J. Math. Soc. Japan
Vol. 40, No. 2, 1988

Singularities of the scattering kernel for two balls

By Shin-ichi NAKAMURA and Hideo S0OGA

(Received Oct. 6, 1986)

§1. Introduction.

Let © be a compact obstacle in R™ (n=2) with a C* boundary 9092, and
assume that 2=R"—0 is connected. Let us consider the scattering by © ex-
pressed by the equation

[I‘_‘Iu(t, x)=0 in R*xQ2 (O=0d—A,),
u(t, x)=0 in R*X02,
(1.1
] w0, x)=fi(x) on @,
d,u(0, x) = fo(x) on 2.

We denote by £_(s, ) (k+(s, w)) = L3 R*XS""') the incoming (outgoing) transla-
tion representation of the initial data f=(f,, f.). The scattering operator
S:%k_—k, becomes a unitary operator from L*R*XS™"?) to L*(R*xS"?) (cf.
Lax and Phillips [5], [6]), and is represented with a distribution kernel
S(s, 8, w):

(Sk_)s, ) = gSS(s—z‘, 0, wk_(t, w)dtdo.

S(s, 4, ) is called the scattering kernel. Lax and Phillips in [5] showed that
the scattering operator S determined the obstacle © uniquely (cf. Theorem 5.6
of Ch.V in [5]). But, it was not made clear how the analytical properties of
S were connected with the geometrical properties of ©.

Recently some authors have examined the relation between @ and S(s, 6, w).
Majda in has obtained the following results in the case of n=3:

(1.2) supp S(+, —w, w) C (—o0, —2r(w)],
(1.3) —2r(w) € singsuppS(-, —o, ),

where r(w)=min,cox-w. The above results are proved also in the case of n=2

by Soga [12]. Soga and Yamamoto [14] have characterized the convexity
of © with the singularities of S(s, —w, w):
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(1.4) © is convex if and only if singsupp S(-, —w, w) has only one point for any
wsS™ 1.

In the present paper we shall examine singsupp S(-, —®, w) precisely when
© consists of two balls @, and ©,CR*? or R® In this case, by the above results
(1.2)~(1.4), the right end point of singsupp S(-, —w, w) is —2r(w), and further-
more there exist other points of singsupp S(-, —w, ®) in (—co, —2r(w)) for some
wsS* L

Let d; be the radius of ©; and ri(w)=minco,x-@ (¢=1, 2). Suppose that
ONO,=@. The first main result is the following theorem:

THEOREM 1. Let w be any vector in S™* (n=2, 3) such that every line
parallel to w does not intersect both ©, and ©.. Then we have

singsupp S(+, —w, w)ﬂ[zygliré(—Zm(w)), +00) = {—=2r{w)}i=1,2-

For more restricted w, we can know whole distribution of singsuppS(-, —w, w)
completely. Let x,&P={x: x-w=min;-, ,7;(w)—1}, and consider the broken ray
starting at x, in the direction @ according to the law of geometrical optics.
Then we suppose that this ray is reflected m times at the points x,, -+, x, of
the boundary and returns to the point x,.; of P in the direction —w. Set

(L.5) Sh= 32 |x—xl—2  when 5,200, (=L, 2).
p2

THEOREM 2. Assume that
dist(®,, ©,) > 13 max d;,

and let w satisfy
Ir(@)=7yw)| <maxd;.

Then there exist the broken rays associated with for any positive integer m,
and we have
(i) singsuppS(:, —, ©) = {—2minry@)=shl=r. ,
J=1,

m=1,2,
(ii) lim (sh4.—sh) = 2dist(0y, @;) (=1, 2),
m-+co

1 2
[stn— Mm—)} = dist(®,, 0) (=1, 2).

(iif) lim 7

m—+co
By Theorem 1, shifting the direction @, we can know the radius of ®, and
O, from the right end point and the next point of singsuppS(:, —w, w). Further-
more in the same way, we can look for the direction w satisfying the condition
in (Theorem 2
To analyze the singularities of S(-, —w, w), we use the following repre-
sentation :
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(16) SGs, 0, @ = _{v-005"0(x-0—5, x;0)—0p0.0(x-0—s, % ;0)}dS, (B+0)

Here, v denotes the unit inner vector normal to the boundary 92, and v(t, x ; )
is the solution of the equation

T, x; ) =0 in R'XxQ,
(1.7) v=—2"Y=2m)"-"0(t—x-w) on R'X0d%,
v=20 for t<r(w).

The representation (1.6) was proved by Majda in the case of n=3, and by
Soga in the case of n>2. In §3 we prove Theorem 1 and by
examining how the singularities of v influence singsuppS(-, —w, w) through
(1.6) by the same procedures as in [7], [11], etc.. In view of Guillemin [1],
Petkov [9], etc., we expect that singsuppS(-, —®, w) is contributed by only the
broken rays associated with The main tasks in the proof of
are to show that there exist actually such rays for any m (cf. [Theorem 2.1))
and to investigate those properties precisely (cf. Theorems 2.2 and 2.3).

§2. Properties of the broken rays.

At first, we define precisely the broken rays stated in Introduction. Denote
by u(x) the unit inner vector normal to the boundary 022 at xcdQ2. We suppose
that {x==x,+1&;>0}NoR+@ for x,€2 and §,&S™*, and define /;-,, x; and
&, successively for j=1, 2, --- by

lj-y =inf{{>0; x;.,+1&;-,€082},
X3 = Xj1Hl€iea,
§i =& 28— v(x)v(x,),
where /;.;=co when x;.,+/§;-1¢£02 for any />0. Assuming that these {/,},

{x;} and {&;} are well-defined, we call the set

L(xo, &) = ij{xej-HEj; 0=<i<iy}
the broken ray starting at x, in the direction &, and {x;} the reflection points.
When there exists an integer m=1 such that {x=x,+&n;{>01N0R=0, we
set
#I'ef L(xo, Eo) =m > dirDOL(XOr EO) = E‘m .

One of the main purposes in this section is to show the following theorem,
which plays a fundamental role on the proof of in Introduction.
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THEOREM 2.1. Let @ be any vector in S™ ! (n=2, 3) such that every line
parallel to @ does not intersect both ©, and ©,. Then, for any positive integer
m there exists a broken ray L¥(x,, w) uniquely such that

(i) xo is on the plane P={x: x-w=min;., ,»(w)—1},

(ii) the first reflection point x, belongs to O;,

(iii) *ref Li(x,, ®) = m,

(iv) direL¥(x,, ) = —o.

Before proving this theorem, we explain a key lemma for the proof. The
proof in the case of n=3 will be reduced to that in the case of n=2, and so
we consider only the case of n=2 for a while.

Let the assumption in [Theorem 2.1 be satisfied. Then we can assume with-
out loss of generality that ©,C {x=(x?, x?); x*<0}, ©,C{x; x*>0} and w=(0, 1).
We employ the following mappings @, &, @, and @, from (—=x, =] to the circles
S, SY, 00, and 00,CR? respectively:

@(0) = (cosl, sin@),

@(8) = (cos(d+x), sin(0+x)),

D.(8) = c,+d.(cosb, sinf),

D,(0) = co+dy(cos(@+n), sin(0+x)).
Note that @, & and @; (=1, 2) are diffeomorfic on (—=, x) and have the in-
verse mappings @-!, &-! and @;! respectively. For a S'-valued smooth func-

tion &(y) on 00, (or an arc in 00,) consider the line {x=y+/&(y);[>0}. We
suppose that this line intersects 00,, and set

() =1inf{I>0; y+i&(»)=00:},  F(y) = y+H(»E() (€00,),
@21 &) =EN—-2{E)vFONGE()  (eSY.

On these notations, we have

LEMMA 2.1. Let &(y) be a S*-valued C* function on an arc {y=90,(0)}s1<o<se
C00; satisfying &(»)-v(y)>0. Assume that the function ¢(0)=DE(D,(0)) satisfies

W O>0 om0, 00,  (—w/2 /2 C (B, 0.

Then the line {D(0)+IE(D(0))} ;>0 intersects 00, for any 0 in some interval
(0s, 0.)(C(04, 02), and the mapping: y—3F(y) is a diffeomorphism from
{@1(0)}03<0<g4 to {J=0u)} py<p<p, Furthermore n(9=E(F)) has the same
properties as §(y) (where y(§) is the inverse mapping of 5(¥)); that is, p(F)-v(§)
>0 holds, and the function @(p)=0 'n(D(p)) satisfies
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d
(2.2) 71%(‘“) >0 on (g, ),

[—7/2, /2] C ¢((p1, t2)) .
Ikawa [3] shows the diffeomorphicity of the mapping §: y—#(y) locally
(see Lemma 3.2 of [3]). But we need the further properties of this mapping.

REMARK 2.1. is valid also when @, and ©, are exchanged each
other.

ProoF oF LEMMA 2.1. From the assumptions, it follows that the mapping
T:(0, )-D(0)+1D,(0)) is diffeomorphic on M=(8,, ,)X(0, o) and that TM
contains {x: x'>0}. Set

0, =inf{0<(0,, 0,); T, [)=do, for some [>0},
0, =sup{0<(6,, 0,); T(b, )=do, for some [>0}.

Then, as is easily seen, for any 8<(8,, 0,) the line {T(8, I)};>, intersects 00,
transversally at two points. Let 7T(8, /() be the point closer to 00,, and set
w(@)y=03'T(0, i(d)). Note that these /(f) and u(f) are also the implicit func-
tions defined by the equation

F(0, 1, ) = O0)+15(P(0)—Po(p) = 0.

These implicit functions are well-defined since 9F/a(l, p)=det(&(D(0)), —0,D:(1))
#0 (i.e., {T(0, D)};> is transversal to 00, when #,<0<86,. Denote by £(8)
the unit vector normal to &(@,(8)) with det(§, £€*)>0. Then, from the equality
e[ F(6, 1(0), n(0))]-£+(8)=0, we have

B (0X0, DL 0))-8(0) = @, D(B)+UOI[E(D ()] -£4(0).

It is seen from the assumptions that 4,0,-£+<0 and (0,9,+00,§)-§*<0 when
§,<0<60, Hence we obtain

d
2.3) 7‘;—«9) <0 on (6, 6,).
This implies that 5(y)=@,(u(P7(y))) is diffeomorphic on {P(6)}s,<s<s,. From
the definition (2.1), the inequality »(§)-»(5)>0 is obvious. Set

P, 0) = G- [D(0)—2{D(a) u(D,()}(Do(p2))] .
Then we have
(u(0)) = P(p(0), $(0)), 0,<6<8,.

It is easily see that 5(/1(0)) is smooth on (8,, 6, and satisfies 95(;1(0))>7r/2 as
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0—0, and <—nx/2 as 8—6, This yields that
[—7/2, /2] C (g, t12))  (ps=p(B5-2)).
When @(a)-v(D,(1))<0, we have

0,4(p, ) >0,  0,4(p, ) <O0.
Therefore it follows that

d¢ dp
dp do

which implies that dg/du>0 (see [2.3). The proof is complete.

d d
=03,4 dg +ag¢£~<o,

PrROOF OF THEOREM 2.1. We take the coordinates x=(x!, x*) stated below
[Theorem 2.1, and consider any broken ray L(x,, w) with x,=P. Assume that
the first reflection point x, of L(x,, ) belongs to d0,. The case of x,=00,
can be treated in the same way. Setting §=9@7(x,), from the equality &,(x,)=
0—2w-v(x,)v(x,) we have @&, (D,(0)=20+r/2 and &,(D0))-v(D,(6))>0 on
[—=/2,0). This vyields that (d/d@)[@¢(D,(0))]>0 on (—=/2,0) and
Q-6,(D,((—=r/2, 0)=(—x/2, =/2). Therefore &(x,) satisfies the assumptions in
Using inductively (cf. Remark 2.1), for any positive
integer m we have broken rays L(x,, w) with #ref L(x,, w)=m such that &, is
a continuous function of x, and that @-¢,(x,) (or @~&,(x,)) covers [—x/2, /2]
when x, moves on some open set in P. The uniqueness of this broken ray for
each x, follows from (2.2) in Lemma 2.1. Therefore we obtain the broken ray
LY x,, w) with the all required properties. The proof is complete.

THEOREM 2.2. Assume that
dist(©,, ©,) > 13 max d;,

and let w=S™"! satisfy
|7(@)—7w)| < max d;.

Then sk, defined by satisfies

minst 4, > maxsi,  for m=1.
i=1,2 i=1,2

For the proof of this theorem, we shall explain some lemmas concerned
with the reflection points x;, ---, xn. Let a;£00;, j=1,2 be the points with
[a,—a,| =dist(O,, O).

LEMMA 2.2. Let x4, -, xy, = be the reflection points of a broken ray. If
x;€00, and x;.,€00, satisfy O7Y(x)=0i%a,) and D3;%(x;-,)>D3%a,), then it
holds that
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D7 (x) < DTN (K jra) < DTN A jpg) < voveeveee ’
D34 ay) > D3N (xj41) > D3 (K jpg) > vvvveees )

PROOF. From the assumption and the law of the reflection, it follows that
Q-1 Xj-1— X < Q-1 a,—a, < d-? Xir17— X )
<|xj—1_le) (laz"al|> (Ixjﬂ—le)
This implies that
D3 (x5-1) > D3H(as) > D3 (x41) .

In the same way we have @7'(x,;)<®@7'(x;:,). Repeating these methods induc-
tively, we obtain the lemma.

The following lemma is concerned with the reflection points of the broken
ray L when #ref L is odd.

LEMMA 2.3. Let xy, -+, Xom-1 (X,£00,) be the reflection points of the broken
ray LY(x,, w) (fref L'=2m—1) stated in Theorem 2.1. Then the following (i) or
(ii) holds;
(i) If xn<E00,, then we have
—7/2 £ O7(xy) < P (x5) < -+ < D7 (xm) < P7Y(ay),
7/2Z D3 (x0) > D3 (x) > - > O3 (xm-1) > D3%(ay),
x, == xgm—l_(j_l) f07’ ].:1, 2, RS m.

(ii) If xm€00,, then we have
—x/2 2 07 (x1) < O7(xs) < - < DN (xm-1) < D7(ay),
m/2Z D3(x0) > P3N (x) > -+ > D3 (xm) > D3%ay),
Xj = Xem-1-¢j-1 for j=1,2, -, m.

ProoOF. Let us show only (i). (ii) can be treated in the same way. If
X1# Xom-1, then Xx,%# Xym-, follows from Lemma 21 and &,,.,=—w. Therefore

successively we obtain xp# Xom-m (=xm). This is a contradiction. Hence we
have

(2.4) x] == me—l-(j-'l) fOr J:l, 2, el m.

It is obvious that —z/2<@7%(x,) and /2> D3%(x,). We obtain @7 (x,:-1)< P74 a,)
and @3 (x,;)>P3%a,) for any iand j (=1, 2, ---, m; j=1, 2, ---, m—1): If not,
for some 1 it holds that @7 (x.74.)=P74a,) and D3 (x,;)>P3%(a,), which implies
from that @7 (%7 +1)<P7 (Kot 42)< -+ <D7'(X2m-1) ; this does not con-
sist with Let @73 (x:)=P1 (%440 for an i (1Z:<m—2). Then, by the same
procedures as in the proof of Lemma 2.2, we have
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(2.5) D7 (X 142) > 07 (King) > =+ > O (xm-g) > D7 (xm) > D7 (Xmer) > - -

However, from D7 xm-p) is equal to @7 (xm+2), Which does not consist
with (2.5). Hence we have

Ol (x) < Pl (xy) < -+ < O (xm) .
Similarly, we have

O3l (x,) > D3l (x) > - > O (xm-1).

The proof is complete.

When #ref L is even, the following lemma is obtained by the same proce-
dures as for

LEMMA 2.4. Let xy, -+, Xom (x,€00,) be the reflection points of the broken
ray LYx, o) (fref L'=2m) stated in Theorem 2.1. Then there exists only one
integer [ such that

D7 (xy) < PH(xy) < - < D7 (Xzu4) s

O (%a141) > BT (Xa14) >+ > PT(Xam-)

D3 (xy) > O3 (xy) > -+ > O3 (xa) s

D7 (xar42) < O3 (xa140) <o+ < O3 (X2m) s

—7/2 £ 07 (xe5-0) < P7ay) and D3'(a,) < O3'(xyy) < 7/2
for j=1,2, ---, m,

REMARK 2.2. We can get the same lemmas as Lemmas 2.3 and 2.4 also
when the first reflection point x, belongs to 00,.

PROOF OF THEOREM 2.2. Let ¥,, -, Ym+: and x,, +-, Xxm+: be the points
defining min,., ,s%+; and max;., ,st (cf. respectively. We have

}E}%sfnﬂ 2 | Yo— 31l | Ym+1— Ymae| +mdist(0,, 0,)—2,

maxsh < [ xo— x|+ | Xm— X m1] +2§:]1|xk—a(xk)| +(m—1)dist(®,, @,)—2,

i=1,2

where a(x,)=a, if x,€00, and a(x,)=a, if x,£00,, From the assumption
dist(0,, ©,)>13max{d,, d;} and the law of the reflection, it follows that

| X pe1—as] <(13) 7 xp—a,l if Q7% (xp40) = D7Yxy),
(2.6)

lxk——(h‘ < (13)_11 xk+1_a2] if ¢Tl(xk+2) = ¢I1(xk> .
Therefore, by and we obtain
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Ig}l [xz—a(xy)| < 4max{d,, dz}éo(ls)—k = _1§ ax{d,, d,},

which yields that

E?’fsgn S xo— %]+ xn—Xmea | —2 +g§max{d1; d,} +(m—1)dist(O, O,).

On the other hand, from |r,(w)—7.(w)| <max{d,, d,} we have
0= [xo—xi]l + ] xm—Xme:| —2 £ 4max{d,, d,}.

Therefore, noting that | y,— |+ | Ym+1— Ym+2] —2=20, we obtain

max s&, < (4+ 2—6-)max{d1, d,} +(m—1)dist(0,, 0,) < minsi,,,.
i=1,2 3/i=1,2 i=1,2

The proof is complete.

The following theorem is concerned with the distribution of s¥ defined by
as m— oo,

THEOREM 2.3. Assume that dist(O,, O,)>13max{d,, d;} and let wsS"!
satisfy the assumptions stated in Theorem 1. Then we have

(1) lim (shsi—sh-1) = 2dist(0y, 02) (=1, 2),

Mm—+oo

($im-1+85m-1)

2

We explain some lemmas for the proof.

(ii) lim {s%m—

m-—+oo

} = dist(©,, ©)) (=1, 2).

LEMMA 2.5. Let xy, -+, Xom-1 and 3, ==+, Yom (m=1) be the reflection points
of the broken rays L'(x,, w) and LY., w) (=1, 2) respectively with the properties
stated in Theorem 2.1. Then it holds that

(i) O7'(x) < P7'(yy) if %, and y,€00,,
(i) D3'(x0) > D34y if x, and 3,€00;.

PrROOF. Let us show only (i). (ii) can be treated in the same way. If
D14 (x)=D7y,), then we obtain x;=y; for =0, 1, ---, 2m—1. Therefore there
cannot exist y,m. This is a contradiction. If @7%(x,)>®?7'(y,), then using
successively we have @31 (x)<P3'(y2), P1H(x)>D7H(¥s), **+, D3 (Xam-2)
<07 (Vem-2)y PT(X2m-1)<PT (YVom-1).  If O7'(Xom-1)<P7(Yoem-1), there cannot
exist V., with dir.L!(x,, ®)=—w. Hence we obtain this lemma.

LEMMA 2.6 (Lemma 3.3 in Tkawa [3]). Set
L = {x: x=ta;+(1—ta,, tc R}, U@®) = {x€d?; dist(x, L)<d}, d>0.
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Let x,, x,, --- be the reflection points of a broken ray L(x,, &), and assume that
x,€0Q0—U) and L(x,, E)NUWB)=@. Then there exists a positive constant C
independent of 0 such that

*ref L(x,, &) < Co2.

PROOF OF THEOREM 2.3. At first, let us show that for any >0

i i
dist(O,, On)-+ 32’5“ — S”é‘“ <e¢

"if m is large enough. Combining this with (ii) in the theorem, we get (i) in
the theorem. We take the § in so that d=e¢. Let {x,};=,..2m and
{¥;}j=0,.am+> be the points defining si,-, and s{n+; respectively (cf. [L.5).
Since the equalities x;=Xym-1-¢j-» (=1, -+, m) follow from we
have

From there exists a positive integer /=I[(¢) independent of m such
that j</ if 1<7<m—1 and =x;&U(e). We have the same properties for
{¥;}j=1,...m+1. Hence we obtain

. Sim-1 Sim+
dist(©,, 0;)+ 2 T o

<

-1

§0(| X~ Xje1] —| yj—yjﬂl)l
m-1

| B U= 5l = 13- 300D+ 1distOs, 09— | ym—Imus] |

=I,+1,+1,.
Taking account of (2.6) and we get

m=-1
{m—1—(—1)}dist(Oy, O;) = jgl | X=X j411

IA

(m—1—(—D}dist(©,, O)+2] x,—a(x)] -5 (13)7

J
< {m—1—(/—1)}dist(o,, oz>+c<a>-’;‘z=",,‘<13>—f,

where the constant C(e) (>0) does not depend on m and tends to 0 as £—0.
The same inequality holds for X7'| ¥;~¥,:1l. Therefore we have

L< c<s>-"§’(13>—f < 2C(e).
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From Lemmas 2.1, and we see that each j-th reflection points x; and y;
for j<! tend to the same point as m—-+co. Hence we get I,<e for large m.
By it holds that I,<e if m is large enough. Therefore the required
inequality is obtained.

Next, let us check (ii). Let {x%},,..2m and {y%} ;o ..2m+1 be the points
defining si,-, and si{, (f=1, 2) respectively. The broken ray for s}, coincides
with that for s%,, and so ¥} is equal to yim-¢;-»n for j=I1,2, ---, 2m. Hence
we have

2m+1 m m

Skm = El | ¥j-1— 3l —2 = JE=1 ly}-l—yél+1yh—y£n+ll+jz=‘,lIyi-l—yﬁl—Z.

Therefore it follows that
1 Sim-1tS3m-1
Szm—{’—‘__—’_—

2

+dist(Oy, 02)} l

=

,-2_"-‘-1(! V1= Vil — 1 x5-r— x5 +27( Yoo — Vi1 | — dist(Os, O»))

+ l jg}ml(l Vi—yi— lx?-l—x§|)+2"1([ Vo — Yo —dist(0y, 0,))

=I+1,.

By the same procedures as above, we see that [;,—0 (=1, 2) as m—-+oo. Hence
(ii) is obtained. The proof is complete.

Lastly let us prove in the case of n=3. Noting that ©, and
O, are balls, we see that on the (2 dimensional) plane

_—
Q = {x=tw+ta.a;+c,; 1y, L,ER}

there exists the broken ray with the properties stated in There-
fore it suffices to show that if the first reflection point x, is not on Q then
dir.L¥(x,, w) is different from —o for any m. If x,£Q, then the half line
{x,+1&,; =0} does not intersect Q. Furthermore, by induction, we see that
x;Q and {x;+1&;; {=0}NQ=¢. This implies that &, cannot be equal to —w.

§3. Proof of the main theorems.

Fix w=S"-! satisfying the assumptions in Theorem 1 (or [Theorem 2). Let
a(s) be a C= function such that 0Za(s)<1 for seR?!, a(s)=1 for |s|<1/2 and
a(s)=0 for |s|>1, and set

a(s) = a(gs;) (e>0).



216 S. NakaMUurRA and H. Soca

From (1.6) it follows that

3.1 Fla.(s—s0)S(s, —o, 0)](g)

= —Sgkl agv-we”"”‘“”ae(-x-a)—S*so)a;‘“lv(s, x; w)dsdS;
X0

_ng aggicr(s+x-w)ae(_x .w_s_so)a;z-zayv(s, X3 (U)deSI ,
x

where F denotes the Fourier transformation in the variable s and the integral
in s is in the sense of the distributions.
We take a partition of unity {Xp.(f, *)}s=1.2 on R'Xdf such that

p=1.2,-~,lq
supp[Xp JN(R*X005-o)=@ for any p=1, -, l,(g=1, 2). Let v,¢, x; w) be the
solution of the equation

vp, € C(R'XQ),
(3.2) 1 (Wpgt27H(—2m1) "Xyt — x - @) | R1x00 € C=(R*X04),
Vpg Smooth if t<r(w). |
Then v(t, x; w) is equal to 22, 3'L.v,.(¢, x ; @) mod C=, and so by we have
Fla.(s—s0)S(s, —w, w)](a)

lg

2 )
= —qgl q}_]l p—x{ggmxao V-@e T ST D (—x - @—5—S,)07 " Wpy(S, X ; @)dsdS,
= = = ql

+

SS ei““z""’ae(—x'(U—S_so>a?—zayqu(3: X, a))deSx}'\L‘O(lUI_w)
Rlanql

In view of the boundary condition, we have

2 2 2 n—-1 . . .
3 3 S @ = 38 c}-o"“‘fgﬂ Ve T O (— 25w —5,)dS,,

00qp
where ¢}=—2"'2x)'"; furthermore we obtain

n-2 .
Iioq(0) = ]};‘5630"'2"“

e T T DD — g @—S5—50)0,Vp¢(S, X ; W)dS,
R1x30g:

where cZ=(—i)""2

The phase function x-wlaoq, has two stationary points: The one x; is on
00y N{x: x-0=infe0,, x-@} and the other x7 on 00, N{x: x-@=SUPsecsog % - ®}.
Therefore, if s°&{—2ry(w), —27,(w)} (wWhere @(w)zsupxeoq,x-w), we have
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3.3) S~0 V- @e"TE gD (—2x - 0—50)dS, = O(|a| =)
o ql

for sufficiently small e.

Let {x;} be the reflection points of a broken ray L(x,, w) where x,=P=
{x: x-w=min;,,,»(w)—1}. And we employ the notations stated in §2 (e.g.,
&, v(x;), etc.). Since ©; is strictly convex, by Taylor it is known that

WF[avqu]RI xa.Q] - WF[qu[Rl xag] ]

where WF denotes the wave front set (cf. §3 of Ch. 10 in [4]). Therefore,

if (s, x;grad(s+x-|g1.s0)) does not belong to WF[v,,lp1.a0], we have
CX) L0Cs+2 @) o () —c0

ngxmq’e aP(—x-@—s—30)0,Upy(S, x; @)dsdS; = O(la|™).
On the other hand, it is easily seen that

WEF Vgl r1xa0]NA(s, x; grad(s+x-@lrixs0)): (s, x)ER*X082

NSuppa(—x -@—Ss—S,)}

-

2

B

U {(sh,+2min7(w)—x%, x4 ; 1, 9): xk, is the last reflection
m=1 1=1,2

point associated with si,, p=—(—w—(—@-v(xL))(xh)}

UlF@), xF3 1, 0): x1€092, xT-0=F ()} = \

i=1

Aimu;fi.

1

1Cs

Thus we have only to consider the terms of I3,, (o) satisfying (UG-, PRy, B
NWF vl r1xe0]# D.

We fix the m arbitrarily, and make the {X,,} so fine that for only one
p=psupp[X,,] contains the first reflection point x, associated with s%. Let us
consider only the case of ¢g=2. The case of g=1 can be treated in the same
way. We can construct the asymptotic solution of the equation [3.2) with (p, ¢)
=($, 2) in the same way as in §7 of lkawa [3]. That is of the form

no1 (R (Py(ar-1) o -J
(3.5) p3| 27;S|kme ©m0 S, (1, x)kIdk.

Here the integral is in the sense of oscillatory integral (cf. §6 of Ch.1 in [4])),
and ¢, and w,, ; are the solutions of the following equations:

¢, =1 inQ,

Orloo, = @r-ilio, (Po=x-w),

09, _ 09,

ov lao, oy

(3.6)

a0,
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where /=1 for even » and /=2 for odd r;

awr w,,; . -
(3.7) ot +2v¢r Vw.,, ]+(A¢ YWwe ;= —ilJw,, j- (W, -1=0),
Wr il R1x6Q = —Wr-1, ;] R1x0Q )

where w0 pixao=—2"(—270)'""As:(t, X)| R1xa0s Wo,0l R1xae=0 and w;, J]mxa.o—
— W, ;I mxap=0 for j=1. By (3.4), the terms

vot, %) = -—l—g ¢tk Sy i
2w Jirizt =0 '

in satisfy
SS e“’“”""’ae‘j)ayv,dsdsx =0(|e|™™) if r<m—2.
R1x30 4

Therefore we see that

10(s+2-0) (DG 1 xodsdS
e 44 v S
ngxaoq et ‘

= 21’0& ei"“”""*“’m“‘”as‘”(—x-w—¢m(X)-‘So)“-a¢m(x)wm,o(sﬁm(X), x)dS;
3.8) o ov
+(Similar integrals multiplying smaller power of o)

+0(e]|™) for even m and ¢’=1 or odd m and ¢’=2,

= 0(]ag|™™) for even m and ¢’=2 or odd m and ¢’=1.

The phase function (x- w+¢m(x))lao has only one stationary point which is
the last reflection point x%, ; moreover, by Lemma 4.1 in Ikawa [3], it is non-
degenerate. If s, is not equal to —2min;., ,7;(@w)—s% and ¢>0 is small enough,
afP’(—x-0—@n(x)—s,) vanishes in a neighborhood of the stationary point xZ,
and then we have

16 (S+T+w) p(F) — —oo
SSRlqu’e aP0,v,dsdS, = O(la| ™).

From now on, let us prove Theorem 1 and

PROOF OF THEOREM 1. Without loss of generality, we may assume that
ri(w)<r,(w). Let us consider only the case of »,(w)<r,(w) since the case r,(w)
=r,(w) can be treated more easily. By Majda and Soga [12], it is known that
—2r,(w) belongs to singsuppS(-, —w, w). In the same way as in the proof of
Lemma 4.1 in Soga [11], we see that vy, with supp[X,,]=(7{w), x%) does not
contribute to singsuppS(-, —w, w). Let s,—=—2r,(w). Then, by the earlier
argument, we have seen that only the v,, in [3.2) satisfying WF[v,,lrixae] N4
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# @ may influence the singularity of S(s, —w, w). Therefore, by (3.8) (with
m=1) we can write for any integer N>0

Fla.(s+2r,(w)S(s, —w, w)](a)

= on etose 5 Bi(0)aHdS,+0( g PV ),
where B;(x)eC=(00,) and By (x})=(2x)'-". By means of the stationary phase
methods (cf. §4 in [8]), we obtain

| Fla(s+2r,(®)S(s, —w, )](g)| = Cla| ™ P?  as |g|—oo
for a constant C>0. This shows that
a.(s+2r,(0)S(s, —w, w) & C=(R}).

The proof is complete.

PROOF OF THEOREM 2. (ii) and (iii) in have been proved in
Theorem 2.3. From Theorem 1, it suffices to prove (i) in when
m>1. At first, we consider the case of sl,#s2. By weTsee that

FlaJ s+s%+2 g;ilnzri(w))S(S, —w, 0)](o)

=2i630"“Sa e""”"“*"’m"””ae(—x-w~¢m(x)+2§1_11ir;ri(w)+33n)

Og

B (0 oG, 2)dS-

X
+(Similar integrals multiplying smaller power of ¢)+0(|¢| ™).
Therefore, by the same argument as in the proof of Theorem 1, we have
|F[as(s+s%n+21ix=1iglzn(w))5(s, —w, w)](@)] =2 C’'|g|™P%  as |g|—>o
for a constant C’>0. This implies that
3.9 as(S+an+2iI£11i’l'21 r{w)S(s, —w, w) & C=.

In the same way, it is seen that a.(s+shL+2min;., ,7;(®))S(s, —w, w)& C=,
Let sl,=s%. We obtain

Fla(s+sh+2 ggilnzrz(w))S(s, -, 0)](0)

= 2ic§o““§ eie@otdmdy (—x-0—@,+2min n(w)—{—s?n)% W, odS 2
30 i=1.2 ov

2
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+2z'c§o"'lg , eIy (— e — 42 ;glix;ri(w)—!-s%n)a—gf W, odS,

60,

+(Similar integrals multiplying smaller power of ¢)+0(|e| ),

where ¢, and W, , are the solutions of [3.6) and when ¢g=1. Noting that
Wm,o and @, , have the same sign, also when si,=s2, we get in the same
way.
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