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Initroduction.

Let $M$ be a finite von Neumann algebra with a faithful normal normalized
trace $\tau$ and $N$ be a von Neumann subalgebra of $M$. Then, the relative entropy
$H(M|N)$ is naturally defined as an extended notion of the conditional entropy
in commutative cases. This relative entropy is used in Connes-Stormer’s work
[4] as a technical tool for finite dimensional algebras $M$. Recently, $0$. Pimsner
and S. Popa have deeply studied it ([12]). One of their main results is to make
clear the relationship between $H(M|N)$ and Jones’ index $[M:N]$ for a type $II_{1}$

factor $M$ and its subfactor $N$ and give the formula on $H(M|N)$ for this pair.
Another one is to compute completely the value of $H(M|N)$ for an arbitrary
subalgebra $N$ of a finite dimensional algebra $M$.

The aim of this paper is to give the complete formula on $H(M|M^{G})$ for an
arbitrary action $\alpha$ of a finite group $G$ on a finite von Neumann algebra $M$ by
the following method, where $M^{G}$ is the fixed point subalgebra of $M$ under the
action $a$ .

[A] A general case may be reduced to the case that the action $\alpha$ is centrally
ergodic, see $Propo\alpha tim2.1$ .

[B] The case where $a$ is centrally ergodic may be reduced to the case that
$M$ is a factor, see Proposition2.2.

$[C]$ When $M$ is a factor, $H(M|M^{a})$ may be computed in association with the
conjugacy invariants of actions introduced and deePly studied by V. Jones [6], see
Theorem 2.6.

APplying these formulas, we can show the fact that $H(M|M^{\alpha})\leqq\log|G|$ holds in
general and we can characterize such actions $\alpha$ that $H(M|M^{\alpha})$ attains logl $G|$ ,
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see Corollary 2.7 and Remark 2.8.
In order to carry out these computations, we need some investigations on

the relative entropy, besides the several deep results of Pimsner-Popa ([12]).

One obstacle to compute concretely the relative entropy $H(M|N)$ for a given
subalgebra $N$ of $M$ is that the formula:

$(*)$ $H(M|N)=H(M|L)+H(L|N)$

is not assured in general, even if both of $H(M|L)$ and $H(L|N)$ are known to be
computable for a subalgebra $L$ such that $M\supset L\supset N$. The formula $(*)$ is shown
to hold in the following two cases, as described in Proposition1.7, which will
play a crucial role to compute $H(M|M^{\alpha})$ in the cases [B] and [C].

(i) $M$ is a factor and $L=\Sigma_{i=1}^{n}e_{i}Me_{i}$ for central prOjectjOns $e_{i}$ of $N$ such that
$\Sigma_{i\Leftarrow 1}^{n}e_{i}=1$ .

(ii) $L= \sum_{j=1}^{m}f_{j}Mf_{j}$ for central Projections $f_{j}$ of $M$ such that $\sum_{j=1}^{m}f_{j}=1$ and
$E_{N}^{L}(f_{j})=\tau(f_{j})$ .

For the case [C] ($M$ is a factor and $N=M^{\alpha}$ ), we apply(i) to our computa-
tions as follows. Since the center $Z(M^{\alpha})$ of $M^{a}$ is finite dimensional (cf. 2.1.3
in [6]), we may take $e_{t}$ as minimal projections of $Z(M^{\alpha})$ . Thus, we have the
formula $(*)$ with

$H(M|L)= \sum_{i=1}^{n}\eta\tau(e_{i})$ and $H(L|N)= \sum_{i=1}^{n}\tau(e_{i})H(M_{e_{i}}|M_{e_{i}}^{\alpha})$ .

If one knows the structure of the relative commutant $(M_{e_{i}}^{\alpha})’\cap M_{e_{i}}$ , one may com-
pute $H(M_{e_{i}}|M_{e_{i}}^{a})$ by using 4.4 in [12] and so $H(M|M^{\alpha})$ . Therefore, we also
have to make clear the structure of $(M^{G})’\cap M$ and we show in Proposition 2.3,

$(M^{G})’\cap M=(M^{K})’\cap M=v(K)’’$

where $K=$ { $k\in G;\alpha_{k}=Adv_{k}$ for some unitary $v_{k}$ in $M$ }. This family of unitaries
$v_{k}$ implementing $\alpha_{k}(k\in K)$ is interpreted as a $\mu$-representation $v$ of $K$ for some
multiplier $\mu$ of $K$. Associated with the canonical factor decomposition: $v\cong\Sigma_{x}v^{\chi}$

of $v$ , we denote by $f_{\chi}$ the corresponding projection and by $d_{\chi}$ the dimension of
$x\in(K, \mu)\wedge$ . Then, Theorem 2.6 asserts that

[C] $H(M|M^{\alpha})= \log|G/K|+\sum_{\chi}\tau(f_{\chi})\log(d_{\chi}^{2}/\tau(f_{\chi}))$ .

For the case [B] ( $\alpha$ is centrally ergodic), applying (ii) and taking $f_{1},$ $f_{2},$
$\cdots,$

$f_{m}$

as minimal projections of $Z(M)$ , whose existence is assured by the centrally
ergodicity of $\alpha$ , we get in Proposition 2.2,

[B] $H(M|M^{G})=H(M_{j_{1}}|(M_{f_{1}})^{H})+ \sum_{j\Rightarrow 1}^{m}\eta\tau(f_{j})$
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where $H=\{g\in G;\alpha_{g}(f_{i})=f_{1}\}$ .
For the general case [A], applying the reduction theory on the relative

entropy (see [10]), we have in Proposition 2.1,

$[A_{-}^{-}]$ $H(M|M^{G})= \int_{\Gamma}H(M(\gamma)|M(\gamma)^{G})d\mu(\gamma)$

where $Z(M)^{G}\cong L^{\infty}(\Gamma, \mu),$ $M \cong\int_{\Gamma}^{\oplus}M(\gamma)d\mu(\gamma)$ , and the reduced action $\alpha^{\gamma}$ of $G$ on
$M(\gamma)$ is centrally ergo&c for $\mu$-almost all $\gamma\in\Gamma$ .

NOTATIONS. We fix some notations frequently used in this paper. For a
von Neumann algebra $M,$ $M^{+}=$ { $al1$ positive elements of $M$ }, $Z(M)=M’\cap M=center$

of $M,$ $M^{p}=$ { $al1$ projections of $M$ }. For a set $I,$ $|I|$ denotes the cardinal number
of I. $C,$ $R$ and $N$ denote the set of all complex, real and natural numbers re-
spectively.

ACKNOWLEDGEMENT. We would like to express our hearty thanks to Pro-
fessor $0$. Takenouchi for valuable suggestions and constant encouragements, to
Professor Y. Katayama for leading to this subject, and to Messrs M. Nagisa,
R. Ichihara and other members of the seminar in Osaka University for their
frequent and stimulating discussions.

\S 1. Reduced relative entropy.

In this section, we introduce a reduced relative entropy which is a slight
generalization of Pimsner-Popa’s relative entropy [12], and we describe elemen-
tary properties and some technical results concerning it.

Throughout this Paper, let $M$ be a finite von Neumann algebra with a
faithful normal normalized trace $\tau$ and $N$ be a von Neumann subalgebra of $M$.
Then, a function $h_{N}^{M}$ on $M^{+}$ is defined by

$h_{N}^{M}(x)=\tau\eta E_{N}^{M}(x)-\tau\eta(x)$ for $x\in M^{+}$

where $E_{N}^{M}$ is the unique $\tau$-preserving conditional expectation of $M$ onto $N$ (see

Umegaki [14]) and $\eta$ is a continuous function defined by $\eta(t)=-t$ log$t(t>0)$ ,
$\eta(0)=0$ .

We first list up some elementary Properties of $h_{N}^{M}$ , which are immediately
obtained from the definition and $1’\sim 11$

’ in \S 3 of [12]. We denote $h_{N}^{M}$ by $h$ and
$E_{N}^{M}$ by $E$ if there is no fear of confusion.

1’ $h(x)\geqq 0$ for $x\in M^{+}$ .
2’ $h(x)$ is strongly continuous on $M^{+}$ .
3’ $h(\lambda x)=\lambda h(x)$ for $\lambda\in R^{+},$ $x\in M^{+}$ .
$4^{o}$ $h(p)=\tau\eta E(p)$ for $p\in M^{p}$ .
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5’ $h(x+y)\leqq h(x)+h(y)$ for $x,$ $y\in M^{+}$ with $xy=0$ . Under the additional condition
$E(x)E(y)=0$ , we have the equality.

6’ $h(px)=\tau(\eta E(p)x)$ for $P\in(N’\cap M)^{p},$ $x\in N$.
$7^{o}$ $h(px)=\tau(p)h(x)$ for $p\in(Z(M)\cap Z(N))^{p},$ $x\in pMp$ , where $\tilde{x}$ is the image of $x$

via the canonical ixmorphsm of $pMp$ onto $M_{p}$ , and $\hslash$ is defined for $M_{p}\supset N_{p}$

with the normalized trace $\tau_{p},$ $\tau_{p}(\tilde{x})=\tau(pxp)/\tau(p)$ .
Now, we define reduced relative entropy $H^{y}(M|N)$ associated with $y\in M^{+}$

as follows

DEFINITION 1.1. FOr $y\in M^{+}$ , Set

$S^{y}(M)=$ { $\Delta=(x_{i})_{i\in I}$ ; $x_{l}\in M^{+},$
$\sum_{i\in I}x_{i}\leqq y$ , and $I$ is a finite set}.

Taking $\Delta=(x_{l})_{i\in I}\in S^{y}(M)$ , we set

$H_{\Delta}^{y}(M|N)= \sum_{i\in I}h_{N}^{M}(x_{i})$ .

Then, the reduced relative entropy of $M$ to $N$ associated with $y\in M^{+}$ is defined
by

$H^{y}(M|N)= \sup\{H_{\Delta}^{y}(M|N);\Delta\in S^{y}(M)\}$ .

When $y=1,$ $H^{1}(M|N)$ is the ordinary relative entropy $H(M|N)$ studied by
Pimsner-Popa [12]. We need the above notion in order to clarify some of the
arguments by taking $y$ as a projection.

We make some preparations for to describe elementary properties of
$H^{y}(M|N)$ . We denote by $\Vert$ $\Vert_{1}$ , $L^{1}$-norm of $M,$ $\Vert x\Vert_{1}=\tau(|x|)$ for $x\in M$. We
abbreviate $Z(M)\cap Z(N)$ by $Z$ for fixed $M$ and $N$. For $p\in Z^{p},$ $H(M_{p}|N_{p})$ is the
relative entropy associated with the normalized trace $\tau_{p}$ of $M_{p}$ described in 7’.
We set

$T=$ { $y= \sum_{j\in J}\lambda_{j}p_{j}$ ; $\lambda_{j}\in R^{+},$ $p_{j}\in Z^{p}$ such that $\sum_{j\in J}p_{j}=1$ , and $J$ is a finite set},

and define essential entropy of $M$ relative to $N$ by

$EH(M|N)= \sup\{H(M_{p}|N_{p}) ; p\neq 0\in Z^{p}\}$ .

PROPOSITION 1.2. $H^{y}(M|N)$ has the following properties.

(a) $H^{y1}(M|N)\leqq H^{y_{2}}(M|N)$ for $y_{1},$ $y_{2}\in M^{+}$ with $y_{1}\leqq y_{2}$ .
(b) $H^{\lambda y}(M|N)=\lambda H^{y}(M|N)$ for $\lambda\in R^{+},$ $y\in M^{+}$ .
(c) $H^{p}(M|N)=\tau(p)H(M_{p}|N_{p})$ for $p\in Z^{p}$ .
(d) $H^{p}(M|N)= \sum_{j\in J}H^{p_{j}}(M|N)$ for $p,$ $p_{j}(]\in J)\in Z^{p}$ with $p= \sum_{j\in J}p_{j}$ where

$J$ is a finite set.
(e) $|H^{y_{1}}(M|N)-H^{y_{2}}(M|N)|\leqq\Vert y_{1}-y_{2}\Vert_{1}EH(M|N)$ for $y_{1},$ $y_{2}\in T$ .
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PROOF. (a) is clear by the definition. (b) and (c) follow immediately from
3’ and 7’ respectively. (d) is obtained from the following observation.
For $\Delta=(x_{i})_{i\in I}\in S^{p}(M)$ , set $\Delta_{j}=(p_{J^{X_{i}}}p_{j})_{i\in I}$ . Then, $\Delta_{j}\in S^{p_{j}}(M)$ and $H_{\Delta}^{p}(M|N)=$

$\sum_{i\in I}h(x_{i})=\sum_{i\in I}\sum_{j\in J}h(p_{j}x_{i}p_{j})=\sum_{j\in J}H_{\Delta j}^{p_{j}}(M|N)$ by 5’. Conversely, for $\Delta_{j}=$

$(x_{ij})_{i\in I_{j}}\in S^{p_{j}}(M)$ , set $\Delta=(x_{ij})_{i\in I_{j}.j\in J}$ . Then, $\Delta\in S^{p}(M)$ and $H_{\Delta}^{p}(M|N)=$

$\sum_{j\in J}H_{\Delta_{j}^{j}}^{p}(M|N)$ . Finally, we shall prove property(e). For $y_{1}= \sum_{i\in I}\lambda_{i}p_{i}$ and
$y_{2}= \sum_{j\in J}\mu_{j}q_{j}$ in $T$ , if we set $r_{ij}=p_{i}q_{j}$ , then we have

$\Vert y_{1}-y_{2}\Vert_{1}=\sum_{l.j}|\lambda_{i}-\mu_{j}|\tau(r_{ij})$ and

$H^{y_{1}}(M|N)-H^{y_{2}}(M|N)= \sum_{i.j}(\lambda_{i}-\mu_{j})\tau(r_{ij})H(M_{r_{ij}}|N_{r_{ij}})$ [by (b), (c), $(d)$].

Hence, we have

$|H^{y_{1}}(M|N)-H^{y_{2}}(M|N)|\leqq\Vert y_{1}-y_{2}\Vert_{1}EH(M|N)$ . [Q. E. D.]

PROPOSITION 1.3. (i) [Approximation] For any $y\in Z^{+}$ and any $\epsilon>0$ , there
exists $y_{1}$ in $T$ such that $\Vert y-y_{1}\Vert_{1}<\epsilon$ and $|H^{y}(M|N)-H^{y_{1}}(M|N)|<\epsilon EH(M|N)$ .

(ii) [Continuity] If $EH(M|N)<+\infty$ , then for any $y\in Z^{+}and$ any $\epsilon>0$ there
exists $\delta>0$ such that $|H^{y}(M|N)-H^{y’}(M|N)|<\epsilon$ for $y’\in Z^{+}$ with $\Vert y-y’\Vert_{1}<\delta$ .

PROOF. (i) For $y\in Z^{+}$ , there exist $y_{1}$ and $y_{2}$ in $T$ such that $y_{1}\leqq y\leqq y_{2}$

and $\Vert y_{1}-y_{2}\Vert_{1}<\epsilon$ by the spectral decomposition of $y$ . Then,

$|H^{y_{1}}(M|N)-H^{y2}(M|N)|<\epsilon EH(M|N)$ [by $(e)$]

$H^{y_{1}}(M|N)\leqq H^{y}(M|N)\leqq H^{y_{2}}(M|N)$ [by $(a)$].

Hence, we have the desired conclusion.
(ii) It is enough to assume that $EH(M|N)>0$ . For $\epsilon>0$ , put $\delta=\epsilon/(5EH(M|N))$

$>0$ . Then applying(i), there exist $y_{1}$ and $y_{2}$ in $T$ satisfying that

$\Vert y-y_{1}\Vert_{1}<\delta$ , $|H^{y}(M|N)-H^{y_{1}}(M|N)|<\delta EH(M|N)$ ,

$\Vert y’-y_{2}\Vert_{1}<\delta$ , and $|H^{y’}(M|N)-H^{y_{2}}(M|N)|<\delta EH(M|N)$ .
Hence, we have

$\Vert y_{1}-y_{2}\Vert_{1}\leqq\Vert y_{1}-y\Vert_{1}+\Vert y-y’\Vert_{1}+\Vert y’-y_{2}\Vert_{1}<3\delta$ ,

$|H^{y_{1}}(M|N)-H^{y2}(M|N)|<3\delta EH(M|N)$ [by $(e)$].

Therefore,

$|H^{y}(M|N)-H^{y’}(M|N)|$

$\leqq|H^{y}(M|N)-H^{y_{1}}(M|N)|+|H^{y_{1}}(M|N)-H^{y_{2}}(M|N)|+|H^{y_{2}}(M|N)-H^{y}$
‘
$(M|N)|$

$<5\delta EH(M|N)=\epsilon$ . [Q. E. D.]



614 S. KAWAKAMI and H. YOSHIDA

For $y\in M^{+}$ and $\epsilon>0,$ Put
$S_{\epsilon}^{y}(M)=\{\Delta=(\lambda_{i}p_{i})_{i\in I}$ ; $\lambda_{i}\in R^{+},$ $p_{i}\in M^{p}$ such that $\sum_{i\in I}\lambda_{i}p_{i}\leqq y$

and $\Vert y-\sum_{i\in I}\lambda_{i}p_{t}\Vert_{1}<\epsilon$ , where $I$ is a finite set}.

LEMMA 1.4. For $y\in M^{+}$ ,

$H^{y}(M|N)= \sup\{H_{\Delta}^{y}(M|N);\Delta\in S_{1}^{y}(M)\}$ .
More $pre\alpha sely$ , for any $\epsilon>0$ , there exists $\Delta$ in $S_{\epsilon}^{y}(M)$ , such that

$H^{y}(M|N)\leqq H_{\Delta}^{y}(M|N)+\epsilon$ .

The proof is similar to that in [12, Lemma 3.1].

For $y\in M^{+}$ and two positive numbers $\epsilon>0$ and $\delta>0$ , we set

$S_{\epsilon.\delta}^{y}(M)=$ { $\Delta=(\lambda_{i}p_{i})_{i\in I}\in S_{\epsilon}^{y}(M);\tau(P_{i})=\delta$ for each $i\in I$ }.

LEMMA 1.5. Let $M$ be a continuous fimte von Neumann algebra with a
faithful norynal normalized trace $\tau$ and $y$ be a positive element of M. Then, for
any [ $\epsilon>0$, there is $\delta_{0}>0$ satisfyng that, for an arbitrary $\delta(0<\delta\leqq\delta_{0})$ , there exests
$\Delta\in S_{\epsilon,\delta}^{y}(M)$ such that $H^{y}(M|N)\leqq H3(M|N)+\epsilon$ .

PROOF. By Lemma 1.4, for $\epsilon>0$ , there exists $\Delta_{0}=(\lambda_{i}p_{i})_{i\in I}$ in $S_{\epsilon/2}^{y}(M)$ such
that $H^{y}(M|N)\leqq H_{\Delta_{0}}^{y}(M|N)+\epsilon/2$ . Set $y_{0}=\Sigma_{i\in I}\lambda_{i}p_{i}$ and $c=\Sigma_{i\in I}\lambda_{i}$ . Then, we
may assume that $\lambda_{i}>0$ and $\epsilon$ is small enough to satisfy that $t<\eta(t)$ and $\eta(t_{1})\leqq$

$\eta(t_{2})$ for $t_{1}\leqq t_{2}$ on $[0, \epsilon/2c]$ . Let $\delta_{0}=\eta^{-1}(\epsilon/2c)$ . Then, $0<\delta\leqq\delta_{0}$ implies that $\delta<$

$\eta(\delta)\leqq\eta(\delta_{0})=\epsilon/2c$ . For each projection $p_{i}(i\in I)$ , we can write $p_{i}=\Sigma_{j\in J_{i}}p_{ij}+r_{i}$ ,
where $p_{ij}(j\in J_{i})$ are projections of $M$ with $\tau(P_{ij})=\delta$ and $r_{i}$ is a projection of $M$

with $\tau(r_{i})<\delta$ , because $M$ is continuous. Set

$\Delta_{1}=(\lambda_{i}p_{if})_{j\in J_{i}.i\in I},$
$y_{1}= \sum_{i.j}\lambda_{i}p_{ij}$ , $\Delta_{2}=(\lambda_{\ell}r_{i})_{i\in I}$ and $y_{2}= \sum_{l}\lambda_{i}r_{i}$ .

Then, we see that, using 3’, $4^{o}$ and 5’,

$H_{\Delta_{0}}^{y}(M|N)\leqq H_{\Delta_{1}U\Delta_{2}}^{y}(M|N)=H_{\Delta_{1}}^{y}(M|N)+H_{\Delta_{2}}^{y}(M|N)$ ,

$H_{\Delta_{2}}^{y}(M|N)= \sum_{i}h(\lambda_{i}r_{i})=\sum_{i}\lambda_{i}\tau\eta E(r_{i})$

$\leqq\sum_{i}\lambda_{i}\eta\tau(r_{i})<\sum_{i}\lambda_{i}\eta(\delta)<\epsilon/2$ .
Therefore, we have $H^{y}(M|N)\leqq H_{\Delta_{1}}^{y}(M|N)+\epsilon$ . It is easy to check that $\Delta_{1}$ lies
in $S_{\epsilon.\delta}^{y}(M)$ . [Q. E. D.]

The next proposition plays an important role in concrete computations of
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the relative entropy $H(M|N)$ in the case that either $M$ or $N$ is not a factor.

$PRO\mathbb{P}OSITION1.6$ . $M$ denotes a finite von Neumann algebra with a faithful
normal normalized trace $\tau$ and $N$ denotes a von Neumann subalgebra of $M$.

(i) Let $M$ be a factor. For pr0jecti0ns $e_{i}$ in $Z(N)$ ($i=1,2,$ $\cdots$ , n) such that
$\sum_{i=1}^{n}e_{i}=1,$ $L$ denotes the von Neumann subalgebra $\Sigma_{i\pm 1}^{n}e_{i}Me_{i}$ of M. Then, $we$

have

$H(M|N)=H(M|L)+H(L|N)$ and $H(M|L)= \sum_{i=1}^{n}\eta\tau(e_{i})$ .

(ii) Let $N$ be a factor. For projectjons $f_{j}$ in $Z(M)$ ($j=1,2,$ $\cdots$ , m) such that
$\Sigma_{j=1}^{m}f_{j}=1,$ $L$ denotes the von Neumann subalgebra $\Sigma_{j=1}^{m}f_{j}Nf_{j}$ of M. Then, $we$

have

$H(M|N)=H(M|L)+H(L|N)$ and $H(L|N)= \sum_{j=1}^{m}\eta\tau(f_{j})$ .

PROOF of (i). When $M$ is a finite type I factor, (i) follows from Pimsner-
Popa’s formula for finite dimensional algebras [12, Theorem 6.2]. We suppose
that $M$ is a type $II_{1}$ factor.

We first show the proposition in the case of $n=2$ . It is enough to assume
that $H(M|N)>0$ . Take an arbitrary $\epsilon>0$ and set $\epsilon_{1}=(1/4)\min\{\epsilon, c_{1}c_{2}\epsilon/H(M|N)\}$ ,
where $c_{i}=\tau(e_{i})(i=1,2)$ . Then, by Lemma 1.5, for $\epsilon_{1}>0$ , we can find $\delta>0$ and
$\Delta_{i}=(\lambda_{ij}p_{ij})_{j\in J_{i}}$ in $S_{\epsilon_{1}.\delta}^{e_{i}}(L)(i=1,2)$ such that

(0) $H^{e_{i}}(L|N)\leqq H_{\Delta_{t}^{i}}^{e}(L|N)+\epsilon_{1}$ .

Take and fix $(j, k)\in J_{1}\cross J_{2}$ . Since $\tau(p_{1j})=\tau(p_{2k})=\delta$ and $M$ is a type $II_{1}$ factor,
there exists a system of matrix units $(u_{st})_{s,t=1.2}$ in $M$ such that $u_{11}=p_{1j}$ and
$u_{22}=p_{2k}$ . Set

$q_{(j,k)}^{1}= \sum_{s,}^{2}\sqrt{c_{s}c_{t}}u_{st}$ and $q_{(j,k)}^{2}= \sum_{s,}^{2}(-1)^{s+t}\sqrt{c_{s}c_{l}}u_{st}$ .

Then, it is easy to see the following properties.

(1) $q_{(j.k)}^{1}+q_{(j.k)}^{2}=2c_{1}p_{1j}+2c_{2}p_{2k}$ .
(2) $e_{1}q_{(j.k)}^{l}e_{1}=c_{1}p_{1j}$ and $e_{2}q_{(j,k)}^{l}e_{2}=c_{2}p_{2k}$ for $l=1,2$ .
(3) $E_{L}^{M}(q_{(j.k)}^{l})=c_{1}p_{1j}+c_{2}p_{2k}$ for $1=1,2$ .
(4) $h_{L}^{M}(q_{(j.k)}^{l})=\tau(p_{1j})\eta(c_{1})+\tau(p_{2k})\eta(c_{2})=\delta(\eta(c_{1})+\eta(c_{2}))$

(5) $\tau(q_{(j.k)}^{l})=\tau(E_{L}^{M}(q_{(j.k)}^{l}))=\delta$ .
Take a partition $\Delta$ in $M$ defined by

$\Delta=(d_{(j.k)}^{l}q_{(j,k)}^{l})_{(j,k)\in J_{1}\cross J_{2},l=1}2)$

where $d_{(j.k)}^{l}=\lambda_{1j}\lambda_{2k}\delta/(2c_{1}c_{2})$ .
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Denote $\Sigma_{j\in J_{i}}\lambda_{ij}p_{ij}$ by $y_{i}$ and $\tau(y_{i})=\sum_{j}\lambda_{ij}\delta$ by $b_{i}$ for $i=1,2$ . Then, $y_{i}\leqq e_{i}$ and
$0\leqq c_{i}-b_{i}<\epsilon_{1}$ , so that

(6) $b_{1}b_{2}/c_{1}c_{2}\geqq 1-(\epsilon_{1}/c_{1}c_{2})$ .
Under these preparations, we get the followings.

(7) $\sum_{j,k.l}d_{(f.k)}^{l}q_{(j.k)}^{l}=(b_{2}/c_{2})y_{1}+(b_{1}/c_{1})y_{2}\leqq e_{1}+e_{2}=1$ .
Then, we see $\Delta\in S_{1}(M)$ .

(8) $\tau(\sum_{j.k.l}d_{(j.k)}^{l}q_{(j.k)}^{l})\geqq 1-(\epsilon_{1}/c_{1}c_{2})$ .
Hence, we have $\sum_{j.k.l}d_{(j.k)}^{l}\delta\geqq 1-(\epsilon_{1}/c_{1}c_{2})$ [by (5)].

(9) $H_{\Delta}(M|L)= \sum_{j.k.l}h_{N}^{M}(d_{(j.k)}^{\iota}q_{(j.k)}^{l})$

$= \sum_{j.k,l}d_{(j,k)}^{l}\delta(\eta(c_{1})+\eta(c_{2}))$ [by (4) and 3’]

$\geqq\{1-(\epsilon_{1}/c_{1}c_{2})\}(\eta(c_{1})+\eta(c_{2}))$ [by (8)].

Hence, by the formula $H(M|L)\leqq\eta(c_{1})+\eta(c_{2})$ [ $12$ , Lemma 4.3] and the selection
of $\epsilon_{1}$ , we have

(9) $H_{\Delta}(M|L)\geqq H(M|L)-\epsilon/4$ ,

$(9’’)$ $H(M|L)\geqq\eta(c_{1})+\eta(c_{2})-(K/4)\epsilon$ , where $K=(\eta(c_{1})+\eta(c_{2}))/H(M|L)$ .
Set $E(\Delta)=(E_{L}^{M}(d_{(j,k)}^{l}q_{(j,k)}^{l}))_{j,k,l}$ . Then, easy calculations show by 3’, 5’ and

(3) that

(10) $H_{E(\Delta)}(L|N)=(b_{2}/c_{2})H_{\Delta_{1}^{1}}^{e}(L|N)+(b_{1}/c_{1})H_{\Delta_{2}^{e_{2}}}(L|N)$

$\geqq\{1-(\epsilon_{1}/c_{1}c_{2})\}\{H^{e_{1}}(L|N)+H^{e_{2}}(L|N)-2\epsilon_{1}\}$ [by (0), (6)].

Hence, by the selection of $\epsilon$ and (d) in Proposition 1.2, we get

$H_{E(\Delta)}(L|N)\geqq H(L|N)-(3/4)\epsilon$ .
By the formula: $H_{\Delta}(M|N)=H_{\Delta}(M|L)+H_{E(\Delta)}(L|N)$ , combining with (9) and (10),
we see that

(11) $H(M|N)\geqq H(M|L)+H(L|N)$ .

The opposite inequality is always true so that we get the desired equality.
Moreover, we note that (9“) implies that $H(M|L)\geqq\eta(c_{1})+\eta(c_{2})$ and so,

(12) $H(M|L)=\eta(c_{1})+\eta(c_{2})$ .

We can prove the proposition in the case of $n\geqq 3$ by the induction on $n$ .
The equality: $H(M|L)= \sum_{i=1}^{n}\eta\tau(e_{i})$ has been obtained by Pimsner and Popa

in [12, Lemma 4.3]. Our advantage is to have found a good choice of parti-
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tions of unity to establish $H(M|N)=H(M|L)+H(L|N)$ and $H(M|L)= \sum_{i\Leftarrow 1}^{n}\eta\tau(e_{i})$

at the same time. This idea of finding a suitable partition of unity is due to
them, but, in order to carry out our work, we had to elaborate some significant
improvements on their method to apply it to $II_{1}$ case.

PROOF of (ii). Since $N$ is a factor

(13) $E_{N}^{L}(f_{j})=\tau(f_{j})$ $(j=1, 2, m)$ ,

so that we get

(14) $h_{N}^{L}(f_{j}y)=\tau(\eta E_{N}^{L}(f_{j})y)=\tau(y)\eta\tau(f_{j})$ .
Let $S’(L)$ be the set of partitions $(f_{j}y_{ij}f_{j})_{i\in I_{j}.j=1.2\ldots..m}$ of the unity in $L$ such
that for each $j,$ $y_{ij}\in N^{+}$ and $\Sigma_{i\in I_{j}}y_{ij}=1$ . Then,

(15) for $\Delta\in S’(L)$ ,

$H_{\Delta}(L|N)= \sum_{i.j}h(f_{j}y_{ij})=\sum_{j}\sum_{i\in I_{j}}\tau(y_{ij})\eta\tau(f_{j})=\sum_{j}\eta\tau(f_{j})$ .
Therefore, taking $i=1$ and $y_{ij}=1$ ,

(16) $H(L|N) \geqq\sum_{j}\eta\tau(f_{j})$ .
Conversely, for any $\Delta=(y_{i})_{l\in I}\in S(L)$ with $\sum_{i\in I}y_{t}=1$ , put $\Delta’=$

$(f_{j}y_{l})_{i\in I,j=1,2\ldots.,m}$ . Then, $\Delta’\in S’(M)$ and $H_{\Delta}(L|N)\leqq H_{\Delta’}(L|N)$ . Hence, by using
(15), $H_{\Delta}(L|N)\leqq\Sigma_{j}\eta\tau(f_{j})$ . Therefore, $H(L|N) \leqq\sum_{j}\eta\tau(f_{j})$ . Combining this with
(16), we get

(17) $H(L|N)= \sum_{J}\eta\tau(f_{j})$ .
For any $\epsilon>0$ , there exists $\Delta=(x_{i})_{i\in I}\in S(M)$ such that

$\sum_{i\in I}x_{i}=1$ and $H(M|L)\leqq H_{\Delta}(M|L)+\epsilon$ .
Then, $E(\Delta)=(E_{L}^{M}(x_{i}))\in S’(L)$ , and so by (15) and (17) we get

(18) $H_{E(\Delta)}(L|N)=H(L|N)$ .

Therefore,
$H(M|N)\geqq H_{\Delta}(M|N)=H_{\Delta}(M|L)+H_{E(\Delta)}(L|N)$

$\geqq H(M|L)-\epsilon+H(L|N)$ [by (18)].

Since $\epsilon>0$ is arbitrary, $H(M|N)\geqq H(M|L)+H(L|N)$. Hence, we get

$H(M|N)=H(M|L)+H(L|N)$ . [Q. E. D.]

REMARK 1.7. The proof of (ii) assures that the statement in (ii) remains
true if only the equality (13) holds, even though $N$ is not a factor. Moreover,
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by (c) and (d) in Proposition 1.2, we know that, in (ii),

$H(M|L)= \sum_{j=1}^{m}\tau(f_{j})H(M_{f_{j}}|L_{f_{j}})$ .

\S 2. Computations of $H(M|M^{\alpha})$ and $H(M\rangle\triangleleft\alpha G|M)$ .
Let $M$ be a finite von Neumann algebra on a separable Hilbert space $H$

with a faithful normal normalized trace $\tau$ and $\alpha$ be an action of a Pnite group
$G$ on $M$. We denote by $M^{\alpha}$ , or $M^{G}$ if $\alpha$ is clear, the fixed point algebra of $M$

under the action $\alpha$ .
The action $\alpha$ on $M$ induces the action of $G$ on the center $Z(M)$ of $M$ and

we note that $Z(M)^{G}=Z(M)\cap Z(M^{G})$ . Then, by the reduction theory (see [5]),

there exists a standard finite measure space $(\Gamma, \mu)$ such that

$(Z(M)^{G}, \tau)\cong\theta$ {diagonalizable operators} $\cong L^{\infty}(\Gamma, \mu)$

and $(M, \tau)$ is decomposed into a direct integral as

$(M, \tau)\cong\theta\int^{\oplus}(M(\gamma), \tau^{\gamma})d\mu(\gamma)$ .

Moreover, for $\mu$-almost all $\gamma\in\Gamma$ , there exists an action $\alpha^{\gamma}$ of $G$ on $M(\gamma)$ such
that the field $\gammaarrow a^{\gamma}$ of actions is measurable and

$\alpha_{Ad\theta}\cong\int_{\Gamma}^{\oplus}a^{\gamma}d\mu(\gamma)$ .
In this case, we see that

$M_{\frac{\simeq}{\theta}}^{G} \int_{\Gamma}^{\oplus}M(\gamma)^{G}d\mu(\gamma)$ .

Thus, for $\mu$-almost all $\gamma\in\Gamma$, the relative entropy $H(M(\gamma)|M(\gamma)^{G})$ is defined, as-
sociated with the normalized trace $\tau^{\gamma}$ of $M(\gamma)$ . Then, we get the following.

PROPOSITION 2.1. In the above situation, the actions $\alpha^{\gamma}$ are centrally $ergo\phi c$

$f^{0r}\mu$-almost all $\gamma\in\Gamma$ and

$H(M|M^{G})= \int_{\Gamma}H(M(\gamma)|M(\gamma)^{G})d\mu(\gamma)$ .

The proof follows immediately from [10].

Owing to this proposition, we may assume that the action $a$ of $G$ on $M$ is
centrally ergodic, namely, $Z(M)^{G}=C$ . In this case, the center $Z(M)$ of $M$ is
finite dimensional because $G$ is a finite group. Denote the minimal projections
of $Z(M)$ by $f_{1},$ $f_{2},$ $\cdots$ , $f_{m}$ and by $H$ the stabilizer of $G$ at the projection $f_{1}$

under the action $a$ . Then we get an action $\beta$ of $H$ on the factor $M_{f_{1}}$ , the
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reduced algebra of $M$ by the projection $f_{1}$ , by a suitable restriction of $\alpha$ . We
note that $(M, G, a)\cong Ind_{H}^{G}(M_{f_{1}}, H, \beta)$ in Takesaki’s sense ([13]) but the given
trace $\tau$ of $M$ is not necessarily invariant under the action $a$ .

PROPOSITION 2.2. Let $\alpha$ be a centrally ergodic action of a finite group $G$ on
a fimte von Neumann algebra $M$ with a faithful normal normalized trace $\tau$ . Then,
using the above notations, we have

$H(M|M^{G})=H(M_{f_{1}}|(M_{f_{1}})^{H})+ \sum_{j=1}^{m}\eta\tau(f_{j})$

PROOF. Denote $M^{G}$ by $N$ and $\sum_{j=1}^{m}f_{j}Nf_{j}$ by $L$ . Then, it is sufficient to
check ithe following two properties, owing to (ii) in Proposition 1.6 (see also
Remark 1.7).

(1) $E_{N}^{L}(f_{j})=\tau(f_{j})$ for each $j=1,2,$ $\cdots$ , $m$ .
(2) $H(M_{f_{j}}|N_{f_{j}})=H(M_{f_{1}}|(M_{f_{1}})^{H})$ for each $j=1,2,$ $\cdots$ , $m$ .

These equalities can be checked by routine arguments.

Proposition 2.1 and 2.2 assure that the computation of the relative entropy
$H(M|M^{\alpha})$ for a finite von Neumann algebra $M$ may be reduced to the case that
$M$ is a finite factor. For a given action $a$ of a finite group $G$ on $M$, we denote
by $K(a)$ , or simply $K$ if $a$ is clear, the normal subgroup { $g\in G_{j}\alpha_{g}$ is an inner
automorphism of $M$ } of $G$ . Actions of finite grouPs on the type $II_{1}$ factors are
studied by V. Jones in [6]. We will give the computation of the relative entropy
$H(M|M^{\alpha})$ , associated with Jones’ conjugacy invariants of the action $\alpha$ . To do
this, we need more precise information on the structure of $M^{\alpha}$ and $M\cap(M^{a})’$ .

First, we reformulate some notions in [6] from a slightly different point of
view. For an action $\alpha$ of a finite group $G$ on a type $II_{1}$ factor $M$, the charac-
teristic invariant $[\lambda, \mu]$ of $a$ is defined in [6]. Its representative $(\lambda, \mu)$ is given
as follows by choosing the section $(v_{k})_{k\in K}$ where $v_{k}’ s$ are unitaries in $M$ such
that $\alpha_{f}=Adv_{k}(k\in K)$ and $v_{e}=1$ .

$v_{k_{1}k_{2}}=\mu(k_{1}, k_{2})v_{k_{1}}v_{k_{2}}$ $(k_{1}, k_{2}\in K)$ ,

$\alpha_{g}(v_{k})=\lambda(g, k)v_{gkg^{-1}}$ $(g\in G, k\in K)$ .
We note that $\mu$ is a T-valued 2-cocycle (multiplier) of $K,$ $\lambda$ is a T-valued map
of $G\cross K$ and they satisfy some relations (see [6, section 1.2]).

For this multiplier $\mu$ , we denote by Rep$(K, \mu)$ the set of all $\mu-(multiplier)$

representations of $K$ and denote by $(K, \mu)\wedge$ the unitary equivalence classes of
irreducible $\mu$-representations of $K$. For $\pi\in Rep(K, \mu)$ and $g\in G$ , set

$(g\cdot\pi)(k)=\lambda(g, k)\pi(gkg^{-1})$ for $k\in K$ .
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Then, ‘we see that $g\cdot\pi\in Rep(K, \mu)$ and $\piarrow g\cdot\pi(g\in G)$ is an action of $G$ on
ReP$(K, \mu)$ which preserves each unitary equivalence class and $(g\cdot v)_{k}=\alpha_{g}(v_{k})$ .
Thus, this action induces the action of $G$ on $(K, \mu)\wedge$. For simplicity, set $X=$

$(K, \mu)\wedge$ and denote by $\Omega$ the G-orbit space of $X$

Let $v\cong\Sigma_{x\in X}\pi^{\chi}\otimes 1_{\chi}$ be the canonical factor decomposition of $v$ as $\mu$-represen-
tations of $K$. Then, projections $f_{\chi}(\chi\in X)$ of $M$ such that $\Sigma_{x\in X}f_{\chi}=1$ are de-
fined, associated with this decomposition. We denote by $N$ the von Neumann
subalgebra generated by $v_{k}(k\in K)$ and by $S(\alpha)$ the set $\{\chi\in X;\tau(f_{\chi})\neq 0\}$ . Then,
it is clear that

(1) $Z(N)=\Sigma_{x\in X}Cf_{\chi}$ and $N=\Sigma_{x\in X}f_{\chi}Nf_{\chi}$ where $f_{\chi}Nf_{\chi}\cong M(d_{\chi}, C)(d_{\chi}=$

$\dim\pi^{\chi})$ for $\chi\in S(a)$ ,
(2) $N$ is $\alpha$-invariant, $g \cdot v=\sum_{x\in X}g\cdot\pi^{\chi}\otimes 1_{\chi}$ and $\alpha_{g}(f_{\chi})=f_{g^{\chi}}.$ ,
(3) $M^{K}=N’\cap M=\Sigma_{x\in X}L_{\chi}$ where $L_{\chi}=f_{\chi}(N’\cap M)f_{\chi}$ ,
(4) $M^{K}$ is $\alpha$-invariant and the restriction of $\alpha$ on $M^{K}$ to the group $K$ is a

trivial action.

For an orbit $\omega\in\Omega$ , set $e_{\omega}=\Sigma_{x\in\omega}f_{\chi}$ and $|\omega|=the$ number of $x\in\omega$. Then, for
each $x,$ $x’\in\omega,$ $\tau(f_{\chi})=\tau(f_{\chi’})$ and $d_{\chi}=d_{\chi\prime}$ , so that $\tau(e_{\omega})=|\omega|\tau(f_{\chi})(\chi\in\omega)$ and we
may set $d_{\omega}=d_{\chi}(\chi\in\omega)$ . By (2), we get $\alpha_{g}(e_{\omega})=e_{\omega}$ for $g\in G$ so that $e_{\omega}$ is in
$M^{G}$ . Thus, $e_{\omega}Me_{\omega}$ is $\alpha$-invariant and this action of $G$ on $e_{\omega}Me_{\omega}$ is also denoted
by $\alpha$ .

Take and fix $\chi_{1}\in\omega$ and put $H=\{g\in G;g\cdot x_{1}=x_{1}\}$ and denote $L_{\chi_{1}}$ by $L_{1}$ .
Then, the action $\alpha$ induces the action $\overline{\alpha}$ of $H/K$ on $L_{1}$ by (3) and (4). Under
these situations, we get the followings.

PROPOSITION 2.3. Let $a$ be an action of a finzte group $G$ on a type $II_{1}$ factor
M. Then,

(i) bl is an outer action of $H/K$ on $L_{1}$ .
(ii) There exists a canonical isomorphism $\theta$ from $M_{e_{\omega}}$ onto $M(|\omega|, L_{1})\otimes$

$M(d_{\omega}, C)$ which transforms $M_{e_{\omega}}^{G}$ onto the algebra $\{[\delta_{ij}\beta_{j}(x)];x\in L_{1}^{H}\}\otimes C$ where
$\beta_{j}(j=1,2, \cdots |\omega|)$ are some outer automorphisms of $L_{1},$ $M_{e_{\omega}}\cap(M_{e_{\omega}^{G}})’$ onto the
algebra $\{[\delta_{ij}\lambda_{j}];\lambda_{j}\in C\}\otimes M(d_{\omega}, C)$ , and $f_{\chi}$ to (minimal $projeciion$) $\otimes 1$ .

(iii) $Z(M^{G})= \sum_{\omega\in\Omega}Ce_{\omega}$ .
(iv) $M\cap(M^{G})’=M\cap(M^{K})’=N$ .
We will prove this proposition after Lemma 2.5. Here we note that $M^{K}$ is

a factor if and only if $S(\alpha)$ consists of one point and that $M^{\theta}$ is a factor if and
only if the action of $G$ on $S(a)$ is transitive. At first, we will investigate these
cases.
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LEMMA 2.4. Assume $M^{K}$ is a factor. Then,
(i) $M\cap(M^{G})’=M\cap(M^{K})’$ .
(ii) If an automorPlusm $\beta$ of $M$ satisfies that, for some $x\neq 0$ in $M,$ $\beta(y)x=$

$xy$ for all $y\in M^{G}$ , then there exist a umtary $u$ in $M$ and $g\in G$ such that $\beta_{g}=$

(Ad $u$ ) $\alpha_{g}$ .
PROOF. Since $S(\alpha)$ consists of one point by the assumption, the multiplier

$represen)tationv$ of $K$ is factorial. Then, $N=v(K)’’$ is a finite type I factor
because $G$ is a finite group. Therefore, we get $M\cong M^{K}\otimes N$ by the fact $M^{K}=$

$M\cap N’$ .
(i) Since $M^{K}$ and $N$ are a-invariant, the action $\alpha$ induces the actions $\alpha^{1}$

and $\alpha^{2}$ on $M^{K}$ and $N$ respectively by restrictions and $\alpha_{g}\cong\alpha_{g}^{1}\otimes\alpha_{g}^{2}$ for $g\in G$ .
It follows from the fact $N$ is a type I factor that the action $\alpha^{2}$ is inner. Hence,
the reduced action $\overline{\alpha}$ of $G/K$ on $M^{K}$ is seen to be outer so that $M^{K}\cap((M^{K})^{\overline{a}})’$

$=C$ by $[_{-}^{-}11]$ . Noticing that $(M^{K})^{\overline{\alpha}}=M^{G}$ , we get $M^{K}\cap(M^{G})’=C$ , which implies
that $M\cap|(M^{G})’=N$.

(ii) is checked by slight modifications of the proof of Lemma 3.4 in [3]
$combine\dot{c}1$ with the following duality property $(*)$ .

$(*)$ Suppose $M\cap(M^{G})’=C$ . If an automorphism $\beta$ of $M$ satisfies that $\beta(y)$

$=y$ for all $y\in M^{G}$ , then there exists $g\in G$ such that $\beta=\alpha_{g}$ .
This property $(*)$ is explained in [8] or [9]. [Q. E. D.]

Next, we consider the transitive case under some general situations. Here
we recall the assumption that $G$ is a finite group and $M$ is a type $II_{1}$ factor.

Let $X$ be a finite set $\{$ 1, 2, $\cdots$ , $n\}$ such that $G$ acts on $X$ transitively. This
action is denoted by $X\ni jarrow g\cdot j\in X$ for $g\in G$ . We denote by $H$ the stabilizer
of $G$ at $1\in X$ Let $f_{j}(j\in X)$ be projections of $M$ such that $\Sigma_{j\in X}f_{j}=1$ . We
denote by $M_{1}$ the reduced algebra $M_{f_{1}}$ which is often identified with $f_{1}Mf_{1}$ .

LEMMA 2.5. Under the above situations, if $\alpha_{g}(f_{j})=f_{g\cdot j}$ and $M^{\alpha}$ is contained
in $\sum_{j=1}^{n}f_{j}Mf_{j}$ , then there exests an isomorphsm $\theta$ of $M$ onto $M(n, M_{1})$ such that
the $isomorp/usm\theta$ transforyns $M^{\alpha}$ onto the sztbalgebra $\{[\delta_{ij}\beta_{j}(x)];x\in M_{1}^{H}\}$ of
$M(n, M_{1})$ for some $\beta_{j}\in AutM_{1}(j\in X)$ . Moreover if $H\supset K(\alpha)$ and $(M_{1}^{K(\alpha)})’\cap M_{1}$

$=F$ is a factor, $\theta$ transforms the relative commutant $(M^{G})’\cap M$ onto the subalgebra
$\{[\delta_{ij}\beta_{j}(y_{j})];y_{j}\in F\}$ of $M(n, M_{1})$ .

PROOF. For each $j\in X$, there exsits $g\in G$ such that $g\cdot 1=$ ] by transitlvity
of the action of $G$ on $X$. Then, $f_{1}$ is equivalent to $f_{j}$ because $\tau(f_{j})=\tau(f_{g\cdot 1})=$

$\tau(\alpha_{g}(f_{1}))=\tau(f_{1})$ and $M$ is a type $II_{1}$ factor. Hence, there exist partial isometries
$u_{j}$ in $M$ such that

(1) $u_{j}^{*}u_{f}=f_{1}$ and $u_{j}u_{j}^{*}=f_{j}$ .
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Hence, we see that

(2) $\alpha_{g}(u_{j})^{*}a_{g}(u_{j})=f_{g\cdot 1}$ , $\alpha_{g}(u_{j})\alpha_{g}(u_{j})^{*}=f_{g\cdot j}$ for each $g\in G$ ,

and that there exists a canonical isomorphism $\theta$ of $M$ onto $M(n, M_{1})$ such that

(3) $\theta(\sum_{i.j}u_{i}x_{ij}u_{j}^{*})=[x_{ij}]\in M(n, M_{1})$ .

Set
(4) $\beta_{g}(x)=u_{g\cdot 1}^{*}a_{g}(x)u_{g\cdot 1}$ for $x\in f_{1}Mf_{1}$ and $g\in G$ .

Then, it is easy to check the followings by direct calculations.

(5) $a_{g}(x)=u_{g\cdot 1}\beta_{g}(x)u_{g\cdot 1}^{*}$ for $x\in f_{1}Mf_{1}$ and $g\in G$ .
(6) $\beta_{g}\in AutM_{1}$ and $\beta_{g_{1}g_{2}}=Adv(g_{1}, g_{2})\beta_{g_{1}}\beta_{g_{2}}$ for some unitary $v(g_{1}, g_{2})$

in $M_{1}$ .
(7) $\theta\alpha_{g}\theta^{-1}=(Ad\lambda_{g}V(g))\beta_{g}$ , where $\lambda_{g}=[\delta_{g\cdot i,j}]$ , $\beta_{g}([x_{ij}])=[\beta_{g}(x_{ij})]$ and

$V(g)=[\delta_{ij}v(g)_{j}]$ by the unitary $v(g)_{j}=u_{g\cdot j}^{*}\alpha_{g}(u_{j})u_{g\cdot 1}$ in $M_{1}$ . Thus, for $g\in G$ ,
$a_{g}\in IntM$ if and only if $\beta_{g}\in IntM_{1}$ .
For each $j\in X$, choose an element $g_{j}\in G$ such that $g_{j}\cdot 1=j$ and so we get
$G= \sum_{j\Rightarrow 1}^{n}g_{j}H$. Set $\beta_{j}=\beta_{g_{f}}$ for $j\in X$ and denote by $L$ the subalgebra { $[\delta_{ij}\beta_{j}(x)]$ ;
$x\in M_{1}^{H}\}$ of $M(n, M_{1})$ . Then, for $x\in M_{1}^{H}$ ,

(8) $\theta^{-1}([\delta_{ij}\beta_{j}(x)])=\sum_{j=1}^{n}a_{g_{j}}(x)=\frac{1}{|H|}\sum_{g\in G}\alpha_{g}(x)$ [by (3), (5)]

so that $\theta^{-1}([\delta_{ij}\beta_{j}(x)])\in M^{G}$ . Conversely, take $y\in M^{G}$ and set $y_{1}=f_{1}yf_{1}$ . Then,
$y= \sum_{j}f_{j}yf_{j}$ by the assumption $M^{G} \subset\sum_{j=1}^{n}f_{j}Mf_{j}$ and $a_{g_{j}}(y_{1})=\alpha_{g_{j}}(f_{1})y\alpha_{g_{j}}(f_{1})=$

$f_{j}yf_{f}$ . Hence,

(9) $\theta^{-1}([\delta_{ij}\beta_{j}(y_{1})])=\sum_{f=1}^{n}a_{g_{j}}(y_{1})=\sum_{j}f_{j}yf_{j}=y$ .
Thus, we see that the isomorphism $\theta^{-1}$ transforms $L$ onto $M^{G}$ .

Each element $[x_{ij}]$ in $L’\cap M(n, M_{1})$ satisfies that

(10) $x_{ij}\beta_{j}(y)=\beta_{i}(y)x_{ij}$ for any $y\in M_{1}^{H}$ and $i,$ $j\in X$ .
In the case that $i=$], the equality (10) implies that

(11) $\beta_{i}^{-1}(x_{ii})\in(M^{H})’\cap M_{1}$

and in the case that $i\neq j$ ,

(12) $\beta_{i}^{-1}(x_{ij})\beta_{i}^{-1}\beta_{j}(y)=y\beta_{i}^{-1}(x_{tj})$ for any $y\in M_{1}^{H}$ .
By the assumption, $F$ must be a type I factor so that $M^{K}$ is a factor. We note
that the restriction to the subgroup $H$ of the cocycle crossed action $\beta$ of $G$ on
$M_{1}$ is an ordinary action and that $K(\beta)=K(\beta|_{H})=K(a)$ holds by (6) and (7).

Thus, applying Lemma 2.4, we see (i) $(M_{1}^{H})’\cap M_{1}=F$ and (ii) there exist a
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unitary element $u$ in $M_{1}$ and $h\in H$ such that $\beta_{i}^{-1}\beta_{j}=(Adu)\beta_{h}$ if $x_{ij}\neq 0$ . By (11)

and (i), we get $x_{ii}=\beta_{i}(y_{i})$ for some $y_{i}\in F$. In the case that $i\neq j,$ $x_{ij}$ must be
$0$ . Indeed, suppose $x_{ij}\neq 0$ . Then, by (ii), $\beta_{h}^{-1}\beta_{i}^{-1}\beta_{j}$ is an inner automorphism
of $M_{1}so|$ that $h^{-1}g_{i}^{-1}g_{j}\in K(\alpha)$ by (6). This implies that $g_{j}\in g{}_{i}H$ because $H\supset K(\alpha)$

and so $i=j$ which is a contradiction. Hence, we get the desired conclusions.
[Q. E. D.]

$PR\Theta OF$ OF PROPOSITION 2.3. For $(M_{e_{\omega}}, G, a)$ , take $\omega=X$ and apply Lemma
2.5. The assumptions of Lemma 2.5 are clearly satisfied. We note further the
following. By a suitable perturbation of unitary elements of $N_{e_{\omega}}(=v(K)_{e_{\omega}}’’)$ , we
may choose partial isometries $u_{j}$ in $M_{e_{\omega}}$ satisfying that $u_{j}^{*}\alpha_{g_{j}}(v_{k})u_{j}=f_{1}v_{k}f_{1}(j=$

$1,2,$ $\cdots$ , n) for all $k\in K$. Thus, we see that for each $j=1,2,$ $\cdots$ , $n\beta_{j}(x)=x$

for all $x\in N_{\chi_{1}}=(M_{1}^{H})’\cap M_{1}=M(d_{\omega}, C)$ . These observations imply the statement
(ii) and

(1) $M_{e_{\omega}}^{G}\cong L_{1}^{H}$ ,

(2) $(M_{e_{\omega}}^{G})’\cap M_{e_{\omega}}=(M_{e_{\omega}}^{K})’\cap M_{e_{\omega}}$ .

The statement (i) may follow in general from 1.5.1 in [2] but has been already
checked at (7) in our proof of Lemma 2.5. The statement (iii) is clear by (i)

and the above (1) in the same way as described in section 2.1 of [6]. The
statement (iv) follows from (iii) and the above (2), which we need but was not
found in Jones’ work [6]. [Q. E. D.]

Now, we have the following theorem.

THEOREM 2.6. Let $M$ be a finite factor and $a$ be an action of a finite group
$G$ on M. Then, we have

$H(M|M^{\alpha})= \log|G/K|+\sum_{\omega\in\Omega}\tau(e_{\omega})\log(d_{\omega}^{2}|\omega|/\tau(e_{\omega}))$

$=\log|G/K|+\Sigma\tau(f_{\chi})\log(d_{\chi}^{2}/\tau(f_{\chi}))$ .
$x\in x$

PROOF. Assume that $M$ is a type $II_{1}$ factor. Then, for $\omega\in\Omega$ , by (ii) of
Proposition 2.3, we may take minimal projections $h_{k}$ $(k=1,2, \cdots , d_{\omega}|\omega|)$ of
$((M^{G})_{e_{\omega}})’\cap M_{e_{\omega}}$ such that $\tau_{\omega}(h_{k})=(|\omega|d_{\omega})^{-1}$ for the normalized trace $\tau_{\omega}$ of $M_{e_{\omega}}$

and $(h_{k}Mh_{k}, h_{k}M^{G}h_{k})\cong(L_{\chi}, L_{\chi}^{H})$ for some $\chi\in\omega$ . Thus, by (i) of Proposition
2.3 and [7], we get

$[M_{h_{k}} : (M^{G})_{h_{k}}]=|H/K|$ for every $k$ ,

where [:] is Jones’ index. Hence, aPplying Theorem 4.4 in [12], we have
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$H(M_{e_{\omega}}|M_{e_{\omega}}^{G})=2 \sum_{k}\eta\tau_{\omega}(h_{k})+\sum_{k}\tau_{\omega}(h_{k})\log|H/K|$

$=\Sigma\tau_{\omega}(h_{k})\log(|H/K|/\tau_{\omega}(h_{k})^{2})$

$= \log|\omega||H/K|+\log|\omega|d\frac{9}{\omega}$ [by $\tau_{\omega}(h_{k})=(|\omega|d_{\omega})^{-1}$]

$=\log|G/K|+\log|\omega|d_{\omega}^{2}$ . [by $|\omega|=|G/H|$ ]

Next, applying (i) of Proposition 1.7 together with (c), (d) of Proposition 1.2
and (iii) of Proposition 2.3, we have

$H(M|M^{G})= \sum_{\omega}-\tau(e_{\omega})\log\tau(e_{\omega})+\sum_{\omega}\tau(e_{\omega})H(M_{e_{\omega}}|(M^{G})_{e_{\omega}})$

$= \sum_{\omega}\tau(e_{\omega})\{\log|G/K|+\log(|\omega|d_{\omega}^{2}/\tau(e_{\omega}))\}$

$= \log|G/K|+\sum_{\omega}\tau(e_{\omega})\log(|\omega|d_{\omega}^{2}/\tau(e_{\omega}))$ .

The second equality is clear from $\tau(e_{\omega})=|\omega|\tau(f_{\chi})(\chi\in\omega)$ . When $M$ is a finite
type I factor, these formulas follow from similar arguments to the above as a
special case that $G=K(a)$ . [Q. E. D.]

Next, we shall concentrate our interest on the values of the relative entropy
$H(M|M^{\alpha})$ when $\alpha$ varies over all actions of $G$ on $M$, and on such actions $\alpha$

that $H(M|M^{a})$ attains the maximum value. For an action $\alpha$ of $G$ on a finite
factor $M$, we name $\alpha$ a Jones action if $\tau(e_{\omega})=d_{\omega}^{2}|\omega|/|K(\alpha)|$ , in other words,
$\tau(f_{\chi})=d_{\chi}^{2}/|K(a)|$ . Here, our situation goes back to a general case as described
in the beginning part of this section. By the reduction theory ([5]), we get
the factor decomposition of a given finite von Neumann algebra $M$ into a direct
integral as

$M \cong\int_{Y}^{\oplus}M(\zeta)d\nu(\zeta)$ and $Z(M)\cong L^{\infty}(Y, \nu)$ .

We denote by $H(\zeta)$ the stabilizer of the action $\alpha$ on $L^{\infty}(Y, \nu)$ at $\zeta\in Y$ . Then,
the action of $G$ on $M$ induces the action $\alpha^{\zeta}$ of $H(\zeta)$ on $M(\zeta)$ for v-almost all
$\zeta\in Y$ . The following is easily obtained from three formulas in each case, given
in Theorem 2.6, Proposition 2.2 and Proposition 2.1.

COROLLARY 2.7. Let $\alpha$ be an action of a finite group $G$ on a finite von
Neumann algebra $M$ on a seParable Hilbert sPace with a faithful norynal normalized
trace $\tau$ . Then, $0\leqq H(M|M^{\alpha})\leqq\log|G|$ . Moreover, $H(M|M^{a})=\log|G|$ if and only
if the action a keePs the trace $\tau$ invanant and for v-almost all $\zeta\in Y$, the reduced
actions $a^{\zeta}$ of $H(\zeta)$ on $M(\zeta)$ are Jones actions.

REMARK 2.8. In [6], V. Jones gave complete classifications of all actions of
a finite group $G$ on the hyperfinite type $II_{1}$ factor $R$ . Here we note that, for
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an action $a$ of $G$ on $R,$ $a$ is conjugate to a Jones action if and only if $\alpha$ is
conjugate to a model action constructed by V. Jones [6]. Thus, by Corollary
2.7, we see that there is one and only one action $a$ up to conjugacy in each
cocycle conjugacy class such that $H(R|R^{\alpha})$ attaines log $|G|$ , which is nothing
but Jones’ model action. Moreover, in each conjugacy class characterized
by a normal subgroup $K$ of $G$ and $[\lambda, \mu]\in\Lambda(G, K)$ , for an arbitrary value
$c$ : logl $G/K|\leqq c\leqq\log|G|$ , one knows that there exists an action $\alpha$ (not neces-
sarily unique) with $H(R|R^{a})=c$ . Since $H(R|R^{\alpha})$ is computed in association with
the conjugacy invariants, we note that all values of $H(R|R^{a})$ for an arbitrary
action a of $G$ on $R$ are computable due to Jones’ work [6].

Finally, we remark on the maximum value of the relative entropy
$H(M\rangle\triangleleft aG|M)$ for an action of a finite group $G$ on a finite von Neumann algebra
$M$. One always have $H(M\aleph_{\alpha}G|M)\leqq\log|G|$ (see [12] and [15]). A sufficient
condition that $H(M\rangle\triangleleft\alpha G|M)$ attains log $|G|$ is studied by the second named
author [151 with a direct elementary proof but another proof may be given in
a slightly more general situation and more in the spirit of the paper, as follows.
If $M(n, C)\subset M^{\alpha}$ with $n$ larger than the dimensions of irreducible representa-
tions of $G$ , then

$H(M)\triangleleft\alpha G|M)\geqq H(M(n, C)\otimes R(G)|M(n, C))$ ,

where $R(G)$ is the group ring of $G$ , and by 6.2 in [12] the last term equals
log $|G|$ . Similar results hold for a twisted crossed product $W^{*}(M, G, \mu)$ by a
multiplier $\mu$ of $G$ .
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