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\S 0. Introduction.

It is known that compact surfaces which admit Anosov diffeomorphisms
are tori, and that such diffeomorphisms on tori are topologically conjugate to
toral automorphisms (see J. Franks [3]). The purpose of this paper is to prove
in topological setting the following

THEOREM. Let $M^{2}$ be a compact surface and $f:M^{2}arrow M^{2}$ be a homeomorphism.

If $f$ is expamve and has POTP, then $f$ is topOlOgjcally conjugate to a hyperbOljc
toral automorphism.

REMARK. Let $M^{2}$ be as in Theorem. It is known (see T. O’Brien and W.
Reddy [9]) that if $M^{2}$ is orientable and has positive genus, then $M^{2}$ admits an
expansive homeomorphism. Thus the assumption of POTP in our theorem can
not drop.

Let (X, d) be a compact metric space and $f:Xarrow X$ be a homeomorphism
(every homeomorphism means bijective). We say that $f$ is expansive if there is
$c>0$ such that when $x\neq y,$ $d(f^{i}(x), f^{i}(y))>c$ for some $i\in Z(c$ is called an
expansive constant for $f$). A sequence $\{x_{i}\}_{i\in Z}$ in $X$ is a $\delta$-Pseudo-orbit of $f$ if
$d(f(x_{i}), x_{i+1})<\delta$ for all $i\in Z$. A point $x$ in $X$ is said to $\epsilon$-trace $\{x_{i}\}_{i\in Z}$ if
$d(f^{i}(x), x_{i})<\epsilon$ for all $i\in Z$. We say that $f$ has POTP if for every $\epsilon>0$ there
is $\delta>0$ such that every $\delta$-pseudo-orbit of $f$ is $\epsilon$ -traced by some point in $X$. We
remark that expansiveness and POTP are independent of the compatible metrics
used, and preserved under topological conjugacy. For materials on topological
dynamics on closed manifolds, the reader may refer to A. Morimoto [8].

For $x\in X$, define the stable and unstable sets $W^{s}(x)$ and $W^{u}(x)$ as
$W^{s}(x)=$ { $y\in X:d(f^{n}(x),$ $f^{n}(y))arrow 0$ as $narrow\infty$ },

$W^{u}(x)=$ { $y\in X:d(f^{n}(x),$ $f^{n}(y))arrow 0$ as $narrow-\infty$ }
and put

$\mathcal{F}^{\sigma}(X, f)=\{W^{\sigma}(x):x\in X\}$ $(\sigma=s, u)$ .
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Then $\mathcal{F}^{\sigma}(X, f)$ is a decomposition of $X$. For $\epsilon>0$ , let $W_{\epsilon}^{s}(x)$ and $W_{\epsilon}^{u}(x)$ be the
local stable and unstable sets defined by

$W_{\epsilon}^{s}(x)=\{y\in X:d(f^{n}(x), f^{n}(y))\leqq\epsilon, n\geqq 0\}$ ,

$W_{\epsilon}^{u}(x)=\{y\in X:d(f^{n}(x), f^{n}(y))\leqq\epsilon, n\leqq 0\}$ .
R. Man\’e proved in [7] that if $f:Xarrow X$ is expansive (with expansive constant
$c)$ , then for every $r>0$ there is $N>0$ such that

$f^{n}W_{c}^{s}(x)\subset W_{r}^{s}(f^{n}(x))$ and $f^{-n}W_{c}^{u}(x)\subset W_{r}^{u}(f^{-n}(x))$

for all $n\geqq N$ and all $x\in X$. From this result we can easily see that

$W^{s}(x)= \bigcup_{n\geqq 0}f^{-n}W_{\epsilon}^{s}(f^{n}(x))$ , $W^{u}(x)= \bigcup_{n\geq 0}f^{n}W_{\epsilon}^{u}(f^{-n}(x))$

for all $x\in X$ and all $\epsilon$ with $0<\epsilon\leqq c$ .
Throughout this paper, the term surfaces will be applied only to connected

2-manifolds without boundary. For materials on foliations on surfaces, the
reader may refer to G. Reeb [10] and G. Hector and U. Hirsch [5].

The conclusion of our theorem will be obtained in proving the following
two propositlons.

PROPOSITION 1. Uuder the notations and the assumPtions in Theorem, the
families $\mathcal{F}^{\sigma}(M^{2}, f)(\sigma=s, u)$ have the following prOpertjes;

(1) $\mathcal{F}^{\sigma}(M^{2}, f)$ is a $C^{0}$ foliation on $M^{2}$ ,
(2) every leaf $W^{\sigma}(x)\in \mathcal{F}^{\sigma}(M^{2}, f)$ is homeomorPhic to $R$,
(3) $\mathcal{F}^{s}(M^{2}, f)$ is transverse to $\mathcal{F}^{u}(M^{2}, f)$ .

If Proposition 1 holds, then from Poincar\’e-Kneser’s Theorem and Kneser’s
Theorem together with Proposition 1, we can easily prove the following

COROLLARY. If $M^{2}$ is not a 2-torus, then $M^{2}$ does not admit expansive
homeomorphisms with POTP.

PROPOSITION 2. Under the notations and the assumPtions in Theorem, if $M^{2}$

is a 2-torus, then $f$ is topOlOgically conjugate to a hyperbOljc toral automorphism.

\S 1. Proof of Proposition 1.

Let (X, d) be a compact metric space and $f:Xarrow X$ be a homeomorphism.
Hereafter we assume that $f$ is expansive (with expansive constant c) and

has POTP. The following results (I), (1I) and (m) are proved in [6].

(I) Fix $c>0$ and put $\epsilon_{0}=c/4$ . Then there is $\delta_{0}>0$ such that if $d(x, y)<\delta_{0}$ ,
then $W_{\epsilon_{0}}^{s}(x)\cap W_{\epsilon_{0}}^{u}(y)$ is a single point. We denote the point by $[x, y]$ .
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(I) Let $\delta_{0}>0$ be as above and put

$\Delta(\delta_{0})=\{(x, y)\in X\cross X:d(x, y)<\delta_{0}\}$ .
Then $[\cdot, \cdot]:\Delta(\delta_{0})arrow X$ is a continuous map and

$[x, x]=x$ , $[[x, y],$ $z$] $=[x, z]$ , $[x, [y, z]]=[x, z]$

whenever the two sides of these relations are defined.
(m) For every $\delta$ with $0<\delta<\delta_{0}/2$ , we define

$W_{\epsilon_{0}.\delta}^{\sigma}(x)=\{y\in W_{\epsilon_{0}}^{\sigma}(x) : d(x, y)<\delta\}$ $(\sigma=s, u)$ ,

$N_{x.\delta}=[W_{\epsilon_{0}.\delta}^{u}(x), W_{\epsilon_{0}.\delta}^{s}(x)]$ .
Then there are $0<\delta_{1}<\delta_{0}/2$ and $\rho_{0}>0$ such that for every $x\in X$

(a) $N_{x.(},1$ is open in $X$ and diam $(N_{x.\delta_{1}})<\delta_{0}$ ,
(b) $[\cdot, \cdot]:W_{\epsilon_{0}.\delta_{1}}^{u}(x)\cross W_{\epsilon_{0}.\delta_{1}}^{s}(x)arrow N_{x.\delta_{1}}$ is a homeomorphism,
(c) $N_{x.()_{1}}\backslash \supset B_{\rho_{0}}(x)$ where $B_{\rho_{0}}(x)$ denotes the closed ball of $x$ with radius $\rho_{0}$ .

Let $\epsilon_{0}$ and $\delta_{1}$ be as above. We denote by $D_{x}^{\sigma}$ the connected component of
$x$ in $W_{\epsilon_{0}.\delta_{1}}^{\sigma}(x)$ for $\sigma=s,$ $u$ , and put

$N_{x}=[D_{x}^{u}, D_{x}^{s}]$ .
PROPOSITION 1.1 (Local product structure). If (X, d) is a compact connected

locally connected metric space and $f:Xarrow X$ is expansjve and has POTP, then for
every $x\in X$

(a) $N_{x}$ is connected and open in $X$ and diam $(N_{x})<\delta_{0}$ ,
(b) $[\cdot, \cdot]:D_{x}^{u}\cross D_{x}^{*}arrow N_{x}$ is a homeomorphism,
(c) there is $0<\rho<\epsilon_{0}$ such that $N_{x}\supset B_{\rho}(x)$ for all $x\in X$,
(d) $D_{x}^{\sigma}\supsetneqq\{x\}$ for $\sigma=s,$ $u$ .

PROOF. Let $\delta_{1}>0$ be as above. Obviously $D_{x}^{u}\cross D_{x}^{\epsilon}$ is the connected com-
ponent of $(x, x)$ in $W_{\epsilon_{0}.\delta_{1}}^{u}(x)\cross W_{\epsilon_{0}.\delta_{1}}^{s}(x)$ . By $(m)(b)$ we have that $N_{x}$ is the
connected component of $x$ in $N_{x.\delta_{1}}$ . Since $X$ is locally connected and $N_{x.\delta_{1}}$ is
open in $X((m)(a)),$ $N_{x}$ is open in $X$ and therefore (a) holds. (b) is obtained by
$(m)(b)$ . Let $\rho_{0}>0$ be as in (m). Then there is a finite open cover $\{U_{i} : 1\leqq i\leqq k\}$

of $X$ such that diam $(U_{i})<\rho_{0}(1\leqq i\leqq k)$ and each $U_{i}$ is connected. Let $\rho(<\epsilon_{0})$

be a Lebesgue number of $\{U_{i} : 1\leqq i\leqq k\}$ . Then for $x\in X$ there is $U_{i}$ such that
$B_{\rho}(x)\subset U_{i}$ . Since $U_{i}\subset B_{\rho_{0}}(x)$ , we have $U_{i}\subset N_{x.\delta_{1}}$ (by $(m)(c)$ ) and so $U_{i}\subset N_{x}$

since $U_{1}$, is connected. Therefore $B_{\rho}(x)\subset N_{x}$ .
It remains to prove (d). Let $X^{s}=\{x\in X:D_{x}^{\epsilon}=\{x\}\}$ and take $x\in X^{s}$ . Since

$N_{x}=[D_{x}^{u}, D_{x}^{\epsilon}]$ , we have $N_{x}=D_{x}^{u}\subset W_{\epsilon_{0}}^{u}(x)$ and so $N_{x}\subset W_{2\epsilon_{0}}^{u}(y)$ for $y\in N_{x}$ . Since
$f$ is expansive and $\epsilon_{0}=c/4$ , we have
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$y\in D_{y}^{s}\cap N_{x}\subset W_{\epsilon_{0}}^{s}(y)\cap W_{2\epsilon_{0}}^{u}(y)=\{y\}$

and so $D_{y}^{s}=\{y\}$ . This implies that $y\in X^{s}$ for $y\in N_{x},$ $i.e.,$ $N_{x}\subset X^{s}$ . Therefore
$X^{s}$ is open by (a). (c) ensures that $X^{s}$ is closed. If $X^{S}\neq\emptyset$ , then $X^{s}=X$ since
$X$ is connected. In this case we can choose a finite set $\{x_{i} ; 1\leqq i\leqq l\}$ in $X$

such that
$X= \bigcup_{i=1}^{l}N_{x_{i}}=_{i=1}\cup^{l}D_{x}^{u_{i}}$ .

Since $D_{x_{i}}^{u}\subset W_{\epsilon_{0}}^{u}(x_{i})$ , using the result of Man\’e stated in Introduction we can
find $N>0$ such that $f^{-N}(X)\subsetneqq X$. But this is impossible since $f$ is surjective.
Therefore $X^{s}=\emptyset$ . In the same way, we have that $D_{x}^{u}\supsetneqq\{x\}$ for all $x\in X$.

Let $X$ and $Y$ be non-trivial topological spaces and $X\cross Y$ be the product
space with product topology.

LEMMA 1.2. Under the above notations, if $X\cross Y$ is a connected 2-manifold,
then $X$ and $Y$ are l-manifolds.

PROOF. Since $X\cross Y$ is a manifold, $X$ and $Y$ are Hausdorff spaces and
satisfy the second axiom of countability. To obtain the conclusion, it is enough
to prove that $X$ and $Y$ are locally homeomorphic to either the line or the half
line. We shall show this for $X$. Then the conclusion for $Y$ is obtained in the
same way.

For simplicity we denote by $I,$ $I^{0}$ and $I^{1}$ the intervals $[0,1]$ , $(0,1)$ and
$[0,1)$ respectively. If $x\neq y(x, y\in X)$ , then there is a continuous map $\alpha:Iarrow X$

corresponding to a path of $x$ to $y$ since $X\cross Y$ is connected. It is clear that
$\alpha(I)$ is a Peano space. Hence $\alpha(I)$ is arcwise connected ([4]). So we can find
an arc of $x$ to $y$ in $\alpha(I)$ . Since $x$ and $y$ are arbitrary in $X$, $X$ must be
arcwise connected.

Let $A_{X}$ (resp. $A_{Y}$) be defined as the set of all injective continuous maps
from $I$ to $X$ (resp. $Y$). For $\alpha\in A_{X},$ $a:I^{0}arrow\alpha(I^{0})$ is a homeomorphism since a
is injective. We shall show that $\alpha(I^{0})$ is open in $X$. To do this, take and fix
$\beta\in A_{Y}$ . If $(U, \varphi)$ denotes a chart of $X\cross Y$ , then the map $\varphi\circ(\alpha\cross\beta)$

$I^{0}\cross I^{0}\cap(\alpha\cross\beta)^{-1}(U)arrow U\alpha\cross\betaarrow^{\varphi}R^{2}$

is injective and continuous. By Brouwer’s Theorem the image of $\varphi^{\circ}(a\cross\beta)$ is
open in $R^{2}$ . This shows that $(\alpha\cross\beta)(I^{0}\cross I^{0})$ is open in $X\cross Y$ since $(U, \varphi)$ is
arbitrary, and so $\alpha(I^{0})$ is open in $X$.

Put $V_{X}= \bigcup_{a\in A_{X}}\alpha(I^{0})$ . If $V_{X}=X$ then we have that $X$ is a l-manifold
without boundary. For the case when $V_{X}\neq X$, we prove that $X$ is homeo-
morphic to $I$ or $I^{1}$ .
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Take and fix $x\in X\backslash V_{X}$ and define

$A_{\acute{X}}=\{a\in A_{x\ddagger}\alpha(0)=x\}$ .
Then we claim that there is the implication between $\alpha_{1}(I)$ and $\alpha_{2}(I)$ for
$a_{1},$

$\alpha_{2}\in A_{X}’$ . Indeed, assume that $a_{1}(I)\not\subset\alpha_{2}(I)$ . Then we have that $a_{2}(I)\subset a_{1}(I)$ .
For, let $J=a_{1}(I)\backslash a_{2}(I)$ . Since $a_{1}(0)=a_{2}(0)=x,$ $I_{<}^{\subset}a_{1}(I)$ and so $\alpha_{1}^{-1}(J)\subsetneqq I$ . Since
$J\neq\emptyset$ , there is a boundary point $b$ of $\alpha_{1}^{-1}(J)$ . Since $J$ is open in $a_{1}(I),$ $\alpha_{1}^{-1}(J)$

is open in $I$ . Hence $b\not\in a_{1}^{-1}(J)$ and so $\alpha_{1}(b)\not\in J$. This implies that $a_{1}(b)\in\alpha_{2}(I)$ .
But $\alpha_{2}(I^{()})$ is open in $X$. Since $b$ is a boundary point of $\alpha_{1}^{-1}(J)$ , we have that
$a_{1}(b)=\alpha_{2}(0)$ or $a_{1}(b)=\alpha_{2}(1)$ . If $a_{1}(b)=\alpha_{2}(0)$ , then we must have $b=0$ (since
$\alpha_{1},$

$\alpha_{2}\in A_{X}’$). In this case there is $c\in(O, 1$ ] such that $\alpha_{1}([0, c])\cap a_{2}([0,1])=\{x\}$ .
This shows that there is in $X$ an arc of $\alpha_{1}(c)$ to $\alpha_{2}(1)$ through the point $x$ .
By the definition we have $x\in V_{X}$ , thus contradicting $x\not\in V_{X}$ . Therefore
$\alpha_{1}(b)=\alpha_{2}(1)$ . Since $b$ is arbitrary in the boundary set of $a_{1}^{-1}(J)$ , the boundary
set of $\alpha_{1}^{-1}(J)$ is a single point. Therefore $\alpha_{1}^{-1}(J)$ is an open interval in $I$ and
$\alpha_{1}^{-1}(J)\ni 1$ , from which we see that $\alpha_{1}^{-1}(J)=(b, 1$ ] and hence $\alpha_{1}([0, b])\subset\alpha_{2}([0,1])$ .
Since $\alpha_{1}(0)=\alpha_{2}(0)$ and $a_{1}(b)=\alpha_{2}(1)$ , obviously $\alpha_{1}([0, b])=a_{2}([0,1])$ and therefore
$a_{2}(I)\subset a_{1}(I)$ . We proved that $\{\alpha(I):\alpha\in A_{X}’\}$ is a totally ordered set under
inclusion.

On the other hand, since $X$ is arcwise connected, we have

$x=Ua(I)\alpha\in A_{\acute{X}}$

These two facts show that $X$ is homeomorphic to either $I$ or $I^{1}$ . The proof
is completed.

Assume that $f:M^{2}arrow M^{2}$ is expansive and has POTP.

LEMMA 1.3. Under the above assumpfjOns, for every $x\in M^{2},$ $D_{x}^{\sigma}$ is homeo-
morphic to $R(\sigma=s, u)$ .

PROOF. Let $\rho$ be as in Proposition 1.1 (c). First we prove that for every
$x\in M^{2}$

(1.1) $W_{\rho}^{\sigma}(x)\subset D_{x}^{\sigma}$ $(\sigma=s, u)$ .
We give the proof for $\sigma=s$ and then the case when $\sigma=u$ is easily obtained in
the quite same way. Since $W_{\rho}^{s}(x)\subset B_{\rho}(x)$ and $B_{\rho}(x)\subset N_{x}$ by Proposition 1.1 (c),

we have that $y\in N_{x}$ when $y\in W_{\rho}^{s}(x)$ . Since $N_{x}=[D_{x}^{u}, D_{x}^{s}]$ by the definition,
clearly $y=[u, v]$ for some $u\in D_{x}^{u}$ and $v\in D_{x}^{s}$ . Hence $[x, y]=[x, [u, v]]=[x, v]$

by (I). Since $\rho<\epsilon_{0}$ (see Proposition 1.1), we have $W_{\rho}^{s}(x)\subset W_{\epsilon_{0}}^{s}(x)$ and hence
$y\in W_{\epsilon_{0}}^{s}(x)$ . By the definition of $[\cdot, \cdot]$ , $y=[x, y]\in W_{\epsilon_{0}}^{s}(x)\cap W_{\epsilon_{0}}^{u}(y)$ . Since
$v\in D_{x}^{s}\subset W_{\epsilon_{0}}^{s}(x)$ , we have also $[x, v]=v$ . From the above calculation we have
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$y=v\in D_{x}^{s}$ .
Combining Proposition 1.1 (a), (b) and Lemma 1.2, we see that each $D_{x}^{s}$ is

a connected l-manifold without boundary. Hence $D_{x}^{s}$ is homeomorphic to $R$

or $S^{1}$ .
To obtain the conclusion of the lemma, assume that $D_{x}^{s}$ is homeomorphic

to $S^{1}$ . Since $D_{x}^{s}\subset W_{\epsilon_{0}}^{s}(x)$ , by using Man\’e’s result we have that $f^{N}(D_{x}^{s})\subset W_{\rho}^{s}(f^{N}(x))$

for some $N>0$ . Hence $f^{N}(D_{x}^{s})\subset D_{f^{N}(x)}^{s}$ by (1.1). Since every l-manifold has
no circles as proper subsets, we must have $f^{N}(D_{x}^{s})=D_{f^{N}(x)}^{s}$ and so $D_{f^{N}(x)}^{s}$

$\subset W_{\rho}^{s}(f^{N}(x))\subset B_{\rho}(f^{N}(x))$ . Since $\rho$ is chosen small enough, we can choose $\rho>0$

such that $B_{\rho}(f^{N}(x))$ is homeomorphic to the unit disk. For simplicity we
identify $B_{\rho}(f^{N}(x))$ with the unit disk, and define

$F:D_{f^{N}(x)}^{s}\cross[0,1]arrow D_{f^{N}(x)}^{\epsilon}$

by putting $F(z, t)=[f^{N}(x), tz]$ . Then $F$ is a homotopy between a constant
map and the identity map. Hence $D_{f^{N}(x)}^{s}$ is contractible. But this is a con-
tradiction since $D_{f^{N}(x)}^{*}=f^{N}(D_{x}^{s})$ is homeomorphic to $S^{1}$ . Therefore each $D_{x}^{l}$ is
homeomorphic to $R$.

PROOF OF PROPOSITION 1. We first show that each $W^{\sigma}(x)$ is connected
for $\sigma=s,$ $u$ . Using Man\’e’s result, we have

(1.2) $W^{s}(x)= \bigcup_{n\geq 0}f^{-n}W_{\rho}^{s}(f^{n}(x))$ , $W^{u}(x)=Uf^{n}W_{\rho}^{u}(f^{-n}(x))n\geqq 0$

and $N>0$ such that

(1.3) $f^{N}(D_{x}^{\epsilon})\subset W_{\rho}^{s}(f^{N}(x)),aef^{-N}(D_{x}^{u})\subset W_{\rho}^{u}(f^{-N}(x))$ .
Put $g=f^{N}$ and define

$s_{n}(x)=g^{-n}(D_{g^{n}(x)}^{s})]\lceil and$ $u_{n}(x)=g^{n}(D_{g}^{u_{-n_{(x)}}})$ $(n\geqq 0)$ .
By (1.1) and (1.3) we have

$s_{n}(x)\subset g^{-n-1}W_{\rho}^{s}(g^{n+1}(x))\subset s_{n+1}(x)$ ,

$u_{n}(x)\subset g^{n+1}W_{\rho}^{u}(g^{-n-1}(x))\subset u_{n+1}(x)$ .
So $W^{\sigma}(x)= \bigcup_{n\geqq 0}\sigma_{n}(x)(\sigma=s, u)$ by (1.2). Using Lemma 1.3, we have that each
$\sigma_{n}(x)$ is homeomorphic to $R$ for $\sigma=s,$ $u$ . These facts ensure that for every
$x\in M^{2}$ there is an injective continuous map $j_{x}^{\sigma}$ : $Rarrow M^{2}(\sigma=s, u)$ such that
$j_{x}^{\sigma}(R)=W^{\sigma}(x)$ and for every $n\geqq 0,$ $j_{x}^{\sigma}$ : $(-n-1, n+1)arrow\sigma_{n}(x)$ is a homeomorphism.
Therefore each $W^{\sigma}(x)$ is connected.

For $\sigma=s,$ $u$ , denote by $h_{x}^{\sigma}$ a homeomorphism of $R$ onto $D_{x}^{\sigma}$ and define a
continuous map $\varphi_{x}$ : $R^{2}arrow N_{x}$ by

$\varphi_{x}=[\cdot, \cdot]\circ(h_{x}^{u}\cross h_{x}^{s})$ .
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We see by Proposition 1.1 (b) that $\varphi_{x}$ is a homeomorphism. By (II), $\varphi_{x}^{-1}$ is of
the form

(1.4) $\varphi_{\overline{x}^{1}}(w)=((h_{x}^{u})^{-1}\cross(h_{x}^{\epsilon})^{-1})([w, x], [x, w])$ .
Remark that $x\in N_{x}$ and by Proposition 1.1 (a) each $N_{x}$ is open in $M^{2}$ . Hence we
see that $\{(N_{x}, \varphi_{x}^{-1})\}_{x\in H^{2}}$ is an atlas of $M^{2}$ .

We first claim that $N_{x}= \bigcup_{z\in D_{x}^{u}}D_{x,*}^{\epsilon}$ where $D_{x.z}^{\epsilon}=N_{x}\cap W_{\epsilon_{0}}^{s}(z)$ for $z\in D_{x}^{u}$ .
Indeed, for $w\in N_{x}$ , we have $w=[z, v]$ for some $z\in D_{x}^{u}$ and $v\in DX$ . Since
$w=[z, v]\in W_{\epsilon_{0}}^{l}(z)\cap W_{\epsilon_{0}}^{u}(v)$ , we have $w\in N_{x}\cap W_{\epsilon_{0}}^{\epsilon}(z)=D_{x.z}^{l}$ and so $N_{x} \subset\bigcup_{z\in D_{x}^{u}}D_{x.z}^{s}$ .

Put $D_{x.z}^{u}=N_{x}\cap W_{\epsilon_{0}}^{u}(z)$ for $z\in D_{x}^{\epsilon}$ . Then we have $N_{x}= \bigcup_{z\in D_{x}^{s}}D_{x.*}^{u}$ as above.
We next claim that $[D_{x.*}^{l}, x]=\{z\}$ and $[x, D_{x.z}^{\epsilon}]=D_{x}^{l}$ . Indeed, since we

have
$[D_{x.*}^{\epsilon}, x]= \bigcup_{w\in D_{x.z}^{\epsilon}}W_{\epsilon_{0}}^{s}(w)\cap W_{\epsilon_{0}}^{u}(x)$

(by the definition of $[\cdot,$ $\cdot]$ )

$\subset W_{2\epsilon_{0}}^{s}(z)\cap W_{\epsilon_{0}}^{u}(x)$ (since $W_{\epsilon_{0}}^{s}(x)\subset W_{2\epsilon_{0}}^{s}(z)$ )

$=\{z\}$ (since $2\epsilon_{0}<c$),

the first assertion holds. If $w\in D_{x.*}^{s}$ , then $[x, w]\in N_{x}$ and so $[x, w]=[u, v]$

for some $u\in D_{x}^{u}$ and $v\in DX$ . (I) ensures that

$[x, w]=[x, [x, w]]=[x, [u, v]]=[x, v]=v$ ,

so that $[x, w]\in D_{x}^{s}$ . Consequently $[x, D_{x.z}^{s}]\subset D_{x}^{s}$ . If $w\in D_{x}^{s}$ , then $[z, w]\in N_{x}$

and $[z, w]\in W_{\epsilon_{0}}^{s}(z)$ . Hence $[z, w]\in D_{x}^{s}$ .,. Since $[x, [z, w]]=[x, w]=w$ , we
have $[x, D_{x.z}^{s}]\supset D_{x}^{s}$ . Therefore the second assertion holds.

Combining the above claims and (1.4), we have

(1.5) $\varphi_{x}^{-1}(D_{x}^{s}$ .. $)$ $=((h_{x}^{u})^{-1}\cross(h_{x}^{\})^{-1})([D_{x.*}^{s}, x], [x, D_{x.z}^{s}])$

$=((h_{x}^{u})^{-1}\cross(h_{x}^{s})^{-1})(\{z\}\cross D_{x}^{s})$

$=\{(h_{x}^{u})^{-1}(z)\}\cross R$ .

This implies that $\varphi_{x}^{-1}$ sends $D_{x.*}^{s}$ onto a vertical line $\{a\}\cross R$ for some $a\in R$ .
We can easily show by the above way that $\varphi_{x}^{-1}$ sends $D_{x.*}^{u}$ onto a horizontal
line $R\cross\{b\}$ for some $b\in R$.

From now on, we prove that $\mathcal{F}^{\sigma}(M^{2}, f)$ is a $C^{0}$ foliation on $M^{2}$ for $\sigma=s,$ $u$ .
Remark that $\{(N_{y}, \varphi_{y}^{-1})\}_{y\in K^{2}}$ is an atlas of $M^{2}$ and $\varphi_{y}^{-1}(D_{y.z}^{s})=\{a\}\cross R$ for some
$a\in R$ (and also $\varphi_{y}^{-1}(D_{y.z}^{u})=R\cross\{b\}$ for some $b\in R$ ). To obtain that $\mathcal{F}^{\sigma}(M^{2}, f)$

is a $C^{0}$ foliation on $M^{2}$ , it is enough to show that each connected component
of $W^{\sigma}(x)\cap N_{y}$ is of the form $D_{y.z}^{\sigma}$ .

Let $w\in W^{s}(x)\cap N_{y}$ . Since $N_{y}=U_{z\in D_{y}^{u}}D_{y.*}^{s}$ , we have $w\in D_{y.*}^{s}$ for some
$z\in D_{y}^{u}$ . Since $D_{y.z}^{\epsilon}\subset W_{\epsilon_{0}}^{\epsilon}(z)$ , there is $n(z)>0$ such that $g^{n(z)}(D_{y.z}^{s})\subset W_{\rho/2}^{\epsilon}(g^{n(z)}(w))$ .
On the other hand, since $w\in W^{s}(x)$ , by the definition of $W^{s}(x)$ we have
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$g^{n(z)}(w)\in W_{\rho/2}^{s}(g^{n(z)}(x))$ for some $n(z)$ . Therefore

$g^{n(z)}(D_{y.z}^{s})\subset W_{\rho}^{s}(g^{n(z)}(x))\subset D_{\epsilon^{n(z)}Cx)}^{\}$

and so $D_{y.z}^{s}\subset s_{n(z)}(x)$ . Since $s_{n(z)}(x)\subset W^{\epsilon}(x)$ , we have $w\in D_{y.z}^{s}\subset W^{s}(x)$ . We
showed that there are the index set $\Lambda$ and a subset $\{z_{\lambda} : \lambda\in\Lambda\}$ of $D_{y}^{u}$ such that

$W^{s}(x) \cap N_{y}=\bigcup_{\lambda\in\Lambda}D_{y.z_{\lambda}}^{s}$ (disjoint union).

We claim that $\Lambda$ is at most countable. Indeed, since $D_{y,z_{\lambda}}^{s}\subset s_{nCz_{\lambda}}$ ) $(x)$ and both
$D_{y.z_{\lambda}}^{*}$ and $s_{n(z_{\lambda)}}(x)$ are homeomorphic to $R,$ $D_{y.z_{\lambda}}^{\epsilon}$ is open in $s_{n(z_{\lambda}}$ ) $(x)$ . Since
$j_{x}^{\epsilon}$ : $(-n(z_{\lambda})-1, n(z_{\lambda})+1)arrow s_{nCz_{\lambda)}}(x)$ is a homeomorphism, $(j_{x}^{l})^{-1}(D_{y.z_{\lambda}}^{\epsilon})$ is open in
$R$. Since $\{(j_{x}^{s})^{-1}(D_{y.z_{\lambda}}^{\epsilon}):\lambda\in\Lambda\}$ is mutually disjoint, we have that $\Lambda$ is at most
countable.

Therefore each $D_{y.z_{\lambda}}^{s}$ is a connected component of $W^{s}(x)\cap N_{y}$ , from which
we see that $\mathcal{F}^{s}(M^{2}, f)$ is a $C^{0}$ foliation on $M^{2}$ . It follows from the quite same
technique that $\mathcal{F}^{u}(M^{2}, f)$ is a $C^{0}$ foliation on $M^{2}$ .

Obviously the topology of $W^{\sigma}(x)$ induced by $j_{x}^{\sigma}$ coincides with the leaf
topology. Therefore each $W^{\sigma}(x)\in \mathcal{F}^{\sigma}(M^{2}, f)$ is homeomorphic to $R$ . As saw
above $\varphi_{x}^{-1}$ sends $D_{x.z}^{s}$ onto a vertical line $\{a\}\cross R$ and $D_{x}^{u}$ ., onto a horizontal
line $R\cross\{b\}$ . Therefore $\mathcal{F}^{s}(M^{2}, f)$ is transverse to $\mathcal{F}^{u}(M^{2}, f)$ . The proof is
completed.

\S 2. Proof of Proposition 2.

Before starting the proof we shall investigate some properties of $C^{0}$ foli-
ations on $R^{2}$ .

LEMMA 2.1 (G. Hector and U. Hirsch [5]). If $\mathcal{F}$ is a $C^{0}$ foliation on $R^{2}$

then the following hold;

(a) every leaf of $\mathcal{F}$ is homeomorphic to $R$,
(b) $\mathcal{F}$ is orientable,
(c) if $\mathcal{F}^{\phi}$ is a $C^{0}$ foliation $mR^{2}$ transverse to $\mathcal{F}$ then for every $L\in \mathcal{F},$ $L$

intersects all leaves of $\mathcal{F}^{\phi}$ in at most one point,
(d) if $L$ is a leaf of $\mathcal{F}$ then $R^{2}\backslash L$ is decomp0sed into two connected components.

Hereafter we denote by $P:R^{2}arrow T^{2}(=R^{2}/Z^{2})$ the natural projection. The
following plays important roles in the proof of Proposition 2.

LEMMA 2.2. Let $\mathcal{F}$ and $\mathcal{F}^{\phi}$ be transverse $C^{0}$ foliations on $T^{2}$ . Denote by 9
and $\overline{\mathcal{F}}^{\phi}$ the lifts of 9 and $\mathcal{F}^{\phi}$ by $P$ respectively. Assume that every leaf wfuch
is in $\mathcal{F}$ and $\mathcal{F}^{\phi}$ is homeomorphic to R. Then every leaf of $\overline{\mathcal{F}}$ intersects all
leaves of $\overline{\mathcal{F}}^{\phi}$ in exactly one pmnt.
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PROOF. We orient $\overline{\mathcal{F}}$ and $\overline{\mathcal{F}}^{\phi}$ according to Lemma 2.1 (b) and denote by
$s(x)$ (resp. $u(x)$ ) the leaf of $\overline{\mathcal{F}}^{\phi}$ (resp. $\overline{\mathcal{F}}$ ) through $x\in R^{2}$ . Let $y_{1},$ $y_{2}\in\sigma(x)$ for
$\sigma=s,$ $u$ . We write $y_{1}\leqq_{\sigma}y_{2}$ if either $y_{1}=y_{2}$ or the arc in $\sigma(x)$ from $y_{1}$ to $y_{2}$

has the same orientation as that of $\sigma(x)$ . If $y_{1}\leqq_{\sigma}y_{2}$ and $y_{1}\neq y_{2}$ , we write
$y_{1}<_{\sigma}y_{2}$ . For the case when $y_{1}<_{\sigma}y_{2}$ , the subsets of $\sigma(x)$ are defined as follows.

$[y_{1}, y_{2}]_{\sigma}=\{y\in\sigma(x):y_{1}\leqq\sigma y\leqq\sigma y_{2}\}$ ,

$[y_{1}, y_{2})_{\sigma}=\{y\in\sigma(x):y_{1}\leqq\sigma y<\sigma y_{2}\}$ ,

$[y_{1}, +\infty)_{\sigma}=\{y\in\sigma(x):y_{1}\leqq_{\sigma}y\}$ .
Such subsets are called here intervals under the relation $\leqq_{\sigma}$ .

We define
$\Delta=\{(x, y)\in R^{2}\cross R^{2} : s(x)\cap u(y)\neq\emptyset\}$ .

By Lemma 2.1 (c) we have that $s(x)\cap u(y)$ is a single point for $(x, y)\in\Delta$ , and
denote the point by $a(x, y)$ . Since $\overline{\mathcal{F}}^{\phi}$ is transverse to 9, we have that
$a:\Deltaarrow R^{:}$ is a continuous map. The following is obtained easily; Let $x,$ $y\in R^{2}$ .
If $I$ is an interval of $s(x)$ such that $\{y\}\cross I\subset\Delta$ , then we have

(1) $\alpha(y, \cdot):Iarrow s(y)$ is injective and preserves the relation $\leqq_{s}$ ,
(2) $\alpha(\{y\}\cross I)$ is an interval of $s(y)$ .

If $I$ is an interval of $u(x)$ and satisfies $I\cross\{y\}\subset\Delta$ , then we have
(3) $\alpha(\cdot, y):Iarrow u(y)$ is injective and preserves the relation $\leqq_{u}$ ,
(4) $\alpha(I\cross\{y\})$ is an interval of $u(y)$ .
If $\Delta--=R^{2}\cross R^{2}$ holds, then the conclusion of the lemma is obtained. Thus

we prove that $\Delta=R^{2}\cross R^{2}$ . To do this, put

$X_{*}=\{x\in R^{2} : s\cap u(x)\neq\emptyset\}$ $(s\in\overline{\mathcal{F}}^{\phi})$ .
If we establish that $X_{s}=R^{2}$ for all $s\in\overline{\mathcal{F}}^{\phi}$ , then we have $\Delta=R^{2}\cross R^{2}$ . Therefore
we assume $X_{s}\subsetneqq R^{2}$ and prepare some claims to derive a contradiction.

CLAIM I. Let $I_{x}=X_{s}\cap s(x)$ for $x\in X_{s}$ . Then $I_{x}$ is an open interval of $s(x)$ .
PROOF. By transversality condition we have that

(2.1) $X_{s}$ is open in $R^{2}$ .
Hence $I_{x}$ is open in $s(x)$ . If $b\in s(x)$ is a boundary point of $I_{x}$ , then $b\not\in I_{x}$ and
so $b\not\in X_{s}$ . This implies that $s\cap u(b)=\emptyset$ . We remark that $R^{2}\backslash u(b)$ is decom-
posed into two connected components $U_{1}$ and $U_{2}$ by Lemma 2.1 (d). Since
$s\cap u(b)=\emptyset$ , we can assume that $s\subset U_{1}$ . Then $I_{x}\subset U_{1}$ since $s\cap u(y)\neq\emptyset$ if
$y\in I.\subset X_{s}$ . Since $I_{x}\subset s(x)=s(b)$ , we have $I_{x}\subset U_{1}\cap s(b)$ where $U_{1}\cap s(b)$ is a
connected component of $s(x)\backslash \{b\}(=s(b)\backslash \{b\})$ . Since $b$ is arbitrary, $I_{x}$ is an
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interval of $s(x)$ .
Claim I implies that $I_{x}$ is of the form

$I_{x}=(a(x), b(x))_{s}$ .
Since $X_{s}\subsetneqq R^{2}$ by the assumption, there is a boundary point $b$ of $X_{s}$ . But $b\not\in X_{s}$

by (2.1). By transversality condition we have $(x_{0}, b)\in\Delta$ when $x_{0}\in X_{s}$ is near $b$ .
By the definition of $a,$ $\alpha(x_{0}, b)\not\in X_{s}$ since $b\not\in X_{s}$ . And we have $I_{x_{0}}\subsetneqq s(x_{0})$ .
Hence we can assume that $b(x_{0})\in s(x_{0})$ .

Now put $\{x_{2}\}=s\cap u(x_{0})$ . Then $I_{x_{2}}=s$ since $s(x_{2})=s$ and so $x_{0}\neq x_{2}$ . Hence
we have either $x_{0}<x$ or $x_{g}<x$ . We deal with the case $x_{0}<x$ since the
case $x_{2}<x$ is done in the same way. Since $u(x_{0})\subset X_{s}$ , if

$J=\{x\in u(x_{0}):b(x)=+\infty\}$ ,

then $x_{0}\not\in J$ and $x_{2}\in J$. We see by transversality condition that $u(x_{0})\backslash J$ is open
in $u(x_{0})$ , and so $J$ is closed in $u(x_{0})$ . Hence there is $x_{1}\in(x_{0}, x_{2}]_{u}\cap J$ such that
$b(x)\in s(x)$ for every $x\in[x_{0}, x_{1})_{u}$ .

CLAIM II. $[x_{0}, x_{1}]_{u}\cross[x_{0}, b(x_{0})]_{S}\backslash (x_{1}, b(x_{0}))\subset\Delta$ .
PROOF. By the definition of $\Delta$ we have that $\{x_{0}\}\cross[x_{0}, b(x_{0})]_{s}\subset\Delta$ and

$[x_{0}, x_{1}]_{u}\cross\{x_{0}\}\subset\Delta$ . First we check that $(x_{0}, x_{1})_{u}\cross(x_{0}, b(x_{0}))_{s}\subset\Delta$ . Let $x\in(x_{0}, x_{1})_{u}$

and $y\in(x_{0}, b(x_{0}))_{s}$ . We remark that $R^{2}\backslash s(x)$ is decomposed into two con-
nected components by Lemma 2.1 (d). Then one of the components contains
$s(x_{0})$ and the other one contains $s(x_{2})=s$ since $x_{0}<ux<ux_{2}$ . Since $y\in I_{x_{0}}\subset X_{\theta}$ ,
we have $u(y)\cap s\neq\emptyset$ and since $y\in s(x_{0}),$ $s(x)\cap u(y)\neq\emptyset$ . Hence $(x, y)\in\Delta$ . The
inclusion $\{x_{1}\}X(x_{0}, b(x_{0}))_{s}\subset\Delta$ is obtained in the same way.

It remains to check that $[x_{0}, x_{1})_{u}\cross\{b(x_{0})\}\subset\Delta$ . If $x\in[x_{0}, x_{1})_{u}$ then $b(x)\in s(x)$ .
By transversality $condi_{t}ionb(x’)\in u(b(x))$ when $x’\in[x_{0}, x_{1})_{u}$ is near enough to
$x$ in $u(x_{0})$ . This shows that $b(x)\in u(b(x_{0}))$ for all $x\in[x_{0}, x_{1})_{u}$ .

If $x\in[x_{0}, x_{1})_{u}$ , then $\alpha(x, x_{0})=x$ and $\alpha(x, b(x_{0}))=b(x)$ (since $b(x)\in u(b(x_{0}))$

as saw above). By Claim II we have

(2.2) $\alpha(\{x\}\cross[x_{0}, b(x_{0})]_{s})=[x, b(x)]_{s}$ $(x\in[x_{0}, x_{1})_{u})$ .
If $y\in[x_{0},$ $b(x_{0}))_{s}$ , obviously $\alpha(x_{0}, y)=y$ . By Claim II we have

(2.3) $a([x_{0}, x_{1}]_{u}\cross\{y\})=[y, c(y)]_{u}$ $(y\in[x_{0}, b(x_{0}))_{s})$

where $c(y)=a(x_{1}, y)$ . Since $a(x_{1}, x_{0})=x_{1}$ , by Claim II there is $d\in s(x_{1})$ or
$d=+\infty$ such that

(2.4) $\alpha(\{x_{1}\}\cross[x_{0}, b(x_{0}))_{s})=[x_{1}, d)_{s}$ .
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CLAIM III. $d$ is plus infinite $(d=+\infty)$ .
PROOF. If $d\in s(x_{1})$ , then $[x_{1}, d]_{s}\subset X_{s}$ since $x_{1}\in J$ . Hence $X_{s}$ is a neigh-

borhood of $[x_{1}, d]_{s}$ in $R^{2}$ by (2.1). If $x\in[x_{0}, x_{1})_{u}$ is near enough to $x_{1}$ in
$u(x_{0})$ , then we have $[x, b(x)]_{s}\subset X_{s}$ by (2.2), (2.4) and transversality condition.
This contradicts $b(x)\not\in X_{s}$ .

Let $G$ denote the group of all covering transformations for $P:R^{2}arrow T^{2}$ . It
is clear that $\beta(\overline{\mathcal{F}})=\overline{\mathcal{F}}$ and $\beta(\overline{\mathcal{F}}^{\phi})=\overline{\mathcal{F}}^{\phi}$ for $\beta\in G$ .

CLAIM IV. If $\beta\in G$ is not the identity, then $\beta(\sigma(x))\cap\sigma(x)=\emptyset$ for $\sigma=s,$ $u$ .
PROOF. If $\beta(s(x))\cap s(x)\neq\emptyset$ , then $\beta(s(x))=s(x)$ . In this case $\beta$ is a cover-

ing transformation for $P:s(x)arrow P(s(x))\in \mathcal{F}$ . By the assumption of Lemma 2.2
$P(s(x))$ is homeomorphic to $R$, from which we see that $\beta$ is the identity. We
obtain the conclusion in the same way for $\sigma=u$ .

Let $G^{0}$ denote the set of $\beta\in G$ which preserves the orientations of $\overline{\mathcal{F}}$ and
$\overline{\mathcal{F}}^{\phi}$ . It follows then that $G^{0}$ is a subgroup of $G$ with finite index. Hence we
have the orbit space $R^{2}/G^{0}$ which is a finite cover of $T^{2}(=R^{2}/G)$ . We denote
by $\mathcal{F}^{0}$ (resp. $\mathcal{F}^{0\phi}$) the foliation on $R^{2}/G^{0}$ induced by lifting $\mathcal{F}$ (resp. $\mathcal{F}^{\phi}$). By
the assumption of Lemma 2.2 we have that all leaves of $\mathcal{F}^{0}$ and $\mathcal{F}^{0\phi}$ are
homeomorphic to $R$. Let $Q:R^{2}arrow R^{2}/G^{0}$ denote the natural projection. Obviously
the lift of $\mathcal{F}^{0}$ (resp. $\mathcal{F}^{0\phi}$) by $Q$ coincides with $\overline{\mathcal{F}}$ (resp. $\overline{\mathcal{F}}^{\phi}$).

Now we give the proof of Lemma 2.2 under the above preparations. Since
$R^{2}/G^{0}$ is compact and every leaf of $\mathcal{F}^{0\phi}$ are homeomorphic to $R$, by recurrent
property of leaf we can choose $\{n_{i}\}_{i=0}^{\infty}\subset[x_{1}, +\infty)_{s}$ and a compact interval $I$ of
$u(n_{0})$ such that $n_{i}arrow+\infty(iarrow\infty)$ and $Q(n_{i})\in Q(I)$ for all $i$ . Combining (2.4) and
Claim III, there is $\{m_{i}\}_{i=0}^{\infty}\subset[x_{0},$ $b(x_{0}))_{s}$ such that $a(x_{1}, m_{i})=n_{i}$ for all $i$ . Since
$\alpha(x_{1}, m_{i})=c(m_{i})$ , by (2.3) we have

(2.5) $\alpha([x_{0}, x_{1}]_{u}\cross\{m_{i}\})=[m_{i}, n_{i}]_{u}$ .

From the facts that $n_{i}arrow+\infty(iarrow\infty)$ and $\{m_{i}\}_{i=0}^{\infty}$ is bounded in $R^{2}$ , it
follows that

(2.6) diam $([m_{i}, n_{i}]_{u})arrow\infty$ as $iarrow\infty$

where the diameter is taken under Euclidean metric. Hence we can assume
that $x_{0}=m_{0},$ $x_{1}=n_{0}$ and $I=[x_{0}, r]_{u}$ for some $r\in u(x_{0})$ . Since $Q(n_{i})\in Q(I)=$

$Q([x_{0}, r]_{u})$ , there is $\{\beta_{i}\}_{i=0}^{\infty}\subset G^{0}$ such that $\beta_{i}(n_{i})\in[x_{0}, r]_{u}$ for all $i$ . Then
$\beta_{i}([m_{i}, n_{i}]_{u})\subset u(x_{0})$ since $\beta_{i}(\overline{\mathcal{F}})=\overline{\mathcal{F}}$ . Since $\beta_{i}$ preserves the orientation of 9,
we have

(2.7) $\beta_{l}([m_{i}, n_{i}]_{u})=[\beta_{i}(m_{i}), \beta_{i}(n_{i})]_{u}$ .
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Since $\beta_{i}$ is isometry under Euclidean metric, by (2.6) we have

diam $(\beta_{i}([m_{i}, n_{i}]_{u}))arrow\infty$ as $iarrow\infty$ .

Since $\beta_{i}(n_{i})\in[x_{0}, r]_{u}$ , this fact ensures the existence of $i_{0}$ such that

(2.8) $x_{0}\in\beta_{i_{0}}([m_{i_{0}}, n_{i_{0}}]_{u})$ .
Since $i_{0}$ is taken sufficiently large, we see that $\beta_{i_{0}}$ is not the identity.

Remark that $\beta_{i_{0}}(n_{i_{0}})\in u(x_{0})=u(x_{1})$ . If $x_{1}\leqq u\beta_{i_{0}}(n_{i_{0}})$ , then $[x_{0}, x_{1}]_{u}\subset$

$\beta_{i_{0}}([m_{i_{0}}, n_{i_{0}}]_{u})$ by (2.7) and (2.8). In this case, we have

$[x_{0}, x_{1}]_{u}\subset\beta_{i_{0}}\circ a([x_{0}, x_{1}]_{u}\cross\{m_{i_{0}}\})$

by (2.5) and hence
$\beta_{i_{0}^{\circ}}\alpha(\cdot, m_{i_{0}}):[x_{0}, x_{1}]_{u}arrow u(x_{0})$

has a fixed point $p$ . This implies that $\beta_{i_{0}}(s(p))=s(p)$ which contradicts Claim
IV (since $\beta_{i_{0}}$ is not the identity). Therefore $\beta_{i_{0}}(n_{i_{0}})<x$ and so by (2.7)

and (2.8)

(2.9) $\beta_{i_{0}}(n_{i_{0}})\in[x_{0}, x_{1})_{u}$ .

Since $\beta_{i_{0}}^{-1}(x_{0})\in[m_{i_{0}}, n_{i_{0}}]_{u}$ by (2.8), we see by (2.5) that there is $\chi\in[x_{0}, x_{1}]_{u}$

such that $\beta_{i_{0}}^{-1}(x_{0})=\alpha(x, m_{l_{0}})$ . Using (2.2), we have

(2.10) $\beta_{i_{0}}^{-1}(x_{0})\in[x, b(x)]_{s}$ .

Since $\beta_{i_{0}}$ preserves the orientation of $\overline{\mathcal{F}}^{\phi}$ , we have $x_{0}\leqq s\beta_{l_{0}}(b(x))$ . Remark that
$\beta_{i_{0}}^{-1}(b(x_{0}))\in s(x)$ . If $b(x)<S\beta_{\iota_{0}}^{-1}(b(x_{0}))$ , then $\beta_{i_{0}}(b(x))\in[x_{0}, b(x_{0})]_{s}$ . From (2.2),
(2.3) and (2.9) we have

$[\beta_{i_{0}}(n_{t_{0}}), b(\beta_{i_{0}}(n_{i_{0}}))]_{s}\cap[\beta_{i_{0}}(b(x)), c(\beta_{i_{0}}(b(x)))]_{u}\neq\emptyset$

and hence
$[n_{i_{0}}, +\infty)_{s}\cap u(b(x))\neq\emptyset$

which contradicts $b(x)\not\in X_{s}$ since $[n_{i_{0}}, +\infty)_{s}\subset s$ . Therefore $\beta_{i_{0}}^{-1}(b(x_{0}))\leqq Sb(x)$ ,
and so $\beta_{i_{0}}^{-1}([x_{0}, b(x_{0})]_{s})\subset[x, b(x)]_{s}$ by (2.10). Hence we have

$[x_{0}, b(x_{0})]_{s}\subset\beta_{i_{0}}\circ$ a $(\{x\}\cross[x_{0}, b(x_{0})]_{s})$

by (2.2) and so
$\beta_{t_{0}^{o}}\alpha(x, ):[x_{0}, b(x_{0})]_{s}arrow s(x_{0})$

has a fixed point $q$ . This implies that $\beta_{i_{0}}(u(q))=u(q)$ , which contradicts Claim
IV (since $\beta_{i_{0}}$ is not the identity). We arrived at a contradiction.

Hereafter $f:T^{2}arrow T^{2}$ is a homeomorphism with expansiveness and POTP.
Define $\mathcal{F}^{s}(T^{2}, f)$ and $\mathcal{F}^{u}(T^{2}, f)$ as in Introduction. We see that $\mathcal{F}^{s}(T^{2}, f)$ and
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$\mathcal{F}^{u}(T^{2}, f)$ satisfy all the assertions of Proposition 1. As before, let $P:R^{2}arrow T^{2}$

denote the natural projection and $\overline{\mathcal{F}}^{\sigma}(T^{2}, f)(\sigma=s, u)$ denote the lift of $\mathcal{F}^{\sigma}(T^{2}, f)$

by $P$. If $\overline{W}^{\sigma}(x)$ is the leaf of $\overline{\mathcal{F}}^{\sigma}(T^{2}, f)$ through $x\in R^{2}$ , then $\overline{W}^{s}(x)\cap\overline{W}^{u}(y)$ is
a single point by Lemma 2.2 and so we denote it by $\alpha(x, y)$ . Then $a:R^{2}\cross R^{2}$

$arrow R^{2}$ is a continuous map since $\mathcal{F}^{s}(T^{2}, f)$ is transverse to $\mathcal{F}^{u}(T^{2}, f)$ . Obviously

$a_{0}=a|_{W^{u}(0)\cross\overline{W}^{S}(0)}$ : $\overline{W}^{u}(0)\cross\overline{W}^{s}(0)arrow R^{2}$

is bijective.
Let $A:T^{2}arrow T^{2}$ be the group automorphism such that

$f_{*}=A_{*}:$ $H_{1}(T^{2} ; R)arrow H_{1}(T^{2} ; R)$ .
Obviously $A$ is homotopic to $f$ (since $T^{2}$ is $K(Z^{2},1)$ ).

LEMMA 2.3. $A$ is hyperbolic.

PROOF. Since $f$ has POTP, the set of periodic points, Per $(f)$ , is non-empty
(see [1]). We may assume that the identity is a periodic point of $f$. Then
there is the lift $\overline{g}:R^{2}arrow R^{2}$ of $f^{n}$ such that $\overline{g}(0)=0$ . Since $f(\mathcal{F}^{\sigma}(T^{2}, f))=\mathcal{F}^{\sigma}(T^{2}, f)$

for $\sigma=s,$ $u$ , we have $\overline{g}(\overline{\mathcal{F}}^{\sigma}(T^{2}, f))=\overline{\mathcal{F}}^{\sigma}(T^{2}, f)$ . Let $\alpha_{0}$ be as above. Then
$\overline{g}^{\circ}a_{0}(x, y)=\alpha_{0}(\overline{g}(x),\overline{g}(y))$ and hence Per $(\overline{g})=\{0\}$ . Denote by $\overline{B}:R^{2}arrow R^{2}$ the
linear map which covers $A^{n}$ . Obviously $\overline{B}|_{Z^{2}}=\overline{g}|_{Z^{2}}$ since $A^{n}$ is homotopic to
$f^{n}$ , and hence Per $(\overline{B})=\{0\}$ . This shows that no eigenvalues of $\overline{B}$ are roots of
1. Since $\overline{B}$ is an integer matrix with determinant 1, it is easily checked that
$\overline{B}$ is hyperbolic, and therefore so is $A$ .

LEMMA 2.4. $f:T^{2}arrow T^{2}$ has fixed points.

PROOF. Denote by $\lambda_{1}$ and $\lambda_{2}$ the eigenvalues of the linear map $A_{*}:$ $H_{1}(T^{2} ; R)$

$arrow H_{1}(T^{2} ; R)$ . Since $f_{*}=A_{*}$ , we have that the Lefschetz number of $f$ is

$L(f)=(1-\lambda_{1})(1-\lambda_{2})$ .
Since $A$ is hyperbolic by Lemma 2.3, it follows that $L(f)\neq 0$, and therefore the
conclusion is obtained by the fixed point theorem.

PROOF OF PROPOSITION 2. Let $x_{0}\in T^{2}$ be a fixed point of $f$ (see Lemma
2.4). Combining Lemma 2.3 and Proposition 2.1 of [3], we see that there is a
continuous map $h:T^{2}arrow T^{2}$ such that $h$ is homotopic to the identity id, $h(x_{0})=$

$P(O)$ and $A\circ h=h\circ f$. Therefore it is enough to prove that $h:T^{2}arrow T^{2}$ is
bijective. To do this, we take the lifts by $P,\overline{f},\overline{A}$ and $\tilde{h}$ , such that $\overline{A}\circ\overline{h}=\overline{h}\circ f$

holds.
Let $\mathcal{F}_{A}^{s}$ and $\mathcal{F}_{A}^{u}$ denote the stable and unstable foliations of $A$ and $\overline{\mathcal{F}}_{A}^{\sigma}$

$(\sigma=s, u)$ denote the lifts of $\mathcal{F}_{A}^{\sigma}$ by $P$. Then we remark that $\overline{\mathcal{F}}_{A}^{\sigma}$ is the family
of translations of the eigen space since $A$ is hyperbolic. Since $A\circ h=h\circ f$, it is
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clear that $h(\mathcal{F}^{\sigma}(T^{2}, f))=\mathcal{F}_{A}^{\sigma}$ , and hence $\overline{h}(\overline{\mathcal{F}}^{\sigma}(T^{2}, f))=\overline{\mathcal{F}}_{A}^{\sigma}$ . If $L^{\sigma}(x)$ denotes the
leaf of $\overline{\mathcal{F}}_{A}^{\sigma}$ through $x\in R^{2}$ , then we have

(2.11) $\overline{h}(\overline{W}^{\sigma}(x))=L^{\sigma}(\overline{h}(x))$ $(\sigma=s, u)$ .
Since $h$ is homotopic to id, there is $K>0$ such that for every $x\in R^{2}$

(2.12) $\Vert\overline{h}(x)-x\Vert<K$

where $\Vert\cdot\Vert$ denotes Euclidean norm. For $\epsilon>0$ , let $N_{\epsilon}(L^{\sigma}(x))$ be the $\epsilon$ -neighbor-
hood of $L^{\sigma}(x)$ in $R^{2}$ . By (2.11) and (2.12) we have

(2.13) $\overline{W}^{\sigma}(x)\subset N_{2K}(L^{\sigma}(x))$ $(\sigma=s, u)$ .

We define
$I_{x,y}^{\sigma}=\overline{h}^{-1}(x)\cap\overline{W}^{\sigma}(y)$ $(y\in\overline{h}^{-1}(x))$ .

It is checked that $\alpha(I_{x.y}^{u}\cross I_{x.y}^{s})=\overline{h}^{-1}(x)$ where $\alpha$ is as above. By (2.11) we have
that for $u,$

$v\in\overline{h}^{-1}(x)$

$\{\overline{h}\circ a(u, v)\}=\overline{h}(\overline{W}^{s}(u)\cap\overline{W}^{u}(v))$

$\subset\overline{L}^{s}(\overline{h}(u))\cap\overline{L}^{u}(\overline{h}(v))$

$=\{x\}$ ,

from which $\alpha(u, v)\in\overline{h}^{-1}(x)$ , and so $a(I_{x.y}^{u}\cross I_{x.y}^{s})=\overline{h}^{-1}(x)$ .
Since $\overline{W}^{\sigma}(x)$ is homeomorphic to $R$, we can take the minimal connected

subset $\overline{I}_{x.y}^{\sigma}$ of $\overline{W}^{\sigma}(y)$ such that $I_{x.y}^{\sigma}\subset\overline{I}_{x.y}^{\sigma}$ . Since diam $(\overline{h}^{-1}(x))<2K$ by (2.12),

we have

(2.14) $\overline{I}_{x.y}^{s}\subset\alpha(y, B_{2k}(y))$ and $\overline{I}_{x.y}^{u}\subset\alpha(B_{2K}(y), y)$

where $B_{2K}(y)=\{z\in R^{2} : \Vert y-z\Vert\leqq 2K\}$ . It is clear that there is $N>0$ such that
if $\Vert y-z\Vert\leqq 6K$ then

(2.15) $L^{S}(y)\cap L^{u}(z)\subset B_{N}(y)\cap B_{N}(z)$ .
Hence we have by (2.13) that

$\alpha(y, B_{2K}(y))=z\in B_{2K}(y)U\overline{W}^{s}(y)\cap\overline{W}^{u}(z)$

$\subset\bigcup_{z\in B_{2K}(y)}N_{2K}(L^{s}(y))\cap N_{2K}(L^{u}(z))$
(by (2.13))

$\subset B_{N+4K}(y)$ (by (2.15))

and also $\alpha(B_{2K}(y), y)\subset B_{N+4K}(y)$ . Therefore $\overline{I}_{x.y}^{\sigma}\subset B_{N+4K}(y)$ by (2.14).

On the other hand, we have $f\circ h^{-1}(x)=h^{-1_{\circ}}A(x)$ since $\overline{A}\circ\overline{h}=\overline{h}\circ\overline{f}$, and
hence
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$\overline{f}^{n}(\overline{I}_{x.y}^{\sigma})=\overline{I}\frac{\sigma}{A}n_{Cx).\overline{f}}n_{(y)}$ $(\sigma=s, u)$ .
By using the above facts we show that each $\overline{I}_{x.y}^{\sigma}$ is a single point. If this is
checked for $\sigma=u$ , then the case $\sigma=s$ is done in the same way. So we assume
that 7 $ux,$

$y$ is not a single point. Then $P(\overline{I}_{x.y}^{u})$ is an interval of $W^{u}(P(y))$ . Hence
for $k>0$ there are $\epsilon>0$ and $y_{i}\in P(\overline{I}_{x.y}^{u})$ ($i=1,2,$ $\cdots$ , k) such that $P(\overline{I}_{x.y}^{u})\supset$

$U_{i\cdot 1}^{k}W_{\epsilon}^{u}(y_{i})$ (disjoint union). Man\’e’s result ensures the existence of $n\geqq 0$ such
that $f^{n_{t}}P(\overline{I}_{x.y}^{u})\supset U_{i=1}^{k}W_{\epsilon_{0}}^{u}(z_{i})$ (disjoint union) where $z_{i}=f^{n}(y_{i})$ . Putting $\overline{z}_{i}=$

$P|_{\overline{W}^{u_{C\overline{f}}n_{(y))}^{-1}}}(z_{i})$ , we have that $\overline{z}_{i}\in\overline{I}_{\overline{A}^{n}(x),\overline{f}^{n}(y)}$ for all $i$ . Denote by $\overline{N}_{\overline{z}_{i}}$ the lift
of $N_{z_{i}}$ by $P$ such that $\overline{z}_{i}\in\overline{N}_{\overline{z}_{i}}$ . Then we have $\overline{N}_{\overline{z}_{i}}\cap\overline{N}_{\overline{z}_{j}}=\emptyset(i\neq j)$ . Hence
$B_{\rho}(\overline{z}_{i})\cap B_{\rho}(\overline{z}_{j})=\emptyset(i\neq j)$ by Proposition 1.5 (c). Since $\overline{I}\frac{u}{A}n_{Cx).\overline{f}}n_{(y)}\subset B_{N+4K}(\overline{f}^{n}(y))$ ,
we have $B_{\rho}(\overline{z}_{i})\subset B_{N+4K+\rho}(\overline{f}^{n}(y))$ for all $i$ . This is impossible since $k$ is arbitrary.
Therefore each $\overline{I}_{x.y}^{u}$ is a single point.

Since $\overline{h}^{-1}(x)\subset\alpha(\overline{I}_{x.y}^{u}\cross\overline{I}_{x.y}^{s}),\overline{h}^{-1}(x)$ is a single point and hence $\overline{h}$ is injective.
Since $\overline{h}$ is surjective by (2.12), we have that $\overline{h}$ is bijective and therefore $h$ is
bijective.
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