we consider
the function $m_{f}$ : $Marrow N\cup\{\infty\}$ defined by

$m_{f}(p)= \lim_{a\uparrow f(p}\sup_{),\text{\’{e}}\downarrow 0}\#$ {components of $B(P,$ $\epsilon)\cap M^{a}$ }.

We denote by $\# S$ the order of a set $S$ , and by $B(P, \epsilon)$ the open ball of radius
$\epsilon$ around $l$ . Here we also set $m_{j}(p)=1$ for local minimum point $p$ .

EXAMPLE 1.4. Let $M$ be one dimensional. We can consider a Cantor set
$C$ in $M$. From the standard construction of Cantor set, we can define a locally
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convex filtration $f$ on $M$ such that the maximum set is equal to $C$ and that
$m_{f}(p)=\infty$ for $p$ in $C$ and $m_{f}(p)=1$ for $p$ in $M-C$ .

We say that $f$ is regular if $m_{f}(p)<\infty$ for all $p$ in $M$. Since irregular
locally convex filtrations cause technical difficulty, we shall consider only regular
locally convex filtrations, which we abbreviate as regular filtrations. In the
next section, we shall examine the structure of local maximum set.

\S 2. Structure of local maximum set.

Let $f$ be a regular filtration on $M$. For a point $p\in M$ that is not a local
minimum point for $f$, we set $\lambda=f(p),$ $m=m_{f}(p)$ for simplicity. Choose $\epsilon>0$

and $c<\lambda$ such that $M^{\lambda}\cap B(P, \epsilon)$ as well as $B(p, \epsilon)$ is convex and that the
number of components of $B(P, \epsilon)\cap M^{a}$ is equal to $m$ for all $a,$ $c\leqq a<\lambda$ . Let
$\{M_{i}^{a}\}_{i=1,\cdots.m}$ be the collection of components of $B(P, \epsilon)\cap M^{a}$ . Rearranging the
indices, we may assume $M_{t}^{a}\subset M_{i}^{b}$ for all $a,$ $b,$ $c\leqq a<b<\lambda$ . We set $A_{i}(p, \epsilon)$

$= \bigcup_{c\leq a<\lambda}M_{i}^{a}$ . Note that the closure $\overline{A}_{i}(p, \epsilon)$ are $\omega nvex$ sets containtng $p$ , and
that $M^{\lambda}\cap B(P, \epsilon)=U_{i=1}^{m}\overline{A}_{i}(p, \epsilon)$ . We shall use the notation $A_{i}(p, \epsilon)$ implicitly.

LEMMA 2.1. If $m_{f}(p)=1$ , then there is $\delta>0$ such that $M^{a}\cap B(p, \delta)$ is convex
for every $a\in R$ if it is non-empty.

PROOF. We choose $\epsilon$ and $c<\lambda:=f(p)$ as above. Take $\delta_{1}<\epsilon$ so small that
$M^{a}\cap B(p, \delta_{1})$ is empty for every $a<c$ . Hence by Lemma 1.1, $M^{a}\cap B(p, \delta_{1})$ is
convex or empty for every $a\leqq\lambda$ . Since $M^{\lambda}\cap B(P, \delta_{1})$ is convex, we have easily
that there is $\alpha>\lambda$ such that $M^{a}\cap B(p, \delta_{1})$ is convex for every $a,$ $\lambda\leqq a\leqq\alpha$ . For
the proof, it suffices to take $\delta$ so small that $B(P, \delta)\subset M^{\alpha}$ .

We denote by $H_{f}$ the local maximum set of $f$, and by $H_{f}^{*}$ the union of
level sets components of $f$ which meet $\overline{H}_{f}$ . Clearly $H_{f}^{*}$ includes $\overline{H}_{f}$ . However,
the case $H_{f}^{*}\supsetneqq\overline{H}_{f}$ may be occur, as is illustrated in Figure 1.

Figure 1.

LEMMA 2.2. $\overline{H}_{f}=\{p;m_{f}(p)\geqq 2\}$ .
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PROOF. Suppose $m_{f}(p)\geqq 2$ and take the mutually disjoint convex sets
$\{A_{i}(p, \epsilon)\}_{i=1\ldots..m}$ , $m=m_{f}(p)$ . Since $M^{\lambda}\cap B(P, \epsilon)=U_{i=1}^{m}\overline{A}_{i}(p, \epsilon)$ , $\lambda=f(p)$ , the
boundary $\partial\overline{A}_{i}(p, \epsilon)$ must intersect $IntM^{\lambda}$ . It is clear that some point in the
intersection $\partial\overline{A}_{i}(p, \epsilon)\cap IntM^{\lambda}$ is a local maximum point. Since $\epsilon$ is taken arbi-
trary small, we have certainly that $P$ is contained in $\overline{H}_{f}$ . Suppose $m_{f}(p)=1$ .
Let $\delta$ be as in Lemma 2.1. By the lemma, $\partial M^{a}\cap B(p, \delta)=f^{-1}(a)\cap B(p, \delta)$ for
all $a$ . This implies that $q\in\partial M^{f(q)}$ for all $q$ in $B(P, \delta)$ , that is, $q$ is not local
maximum point. Hence $p$ is not contained in $\overline{H}_{f}$ .

THEOREM 2.3. SuPpose $f$ is regular and $H_{f}$ is not emPty. Then the follow-
ing statements are true:

(1) $H_{f}^{*}-H_{f}$ is (if it is not empty) a Lipschjtz submanifold of codimension one.
(2) $\overline{H}_{f}$ is a locally finite union of totally geodesic hypersurfaces with (Possibly

empty and non smooth) boundary.

PROOF. (1) Let $K$ be a component of $H_{f}^{*}-H_{f}$ . The function $f$ takes a
constant, say $\lambda$ , on $K$. Since no point in $K$ is local maximal for $f$ and since $f$

is locally nonconstant, we see that $K$ is included in $\partial M^{\lambda}$ . Hence by the defini-
tion of $H_{f}^{*},$ $K$ coincides with a component of $\partial M^{\lambda}$ , which is a Lipschitz sub-
manifold of $M$ of codimension one as is remarked in Section 1.

(2) We have to show that any point $P$ in $\overline{H}_{f}$ , there is $\epsilon$ such that $\overline{H}_{f}\cap B(p, \epsilon)$

consists of a finite union of totally geodesic hypersurfaces. Take the mutually

disjoint convex sets $\{A_{i}(p, \epsilon)\}_{i=1\ldots..m},$ $m=m_{f}(p)\geqq 2$ , and set $A_{i}=A_{i}(p, \epsilon),$ $A_{i}’=$

$\overline{A}_{i}\cap B(p, \epsilon)$ . Let $\Sigma$ denote the set of all pairs $(i, j),$ $1\leqq i,$ $j\leqq m$ such that the
dimension of convex set $A_{i}’\cap A_{j}’$ is equal to $n-1,$ $n=\dim M$. For $(i, j)\in\Sigma$ , we
set $N_{ij}=A_{i}’\cap A_{j}’(=\partial A_{i}’\cap\partial A_{j}’)$ , which is a totally geodesic hypersurface with
(possibly empty) boundary. We show $\overline{H}_{f}\cap B(p, \epsilon)=\bigcup_{(i.j)\in\Sigma}N_{ij}$ . Clearly each
$N_{ij}$ is included in $\overline{H}_{f}\cap B(p, \epsilon)$ . We show the converse inclusion. To do this,
we consider two cases.

First consider the case $p\in H_{f}$ . Then we have easily

$\overline{H}_{f}\cap B(p, \epsilon)=H_{f}\cap B(p, \epsilon)$

$=\partial A_{1}’\cup\cdots\cup\partial A_{m}’$ .
For every point $x$ in $H_{f}\cap B(p, \epsilon)$ , take $i$ with $x\in\partial A_{i}’$ . For each positive integer
$k$ , we put $D_{k}(x)=B(x, 1/k)\cap S(\partial A_{i}’)$ , where we denote by $S(\partial A)$ the set of all
smooth points of the boundary of a locally convex set $A$ . Note that each point
in $\partial A_{i}’$ must be contained in another $\partial A_{j}’$ , and that $S(\partial A_{j}’)$ has full measure in
$\partial A_{j}’$ with respect to the $(n-1)$-dimensional Hausdorff measure. This implies
there is $j(k)\neq i$ such that $D_{k}(x)\cap S(\partial A_{j(k)}’)$ has a positive measure, in particular,
it is non-empty. Let $x_{k}$ be a point in $D_{k}(x)\cap S(\partial A_{j(k)}’)$ . Then the tangent
cones $C_{x_{k}}(A_{\dot{t}}’),$ $C_{x_{k}}(A_{j(k)}’)$ have a unique supporting hyperplane in common,
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which is the boundary of the cones. This yields $(i, j(k))\in\Sigma$ and $x_{k}\in N_{ij(k)}$ .
Passing to a subsequence, we may assume $j(k)=j$ for all $k$ . Thus we conclude
$x= \lim x_{k}\in N_{ij}$ .

For the case $p\in\overline{H}_{f}$ , take any point $x$ in $\overline{H}_{f}\cap B(p, \epsilon)$ and a sequence $x_{k}$ in
$H_{f}$ converging to $x$ . From the above argument, $x_{k}$ is contained in $N_{ij(k)}$ for
some $(i, j(k))\in\Sigma$ . Passing to a subsequence, we obtain $x\in N_{ij}$ for some $j$ .

\S 3. Structure of $M-H_{f}^{*}$ .
Let $f$ be a regular filtration on $M$.

theorem.
In this section, we prove the following

THEOREM 3.1. Each connected compOnent of $M-H$} is homeomorphjc (diffeo-
morphic if the boundary of the component is smooth) to the norynal bundle of a
submanifold.

Cut $M$ open along $H_{f}^{*}$ . Let $\{N_{i}\}_{i=1.t}\ldots$ . be the resulting connected Rieman-
nian manifolds with (possibly non smooth) boundary. Note that $N_{i}$ does not
need to coincide with the closure of the corresponding component of $M-H_{f}^{*}$

(see Example 4.2 (2)). There is a natural extension $\tilde{N}_{i}$ of $N_{i}$ , a Riemannian
manifold without boundary, with the metric inherited from $M$. Note that $N_{i}$

is locally convex in $\tilde{N}_{i}$ . We set $N=N_{i}$ for simplicity. We have to show that
IntN admits a normal bundle structure.

Let $d_{N}$ is the distance function on $N$. By definition, $d_{N}(x, y)$ is the infimum
of lengths of curves in $N$ joining $x$ and $y$ . Since $N$ is a closed connected
locally convex set of $\tilde{N}$, we have immediately

LEMMA 3.2. For every two Points $x$ and $y$ in $N$, there is a geodestc in $N$

which realize the distance $d_{N}(x, y)$ .
We put $N^{a}=\{x\in N;f(x)\leqq a\}$ .
LEMMA 3.3. $N^{a}$ is totally convex in $N$.
PROOF. Suppose there is a geodesic 7: $[0,1]arrow N$ such that $\gamma$ is not included

in $N^{a}$ and $\gamma(0)\in N^{a},$ $\gamma(1)\in N^{a}$ . The maximum $b,$ $b>a$ , of $f\circ\gamma$ is realized at a
point $\gamma(t)$ . If $\gamma(t)$ is a local maximum point of $f|N$, that is, if $\gamma(t)\in\partial N$, then $\gamma$

would be broken at $t$ . Since this is a contradiction, $\gamma(t)$ is not a local maximum
point of $f|N$. Hence $\gamma(t)$ is contained in $\partial N^{b}$ . But this is also a contradiction
because $\gamma(0),$ $\gamma(1)\in IntN^{b}$ .

For two points $p,$ $q$ in $N$, let $\mathfrak{V}^{N}(q, p)$ denote the set of all initial vectors
to unit speed minimal geodesics in $N$ from $q$ to $p$ . Then $q$ is called a non-
critical point of the distance function $dist_{p}$ from $p$ , in the sense of Gromov [11]
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(see also Grove-Shiohama [12]), if the set $\mathfrak{V}^{N}(q, p)$ is included in an open half
space of $T_{q}M$. For a set $S$ of $N$, we set $\mathfrak{V}^{N}(q, S)=\bigcup_{p\in S}\mathfrak{V}^{N}(q, p)$ . Then we also
say formally that $q$ is a non-critical point of dist $s$ if $\mathfrak{V}^{N}(q, S)$ is included in an
open half space of $T_{q}M$.

LEMMA 3.4. If $q\in\partial N^{a}$ , then there is a vector $v$ in $C_{q}(N^{a})$ such that
$\mathfrak{V}^{N}(q, IntN^{a})$ is included in the open half space $suPPorted$ by $v$ . In particular, $q$

is a non-critical $p\alpha nt$ of $dist_{CIntN^{a)}}$ .
PROOF. Since Lemma 3.3 shows $\mathfrak{V}^{N}(q, IntN^{a})\subset C_{q}(N^{a})$ , it suffices to take

a vector $v$ in the convex cone $C_{q}(N^{a})$ such that $\langle v, w\rangle>0$ for all $w\in C_{q}(N^{a})$ .

PROOF OF THEOREM 3.1. Using Lemma 3.4, for every $a> \inf_{N}f$ and a
compact set $K$ in $IntN^{a}$ , we can construct a gradient-like vector field of $f$ and
dist $K$ on $N-IntN^{a}$ so that any integral curve intersects $\partial N^{a}$ (cf. [21], Proposi-
tion 5.4 and 5.5). The integral curves give rise to a homeomorphism between
$IntN-IntN^{a}$ and $\partial N^{a}\cross[0,1$ ). In the case when $N$ is compact, take $a$ so close
to $\inf_{N}f$ that $N^{a}$ is included in a tubular neighborhood of the minimum set of
$f|N$. As a result, IntN is homeomorphic to the normal bundle of the minimum
set. In the noncompact case, if $f|N$ has a minimum, then using the argument
in [21], \S 6, Proof of Theorem $A$ , we see that IntN is also homeomorphic to
the normal bundle of the minimum set. If $f|N$ has no minimum, then we see
that IntN is homeomorphic to a certain product $L\cross(O, 1)$ , using the argument
in [22], \S 3, Proof of Theorem 2. In any case, the homeomorphism can be
replaced by a diffeomorphism if $\partial N$ is smooth.

REMARK 3.5. From Theorem $B$ and $C$ in [21], we obtain that every level
set of $f|N$ has at most two compact components, and that all such compact
components except the minimum set are mutually homeomorphic. On the other
hand, in the case when every level set of $f|N$ has only noncompact components,
there can be a large number of such components (cf. [21], \S 1, Example 9).

\S 4. Nice filtrations.

We now proceed to the classification problem of manifolds admitting locally
convex filtrations. Example 1.3 implies that to treat the problem, we must
impose another restriction to our filtration.

DEFINITION 4.1. We say that a locally $\omega nvex$ filtration $f$ on $M$ is nice if
$H_{f}$ is closed and $m_{f}(p)\leqq 2$ for all $P$ in $M$.

We abbreviate it as a nice filtration. This is equivalent to the requirement
that $H_{f}$ is a manifold and equal to $H_{f}^{*}$ .
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EXAMPLE 4.2. (1) Let $S^{n}$ be a round sphere in $R^{n+1}$ . The function
$f(x^{1}, \cdots , x^{n+1})=-(x^{n+1})^{2}$ is a nice filtration on $S^{n}$ .

(2) Consider the function $f(e^{\sqrt{-1}}\theta_{1}e^{\bigwedge_{-1\theta_{2}}})=\theta_{1}^{2},$ $-\pi\leqq\theta_{1},$ $\theta_{2}\leqq\pi$ , on the flat
torus $S^{1}\cross S^{1}\subset C^{2}$ . It is also a nice filtration.

We consider a compact connected locally convex set $A$ in a Riemannian
manifold, and suppose either $co\dim(A)\geqq 2$ , or $\partial A\neq\emptyset$ and $co\dim(A)=1$ . Note
that every tubular neighborhood of such $A$ has connected boundary. We call a
compact manifold with boundary a cap if it is diffeomorphic to the closure of a
tubular neighborhood of such a locally convex set $A$ . We exhibit four types of
compact manifolds $M$ : We say that $M$ is of

type(I) if $M$ is the quotient manifold of two caps by a diffeomorphism
between the two boundaries,

type (II) if $M$ is the quotient manifold of a cap by a free $Z_{2}$ action on the
boundary,

type(m) if $M$ is the total space of a fibre bundle over $S^{1}$ ,
type (IV) if $M$ is the quotient manifold of a product $L\cross[0,1],$ $L$ is a com-

pact manifold, by free $Z_{2}$ actions on $L\cross\{0\}$ and $L\cross\{1\}$ .
THEOREM 4.3. If a compact Riemannian manifold has a nice filtration, then

it is &ffeomorPhic to one of the above four types.

PROOF. For a nice filtration $f$ on a compact manifold $M$, let $\{N_{i}\}$ be as in
Section 3. Note that $N_{i}$ are smooth compact manifolds with totally geodesic
boundary, and that $M$ is obtained from the disjoint union of $\{N_{i}\}$ by identifying
the boundaries along $H_{f}$ . Let $L_{i}$ be the minimum set of the restriction $f|N_{i}$ .
If $co\dim(L_{i})=1,$ $\partial L_{i}=\emptyset$ and if $L_{i}$ is two-sided, then we call $N_{i}$ a cylinder. If
$co\dim(L_{i})=1,$ $\partial L_{i}=\emptyset andifL_{i}$ is one-sided, $thenwecal1N_{i}$ aM\"obius band. Thus
by Theorem 3.1, the possible topological types of $N_{i}$ are devided into caps,
cylinders and M\"obius bands. If there are two Mobius bands in $\{N_{i}\}$ , then $M$

is of type (IV). If there is exactly one M\"obius band in them, then $M$ is of
type (I1). Suppose there are no Mobius bands in $\{N_{i}\}$ . Then if there is a cap
in them, then $M$ is of type (I), and if there are no caps, then $M$ is of type
(m).

We now consider noncompact surfaces. Let $M(h, e)$ denote an orientable
surface with $h$ handles and $e$ ends, and let $M’(m, e)$ denote a non-orientable
surface with $m$ Mobius caps and $e$ ends, $0\leqq h,$ $e,$ $m\leqq\infty,$ $e\neq 0$ . As is exhibited
in Figure 2 and 3, both $M(h, e)$ and $M’(m, e)$ have nice filtrations for some
metrics (compare also [21], Example 8). Thus every noncompact surface $M$

admits a metric for which $M$ has a nice filtration $f$.
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Figure 3.

It is natural, however, to guess that the number of components of $H_{f}$ is
related to the topological complexity of $M$. Let $\mathfrak{M}_{M}$ denote the set of all
metrics on $M$ for which $M$ has a nice filtration. For a metric $g$ in $\mathfrak{M}_{M}$ , we
denote by $k_{M}(g)$ the infimum of the numbers of components of $H_{f}$ , where $f$

runs over all nice filtrations on $(M, g)$ . Finally we set

$k_{M}= \inf\{k_{M}(g);g\in \mathfrak{M}_{M}\}$ .
Since a plane admits a convex function, we have immediately $k_{M}=0$ for $M=R^{2}$ .

THEOREM 4.4. If $M$ is a noncomPact surface not homeomorPhic to $R^{2}$ , then
the number $k_{M}$ is equal to the absolute value of the Euler characteristic $\chi(M)$ of $M$.

PROOF. For the filtration $f$ on $M(h, e),$ $(h, e)\neq(O, 1)$ (resp. on $M’(m,$ $e)$) as
in Figure 2 (resp. Figure 3), the number of the components of $H_{f}$ is equal to
$2h+e-2=-\chi(M)$ (resp. $m+e-2=-\chi(M)$). This shows $k_{M}\leqq|\chi(M)|$ . To prove
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the reverse inequality, let $f$ be any nice filtration on $M$, and let $\{N_{i}\}$ be as in
Section 3. Note that each $N_{i}$ has the same topological type as a disk $D^{2}$ , a
cylinder Cy, or a Mobius band Mo. The manifold $M$ is obtained from the dis-
joint union of $\{N_{i}\}$ by identifying the boundaries of $N_{i}$ along each component
of $H_{f}$ . Let $S$ be the connected surface obtained after some times of the identi-
fication. Let $S’$ be the connected surface obtained from $S$ and an $N_{\ell}$ by identi-
fying a component $J_{1}$ of $\partial S$ and a component $J_{2}$ of $\partial N_{i}$ along a component $J$ of
$H_{f}$ . In the next lemma, we shall show that the identification corresponding to
a component of $H_{f}$ does not diminish the Euler characteristic more than two,

that is, $\chi(S’)\geqq\chi(S)-1$ . Since $\chi(N_{j})$ is one or zero for any $j$ , and since $M$ is not
homeomorphic to $R^{2}$ , the iteration of the identification would yield

$\chi(M)\geqq-$ ($the$ number of components of $H_{f}$ )

and hence $|\chi(M)|\leqq k_{M}$ .

LEMMA 4.5. $\chi(S’)\geqq\chi(S)-1$ .

PROOF. When $S$ is non-orientable, let $S_{0}$ be the orientable surface obtained
by removing a maximal family of M\"obius caps in $S$ . We choose the orientation
of $\partial S$ induced from one of $S_{0}$ . We also note that $N_{i}$ may be included in $S$ ,

that is, $S’$ may be obtained by identifying the components $J_{1}$ and $J_{2}$ of $\partial S$ along
$J$. We denote by $h(S)$ the maximal number of handles in $S$ if $S$ is orientable,
by $m(S)$ the maximal number of M\"obius caps in $S$ if $S$ is non-orientable, and
by $e(S)$ the number of ends of $S$ .

Case (I). $J$ is compact.
Case (I-1). $N_{i}$ is not included in $S$ .
If $N_{i}\approx D^{2}$ , then $\chi(S’)=x(S)+1$ . If $N_{i}\approx Cy$ or M\"o, then $\chi(S’)=x(S)$ .
Case (I-2). $N_{i}$ is included in $S$ .
In the case, $e(S’)=e(S)-2$ . We show $\chi(S’)=x(S)$ . Suppose $S$ is orientable.

If $J_{1}$ and $J_{2}$ are identiPed in the same orientation (Figure 4), then $S’$ is non-
orientable, and we have $m(S’)=2h(S)+2$ . If $J_{1}$ and $J_{2}$ are identified in the
reverse orientation (Figure 5), then $S’$ is orientable and we have $h(S’)=h(S)+1$ .
Suppose $S$ is non-orientable. Then we have $m(S’)=m(S)+2$ . Thus in any case,
$\chi$ is invariant in the case (I-2).

Case (I). $J$ is noncompact.
Case (II-1). $N_{i}$ is not included in $S$ .
If $N_{i}\approx D^{2}$ , then $\chi(S’)=x(S)$ . If $N_{i}\approx Cy$ , then the genus is invariant and

$e(S’)=e(S)+1$ . Hence $\chi(S’)=x(S)-1$ . Suppose $N_{i}\approx M\ddot{o}$ . Then $S’$ is non-
orientable and $e(S’)=e(S)$ . If $S$ is orientable, then $m(S’)=2h(S)+1$ , and hence
$\chi(S’)=\chi(S)-1$ . If $S$ is non-orientable, then $m(S’)=m(S)+1$ , and hence $\chi(S’)=$

$\chi(S)-1$ . Thus in the case (II-1), $\chi(S’)$ is equal to $\chi(S)$ or $\chi(S)-1$ .
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Figure 4. Figure 5.

Case (II-2). $N_{i}$ is included in S.
In the case, we show $\chi(S’)=x(S)-1$ .
Case $(\mathbb{I}-2-i)$ . $J_{1}$ and $J_{2}$ lie in one end of $S$ .
Suppose $J_{1}$ and $J_{2}$ are identified in the same orientation (Figure 6). Then

$S’$ is non-orientable and $e(S’)=e(S)$ . When $S$ is orientable, we have $m(S’)=$

$2h(S)+1$ . When $S$ is non-orientable, we have $m(S’)=m(S)+1$ . Hence $\chi(S’)=$

$\chi(S)-1$ . Next suppose $J_{1}$ and $J_{2}$ are identified in the reverse orientations (Figure
7). Then the genus is invariant and $e(S’)=e(S)+1$ . Hence $\chi(S’)=x(S)-1$ .

Figure 6. Figure 7.

Case $(\mathbb{I}-2-ii)$ . $J_{1}$ and $J_{2}$ lie in distinct ends of $N$.
In the case, $e(S’)=e(S)-1$ . Suppose $J_{1}$ and $J_{2}$ are identified in the same

orientation (Figure 8). Then $S’$ is non-orientable and $m(S’)=2h(S)+2$ if $S$ is
orientable, and $m(S’)=m(S)+2$ if $S$ is non-orientable. Thus $\chi(S’)=\chi(S)-1$ .
SupPose $J_{1}$ and $J_{2}$ are identified in the reverse orientation (Figure 9). When $S$

is orientable we see $h(S’)=h(S)+1$ . When $S$ is non-orientable, we have $m(S’)$

$=m(S)+2$ . Thus in any case, $\chi(S’)=x(S)-1$ . This completes the proof of
Lemma 4.5.
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Figure 8. Figure 9.

We do not know whether every higher dimensional noncompact manifold
has a nice filtration for a metric or not.

\S 5. Strict nice filtrations.

There is a concept of strictness for convexity. We employ it by the fol-
lowing

DEFINITION 5.1. We say that a locally convex filtration $f$ on $M$ is strict
if it is nonconstant on every nonconstant geodesic segment in $M-H_{f}$ .

Example 1.3 provides examples of regular strict filtrations on surfaces or
manifolds of constant sectional curvature. The filtration on $S^{n}$ in Example 4.2
is a strict nice filtration. The existence of a strict nice filtration $f$ on $M$ will
impose intensive restriction on the topology of $M$. Note that $f$ has at most one
local minimum point in each component of $M-H_{f}$ .

COROLLARY 5.2. If a $comPact$ Riemannian n-mamfold has a stnct nice filtra-
tion, then it is homeomorphic to $S^{n}$ or its quotient by a $Z_{2}$ action.

PROOF. For a strict nice filtration $f$ on a compact manifold $M$, let $\{N_{i}\}$

be as in Section 3. Since $f|N_{i}$ has a unique minimum point, $N_{i}$ is diffeomorphic
to a disk. In particular, the number of the sets $\{N_{i}\}$ is one or two. Hence $M$

is homeomorphic to $S^{n}$ or its quotient by a $Z_{2}$ action.

COROLLARY 5.3. A noncompact orientable surface $M$ has a strict nice filtra-
tion for some metric if and only if the genus of $M$ is zero.

PROOF. If $M$ has genus zero, it certainly admits a strict nice filtration for
a metric (cf. Figure 2). Conversely, for a strict nice filtration $f$ on $M$, let $\{N_{i}\}$

be as in Section 3, and let $S$ and $S’$ be as in the proof of Theorem 4.4. If
$f|N_{i}$ has a minimum, then $N_{i}$ is a cell. Suppose $f|N_{i}$ has no minimum. If
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$f|N_{i}$ has a compact level set then $N_{i}$ is homeomorphic to a cylinder, and if
$f|N_{i}$ has no compact level sets, then $N_{i}$ is a cell (cf. [21], Theorem $C$ , and
[22], Theorem 2). These imply that all the components of $\partial N_{i}$ are always
included in an end of $N_{i}$ . Hence, if $e(S’)<e(S)$ , then $S’$ is obtained from $D^{2}$

and Cy by identifying the compact components of $\partial D^{2}$ and $\partial Cy$ along $S^{1}$ . This
shows that $S’$ coincides with $M$ and it is homeomorphic to $R^{2}$ . Now suppose
$e(S’)\geqq e(S)$ . If $h(S’)>h(S)$ , then $\chi(S’)\leqq\chi(S)-2$ , which is a contradiction to
Lemma 4.5. Hence $h(S’)\leqq h(S)$ , and this implies $h(M)=0$ , that is, the genus
of $M$ is zero.

REMARK 5.4. Probably, every noncompact non-orientable surface has a
strict nice filtration for a metric. The metric will be realized by, for instance,
one of constant negative curvature.
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