Singularities of the scattering kernel for two balls

By Shin-ichi NAKAMURA and Hideo SOGA

(Received Oct. 6, 1986)

§ 1. Introduction.

Let \mathcal{O} be a compact obstacle in \mathbb{R}^n $(n \ge 2)$ with a \mathbb{C}^{∞} boundary $\partial \Omega$, and assume that $\Omega = \mathbb{R}^n - \mathcal{O}$ is connected. Let us consider the scattering by \mathcal{O} expressed by the equation

(1.1)
$$\begin{cases} \Box u(t, x) = 0 & \text{in } \mathbf{R}^1 \times \Omega \quad (\Box = \partial_t^2 - \Delta_x), \\ u(t, x') = 0 & \text{in } \mathbf{R}^1 \times \partial \Omega, \\ u(0, x) = f_1(x) & \text{on } \Omega, \\ \partial_t u(0, x) = f_2(x) & \text{on } \Omega. \end{cases}$$

We denote by $k_{-}(s, \omega)$ $(k_{+}(s, \omega)) \in L^{2}(\mathbb{R}^{1} \times S^{n-1})$ the incoming (outgoing) translation representation of the initial data $f = (f_{1}, f_{2})$. The scattering operator $S: k_{-} \rightarrow k_{+}$ becomes a unitary operator from $L^{2}(\mathbb{R}^{1} \times S^{n-1})$ to $L^{2}(\mathbb{R}^{1} \times S^{n-1})$ (cf. Lax and Phillips [5], [6]), and is represented with a distribution kernel $S(s, \theta, \omega)$:

$$(Sk_{-})(s, \omega) = \iint S(s-t, \theta, \omega)k_{-}(t, \omega)dtd\omega.$$

 $S(s, \theta, \omega)$ is called the scattering kernel. Lax and Phillips in [5] showed that the scattering operator S determined the obstacle \mathcal{O} uniquely (cf. Theorem 5.6 of Ch. V in [5]). But, it was not made clear how the analytical properties of S were connected with the geometrical properties of \mathcal{O} .

Recently some authors have examined the relation between \mathcal{O} and $S(s, \theta, \omega)$. Majda in [7] has obtained the following results in the case of n=3:

(1.2)
$$\operatorname{supp} S(\cdot, -\omega, \omega) \subset (-\infty, -2r(\omega)],$$

$$(1.3) -2r(\boldsymbol{\omega}) \in \operatorname{sing supp} S(\cdot, -\boldsymbol{\omega}, \boldsymbol{\omega}),$$

where $r(\omega) = \min_{x \in \mathcal{O}} x \cdot \omega$. The above results are proved also in the case of $n \ge 2$ by Soga [12]. Soga [11] and Yamamoto [14] have characterized the convexity of \mathcal{O} with the singularities of $S(s, -\omega, \omega)$:

(1.4) O is convex if and only if sing supp $S(\cdot, -\omega, \omega)$ has only one point for any $\omega \in S^{n-1}$.

In the present paper we shall examine sing supp $S(\cdot, -\omega, \omega)$ precisely when \mathcal{O} consists of two balls \mathcal{O}_1 and $\mathcal{O}_2 \subset \mathbb{R}^2$ or \mathbb{R}^3 . In this case, by the above results $(1.2) \sim (1.4)$, the right end point of sing supp $S(\cdot, -\omega, \omega)$ is $-2r(\omega)$, and furthermore there exist other points of sing supp $S(\cdot, -\omega, \omega)$ in $(-\infty, -2r(\omega))$ for some $\omega \in S^{n-1}$.

Let d_i be the radius of \mathcal{O}_i and $r_i(\omega) = \min_{x \in \mathcal{O}_i} x \cdot \omega$ (i = 1, 2). Suppose that $\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset$. The first main result is the following theorem:

THEOREM 1. Let ω be any vector in S^{n-1} (n=2, 3) such that every line parallel to ω does not intersect both \mathcal{O}_1 and \mathcal{O}_2 . Then we have

$$\operatorname{sing\,supp} S(\cdot, -\boldsymbol{\omega}, \boldsymbol{\omega}) \cap [\min_{i=1,2} (-2r_i(\boldsymbol{\omega})), +\infty) = \{-2r_i(\boldsymbol{\omega})\}_{i=1,2}.$$

For more restricted ω , we can know whole distribution of sing supp $S(\cdot, -\omega, \omega)$ completely. Let $x_0 \in P = \{x : x \cdot \omega = \min_{i=1,2} r_i(\omega) - 1\}$, and consider the broken ray starting at x_0 in the direction ω according to the law of geometrical optics. Then we suppose that this ray is reflected m times at the points x_1, \dots, x_m of the boundary and returns to the point x_{m+1} of P in the direction $-\omega$. Set

(1.5)
$$s_m^i = \sum_{j=1}^{m+1} |x_{j-1} - x_j| - 2 \quad \text{when } x_1 \in \partial \mathcal{O}_i \quad (i=1, 2).$$

THEOREM 2. Assume that

$$\operatorname{dist}(\mathcal{O}_1, \, \mathcal{O}_2) > 13 \max_{i=1,2} d_i,$$

and let ω satisfy

$$|r_1(\boldsymbol{\omega})-r_2(\boldsymbol{\omega})| < \max_{i=1,2} d_i$$
.

Then there exist the broken rays associated with (1.5) for any positive integer m, and we have

- (i) $\operatorname{sing supp} S(\cdot, -\omega, \omega) = \{-2 \min_{j=1, 2} r_j(\omega) s_m^i\}_{\substack{i=1, 2 \\ m=1, 2, \dots}},$
- (ii) $\lim_{m \to +\infty} (s_{m+2}^{t} s_{m}^{t}) = 2 \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2})$ (i=1, 2),

(iii)
$$\lim_{m \to +\infty} \left\{ s_{2m}^{i} - \frac{(s_{2m-1}^{1} + s_{2m-1}^{2})}{2} \right\} = \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2}) \quad (i=1, 2).$$

By Theorem 1, shifting the direction ω , we can know the radius of \mathcal{O}_1 and \mathcal{O}_2 from the right end point and the next point of sing supp $S(\cdot, -\omega, \omega)$. Furthermore in the same way, we can look for the direction ω satisfying the condition in Theorem 2.

To analyze the singularities of $S(\cdot, -\omega, \omega)$, we use the following representation:

$$(1.6) \quad S(s, \theta, \omega) = \int_{\partial Q} \{ \nu \cdot \theta \partial_t^{n-1} v(x \cdot \theta - s, x; \omega) - \partial_t^{n-2} \partial_\nu v(x \cdot \theta - s, x; \omega) \} dS_x \quad (\theta \neq \omega).$$

Here, ν denotes the unit inner vector normal to the boundary $\partial\Omega$, and $v(t, x; \omega)$ is the solution of the equation

(1.7)
$$\begin{cases} \Box v(t, x; \boldsymbol{\omega}) = 0 & \text{in } \mathbf{R}^1 \times \boldsymbol{\Omega}, \\ v = -2^{-1}(-2\pi i)^{1-n} \delta(t - x \cdot \boldsymbol{\omega}) & \text{on } \mathbf{R}^1 \times \partial \boldsymbol{\Omega}, \\ v = 0 & \text{for } t < r(\boldsymbol{\omega}). \end{cases}$$

The representation (1.6) was proved by Majda [7] in the case of n=3, and by Soga [11] in the case of $n\ge 2$. In § 3 we prove Theorem 1 and Theorem 2 by examining how the singularities of v influence sing supp $S(\cdot, -\omega, \omega)$ through (1.6) by the same procedures as in [7], [11], etc. In view of Guillemin [1], Petkov [9], etc., we expect that sing supp $S(\cdot, -\omega, \omega)$ is contributed by only the broken rays associated with (1.5). The main tasks in the proof of Theorem 2 are to show that there exist actually such rays for any m (cf. Theorem 2.1) and to investigate those properties precisely (cf. Theorems 2.2 and 2.3).

§ 2. Properties of the broken rays.

At first, we define precisely the broken rays stated in Introduction. Denote by $\nu(x)$ the unit inner vector normal to the boundary $\partial\Omega$ at $x\in\partial\Omega$. We suppose that $\{x=x_0+l\xi_0; l>0\}\cap\partial\Omega\neq\emptyset$ for $x_0\in\Omega$ and $\xi_0\in S^{n-1}$, and define l_{j-1} , x_j and ξ_j successively for $j=1, 2, \cdots$ by

$$l_{j-1} = \inf\{l > 0; \quad x_{j-1} + l\xi_{j-1} \in \partial \Omega\},$$

$$x_j = x_{j-1} + l_{j-1}\xi_{j-1},$$

$$\xi_j = \xi_{j-1} - 2(\xi_{j-1} \cdot \nu(x_j))\nu(x_j),$$

where $l_{j-1}=\infty$ when $x_{j-1}+l\xi_{j-1}\notin\partial\Omega$ for any l>0. Assuming that these $\{l_j\}$, $\{x_j\}$ and $\{\xi_j\}$ are well-defined, we call the set

$$L(x_0, \xi_0) = \bigcup_{i} \{x = x_i + l\xi_i; 0 \le l < l_i\}$$

the broken ray starting at x_0 in the direction ξ_0 , and $\{x_j\}$ the reflection points. When there exists an integer $m \ge 1$ such that $\{x = x_m + l\xi_m ; l > 0\} \cap \partial \Omega = \emptyset$, we set

$$\operatorname{*ref} L(x_0, \xi_0) = m$$
, $\operatorname{dir}_{\infty} L(x_0, \xi_0) = \xi_m$.

One of the main purposes in this section is to show the following theorem, which plays a fundamental role on the proof of Theorem 2 in Introduction.

THEOREM 2.1. Let ω be any vector in S^{n-1} (n=2, 3) such that every line parallel to ω does not intersect both \mathcal{O}_1 and \mathcal{O}_2 . Then, for any positive integer m there exists a broken ray $L^i(x_0, \omega)$ uniquely such that

- (i) x_0 is on the plane $P = \{x : x \cdot \omega = \min_{i=1,2} r_i(\omega) 1\},$
- (ii) the first reflection point x_1 belongs to \mathcal{O}_i ,
- (iii) *ref $L^i(x_0, \boldsymbol{\omega}) = m$,
- (iv) $\operatorname{dir}_{\infty} L^{i}(x_{0}, \boldsymbol{\omega}) = -\boldsymbol{\omega}.$

Before proving this theorem, we explain a key lemma for the proof. The proof in the case of n=3 will be reduced to that in the case of n=2, and so we consider only the case of n=2 for a while.

Let the assumption in Theorem 2.1 be satisfied. Then we can assume without loss of generality that $\mathcal{O}_1 \subset \{x = (x^1, x^2); x^1 < 0\}$, $\mathcal{O}_2 \subset \{x; x^1 > 0\}$ and $\boldsymbol{\omega} = (0, 1)$. We employ the following mappings $\boldsymbol{\Phi}$, $\boldsymbol{\tilde{\Phi}}$, $\boldsymbol{\Phi}_1$ and $\boldsymbol{\Phi}_2$ from $(-\pi, \pi]$ to the circles S^1 , S^1 , $\partial \mathcal{O}_1$ and $\partial \mathcal{O}_2 \subset \boldsymbol{R}_x^2$ respectively:

$$egin{aligned} arPhi(heta) &= (\cos heta, \sin heta)\,, \ arPhi(heta) &= (\cos(heta+\pi), \sin(heta+\pi))\,, \ arPhi_1(heta) &= c_1 + d_1(\cos heta, \sin heta)\,, \ arPhi_2(heta) &= c_2 + d_2(\cos(heta+\pi), \sin(heta+\pi))\,. \end{aligned}$$

Note that Φ , $\tilde{\Phi}$ and Φ_i (i=1, 2) are diffeomorfic on $(-\pi, \pi)$ and have the inverse mappings Φ^{-1} , $\tilde{\Phi}^{-1}$ and Φ_i^{-1} respectively. For a S^1 -valued smooth function $\xi(y)$ on $\partial \mathcal{O}_1$ (or an arc in $\partial \mathcal{O}_1$) consider the line $\{x=y+l\xi(y); l>0\}$. We suppose that this line intersects $\partial \mathcal{O}_2$, and set

$$l(y) = \inf\{l > 0; y + l\xi(y) \in \partial \mathcal{O}_2\}, \qquad \tilde{y}(y) = y + l(y)\xi(y) \qquad (\in \partial \mathcal{O}_2),$$

$$(2.1) \qquad \tilde{\xi}(y) = \xi(y) - 2\{\xi(y) \cdot \nu(\tilde{y}(y))\} \nu(\tilde{y}(y)) \qquad (\in S^1).$$

On these notations, we have

LEMMA 2.1. Let $\xi(y)$ be a S^1 -valued C^1 function on an arc $\{y = \Phi_1(\theta)\}_{\theta 1 < \theta < \theta 2}$ $\subset \partial \mathcal{O}_1$ satisfying $\xi(y) \cdot \nu(y) > 0$. Assume that the function $\phi(\theta) = \Phi^{-1}\xi(\Phi_1(\theta))$ satisfies

$$\frac{d\phi}{d\theta}(\theta) > 0 \quad on (\theta_1, \theta_2), \quad (-\pi/2, \pi/2) \subset \phi((\theta_1, \theta_2)).$$

Then the line $\{\Phi_1(\theta)+l\xi(\Phi_1(\theta))\}_{l>0}$ intersects $\partial\mathcal{O}_2$ for any θ in some interval $(\theta_3, \theta_4)(\subset(\theta_1, \theta_2))$, and the mapping: $y\to \tilde{y}(y)$ is a diffeomorphism from $\{\Phi_1(\theta)\}_{\theta_3<\theta<\theta_4}$ to $\{\tilde{y}=\Phi_2(\mu)\}_{\mu_1<\mu<\mu_2}$. Furthermore $\eta(\tilde{y})=\tilde{\xi}(y(\tilde{y}))$ has the same properties as $\xi(y)$ (where $y(\tilde{y})$ is the inverse mapping of $\tilde{y}(y)$); that is, $\eta(\tilde{y})\cdot\nu(\tilde{y})>0$ holds, and the function $\tilde{\phi}(\mu)=\tilde{\Phi}^{-1}\eta(\Phi_2(\mu))$ satisfies

(2.2)
$$\frac{d\tilde{\phi}}{d\mu}(\mu) > 0 \quad on \ (\mu_1, \ \mu_2),$$
$$[-\pi/2, \ \pi/2] \subset \tilde{\phi}((\mu_1, \ \mu_2)).$$

Ikawa [3] shows the diffeomorphicity of the mapping $\tilde{y}: y \rightarrow \tilde{y}(y)$ locally (see Lemma 3.2 of [3]). But we need the further properties of this mapping.

REMARK 2.1. Lemma 2.1 is valid also when \mathcal{O}_1 and \mathcal{O}_2 are exchanged each other.

PROOF OF LEMMA 2.1. From the assumptions, it follows that the mapping $T:(\theta,l)\to\Phi_1(\theta)+l\xi(\Phi_1(\theta))$ is diffeomorphic on $M=(\theta_1,\theta_2)\times(0,\infty)$ and that TM contains $\{x:x^1>0\}$. Set

$$\begin{split} &\theta_3 = \inf\{\theta \!\in\! (\theta_1,\; \theta_2)\;; \quad T(\theta,\; l) \!\in\! \partial \mathcal{O}_2 \; \text{for some } l \!>\! 0\}, \\ &\theta_4 = \sup\{\theta \!\in\! (\theta_1,\; \theta_2)\;; \quad T(\theta,\; l) \!\in\! \partial \mathcal{O}_2 \; \text{for some } l \!>\! 0\}. \end{split}$$

Then, as is easily seen, for any $\theta \in (\theta_3, \theta_4)$ the line $\{T(\theta, l)\}_{l>0}$ intersects $\partial \mathcal{O}_2$ transversally at two points. Let $T(\theta, l(\theta))$ be the point closer to $\partial \mathcal{O}_1$, and set $\mu(\theta) = \Phi_2^{-1}T(\theta, l(\theta))$. Note that these $l(\theta)$ and $\mu(\theta)$ are also the implicit functions defined by the equation

$$F(\theta, l, \mu) \equiv \Phi_1(\theta) + l\xi(\Phi_1(\theta)) - \Phi_2(\mu) = 0$$
.

These implicit functions are well-defined since $\partial F/\partial(l,\mu) = \det(\xi(\Phi_1(\theta)), -\partial_\mu \Phi_2(\mu))$ $\neq 0$ (i. e., $\{T(\theta,l)\}_{l>0}$ is transversal to $\partial \mathcal{O}_2$ when $\theta_3 < \theta < \theta_4$). Denote by $\xi^\perp(\theta)$ the unit vector normal to $\xi(\Phi_1(\theta))$ with $\det(\xi,\xi^\perp)>0$. Then, from the equality $\partial_\theta [F(\theta,l(\theta),\mu(\theta))]\cdot \xi^\perp(\theta)=0$, we have

$$\frac{d\mu}{d\theta}(\theta)(\partial_{\mu}\Phi_{\mathfrak{s}}(\mu(\theta))\cdot\xi^{\perp}(\theta)) = -(\partial_{\theta}\Phi_{\mathfrak{s}}(\theta)+l(\theta)\partial_{\theta}[\xi(\Phi_{\mathfrak{s}}(\theta))])\cdot\xi^{\perp}(\theta).$$

It is seen from the assumptions that $\partial_{\mu}\Phi_{2}\cdot\xi^{\perp}<0$ and $(\partial_{\theta}\Phi_{1}+l\partial_{\theta}\xi)\cdot\xi^{\perp}<0$ when $\theta_{3}<\theta<\theta_{4}$. Hence we obtain

$$(2.3) \frac{d\mu}{d\theta}(\theta) < 0 \text{on } (\theta_3, \theta_4).$$

This implies that $\tilde{y}(y) = \Phi_2(\mu(\Phi_1^{-1}(y)))$ is diffeomorphic on $\{\Phi_1(\theta)\}_{\theta_3 < \theta < \theta_4}$. From the definition (2.1), the inequality $\eta(\tilde{y}) \cdot \nu(\tilde{y}) > 0$ is obvious. Set

$$\psi(\mu, \sigma) = \tilde{\Phi}^{-1} [\Phi(\sigma) - 2\{\Phi(\sigma) \cdot \nu(\Phi_2(\mu))\} \nu(\Phi_2(\mu))].$$

Then we have

$$\tilde{\phi}(\mu(\theta)) = \psi(\mu(\theta), \phi(\theta)), \quad \theta_3 < \theta < \theta_4.$$

It is easily see that $\tilde{\phi}(\mu(\theta))$ is smooth on (θ_3, θ_4) and satisfies $\tilde{\phi}(\mu(\theta)) > \pi/2$ as

 $\theta \rightarrow \theta_3$ and $<-\pi/2$ as $\theta \rightarrow \theta_4$. This yields that

$$[-\pi/2, \pi/2] \subset \tilde{\phi}((\mu_1, \mu_2)) \qquad (\mu_i = \mu(\theta_{5-i})).$$

When $\Phi(\sigma) \cdot \nu(\Phi_2(\mu)) < 0$, we have

$$\partial_{\mu} \psi(\mu, \sigma) > 0$$
, $\partial_{\sigma} \psi(\mu, \sigma) < 0$.

Therefore it follows that

$$rac{d ilde{\phi}}{d\mu}rac{d\mu}{d heta}=\partial_{\mu}\psirac{d\mu}{d heta}+\partial_{\sigma}\psirac{d\phi}{d heta}<0$$
 ,

which implies that $d\tilde{\phi}/d\mu > 0$ (see (2.3)). The proof is complete.

PROOF OF THEOREM 2.1. We take the coordinates $x=(x^1, x^2)$ stated below Theorem 2.1, and consider any broken ray $L(x_0, \omega)$ with $x_0 \in P$. Assume that the first reflection point x_1 of $L(x_0, \omega)$ belongs to $\partial \mathcal{O}_1$. The case of $x_1 \in \partial \mathcal{O}_2$ can be treated in the same way. Setting $\theta = \Phi_1^{-1}(x_1)$, from the equality $\xi_1(x_1) = \omega - 2(\omega \cdot \nu(x_1))\nu(x_1)$ we have $\Phi^{-1}\xi_1(\Phi_1(\theta)) = 2\theta + \pi/2$ and $\xi_1(\Phi_1(\theta)) \cdot \nu(\Phi_1(\theta)) > 0$ on $[-\pi/2, 0)$. This yields that $(d/d\theta)[\Phi^{-1}\xi_1(\Phi_1(\theta))] > 0$ on $(-\pi/2, 0)$ and $\Phi^{-1}\xi_1(\Phi_1((-\pi/2, 0))) = (-\pi/2, \pi/2)$. Therefore $\xi_1(x_1)$ satisfies the assumptions in Lemma 2.1. Using Lemma 2.1 inductively (cf. Remark 2.1), for any positive integer m we have broken rays $L(x_0, \omega)$ with $\text{*ref } L(x_0, \omega) = m$ such that ξ_m is a continuous function of x_0 and that $\Phi^{-1}\xi_m(x_0)$ (or $\widetilde{\Phi}^{-1}\xi_m(x_0)$) covers $[-\pi/2, \pi/2]$ when x_0 moves on some open set in P. The uniqueness of this broken ray for each x_0 follows from (2.2) in Lemma 2.1. Therefore we obtain the broken ray $L^1(x_0, \omega)$ with the all required properties. The proof is complete.

THEOREM 2.2. Assume that

$$dist(\mathcal{O}_1, \mathcal{O}_2) > 13 \max_{i=1,2} d_i$$
,

and let $\omega \in S^{n-1}$ satisfy

$$|r_1(\boldsymbol{\omega})-r_2(\boldsymbol{\omega})| < \max_{i=1,2} d_i$$
.

Then s_m^i defined by (1.5) satisfies

$$\min_{i=1,2} s_{m+1}^i > \max_{i=1,2} s_m^i \quad \text{for } m \ge 1.$$

For the proof of this theorem, we shall explain some lemmas concerned with the reflection points x_1, \dots, x_m . Let $a_j \in \partial \mathcal{O}_j$, j=1, 2 be the points with $|a_1-a_2|=\operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2)$.

LEMMA 2.2. Let x_1, \dots, x_l, \dots be the reflection points of a broken ray. If $x_j \in \partial \mathcal{O}_1$ and $x_{j-1} \in \partial \mathcal{O}_2$ satisfy $\Phi_1^{-1}(x_j) \geq \Phi_1^{-1}(a_1)$ and $\Phi_2^{-1}(x_{j-1}) > \Phi_2^{-1}(a_2)$, then it holds that

$$\Phi_1^{-1}(x_j) < \Phi_1^{-1}(x_{j+2}) < \Phi_1^{-1}(x_{j+4}) < \cdots ,$$

$$\Phi_2^{-1}(a_2) > \Phi_2^{-1}(x_{j+1}) > \Phi_2^{-1}(x_{j+3}) > \cdots .$$

PROOF. From the assumption and the law of the reflection, it follows that

$$\Phi^{-1}\left(\frac{x_{j-1}-x_{j}}{|x_{j-1}-x_{j}|}\right) < \Phi^{-1}\left(\frac{a_{2}-a_{1}}{|a_{2}-a_{1}|}\right) < \Phi^{-1}\left(\frac{x_{j+1}-x_{j}}{|x_{j+1}-x_{j}|}\right).$$

This implies that

$$\Phi_2^{-1}(x_{j-1}) > \Phi_2^{-1}(a_2) > \Phi_2^{-1}(x_{j+1})$$
.

In the same way we have $\Phi_1^{-1}(x_j) < \Phi_1^{-1}(x_{j+2})$. Repeating these methods inductively, we obtain the lemma.

The following lemma is concerned with the reflection points of the broken ray L when *ref L is odd.

LEMMA 2.3. Let x_1, \dots, x_{2m-1} $(x_1 \in \partial \mathcal{O}_1)$ be the reflection points of the broken ray $L^1(x_0, \omega)$ (*ref $L^1 = 2m-1$) stated in Theorem 2.1. Then the following (i) or (ii) holds:

(i) If $x_m \in \partial \mathcal{O}_1$, then we have

$$\begin{split} &-\pi/2 \leqq \varPhi_1^{-1}(x_1) < \varPhi_1^{-1}(x_3) < \dots < \varPhi_1^{-1}(x_m) < \varPhi_1^{-1}(a_1) \,, \\ &\pi/2 \geqq \varPhi_2^{-1}(x_2) > \varPhi_2^{-1}(x_4) > \dots > \varPhi_2^{-1}(x_{m-1}) > \varPhi_2^{-1}(a_2) \,, \\ &x_j = x_{2m-1-(j-1)} \qquad for \ j{=}1, \, 2, \, \dots \,, \, m \,. \end{split}$$

(ii) If $x_m \in \partial \mathcal{O}_2$, then we have

$$\begin{split} &-\pi/2 \leqq \varPhi_1^{-1}(x_1) < \varPhi_1^{-1}(x_3) < \dots < \varPhi_1^{-1}(x_{m-1}) < \varPhi_1^{-1}(a_1) \,, \\ &\pi/2 \geqq \varPhi_2^{-1}(x_2) > \varPhi_2^{-1}(x_4) > \dots > \varPhi_2^{-1}(x_m) > \varPhi_2^{-1}(a_2) \,, \\ &x_j = x_{2m-1-(j-1)} \qquad for \ j{=}1, \, 2, \, \dots \,, \, m \,. \end{split}$$

PROOF. Let us show only (i). (ii) can be treated in the same way. If $x_1 \neq x_{2m-1}$, then $x_2 \neq x_{2m-2}$ follows from Lemma 2.1 and $\xi_{2m-1} = -\omega$. Therefore successively we obtain $x_m \neq x_{2m-m}$ (= x_m). This is a contradiction. Hence we have

$$(2.4) x_j = x_{2m-1-(j-1)} \text{for } j=1, 2, \dots, m.$$

It is obvious that $-\pi/2 \leq \Phi_1^{-1}(x_1)$ and $\pi/2 > \Phi_2^{-1}(x_2)$. We obtain $\Phi_1^{-1}(x_{2i-1}) < \Phi_1^{-1}(a_1)$ and $\Phi_2^{-1}(x_{2j}) > \Phi_2^{-1}(a_2)$ for any i and j ($i=1, 2, \dots, m$; $j=1, 2, \dots, m-1$): If not, for some i it holds that $\Phi_1^{-1}(x_{2\tilde{i}+1}) \geq \Phi_1^{-1}(a_1)$ and $\Phi_2^{-1}(x_{2\tilde{i}}) > \Phi_2^{-1}(a_2)$, which implies from Lemma 2.2 that $\Phi_1^{-1}(x_{2\tilde{i}+1}) < \Phi_1^{-1}(x_{2\tilde{i}+2}) < \dots < \Phi_1^{-1}(x_{2m-1})$; this does not consist with (2.4). Let $\Phi_1^{-1}(x_i) \geq \Phi_1^{-1}(x_{i+2})$ for an i ($1 \leq i \leq m-2$). Then, by the same procedures as in the proof of Lemma 2.2, we have

$$(2.5) \qquad \Phi_1^{-1}(x_{i+2}) > \Phi_1^{-1}(x_{i+4}) > \cdots > \Phi_1^{-1}(x_{m-2}) > \Phi_1^{-1}(x_m) > \Phi_1^{-1}(x_{m+1}) > \cdots.$$

However, from (2.4), $\Phi_1^{-1}(x_{m-2})$ is equal to $\Phi_1^{-1}(x_{m+2})$, which does not consist with (2.5). Hence we have

$$\Phi_1^{-1}(x_1) < \Phi_1^{-1}(x_3) < \cdots < \Phi_1^{-1}(x_m)$$
.

Similarly, we have

$$\Phi_2^{-1}(x_2) > \Phi_2^{-1}(x_4) > \dots > \Phi_2^{-1}(x_{m-1})$$
.

The proof is complete.

When ref L is even, the following lemma is obtained by the same procedures as for Lemma 2.3.

LEMMA 2.4. Let x_1, \dots, x_{2m} ($x_1 \in \partial \mathcal{O}_1$) be the reflection points of the broken ray $L^1(x_0, \boldsymbol{\omega})$ (*ref $L^1 = 2m$) stated in Theorem 2.1. Then there exists only one integer l such that

$$\begin{split} \varPhi_{1}^{-1}(x_{1}) &< \varPhi_{1}^{-1}(x_{3}) < \cdots < \varPhi_{1}^{-1}(x_{2l+1}) \,, \\ \varPhi_{1}^{-1}(x_{2l+1}) &> \varPhi_{1}^{-1}(x_{2l+3}) > \cdots > \varPhi_{1}^{-1}(x_{2m-1}) \,, \\ \varPhi_{2}^{-1}(x_{2}) &> \varPhi_{2}^{-1}(x_{4}) > \cdots > \varPhi_{2}^{-1}(x_{2l}) \,, \\ \varPhi_{2}^{-1}(x_{2l+2}) &< \varPhi_{2}^{-1}(x_{2l+4}) < \cdots < \varPhi_{2}^{-1}(x_{2m}) \,, \\ -\pi/2 &\leq \varPhi_{1}^{-1}(x_{2j-1}) < \varPhi_{1}^{-1}(a_{1}) \quad and \quad \varPhi_{2}^{-1}(a_{2}) < \varPhi_{2}^{-1}(x_{2j}) \leq \pi/2 \\ &\qquad \qquad for \ j{=}1, \, 2, \, \cdots, \, m \,. \end{split}$$

REMARK 2.2. We can get the same lemmas as Lemmas 2.3 and 2.4 also when the first reflection point x_1 belongs to $\partial \mathcal{O}_2$.

PROOF OF THEOREM 2.2. Let y_0, \dots, y_{m+2} and x_0, \dots, x_{m+1} be the points defining $\min_{i=1,2} s_{m+1}^i$ and $\max_{i=1,2} s_m^i$ (cf. (1.5)) respectively. We have

$$\min_{i=1,2} s_{m+1}^{i} \ge |y_0 - y_1| + |y_{m+1} - y_{m+2}| + m \operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2) - 2,$$

$$\max_{i=1,2} s_{m}^{i} \le |x_0 - x_1| + |x_m - x_{m+1}| + 2 \sum_{k=1}^{m} |x_k - a(x_k)| + (m-1) \operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2) - 2,$$

where $a(x_k)=a_1$ if $x_k \in \partial \mathcal{O}_1$ and $a(x_k)=a_2$ if $x_k \in \partial \mathcal{O}_2$. From the assumption $\operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2) > 13 \max\{d_1, d_2\}$ and the law of the reflection, it follows that

$$\begin{aligned} |x_{k+1}-a_2| &< (13)^{-1}|x_k-a_1| & \text{if } \Phi_1^{-1}(x_{k+2}) \geq \Phi_1^{-1}(x_k) \,, \\ |x_k-a_1| &< (13)^{-1}|x_{k+1}-a_2| & \text{if } \Phi_1^{-1}(x_{k+2}) \leq \Phi_1^{-1}(x_k) \,. \end{aligned}$$

Therefore, by Lemma 2.3 and Lemma 2.4 we obtain

$$\sum_{k=1}^{m} |x_k - a(x_k)| < 4 \max\{d_1, d_2\} \sum_{k=0}^{\infty} (13)^{-k} = \frac{13}{3} \max\{d_1, d_2\},$$

which yields that

$$\max_{i=1,2} s_m^i \leq |x_0 - x_1| + |x_m - x_{m+1}| - 2 + \frac{26}{3} \max\{d_1, d_2\} + (m-1) \operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2).$$

On the other hand, from $|r_1(\omega)-r_2(\omega)| < \max\{d_1, d_2\}$ we have

$$0 \le |x_0 - x_1| + |x_m - x_{m+1}| - 2 \le 4 \max\{d_1, d_2\}.$$

Therefore, noting that $|y_0-y_1|+|y_{m+1}-y_{m+2}|-2\geq 0$, we obtain

$$\max_{i=1,2} s_m^i < \left(4 + \frac{26}{3}\right) \max_{i=1,2} \{d_1, d_2\} + (m-1) \operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2) < \min_{i=1,2} s_{m+1}^i.$$

The proof is complete.

The following theorem is concerned with the distribution of s_m^i defined by (1.5) as $m \to +\infty$.

THEOREM 2.3. Assume that $dist(\mathcal{O}_1, \mathcal{O}_2) > 13 \max\{d_1, d_2\}$ and let $\omega \in S^{n-1}$ satisfy the assumptions stated in Theorem 1. Then we have

(i)
$$\lim_{m\to+\infty} (s_{m+1}^i - s_{m-1}^i) = 2 \operatorname{dist}(\mathcal{O}_1, \mathcal{O}_2)$$
 (i=1, 2),

(ii)
$$\lim_{m \to +\infty} \left\{ s_{2m}^{i} - \frac{(s_{2m-1}^{1} + s_{2m-1}^{2})}{2} \right\} = \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2}) \quad (i=1, 2).$$

We explain some lemmas for the proof.

LEMMA 2.5. Let x_1, \dots, x_{2m-1} and y_1, \dots, y_{2m} $(m \ge 1)$ be the reflection points of the broken rays $L^i(x_0, \omega)$ and $L^i(y_0, \omega)$ (i=1, 2) respectively with the properties stated in Theorem 2.1. Then it holds that

- (i) $\Phi_1^{-1}(x_1) < \Phi_1^{-1}(y_1)$ if x_1 and $y_1 \in \partial \mathcal{O}_1$,
- (ii) $\Phi_2^{-1}(x_1) > \Phi_2^{-1}(y_1)$ if x_1 and $y_1 \in \partial \mathcal{O}_2$.

PROOF. Let us show only (i). (ii) can be treated in the same way. If $\Phi_1^{-1}(x_1) = \Phi_1^{-1}(y_1)$, then we obtain $x_j = y_j$ for $j = 0, 1, \dots, 2m-1$. Therefore there cannot exist y_{2m} . This is a contradiction. If $\Phi_1^{-1}(x_1) > \Phi_1^{-1}(y_1)$, then using Lemma 2.1 successively we have $\Phi_2^{-1}(x_2) < \Phi_2^{-1}(y_2)$, $\Phi_1^{-1}(x_3) > \Phi_1^{-1}(y_3)$, ..., $\Phi_2^{-1}(x_{2m-2}) < \Phi_2^{-1}(y_{2m-2})$, $\Phi_1^{-1}(x_{2m-1}) < \Phi_1^{-1}(y_{2m-1})$. If $\Phi_1^{-1}(x_{2m-1}) < \Phi_1^{-1}(y_{2m-1})$, there cannot exist y_{2m} with $\dim_{\infty} L^1(x_0, \omega) = -\omega$. Hence we obtain this lemma.

LEMMA 2.6 (Lemma 3.3 in Ikawa [3]). Set

$$\mathcal{L} = \{x : x = ta_1 + (1-t)a_2, t \in \mathbb{R}\}, \quad U(\delta) = \{x \in \partial \Omega : \operatorname{dist}(x, \mathcal{L}) \leq \delta\}, \quad \delta > 0.$$

Let x_1, x_2, \cdots be the reflection points of a broken ray $L(x_0, \xi_0)$, and assume that $x_1 \in \partial \Omega - U(\delta)$ and $L(x_0, \xi_0) \cap U(\delta) = \emptyset$. Then there exists a positive constant C independent of δ such that

$$ref L(x_0, \xi_0) \leq C\delta^{-2}$$
.

PROOF OF THEOREM 2.3. At first, let us show that for any $\varepsilon > 0$

$$\left|\operatorname{dist}(\mathcal{O}_1,\,\mathcal{O}_2) + rac{S_{2\,m-1}^i}{2} - rac{S_{2\,m+1}^i}{2}
ight| < arepsilon$$

if m is large enough. Combining this with (ii) in the theorem, we get (i) in the theorem. We take the δ in Lemma 2.6 so that $\delta = \varepsilon$. Let $\{x_j\}_{j=0,\dots,2m}$ and $\{y_j\}_{j=0,\dots,2m+2}$ be the points defining s_{2m-1}^i and s_{2m+1}^i respectively (cf. (1.5)). Since the equalities $x_j = x_{2m-1-(j-1)}$ $(j=1,\dots,m)$ follow from Lemma 2.3, we have

$$\frac{S_{2m-1}^{i}}{2} = \sum_{j=0}^{m-1} |x_{j} - x_{j+1}| - 1.$$

From Lemma 2.6, there exists a positive integer $l=l(\varepsilon)$ independent of m such that j < l if $1 \le j \le m-1$ and $x_j \notin U(\varepsilon)$. We have the same properties for $\{y_j\}_{j=1,\dots,m+1}$. Hence we obtain

$$\begin{aligned} &\left| \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2}) + \frac{s_{2m-1}^{t}}{2} - \frac{s_{2m+1}^{t}}{2} \right| \\ &\leq \left| \sum_{j=0}^{t-1} (|x_{j} - x_{j+1}| - |y_{j} - y_{j+1}|) \right| \\ &+ \left| \sum_{j=t}^{m-1} (|x_{j} - x_{j+1}| - |y_{j} - y_{j+1}|) \right| + |\operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2}) - |y_{m} - y_{m+1}| \right| \\ &\equiv I_{1} + I_{2} + I_{3} \,. \end{aligned}$$

Taking account of (2.6) and Lemma 2.3, we get

$$\begin{split} \{m-1-(l-1)\} \mathrm{dist}(\mathcal{O}_1,\,\mathcal{O}_2) & \leq \sum_{j=l}^{m-1} |\, x_j - x_{j+1}| \\ & \leq \{m-1-(l-1)\} \mathrm{dist}(\mathcal{O}_1,\,\mathcal{O}_2) + 2 |\, x_l - a(x_l)| \cdot \sum_{j=0}^{m-1} (13)^{-j} \\ & \leq \{m-1-(l-1)\} \mathrm{dist}(\mathcal{O}_1,\,\mathcal{O}_2) + C(\varepsilon) \cdot \sum_{j=0}^{m-1} (13)^{-j} \,, \end{split}$$

where the constant $C(\varepsilon)$ (>0) does not depend on m and tends to 0 as $\varepsilon \to 0$. The same inequality holds for $\sum_{j=1}^{m-1} |y_j - y_{j+1}|$. Therefore we have

$$I_2 \leq C(\varepsilon) \cdot \sum_{j=0}^{m-1} (13)^{-j} < 2C(\varepsilon)$$
.

From Lemmas 2.1, 2.3 and 2.5 we see that each j-th reflection points x_j and y_j for $j \le l$ tend to the same point as $m \to +\infty$. Hence we get $I_1 < \varepsilon$ for large m. By Lemma 2.6, it holds that $I_3 < \varepsilon$ if m is large enough. Therefore the required inequality is obtained.

Next, let us check (ii). Let $\{x_j^i\}_{j=0,\dots,2m}$ and $\{y_j^i\}_{j=0,\dots,2m+1}$ be the points defining s_{2m-1}^i and s_{2m}^i (i=1,2) respectively. The broken ray for s_{2m}^i coincides with that for s_{2m}^2 , and so y_j^i is equal to $y_{2m-(j-1)}^2$ for $j=1,2,\dots,2m$. Hence we have

$$s_{2m}^1 = \sum_{j=1}^{2m+1} |y_{j-1}^1 - y_j^1| - 2 = \sum_{j=1}^{m} |y_{j-1}^1 - y_j^1| + |y_m^1 - y_{m+1}^1| + \sum_{j=1}^{m} |y_{j-1}^2 - y_j^2| - 2.$$

Therefore it follows that

$$\begin{aligned} \left| s_{2m}^{1} - \left\{ \frac{s_{2m-1}^{1} + s_{2m-1}^{2}}{2} + \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2}) \right\} \right| \\ & \leq \left| \sum_{j=1}^{m} (|y_{j-1}^{1} - y_{j}^{1}| - |x_{j-1}^{1} - x_{j}^{1}|) + 2^{-1} (|y_{m}^{1} - y_{m+1}^{1}| - \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2})) \right| \\ & + \left| \sum_{j=1}^{m} (|y_{j-1}^{2} - y_{j}^{2}| - |x_{j-1}^{2} - x_{j}^{2}|) + 2^{-1} (|y_{m}^{2} - y_{m+1}^{2}| - \operatorname{dist}(\mathcal{O}_{1}, \mathcal{O}_{2})) \right| \\ & \equiv \tilde{I}_{1} + \tilde{I}_{2}. \end{aligned}$$

By the same procedures as above, we see that $\tilde{I}_i \rightarrow 0$ (i=1, 2) as $m \rightarrow +\infty$. Hence (ii) is obtained. The proof is complete.

Lastly let us prove Theorem 2.1 in the case of n=3. Noting that \mathcal{O}_1 and \mathcal{O}_2 are balls, we see that on the (2 dimensional) plane

$$Q = \{x = t_1 \omega + t_2 \overrightarrow{a_1 a_2} + c_1; t_1, t_2 \in \mathbb{R}\}$$

there exists the broken ray with the properties stated in Theorem 2.1. Therefore it suffices to show that if the first reflection point x_1 is not on Q then $\dim_{\infty} L^i(x_0, \omega)$ is different from $-\omega$ for any m. If $x_1 \notin Q$, then the half line $\{x_1+l\xi_1; l\geq 0\}$ does not intersect Q. Furthermore, by induction, we see that $x_j\notin Q$ and $\{x_j+l\xi_j; l\geq 0\}\cap Q=\emptyset$. This implies that ξ_m cannot be equal to $-\omega$.

§ 3. Proof of the main theorems.

Fix $\omega \in S^{n-1}$ satisfying the assumptions in Theorem 1 (or Theorem 2). Let $\alpha(s)$ be a C^{∞} function such that $0 \le \alpha(s) \le 1$ for $s \in \mathbb{R}^{1}$, $\alpha(s) = 1$ for |s| < 1/2 and $\alpha(s) = 0$ for |s| > 1, and set

$$\alpha_{\varepsilon}(s) = \alpha \left(\frac{s}{2\varepsilon}\right) \quad (\varepsilon > 0).$$

From (1.6) it follows that

$$(3.1) F[\alpha_{\varepsilon}(s-s_{0})S(s,-\omega,\omega)](\sigma)$$

$$=-\iint_{R^{1}\times\partial\Omega}\nu\cdot\omega e^{i\sigma(s+x\cdot\omega)}\alpha_{\varepsilon}(-x\cdot\omega-s-s_{0})\partial_{s}^{n-1}v(s,x;\omega)dsdS_{x}$$

$$-\iint_{R^{1}\times\partial\Omega}e^{i\sigma(s+x\cdot\omega)}\alpha_{\varepsilon}(-x\cdot\omega-s-s_{0})\partial_{s}^{n-2}\partial_{\nu}v(s,x;\omega)dsdS_{x},$$

where F denotes the Fourier transformation in the variable s and the integral in s is in the sense of the distributions.

We take a partition of unity $\{\chi_{pq}(t,\,x)\}_{\substack{q=1,2\\p=1,2,\cdots,l_q}}$ on $R^1\times\partial\Omega$ such that $\sup_{p=1,2,\cdots,l_q}[\chi_{pq}]\cap(R^1\times\partial\mathcal{O}_{3-q})=\emptyset$ for any $p=1,\,\cdots$, l_q $(q=1,\,2)$. Let $v_{pq}(t,\,x\;;\omega)$ be the solution of the equation

(3.2)
$$\begin{cases} \Box v_{pq} \in C^{\infty}(\mathbf{R}^{1} \times \overline{\Omega}), \\ (v_{pq} + 2^{-1}(-2\pi i)^{1-n} \chi_{pq} \delta(t - x \cdot \omega))|_{\mathbf{R}^{1} \times \partial \Omega} \in C^{\infty}(\mathbf{R}^{1} \times \partial \Omega), \\ v_{pq} \quad \text{smooth} \quad \text{if} \quad t < r(\omega). \end{cases}$$

Then $v(t, x; \omega)$ is equal to $\sum_{q=1}^{2} \sum_{p=1}^{lq} v_{pq}(t, x; \omega) \mod C^{\infty}$, and so by (3.1) we have

$$\begin{split} F[\alpha_{\varepsilon}(s-s_{0})S(s,-\boldsymbol{\omega},\boldsymbol{\omega})](\sigma) \\ &= -\sum_{q'=1}^{2}\sum_{q=1}^{2}\sum_{p=1}^{lq}\left\{\iint_{\boldsymbol{R}^{1}\times\partial\mathcal{O}_{q'}}\boldsymbol{\nu}\cdot\boldsymbol{\omega}e^{i\sigma(s+x\cdot\boldsymbol{\omega})}\alpha_{\varepsilon}(-x\cdot\boldsymbol{\omega}-s-s_{0})\partial_{s}^{n-1}v_{pq}(s,x;\boldsymbol{\omega})dsdS_{x} \right. \\ &\left. + \iint_{\boldsymbol{R}^{1}\times\partial\mathcal{O}_{q'}}e^{i\sigma(s+x\cdot\boldsymbol{\omega})}\alpha_{\varepsilon}(-x\cdot\boldsymbol{\omega}-s-s_{0})\partial_{s}^{n-2}\partial_{\nu}v_{pq}(s,x;\boldsymbol{\omega})dsdS_{x}\right\} + O(|\sigma|^{-\infty}) \\ &\equiv -\sum_{q'=1}^{2}\sum_{q=1}^{2}\sum_{p=1}^{lq}\left\{I_{pqq'}^{1}(\sigma)+I_{pqq'}^{2}(\sigma)\right\} + O(|\sigma|^{-\infty}). \end{split}$$

In view of the boundary condition, we have

$$\sum_{q'=1}^{2} \sum_{q=1}^{2} \sum_{p=1}^{lq} I_{pqq'}^{1}(\sigma) = \sum_{q'=1}^{2} \sum_{j=0}^{n-1} c_{j}^{1} \sigma^{n-1-j} \int_{\partial \mathcal{O}_{q'}} \nu \cdot \omega e^{2i\sigma x \cdot \omega} \alpha_{\varepsilon}^{(j)} (-2x \cdot \omega - s_{0}) dS_{x},$$

where $c_0^1 = -2^{-1}(2\pi)^{1-n}$; furthermore we obtain

$$I_{pqq'}^{2}(\sigma) = \sum_{j=0}^{n-2} c_{j}^{2} \sigma^{n-2-j} \iint_{\mathbf{R}^{1} \times \partial \mathcal{O}_{q'}} e^{i\sigma(s+x \cdot \omega)} \alpha_{\varepsilon}^{(j)}(-x \cdot \boldsymbol{\omega} - s - s_{0}) \partial_{\nu} v_{pq}(s, x; \boldsymbol{\omega}) dS_{x}$$

where $c_0^2 = (-i)^{n-2}$.

The phase function $x \cdot \boldsymbol{\omega}|_{\partial \mathcal{O}_{q'}}$ has two stationary points: The one $x_{q'}^-$ is on $\partial \mathcal{O}_{q'} \cap \{x : x \cdot \boldsymbol{\omega} = \inf_{x \in \partial \mathcal{O}_{q'}} x \cdot \boldsymbol{\omega}\}$ and the other $x_{q'}^+$ on $\partial \mathcal{O}_{q'} \cap \{x : x \cdot \boldsymbol{\omega} = \sup_{x \in \partial \mathcal{O}_{q'}} x \cdot \boldsymbol{\omega}\}$. Therefore, if $s^0 \notin \{-2r_{q'}(\boldsymbol{\omega}), -2\tilde{r}_{q'}(\boldsymbol{\omega})\}$ (where $\tilde{r}_{q'}(\boldsymbol{\omega}) = \sup_{x \in \mathcal{O}_{q'}} x \cdot \boldsymbol{\omega}$), we have

(3.3)
$$\int_{\partial \mathcal{O}_{\sigma'}} \nu \cdot \omega e^{2i\sigma x \cdot \omega} \alpha_{\varepsilon}^{(j)} (-2x \cdot \omega - s_0) dS_x = O(|\sigma|^{-\infty})$$

for sufficiently small ε .

Let $\{x_i\}$ be the reflection points of a broken ray $L(x_0, \omega)$ where $x_0 \in P = \{x : x \cdot \omega = \min_{i=1,2} r_i(\omega) - 1\}$. And we employ the notations stated in §2 (e.g., ξ_i , $\nu(x_i)$, etc.). Since \mathcal{O}_i is strictly convex, by Taylor [13] it is known that

$$\mathrm{WF}[\partial_{\nu}v_{pq}|_{R^{1}\times\partial\Omega}]\subset\mathrm{WF}[v_{pq}|_{R^{1}\times\partial\Omega}]$$
,

where WF denotes the wave front set (cf. § 3 of Ch. 10 in [4]). Therefore,

if $(s, x; \operatorname{grad}(s + x \cdot \boldsymbol{\omega}|_{R^1 \times \partial \Omega}))$ does not belong to $\operatorname{WF}[v_{pq}|_{R^1 \times \partial \Omega}]$, we have

$$\iint_{\mathbf{R}^{1}\times\partial\Omega_{\mathbf{G}'}}e^{i\sigma(s+x\cdot\boldsymbol{\omega})}\alpha_{\varepsilon}^{(j)}(-x\cdot\boldsymbol{\omega}-s-s_{0})\partial_{\nu}v_{pq}(s,\ x\ ;\ \boldsymbol{\omega})dsdS_{x}=O(|\boldsymbol{\sigma}|^{-\infty})\,.$$

On the other hand, it is easily seen that

$$\begin{aligned} \operatorname{WF}[v_{pq}|_{R^{1}\times\partial\varOmega}] &\cap \{(s,\ x\ ; \operatorname{grad}(s+x\cdot \pmb{\omega}|_{R^{1}\times\partial\varOmega})) : (s,\ x) \in \pmb{R}^{1}\times\partial\varOmega \\ & \qquad \qquad \cap \operatorname{supp}\alpha_{\varepsilon}(-x\cdot \pmb{\omega}-s-s_{0})\} \\ &\subset \bigcup_{i=1}^{2} \bigcup_{m=1}^{\infty} \{(s_{m}^{i}+2\min_{i=1,2}r_{i}(\pmb{\omega})-x_{m}^{i},\ x_{m}^{i}\ ; 1,\ \eta) : x_{m}^{i} \text{ is the last reflection} \\ & \text{point associated with } s_{m}^{i},\ \eta=-(-\pmb{\omega}-(-\pmb{\omega}\cdot\nu(x_{m}^{i}))\nu(x_{m}^{i}))\} \\ & \bigcup \{(\tilde{r}_{i}(\pmb{\omega}),\ x_{i}^{+}\ ; 1,\ 0) : x_{i}^{+}\in\partial\varOmega,\ x_{i}^{+}\cdot\pmb{\omega}=\tilde{r}_{i}(\pmb{\omega})\} \equiv \bigcup_{i=1}^{2} \bigcup_{m=1}^{\infty} \Lambda_{im} \cup \tilde{\Lambda}_{i}. \end{aligned}$$

Thus we have only to consider the terms of $I_{pqq'}^2(\sigma)$ satisfying $(\bigcup_{i=1}^2 \bigcup_{m=1}^\infty \Lambda_{im} \cup \tilde{\Lambda}_i)$ $\cap WF[v_{pq}|_{R^1 \times \partial \Omega}] \neq \emptyset$.

We fix the m arbitrarily, and make the $\{\chi_{pq}\}$ so fine that for only one $p = \tilde{p} \operatorname{supp}[\chi_{pq}]$ contains the first reflection point x_1 associated with s_m^q . Let us consider only the case of q = 2. The case of q = 1 can be treated in the same way. We can construct the asymptotic solution of the equation (3.2) with $(p, q) = (\tilde{p}, 2)$ in the same way as in § 7 of Ikawa [3]. That is of the form

(3.5)
$$\sum_{r=1}^{m} \frac{1}{2\pi} \int_{|k| \ge 1} e^{ik(\phi_r(x)-t)} \sum_{j=0}^{N} w_{r,j}(t,x) k^{-j} dk.$$

Here the integral is in the sense of oscillatory integral (cf. § 6 of Ch. 1 in [4]), and ϕ_r and $w_{r,j}$ are the solutions of the following equations:

(3.6)
$$\begin{cases} |\nabla \phi_{r}| = 1 & \text{in } \Omega, \\ \phi_{r}|_{\partial \mathcal{O}_{l}} = \phi_{r-1}|_{\partial \mathcal{O}_{l}} & (\phi_{0} = x \cdot \boldsymbol{\omega}), \\ \frac{\partial \phi_{r}}{\partial \nu}\Big|_{\partial \mathcal{O}_{l}} = -\frac{\partial \phi_{r-1}}{\partial \nu}\Big|_{\partial \mathcal{O}_{l}}, \end{cases}$$

where l=1 for even r and l=2 for odd r;

where
$$l=1$$
 for even r and $l=2$ for odd r ;
$$\begin{cases} 2\frac{\partial w_{r,j}}{\partial t} + 2\nabla\phi_r \cdot \nabla w_{r,j} + (\Delta\phi_r)w_{r,j} = -i \square w_{r,j-1} & (w_{r,-1}=0), \\ w_{r,j}|_{R^1 \times \partial \Omega} = -w_{r-1,j}|_{R^1 \times \partial \Omega}, \end{cases}$$
 where $w_{1,0}|_{R^1 \times \partial \Omega} = -2^{-1}(-2\pi i)^{1-n}\chi_{\tilde{p}2}(t,x)|_{R^1 \times \partial \Omega}, w_{0,0}|_{R^1 \times \partial \Omega} = 0$ and $w_{1,j}|_{R^1 \times \partial \Omega} = -w_{0,j}|_{R^1 \times \partial \Omega} = 0$ for $j \ge 1$. By (3.4), the terms

 $-w_{0,j}|_{\mathbf{R}^1\times\partial\Omega}=0$ for $j\geq 1$. By (3.4), the terms

$$v_r(t, x) \equiv \frac{1}{2\pi} \int_{|k| \ge 1} e^{ik(\phi_{r}-t)} \sum_{j=0}^{N} w_{r,j} k^{-j} dk$$

in (3.5) satisfy

$$\iint_{R^1\times\partial\mathcal{O}_{q'}} e^{i\sigma(s+x\cdot\omega)}\alpha_{\varepsilon}^{(j)}\partial_{\nu}v_{\tau}dsdS_{x} = O(|\sigma|^{-\infty}) \quad \text{if } r\leq m-2.$$

Therefore we see that

$$\iint_{\mathbb{R}^{1}\times\partial\mathcal{O}_{q'}} e^{i\sigma(s+x\cdot\omega)} \alpha_{\varepsilon}^{(j)} \partial_{\nu} v_{\tilde{p}2} ds dS_{x}$$

$$= 2i\sigma \int_{\partial\mathcal{O}_{q'}} e^{i\sigma(x\cdot\omega+\phi_{m}(x))} \alpha_{\varepsilon}^{(j)} (-x\cdot\omega-\phi_{m}(x)-s_{0}) \frac{\partial\phi_{m}}{\partial\nu}(x) w_{m,0}(\phi_{m}(x),x) dS_{x}$$
+(Similar integrals multiplying smaller power of σ)
$$+O(|\sigma|^{-\infty}) \qquad \text{for even } m \text{ and } q'=1 \text{ or odd } m \text{ and } q'=2,$$

$$= O(|\sigma|^{-\infty}) \qquad \text{for even } m \text{ and } q'=2 \text{ or odd } m \text{ and } q'=1.$$
The phase function $(x,\omega+\phi_{m}(x))$ are has only one stationary point, which is

The phase function $(x \cdot \omega + \phi_m(x))|_{\partial \mathcal{O}_q}$, has only one stationary point, which is the last reflection point $x_m^{q'}$; moreover, by Lemma 4.1 in Ikawa [3], it is nondegenerate. If s_0 is not equal to $-2\min_{i=1,2}r_i(\omega)-s_m^2$ and $\varepsilon>0$ is small enough, $\alpha_{\varepsilon}^{(j)}(-x\cdot \omega - \phi_m(x) - s_0)$ vanishes in a neighborhood of the stationary point $x_m^{q'}$, and then we have

$$\iint_{R^1 \times \partial \mathcal{O}_{q'}} e^{i\sigma(s+x\cdot\omega)} \alpha_{\varepsilon}^{(j)} \partial_{\nu} v_{pq} ds dS_x = O(|\sigma|^{-\infty}).$$

From now on, let us prove Theorem 1 and Theorem 2.

PROOF OF THEOREM 1. Without loss of generality, we may assume that $r_1(\omega) \le r_2(\omega)$. Let us consider only the case of $r_1(\omega) < r_2(\omega)$ since the case $r_1(\omega)$ $=r_2(\omega)$ can be treated more easily. By Majda [7] and Soga [12], it is known that $-2r_1(\omega)$ belongs to sing supp $S(\cdot, -\omega, \omega)$. In the same way as in the proof of Lemma 4.1 in Soga [11], we see that v_{pq} with supp $[\chi_{pq}] \ni (\tilde{r}_i(\omega), x_i^+)$ does not contribute to sing supp $S(\cdot, -\omega, \omega)$. Let $s_0 = -2r_2(\omega)$. Then, by the earlier argument, we have seen that only the v_{pq} in (3.2) satisfying WF[$v_{pq}|_{R^1 \times \partial \Omega}$] $\cap A_{21}$

 $\neq \emptyset$ may influence the singularity of $S(s, -\omega, \omega)$. Therefore, by (3.8) (with m=1) we can write for any integer N>0

$$\begin{split} F[\alpha_{\varepsilon}(s+2r_{2}(\boldsymbol{\omega}))S(s,-\boldsymbol{\omega},\boldsymbol{\omega})](\sigma) \\ &= \sigma^{n-1}\!\!\int_{\partial \mathcal{O}_{2}}\!\!e^{2i\sigma x\cdot\boldsymbol{\omega}}\sum_{j=0}^{N}\beta_{j}(x)\sigma^{-j}dS_{x} + O(|\sigma|^{n-1-(N+1)}), \end{split}$$

where $\beta_j(x) \in C^{\infty}(\partial \mathcal{O}_2)$ and $\beta_0(x_1^2) = (2\pi)^{1-n}$. By means of the stationary phase methods (cf. § 4 in [8]), we obtain

$$|F[\alpha_{\varepsilon}(s+2r_{2}(\omega))S(s, -\omega, \omega)](\sigma)| \ge C|\sigma|^{(n-1)/2}$$
 as $|\sigma| \to \infty$

for a constant C>0. This shows that

$$\alpha_s(s+2r_2(\boldsymbol{\omega}))S(s,-\boldsymbol{\omega},\boldsymbol{\omega})\notin C^{\infty}(\boldsymbol{R}_s^1)$$
.

The proof is complete.

PROOF OF THEOREM 2. (ii) and (iii) in Theorem 2 have been proved in Theorem 2.3. From Theorem 1, it suffices to prove (i) in Theorem 2 when m>1. At first, we consider the case of $s_m^1 \neq s_m^2$. By Theorem 2.2, we see that

$$\begin{split} F[\alpha_{\epsilon}(s+s_{m}^{2}+2\min_{i=1,2}r_{i}(\boldsymbol{\omega}))S(s,-\boldsymbol{\omega},\boldsymbol{\omega})](\sigma) \\ &=2ic_{0}^{2}\boldsymbol{\sigma}^{n-1}\!\!\int_{\partial\mathcal{O}_{2}}\!\!e^{i\sigma(x\cdot\boldsymbol{\omega}+\boldsymbol{\phi}_{m}(x))}\alpha_{\epsilon}(-x\cdot\boldsymbol{\omega}-\boldsymbol{\phi}_{m}(x)+2\min_{i=1,2}r_{i}(\boldsymbol{\omega})+s_{m}^{2}) \\ &\qquad \times \frac{\partial\boldsymbol{\phi}_{m}}{\partial\boldsymbol{\nu}}(x)w_{m,0}(\boldsymbol{\phi}_{m}(x),x)dS_{x} \end{split}$$

+(Similar integrals multiplying smaller power of σ)+ $O(|\sigma|^{-\infty})$.

Therefore, by the same argument as in the proof of Theorem 1, we have

$$|F[\alpha_{\epsilon}(s+s_m^2+2\min_{i=1,2}r_i(\boldsymbol{\omega}))S(s,-\boldsymbol{\omega},\boldsymbol{\omega})](\sigma)| \ge C'|\sigma|^{(n-1)/2}$$
 as $|\sigma| \to \infty$

for a constant C'>0. This implies that

(3.9)
$$\alpha_{\varepsilon}(s+s_{m}^{2}+2\min_{i=1,2}r_{i}(\boldsymbol{\omega}))S(s,-\boldsymbol{\omega},\boldsymbol{\omega})\notin C^{\infty}.$$

In the same way, it is seen that $\alpha_{\varepsilon}(s+s_m^1+2\min_{i=1,2}r_i(\omega))S(s,-\omega,\omega)\notin C^{\infty}$. Let $s_m^1=s_m^2$. We obtain

$$\begin{split} F[\alpha_{\varepsilon}(s+s_{m}^{2}+2\min_{i=1,2}r_{i}(\pmb{\omega}))S(s,-\pmb{\omega},\pmb{\omega})](\sigma) \\ &=2ic_{0}^{2}\sigma^{n-1}\!\!\int_{\partial\mathcal{O}_{2}}\!e^{i\sigma(x\cdot\pmb{\omega}+\phi_{m})}\alpha_{\varepsilon}(-x\cdot\pmb{\omega}-\phi_{m}+2\min_{i=1,2}r_{i}(\pmb{\omega})+s_{m}^{2})\frac{\partial\phi_{m}}{\partial\nu}\,w_{m,0}dS_{x} \end{split}$$

$$+2ic_0^2\sigma^{n-1}\int_{\partial\mathcal{O}_1}e^{i\sigma(x\cdot\omega+\tilde{\phi}_m)}\alpha_{\varepsilon}(-x\cdot\omega-\tilde{\phi}_m+2\min_{i=1,2}r_i(\omega)+s_m^2)\frac{\partial\tilde{\phi}_m}{\partial\nu}\tilde{w}_{m,0}dS_x$$
+(Similar integrals multiplying smaller power of σ)+ $O(|\sigma|^{-\infty})$,

where $\tilde{\phi}_m$ and $\tilde{w}_{m,0}$ are the solutions of (3.6) and (3.7) when q=1. Noting that $w_{m,0}$ and $\tilde{w}_{m,0}$ have the same sign, also when $s_m^1=s_m^2$ we get (3.9) in the same way.

References

- [1] V. Guillemin, Sojourn time and asymptotic properties of the scattering matrix, Publ. RIMS, 12, Supl. (1977), 69-88.
- [2] L. Hörmander, Fourier integral operators I, Acta Math., 127 (1971), 79-183.
- [3] M. Ikawa, Decay of solutions of the wave equation in the exterior of two convex obstacles, Osaka J. Math., 19 (1982), 459-509.
- [4] H. Kumano-go, Pseudo-differential operators, MIT Press, 1982.
- [5] P.D. Lax and R.S. Phillips, Scattering Theory, Academic Press, 1967.
- [6] P.D. Lax and R.S. Phillips, Scattering theory for the acoustic equation in an even number of space dimensions, Indiana Univ. Math. J., 22 (1972), 101-134.
- [7] A. Majda, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., 30 (1977), 165-194.
- [8] M. Matsumura, Asymptotic behavior at infinity for Green's functions of first order systems with characteristics of nonuniform multiplicity, Publ. RIMS, 12 (1976) 313-377.
- [9] V.M. Petkov, High frequency asymptotic of the scattering amplitude for non-convex bodies, Comm. Partial Differential Equations, 5 (1980), 293-329.
- [10] H. Soga, Oscillatory integrals with degenerate stationary points and their applications to the scattering theory, Comm. Partial Differential Equations, 6 (1981), 273-287.
- [11] H. Soga, Singularities of the scattering kernel for convex obstacles, J. Math. Kyoto Univ., 22 (1983), 729-765.
- [12] H. Soga, Conditions against rapid decrease of oscillatory integrals and their applications to inverse scattering problems, Osaka J. Math., 23 (1986), 441-456.
- [13] M.E. Taylor, Grazing rays and reflection of singularities of solutions to wave equations, Comm. Pure Appl. Math., 29 (1976), 1-38.
- [14] K. Yamamoto, Characterization of a convex obstacle by singularities of the scattering kernel, J. Differential Equations, 64 (1986).

Shin-ichi NAKAMURA

Department of Mathematics School of Science and Engineering Waseda University Shinjuku-ku, Tokyo 160 Japan Hideo Soga

Department of Mathematics Faculty of Education Ibaraki University Mito, Ibaraki 310 Japan