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Introduction.

In this paper we introduce a new class of homogeneous Siegel domains,
called Siegel domains of finite type. Let $D=D(V, F)\subset C^{N}$ be a Siegel domain
associated with a convex cone $V$ and a V-hermitian form $F$. Let $G_{h}$ (resp. $G_{a}$ )

be the identity component of the holomorphic (resp. affine) automorphism group
of $D$ . It is known (Nakajima [7]) that $D$ is $G_{h}$-equivariantly and holomorphically
imbedded, together with the ambient space $C^{N}$ , into a complex coset space $M$

of the complexification of $G_{h}$ . $D$ is said to be of finite tyPe, if there are only
finitely many $G_{h}$-orbits in $M$. This concept is realization-free and is determined
only by the holomorphic equivalence class of $D$ . Let $H$ be the identity com-
ponent of the linear automorphism group of $D$ . Then there exists a natural
homomorphism $\rho$ of $H$ into the linear automorphism group of the cone $V$ . The
cone $V$ is called of $\rho(H)$-fnite type, if there exists only a finite number of $\rho(H)-$

orbits in the ambient vector space in which $V$ is imbedded as an open cone.
The first aim of this paper is to show that, if $M$ has at most countably

many $G_{h}$-orbits, then $D$ is of finite type, and in this case each $G_{h}$-orbit is a
semi-analytic set in $M$ (Theorem 3.8). It follows that, if $D$ is of finite type,
then it is necessarily homogeneous (Proposition 3.11). As a consequence, if $D$

is not homogeneous, then $M$ has non-countably many $G_{h}$-orbits (Corollary 3.12).

The $mai_{\lfloor}n$ purpose of this paper is to prove the equivalence between finite type
for $D$ and $\rho(H)- finite$ type for $V$ (cf. Theorem 3.15). Thus $D$ being of finite
type or not is reduced to the problem on orbits under a group of linear trans-
formations. We also show that every connected component of the intersection
of a $G_{h}\cdot\cdot orbit$ with $C^{N}$ is a $G_{a}$-orbit and conversely every $G_{a}$-orbit is obtained
in this manner (Theorem 3.3). This yields a qualitative proof of a result of
Kaup-Matsushima-Ochiai [5] which states that, if $D$ is homogeneous, then it is
affinely homogeneous (Corollary 3.5). Finally we remark that the class of Siegel
domains of finite type properly contains the class of quasi-symmetric Siegel
domains (Corollary 3.14 and Example 3.17). In this paper we make use of some
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basic properties on semi-analytic sets and semi-algebraic sets (cf. Lojasiewicz
[6], [14]). The complexification of a real vector space $X$ will be denoted by
$X^{c}$ throughout this paper.

The author is grateful to H. Omori for helpful conversations.

\S 1. Basic facts on Siegel domains.

In this section we give a brief summary of basic facts on Siegel domains
which are needed for later considerations (cf. [5], [12], [8], [7], [3]). Let $V$

be an open convex cone in a real vector space $R$ with vertex at the origin
which contains no affine lines. We will call such a cone $V$ simply a convex
cone in $R$ . Let $W$ be a complex vector space and $F$ be a V-hermitian form on
$W$. Let us define a map $\Phi$ of the complex vector space $R^{c}\cross W$ to $R$ by putting

(1.1) $\Phi(z, u)={\rm Im} z-F(u, u)$ , $z\in R^{c}$ , $u\in W$ .
Then the complete inverse image $\Phi^{-1}(V)$ is called a Siegel domain of the second
kind or of the first kind, according as $W\neq(O)$ or $W=(O)$ . Later on $\Phi^{-1}(V)$ will
be usually denoted by $D(V, F)$ or briefly by $D$ . If $\Phi^{-1}(V)$ is of the first kind,
then it will usually be denoted by $D(V)$ . Let $G_{h}$ (resp. $G_{a}$ ) denote the identity
component of the group of holomorphic (resp. affine) automorphisms of $D$ . The
Lie algebra $\mathfrak{g}_{h}$ of $G_{h}$ has a structure of graded Lie algebra:

(1.2) $\mathfrak{g}_{h}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2}$ .
The Lie algebra $\mathfrak{g}_{a}$ of $G_{a}$ is the graded subalgebra of $\mathfrak{g}_{h}$ :

(1.3) $\mathfrak{g}_{a}=\mathfrak{g}_{-2}+\mathfrak{g}_{-1}+\mathfrak{g}_{0}$ .
$\mathfrak{g}_{h}$ is naturally realized as a Lie algebra of polynomial vector fields on $R^{c}\cross W$.
The group $G_{h}$ is center-free and so it can be identified with the adjoint group
of $\mathfrak{g}_{h}$ . The subspaces $\mathfrak{g}_{-2}$ and $\mathfrak{g}_{-1}$ may be naturally identified with $R$ and $W$,
respectively. $\mathfrak{g}_{-1}$ and $\mathfrak{g}_{1}$ have the complex structures which are induced by the
adjoint action of the vector field corresponding to the one-parameter subgroup
of $G_{h}$ sending a point $(z, u)\in R^{c}\cross W$ to the point $(z, e^{it}u),$ $t\in R$ . Therefore the
complexifications $\mathfrak{g}^{\underline{c}_{1}}$ and $\mathfrak{g}_{1}^{c}$ of $\mathfrak{g}_{-1}$ and $\mathfrak{g}_{1}$ can be written in the form

(1.4) $\mathfrak{g}^{\underline{c}_{1}}=\mathfrak{g}_{-1}^{+}+\mathfrak{g}_{-1}^{-}$ , $\mathfrak{g}_{1}^{c}=\mathfrak{g}_{1}^{+}+\mathfrak{g}_{1}^{-}$ ,

where $\mathfrak{g}_{1}^{+}$ and $\mathfrak{g}_{-1}^{+}$ (resp. $\mathfrak{g}_{1}^{-}$ and $\mathfrak{g}_{-1}^{-}$ ) are the subspaces of $\mathfrak{g}_{1}^{c}$ and $\mathfrak{g}^{\underline{c}_{1}}$ consisting
of holomorphic (resp. anti-holomorphic) vectors, respectively. Then the com-
plexification $\mathfrak{g}_{h}^{c}$ of $\mathfrak{g}_{h}$ is written in the form of the graded Lie algebra:

(1.5) $\mathfrak{g}_{h}^{c}=\mathfrak{a}_{-1}+\mathfrak{a}_{0}+\mathfrak{a}_{1}$ ,

where we put
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(1.6) $\mathfrak{a}_{-1}=\mathfrak{g}^{\underline{c}_{2}}+\mathfrak{g}_{-1}^{+}$ , $\mathfrak{a}_{0}=\mathfrak{g}_{-1}^{-}+\mathfrak{g}_{0}^{c}+\mathfrak{g}_{1}^{+}$ , $\mathfrak{a}_{1}=\mathfrak{g}_{1}^{-}+\mathfrak{g}_{2}^{c}$ .
Let $G_{h}^{c}$ be the adjoint group of the Lie algebra $\mathfrak{g}_{h}^{c}$ . $G_{h}^{c}$ contains $G_{h}$ as a

subgroup. Let $U$ be the normalizer of the complex subalgebra $\mathfrak{u}=\mathfrak{a}_{0}+\mathfrak{a}_{1}$ in $G_{h}^{c}$ .
We know that $U$ is connected and Lie $U=\mathfrak{u}$ . Let us consider the complex
homogeneous space $M=G_{h}^{c}/U$ . Note that if the Siegel domain $D$ is symmetric,
then $M$ is no other than its compact dual. Now let $\pi$ be the natural projection
of $G_{h}^{c}$ onto $M$, and let us consider the composite map $\xi=\pi\cdot\exp$ of $\mathfrak{a}_{-1}$ into $M$.
Then $\xi$ is an open dense holomorphic imbedding of the vector space $\mathfrak{a}_{-1}$ into $M$.
Since we are identifying $\mathfrak{g}_{- 2}$ with $R$ and $\mathfrak{g}_{-1}$ with $W$ , the complex vector space
$\mathfrak{a}_{-1}$ is identified with $R^{c}\cross W$ . Hence $D$ is viewed as a domain in $\mathfrak{a}_{-1}$ . Then it
is known that the imbedding $\xi$ is $G_{h}$-equivariant on $D$ . The imbedding $\xi$ of $D$

is called the Tanaka’s imbedding.

DEFINITION 1.1. With notations above, the Siegel domain $D$ is said to be
of finite $tyPe$ , if there are only finite number of $G_{h}$-orbits in M. $D$ is said to
be of $G_{a^{-}}finite$ type, if there are only finite number of $G_{a}$-orbits in $R^{c}\cross W$ .

We shall see later that every symmetric Siegel domain is of finite type.
Let $H$ denote the isotropy subgroup of $G_{a}$ at the origin in $R^{c}\cross W$ . Then $G_{a}$

can be expressed as

(1.7) $G_{a}=H\cdot RW$ , (semi-direct)

where $RW$ is the two-step nilpotent normal subgroup of $G_{a}$ which is diffeo-
morphic to $R\cross W$ and acts simply transitively on the Silov boundary of D. $H$

consists of the pairs $(A, B)\in GL(R)\cross GL(W)$ satisfying the two conditions:

(1.8) $AF(u, v)=F(Bu, Bv)$ $u,$ $v\in W$ ,

(1.9) $A$ is in the identity component $G(V)$ of the (linear) automorphism group
of the cone $V$ .
We denote by $\rho$ the homomorphism of $H$ to $G(V)$ defined by $\rho(A, B)=A$ .

DEFINITION 1.2. With notations above, the cone $V$ is called of finite tyPe
(resp. of $\rho(H)- finite$ type), if there exist only finitely many $G(V)$-orbits (resp.
$\rho(H)$-orbits) in $R$ .

Note that this definition of finite type is equivalent to the original definition of
Pjaseckii [9].

\S 2. The relation between $G_{a}$-orbits and $\rho(H)$-orbits.

The following lemma and corollary are well-known [10].
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LEMMA 2.1. (i) Let $g\in G_{a}$ and put $g=(h, a, c)$ , where $h\in H,$ $a\in R,$ $c\in W$

(cf. (1.7)). Then we have

(2.1) $\Phi(g(z, u))=\rho(h)\Phi(z, u)$ , $(z, u)\in R^{c}\cross W$ .
(ii) Any point $(z, u)\in R^{c}\cross W$ can be sent to the pojnt $(i\Phi(z, u),$ $0$ ) by a trans-
formation in the group $RW$.

COROLLARY 2.2. Let $(z’, u’)$ be the image of a pojnt $(z, u)\in R^{c}\cross W$ under a
transformation $(a, c)\in RW$. Then we have

(2.2) $\Phi(z’, u’)=\Phi(z, u)$ .
Conversely, if two points $(z, u)$ and $(z’, u’)$ satisfy (2.2), then there exists a trans-
formation in $RW$ which sends $(z, u)$ to $(z’, u’)$ .

LEMMA 2.3. Let $\mathcal{V}$ be a $\rho(H)$-orbit in R. Then $\Phi^{-1}(\mathcal{V})$ is a $G_{a}$-orbit in
$R^{c}\cross W$ .

PROOF. Take two points $(z_{1}, u_{1})$ and $(z_{2}, u_{2})$ in $\Phi^{-1}(\mathcal{V})$ . Then there exists
an element $h\in H$ such that

$\Phi(z_{2}, u_{2})=\rho(h)\Phi(z_{1}, u_{1})=\Phi(h(z_{1}, u_{1}))$ .

On the other hand, by Lemma 2.1, the point $(z_{1}, u_{1})$ is sent to the point
$(i\Phi(h(z_{1}, u_{1})),$ $0$) $=(i\Phi(z_{2}, u_{2}),$ $0$) by an element in $G_{a}$ . Also $(z_{2}, u_{2})$ is sent to the
same point by an element in $RW$. From these two it follows that $\Phi^{-1}(\mathcal{V})$ is
contained in the orbit $G_{a}(z_{1}, u_{1})$ . Conversely take a point $g(z_{1}, u_{1})\in G_{a}(z_{1}, u_{1})$ ,

where $g\in G_{a}$ . If we write $g$ in the form $(h, a, c)\in H\cdot RW$, then we have
$\Phi(g(z_{1}, u_{1}))=\rho(h)\Phi(z_{1}, u_{1})\in\rho(h)\mathcal{V}=\mathcal{V}$ . This implies the inclusion $\Phi^{-1}(\mathcal{V})\supset$

$G_{a}(z_{1}, u_{1})$ .

LEMMA 2.4. The corresPondence $\Theta$ : $\mathcal{V}-\Phi^{-1}(\mathcal{V})$ is a bijection between the
set of all $\rho(H)$-orbits in $R$ and the set of all $G_{a}$-orbits in $R^{C}\cross W$ .

PROOF. Let $\mathcal{D}$ be a $G_{a}$-orbit in $R^{c}\cross W$ , and put $\mathcal{V}=\Phi(\mathcal{D})$ . Then $\mathcal{V}$ is a
$\rho(H)$-orbit in $R$ . Indeed, take two points $\Phi(z_{i}, u_{i})$ , where $(z_{i}, u_{i})\in \mathcal{D},$ $i=1,2$ .
Then there exists $g=(h, a, c)\in G_{a}$ such that $g(z_{1}, u_{1})=(z_{2}, u_{2})$ . Therefore, by
Lemma 2.1, we have $\Phi(z_{2}, u_{2})=\Phi(g(z_{1}, u_{1}))=\rho(h)\Phi(z_{1}, u_{1})$ . Conversely, for an
arbitrary element $h\in H$, we have $\rho(h)\Phi(z_{1}, u_{1})=\Phi(h(z_{1}, u_{1}))\in\Phi(\mathcal{D})=\mathcal{V}$ . There-
fore we conclude $\mathcal{V}=\rho(H)\Phi(z_{1}, u_{1})$ . We want to show $\mathcal{D}=\Phi^{-1}(\mathcal{V})$ . Take a
point $(z, u)\in\Phi^{-1}(\mathcal{V})$ . Then there exists a point $(z’, u’)\in \mathcal{D}$ such that $\Phi(z, u)=$

$\Phi(z’, u’)$ . By Corollary 2.2, we have $(z, u)\in RW(z’, u’)\subset G_{a}(z’, u’)=\mathcal{D}$ , which
implies $\Phi^{-1}(\mathcal{V})\subset \mathcal{D}$ . Thus we get $\Phi^{-1}(\mathcal{V})=\mathcal{D}$ . This means that the map $\Theta$ is
surjective. That $\Theta$ is injective is trivial.
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From Lemma 2.4 we have

PROPOSITION 2.5. A Siegel domain $D(V, F)$ is of $G_{a^{-}}finite$ type if and only

if the cone $V$ is of $\rho(H)- finiie$ type.

COROLLARY 2.6. Every quasi-symmetric Siegel domain $D(V, F)$ is of $G_{a^{-}}$

finite iype.

PROOF. In this case the cone $V$ is homogeneous self-dual, and consequently
it is of finite type [9], [16]. Since $D(V, F)$ is quasi-symmetric, we have $\rho(H)$

$=G(V)$ ([11]). The corollary now follows from Proposition 2.5.

COROLLARY 2.7. A Siegel domain of the first kind $D(V)$ is of $G_{a^{-}}fimte$ tyPe,

if and only if the cone $V$ is of finite type.

PROOF. Note that, for a Siegel domain of the first kind $D(V)$ , we have
$\rho(H)=G(V)$ .

\S 3. The relation between $G_{h}$-orbits and $G_{a}$-orbits.

Under the identifications of $R$ with g-2 and of $W$ with $\mathfrak{g}_{-1},$

$\Phi$ is viewed as
a mapping of $\mathfrak{a}_{-1}$ to $\mathfrak{g}_{-2}$ . In the sequel we shall identify $R^{c}\cross W$ (viewed as $\mathfrak{a}_{-1}$ )

with its image under the imbedding $\xi$ .

LEMMA 3.1 (Tanaka [12]). Let $X\in \mathfrak{g}_{h}$ . Then the Lie derivative $L_{X}\Phi$ of $\Phi$

with respect to $X$, viewed as a vector field on $\mathfrak{a}_{-1}$ , is given by

(3.1) $L_{X}\Phi=[B_{X}, \Phi]$ ,

where $B_{X}$ is a $\mathfrak{g}_{0}$-valued function on $\mathfrak{a}_{-1}$ dePending on $X$

PROPOSITION 3.2. Let $\Omega$ be a $G_{a}$-orbit in $R^{c}\cross W$ and let $\mathcal{M}$ be a unique $G_{h^{-}}$

orbit in $M$ contaimng $\Omega$ . Then we have dim $\Omega=\dim \mathcal{M}$ .

PROOF. The proof is similar to that of Lemma 3.14 in Tanaka [13]: so
we can omit the details. Here we use Lemmas 2.4, 3.1 and the fact that $\Phi$ is
a submersion. Also note that the representation $\rho$ of $H$ is identified with its
adjoint representation on $\mathfrak{g}_{-2}$ .

The following theorem gives the relation between $G_{h}$-orbits and $G_{a}$-orbits.

THEOREM 3.3. Let $M=-\perp\lambda\in\Lambda \mathcal{M}_{\lambda}$ be the orbit $decompo\alpha tion$ of $M$ under $G_{h}$ ,
and let $\mathcal{D}_{\lambda}=\mathcal{M}_{\lambda}\cap(R^{c}\cross W),$ $\lambda\in\Lambda$ . Then, for each $\lambda\in\Lambda$ , every connected com-
Ponent of $\mathcal{D}_{\lambda}$ is a $G_{a}$-orbit. Conversely every $G_{a}$-orbit in $R^{c}\cross W$ is obtoined in
this manner.

PROOF. By a result of Nakajima [7], $\mathcal{D}_{\lambda}$ is not empty for each $\lambda\in\Lambda$ . Let
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$\mathcal{D}_{\lambda}=\perp \mathcal{D}$ be the decomposition of $\mathcal{D}_{\lambda}$ into its connected components. Take
a point $p\in \mathcal{D}_{\lambda\alpha}$ . Then the orbit $G_{a}p$ is contained in $\mathcal{M}_{\lambda}\cap(R^{c}\cross W)=\mathcal{D}_{\lambda}$ . There-
fore we have $G_{a}p\subset \mathcal{D}_{\lambda a}$ , which means that $\mathcal{D}_{\lambda\alpha}$ is $G_{a}$-stable. From Proposition
3.2 it follows that $c_{a}p$ is open in $\mathcal{D}_{\lambda a}$ . Suppose now that $G_{a}p\subsetneqq \mathcal{D}_{\lambda\alpha}$ . Choose
a point $q$ in $\mathcal{D}_{\lambda\alpha}$ – $G_{a}p$ . Then the orbit $G_{a}q$ is contained in $\mathcal{D}_{\lambda\alpha}$ – $G_{a}p$ . Again
by Proposition 3.2, $G_{a}q$ is open in $\mathcal{D}_{\lambda\alpha}$ . Hence $\mathcal{D}_{\lambda\alpha}-G_{a}p$ is open in $\mathcal{D}_{\lambda\alpha}$ . But
this contradicts the fact that $\mathcal{D}_{\lambda\alpha}$ is connected. We have thus proved $G_{a}p$

$=\mathcal{D}_{\lambda a}$ . The second assertion can be analogously proved.

The set $\mathcal{D}_{\lambda}(\lambda\in\Lambda)$ is called a truncated $G_{h}$-orbit in $R^{c}\cross W$ . Note that the
$G_{h}$-orbit through a point in $D$ is thoroughly contained in $D$ .

COROLLARY 3.4. Let $\mathcal{M}_{\lambda}$ be a $G_{h}$-orbit contained in D. Then $\mathcal{M}_{\lambda}$ is also a
$G_{a}$-orbit.

PROOF. In this case we have $\mathcal{M}_{\lambda}=\mathcal{D}_{\lambda}$ .

As a direct consequence we have the following corollary which was origi-
nally proved by Kaup-Matsushima-Ochiai [5].

COROLLARY 3.5. If the group $G_{h}$ is transrtive on $D$ , then so is $G_{a}$ .
Let $\tilde{\Omega}$ be the union of all k-dimensional $G_{h}$-orbits in $M$. Suppose that $\tilde{\Omega}$

is not empty. The intersection $\Omega=\tilde{\Omega}\cap(R^{c}\cross W)$ is the union of all k-dimensional
truncated $G_{h}$-orbits, and it is not empty (cf. the proof of Theorem 3.3).

LEMMA 3.6. $\tilde{\Omega}$ is a semi-analytic set in the real analytic manifold $M$.
PROOF. Let $\mathfrak{g}_{h}(p)$ denote the subspace of the tangent space $T_{p}(R^{c}\cross W)$ ,

$p\in R^{c}\cross W$, which is spanned by the values at $p$ of vector fields belonging to
$\mathfrak{g}_{h}$ . Let $\{X_{1}, \cdots , X_{r}\}$ be a basis of $\mathfrak{g}_{h}$ , and choose a real linear coordinate sys-
tem $(x_{1}, \cdots , x_{n})$ of $R^{c}\cross W$ . Let us express $X_{i}$ in the form $X_{i}= \sum_{j\Rightarrow 1}^{n}\xi_{ji}\partial/\partial x_{j}$

$(1\leqq i\leqq r)$ . Since $X_{i}’ s$ are polynomial vector fields on $R^{c}\cross W[5]$ , the comPonents
$\xi_{ji}$ are polynomials on $R^{c}\cross W$ . We then have

(3.2) $\Omega=\{p\in R^{c}\cross W:\dim \mathfrak{g}_{h}(p)=rank(\xi_{ji}(p))=k\}$ .
This implies that $\Omega$ is a semi-algebraic set in $R^{c}\cross W$, more precisely, $\Omega$ is de-
fined in $R^{c}\cross W$ by a finite number of polynomial equalities and polynomial
inequalities. Let $P$ be a point in $M$ which does not belong to $R^{c}\cross W$ . Then
there exists $a\in G_{h}$ such that $ap\in R^{c}\cross W[7]$ . In the neighborhood $a^{-1}(R^{c}\cross W)$

of $P$ in $M$, the intersection $\tilde{\Omega}\cap a^{-1}(R^{c}\cross W)$ is defined by a finite number of the
equalities and the inequalities given by the real analytic functions which are
the composites of the polynomial functions defining $\Omega$ and the transformation
$a$ . This implies that $\tilde{\Omega}$ is a semi-analytic set in $M$.
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LEMMA 3.7. $\tilde{\Omega}$ has only fimiely many connected compOnents.

PROOF. Let $\tilde{\Omega}=\perp\tilde{\Omega}$ be the decomposition of $\tilde{\Omega}$ into its connected com-
ponents. Then we have

(3.3) $\Omega=_{a\in A}\lrcorner L\tilde{\Omega}_{a}\cap(R^{c}\cross W)$ .

Note that each term of the right-hand side is never empty, since each $G_{h}$-orbit
always meets $R^{c}\cross W[7]$ . On the other hand each term of the right-hand side
of (3.3) is open and closed in $\Omega$ . By decompoing each term of the right-hand
side of (3.3) into the connected components, we have the decomposition of $\Omega$

into its connected components. But, since $\Omega$ is a semi-algebraic set in $R^{c}\cross W$ ,
$\Omega$ has only finitely many connected components [6]. Therefore we conclude
that the index set $A$ is a finite set.

THEOREM 3.8. SuPpose that $M$ has at most countably many $G_{h}$ -orbits. Then
$M$ has only finitely many $G_{h}$-orbits, and moreover each $G_{h}$-orbit is a semi-analytic
set in $M$.

PROOF. Let $\{\mathcal{M}_{1}, \mathcal{M}_{2}, \}$ be the totality of k-dimensional $G_{h}$-orbits in $M$.
We have

(3.4) $\tilde{\Omega}=\perp \mathcal{M}_{i}i=1\infty$

By Lemma 3.7 we can write

(3.5) $\tilde{\Omega}=\tilde{\Omega}_{1}4L\tilde{\Omega}_{2}\perp\cdots\perp-\tilde{\Omega}_{t}$ ,

where $\tilde{\Omega}_{1},$
$\cdots$ , $\tilde{\Omega}_{t}$ are the totality of the connected components of $\tilde{\Omega}$ . Since $\tilde{\Omega}$

is semi-analytic in $M$, so is each $\tilde{\Omega}_{i}[6]$ . $\tilde{\Omega}$ is obviously $G_{h}$-invariant. There-
fore each $\tilde{\Omega}_{i}$ is also $G_{h}$-invariant, since $G_{h}$ is connected. Thus each $\tilde{\Omega}_{i}$ is a
disjoint union of $G_{h}$-orbits $\mathcal{M}_{i}$ . From this it follows that dim $\tilde{\Omega}_{i}\geqq k$ for each $i$ .
We have either one of the following two cases:

a) dim $\tilde{\Omega}_{i}=k$ for $1\leqq i\leqq t$ ,
b) there exists an $i_{0}$ such that dim $\tilde{\Omega}_{i_{0}}>k$ .

Suppose that the case b) occurs. Let $k_{0}=\dim\tilde{\Omega}_{i_{0}}$ , and let $A$ be the set of $k_{0^{-}}$

dimensional regular points in $\tilde{\Omega}_{t_{0}}$ . $A$ is then a $k_{0}$-dimensional submanifold of
$M$ which is open and dense in $\tilde{\Omega}_{i_{0}}[6]$ . Let $A_{\lambda}$ be a connected component of
A. $G_{h}$ leaves $A$ stable. Therefore, $G_{h}$ being connected, $A_{\lambda}$ is $G_{h}$-stable, and
hence $A_{\lambda}$ can be written as a disjoint union of at most countably many k-
dimensional $G_{h}$-orbits in $M$. Those $G_{h}$-orbits naturally define a k-dimensional
involutive distribution on $A_{\lambda}$ . Therefore, following the Chevalley’s proof of
the Frobenius theorem, one can find a cubic neighborhood $Q$ of a point in $A_{\lambda}$

in which each of those $G_{h}$-orbits can be expressed as k-dimensional slices, and
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furthermore the number of those slices are at most countable for each $G_{h}$-orbit.
Consequently it follows finally that the $k_{0}$-dimensional cubic neighborhood $Q$ is
written as a disjoint union of at most a countable number of k-dimensional
slices. But this is clearly a contradiction. Therefore we have to have the case
a). In this case every $G_{h}$-orbit forming $\tilde{\Omega}_{l}$ is open in $\tilde{\Omega}_{i}$ , and hence $\tilde{\Omega}_{i}$ must
coincide with only one $G_{h}$-orbit, since $\tilde{\Omega}_{i}$ is connected. As a consequence the
two decompositions (3.4) and (3.5) are identical. Thus we have proved the
theorem.

COROLLARY 3.9. SuPpose that $D$ is of finite type. Then every trancated $G_{h^{-}}$

orbit in $R^{c}\cross W$ has only finitely many connected components.

PROOF. As is seen in the proof of Theorem 3.8, (3.5) is the decomposition
of $\tilde{\Omega}$ into k-dimensional $G_{h}$ -orbits. We have

(3.6) $\Omega=i=1\lrcorner L\tilde{\Omega}_{i}\cap(R^{c}\cross W)t$

$\tilde{\Omega}_{i}\cap(R^{c}\cross W)$ is a k-dimensional truncated $G_{h}$-orbit. Furthermore, $\tilde{\Omega}_{i}\cap(R^{c}\cross W)$

is open and closed in $\Omega$ and hence it can be written as a disjoint union of con-
nected components of $\Omega$ . Since $\Omega$ has only finitely many connected components,
the number of connected components of $\Omega$ forming $\tilde{\Omega}_{i}\cap(R^{c}\cross W)$ should be finite.

COROLLARY 3.10. SuppOse that $D$ is of finite type. Then every $G_{a}$ -orbit and
every truncated $G_{h}$-orbit are both semi-algebraic sets in $R^{c}\cross W$ .

PROOF. Let $\mathcal{D}_{i}$ be a $G_{a}$-orbit of dimension $k$ . Then $\mathcal{D}_{l}$ is a connected
component of a truncated $G_{h}$ -orbit $\tilde{\Omega}_{i}\cap(R^{c}\cross W)$ (Theorem 3.3). That connected
component is semi-algebraic, since it is a connected component of the semi-
algebraic set $\Omega$ [6]. By Corollary 3.9, every truncated $G_{h}$-orbit has only
finitely many connected components which are all semi-algebraic, as was shown
above. Therefore the truncated $G_{h}$ -orbit is also semi-algebraic [6].

REMARK. Suppose that $D$ is of finite type. Then, by Theorem 3.8 and
Corollary 3.10, every $G_{h}$-orbit (resp. every truncated $G_{h}$-orbit) is locally closed
in $M$ (resp. $R^{c}\cross W$) and so it is a regular submanifold of $M$ (resp. $R^{c}\cross W$) $[1]$ .

PROPOSITION 3.11. SuPpose that $D$ is of finite $tyPe$ . Then $D$ is homogeneous,
that is, the group $G_{h}$ acts transitively on $D$ .

PROOF. $D$ can be written as the disjoint union of $G_{h}$-orbits $\mathcal{M}_{i}$ which are
contained in $D$ :

(3.7) $D=i=1\lrcorner L\mathcal{M}_{i}\delta$

By Corollary 3.10, each $\mathcal{M}_{i}$ is semi-algebraic in $R^{C}\cross W$ . Therefore $D$ itself is
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a semi-algebraic set in $R^{c}\cross W$ ; we have dim $D= \max_{1\leq i\leqq s}\dim \mathcal{M}_{i}$ . Consequently
there exists a $G_{h}$-orbit $\mathcal{M}_{i_{0}}\subset D$ which contains an open set in $R^{c}\cross W$ . $D$ has
the Bergman metric, with respect to which $G_{h}$ is a group of isometries of $D$ .
Hence it follows that $D=\mathcal{M}_{i_{0}}$ .

COROLLARY 3.12. Supp0se that $D$ is not homogeneous. Then there exest non-
countably infinite number of $G_{h}$-orbits in $M$.

PROOF. Otherwise $D$ has to be of finite type (Theorem 3.8). Therefore,
by Proposition 3.11 $D$ is homogeneous, which is a contradiction.

PROPOSITION 3.13. $D$ is of finite type if and only if it is of $G_{a^{-}}finite$ type.

PROOF. Suppose that $D$ is of $G_{a}- finite$ type. Let $M=1L_{\lambda\in\Lambda}\mathcal{M}_{\lambda}$ be the $G_{h^{-}}$

orbit decomposition of $M$. As was remarked before (cf. the proof of Theorem
3.3), $\mathcal{D}_{\lambda}=\mathcal{M}_{\lambda}\cap(R^{c}\cross W)$ is not empty for every $\lambda\in\Lambda$ . By Theorem 3.3, all con-
nected components of all $\mathcal{D}_{\lambda}(\lambda\in\Lambda)$ exhaust all $G_{a}$-orbits in $R^{c}\cross W$ . That $G_{a^{-}}$

orbits are finite in number implies that $\Lambda$ is a finite set. Conversely suPpose

that $M$ has only finitely many $G_{h}$-orbits $\mathcal{M}_{1},$ $\cdots$ , $\mathcal{M}_{s}$ . Set $\mathcal{D}_{i}=\mathcal{M}_{l}\cap(R^{c}\cross W)$ ,
$1\leqq i\leqq s$ . By Corollary 3.9, every $\mathcal{D}_{i}$ has only finitely many connected com-
ponents each of which is a $G_{a}$-orbit (cf. Theorem 3.3). Therefore $D$ is of $G_{a^{-}}$

finite type.

From the above proposition and Corollary 2.6, we have

COROLLARY 3.14. Every quasi-symmetric Siegel domain is of finite type.

Combining Proposition 3.13 with Proposition 2.5, we finally obtain

THEOREM 3.15. Let $D=D(V, F)$ be a Siegel domain. Then $D$ is of finite
type if and only if the cone $V$ is of $\rho(H)- finite$ type. In particular, a Siegel
domain of the first kind $D(V)$ is of finite $tyPe$ if and only if the cone $V$ is of
finite type.

Let $H(n, R)$ be the vector space of real symmetric $n\cross n$ matrices and $V=$

$H^{+}(n, R)$ be the convex cone in $H(n, R)$ consisting of all positive definite ele-
ments. Then we have

COROLLARY 3.16. If a Siegel domain $D=D(H^{+}(n, R),$ $F$ ) is homogeneous,
then it is of finite tyPe.

PROOF. By Corollary 3.5, the group $G_{a}$ is transitive on $D$ . Hence $\rho(H)$

contains a maximal (connected) R-triangular subgroup $T_{1}$ of $G(V)$ ([2]). It is
known [15] that there are only finitely many $T_{1}$-orbits in $H(n, R)$ . Consequently
$H^{+}(n, R)$ is of $\rho(H)- finite$ type, which implies that $D$ is of finite type.
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EXAMPLE 3.17. Let $D$ be a Siegel domain over the cone $H^{+}(2, R)$ in $C^{4}$ :

(3.8) $D=\{(z_{1}, z_{2}, z_{3}, u)\in C^{4} : (y_{1}-|u|^{2})y_{2}-y_{3}^{2}>0, y_{2}>0\}$ ,

where $z_{k}=x_{k}+iy_{k}(k=1,2,3)$ . As is well-known, $D$ is the lowest dimensional
non-symmetric homogeneous Siegel domain. $D$ serves an example of Siegel
domains of finite type which are not quasi-symmetric.

EXAMPLE 3.18. Let $D=D(V, F)$ be a homogeneous Siegel domain in $C^{8}$

formed by all points $(z_{1}, \cdots , z_{7}, u)$ satisfying

(3.9) $\{((y_{1}-|u|^{2})y_{3}-y_{6}^{2}-y_{7}^{2})(y_{2}y_{3}-y_{5}^{2})-(y_{3}y_{4}-y_{5}y_{6})^{2}>0$
,

$y_{2}y_{3}-y_{5}^{2}>0$ , $y_{3}>0$ ,

where $z_{k}=x_{k}+iy_{k}$ ([4]). Then the underlying cone $V$ is a homogeneous cone
of rank 3 which are not self-dual [4]. One can verify by using a result of [9]
that $V$ is not of finite type, and so it is not of $\rho(H)- finite$ type. $D$ provides
an example of Siegel domains which are homogeneous but not of Pnite type.
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