J. Math. Soc. Japan Vol. 39, No. 4, 1987

On Siegel domains of finite type

By Soji KANEYUKI

(Received March 27, 1986)

Introduction.

In this paper we introduce a new class of homogeneous Siegel domains, called Siegel domains of finite type. Let $D=D(V, F)\subset C^N$ be a Siegel domain associated with a convex cone V and a V-hermitian form F. Let G_h (resp. G_a) be the identity component of the holomorphic (resp. affine) automorphism group of D. It is known (Nakajima [7]) that D is G_h -equivariantly and holomorphically imbedded, together with the ambient space C^N , into a complex coset space M of the complexification of G_h . D is said to be of finite type, if there are only finitely many G_h -orbits in M. This concept is realization-free and is determined only by the holomorphism group of D. Let H be the identity component of the linear automorphism group of D. Then there exists a natural homomorphism ρ of H into the linear automorphism group of the cone V. The cone V is called of $\rho(H)$ -finite type, if there exists only a finite number of $\rho(H)$ -orbits in the ambient vector space in which V is imbedded as an open cone.

The first aim of this paper is to show that, if M has at most countably many G_h -orbits, then D is of finite type, and in this case each G_h -orbit is a semi-analytic set in M (Theorem 3.8). It follows that, if D is of finite type, then it is necessarily homogeneous (Proposition 3.11). As a consequence, if Dis not homogeneous, then M has non-countably many G_h -orbits (Corollary 3.12). The main purpose of this paper is to prove the equivalence between finite type for D and $\rho(H)$ -finite type for V (cf. Theorem 3.15). Thus D being of finite type or not is reduced to the problem on orbits under a group of linear transformations. We also show that every connected component of the intersection of a G_h -orbit with C^N is a G_a -orbit and conversely every G_a -orbit is obtained in this manner (Theorem 3.3). This yields a qualitative proof of a result of Kaup-Matsushima-Ochiai [5] which states that, if D is homogeneous, then it is affinely homogeneous (Corollary 3.5). Finally we remark that the class of Siegel domains of finite type properly contains the class of quasi-symmetric Siegel domains (Corollary 3.14 and Example 3.17). In this paper we make use of some

This research was partially supported by Grant-in-Aid for Scientific Research (No. 61540060), Ministry of Education, Science and Culture.

basic properties on semi-analytic sets and semi-algebraic sets (cf. Lojasiewicz [6], [14]). The complexification of a real vector space X will be denoted by X^c throughout this paper.

The author is grateful to H. Omori for helpful conversations.

§1. Basic facts on Siegel domains.

In this section we give a brief summary of basic facts on Siegel domains which are needed for later considerations (cf. [5], [12], [8], [7], [3]). Let Vbe an open convex cone in a real vector space R with vertex at the origin which contains no affine lines. We will call such a cone V simply a convex cone in R. Let W be a complex vector space and F be a V-hermitian form on W. Let us define a map Φ of the complex vector space $R^c \times W$ to R by putting

(1.1)
$$\Phi(z, u) = \operatorname{Im} z - F(u, u), \quad z \in \mathbb{R}^{c}, \quad u \in W.$$

Then the complete inverse image $\Phi^{-1}(V)$ is called a Siegel domain of the second kind or of the first kind, according as $W \neq (0)$ or W = (0). Later on $\Phi^{-1}(V)$ will be usually denoted by D(V, F) or briefly by D. If $\Phi^{-1}(V)$ is of the first kind, then it will usually be denoted by D(V). Let G_h (resp. G_a) denote the identity component of the group of holomorphic (resp. affine) automorphisms of D. The Lie algebra \mathfrak{g}_h of G_h has a structure of graded Lie algebra:

(1.2)
$$\mathfrak{g}_{h} = \mathfrak{g}_{-2} + \mathfrak{g}_{-1} + \mathfrak{g}_{0} + \mathfrak{g}_{1} + \mathfrak{g}_{2}.$$

The Lie algebra g_a of G_a is the graded subalgebra of g_h :

(1.3)
$$\mathfrak{g}_{\mathfrak{a}} = \mathfrak{g}_{-2} + \mathfrak{g}_{-1} + \mathfrak{g}_{0} \,.$$

 \mathfrak{g}_h is naturally realized as a Lie algebra of polynomial vector fields on $\mathbb{R}^c \times W$. The group G_h is center-free and so it can be identified with the adjoint group of \mathfrak{g}_h . The subspaces \mathfrak{g}_{-2} and \mathfrak{g}_{-1} may be naturally identified with \mathbb{R} and W, respectively. \mathfrak{g}_{-1} and \mathfrak{g}_1 have the complex structures which are induced by the adjoint action of the vector field corresponding to the one-parameter subgroup of G_h sending a point $(z, u) \in \mathbb{R}^c \times W$ to the point $(z, e^{it}u), t \in \mathbb{R}$. Therefore the complexifications \mathfrak{g}_{-1}^c and \mathfrak{g}_1^c of \mathfrak{g}_{-1} and \mathfrak{g}_1 can be written in the form

(1.4)
$$g_{-1}^{c} = g_{-1}^{+} + g_{-1}^{-}, \quad g_{1}^{c} = g_{1}^{+} + g_{1}^{-},$$

where g_1^+ and g_{-1}^+ (resp. g_1^- and g_{-1}^-) are the subspaces of g_1^c and g_{-1}^c consisting of holomorphic (resp. anti-holomorphic) vectors, respectively. Then the complexification g_h^c of g_h is written in the form of the graded Lie algebra:

(1.5)
$$\mathfrak{g}_h^c = \mathfrak{a}_{-1} + \mathfrak{a}_0 + \mathfrak{a}_1,$$

where we put

Siegel domains of finite type

(1.6)
$$a_{-1} = g_{-2}^{C} + g_{-1}^{+}, \quad a_{0} = g_{-1}^{-} + g_{0}^{C} + g_{1}^{+}, \quad a_{1} = g_{1}^{-} + g_{2}^{C}.$$

Let G_h^c be the adjoint group of the Lie algebra \mathfrak{g}_h^c . G_h^c contains G_h as a subgroup. Let U be the normalizer of the complex subalgebra $\mathfrak{u}=\mathfrak{a}_0+\mathfrak{a}_1$ in G_h^c . We know that U is connected and Lie $U=\mathfrak{u}$. Let us consider the complex homogeneous space $M=G_h^c/U$. Note that if the Siegel domain D is symmetric, then M is no other than its compact dual. Now let π be the natural projection of G_h^c onto M, and let us consider the composite map $\boldsymbol{\xi}=\pi \cdot \exp$ of \mathfrak{a}_{-1} into M. Then $\boldsymbol{\xi}$ is an open dense holomorphic imbedding of the vector space \mathfrak{a}_{-1} into M. Since we are identifying \mathfrak{g}_{-2} with R and \mathfrak{g}_{-1} with W, the complex vector space \mathfrak{a}_{-1} is identified with $R^c \times W$. Hence D is viewed as a domain in \mathfrak{a}_{-1} . Then it is known that the imbedding $\boldsymbol{\xi}$ is G_h -equivariant on D. The imbedding $\boldsymbol{\xi}$ of Dis called the *Tanaka's imbedding*.

DEFINITION 1.1. With notations above, the Siegel domain D is said to be of finite type, if there are only finite number of G_h -orbits in M. D is said to be of G_a -finite type, if there are only finite number of G_a -orbits in $R^c \times W$.

We shall see later that every symmetric Siegel domain is of finite type. Let H denote the isotropy subgroup of G_a at the origin in $\mathbb{R}^c \times W$. Then G_a can be expressed as

(1.7)
$$G_a = H \cdot RW$$
, (semi-direct)

where RW is the two-step nilpotent normal subgroup of G_a which is diffeomorphic to $R \times W$ and acts simply transitively on the Silov boundary of D. H consists of the pairs $(A, B) \in GL(R) \times GL(W)$ satisfying the two conditions:

(1.8)
$$AF(u, v) = F(Bu, Bv) \quad u, v \in W$$

(1.9) A is in the identity component G(V) of the (linear) automorphism group of the cone V.

We denote by ρ the homomorphism of H to G(V) defined by $\rho(A, B) = A$.

DEFINITION 1.2. With notations above, the cone V is called *of finite type* (resp. of $\rho(H)$ -finite type), if there exist only finitely many G(V)-orbits (resp. $\rho(H)$ -orbits) in R.

Note that this definition of finite type is equivalent to the original definition of Pjaseckii [9].

§2. The relation between G_a -orbits and $\rho(H)$ -orbits.

The following lemma and corollary are well-known [10].

LEMMA 2.1. (i) Let $g \in G_a$ and put g = (h, a, c), where $h \in H$, $a \in R$, $c \in W$ (cf. (1.7)). Then we have

(2.1)
$$\Phi(g(z, u)) = \rho(h)\Phi(z, u), \quad (z, u) \in \mathbb{R}^c \times W.$$

(ii) Any point $(z, u) \in \mathbb{R}^c \times W$ can be sent to the point $(i \Phi(z, u), 0)$ by a transformation in the group RW.

COROLLARY 2.2. Let (z', u') be the image of a point $(z, u) \in \mathbb{R}^c \times W$ under a transformation $(a, c) \in \mathbb{R}W$. Then we have

(2.2)
$$\Phi(z', u') = \Phi(z, u).$$

Conversely, if two points (z, u) and (z', u') satisfy (2.2), then there exists a transformation in RW which sends (z, u) to (z', u').

LEMMA 2.3. Let \heartsuit be a $\rho(H)$ -orbit in R. Then $\Phi^{-1}(\heartsuit)$ is a G_a -orbit in $\mathbb{R}^c \times W$.

PROOF. Take two points (z_1, u_1) and (z_2, u_2) in $\Phi^{-1}(\mathcal{O})$. Then there exists an element $h \in H$ such that

$$\Phi(z_2, u_2) = \rho(h)\Phi(z_1, u_1) = \Phi(h(z_1, u_1)).$$

On the other hand, by Lemma 2.1, the point (z_1, u_1) is sent to the point $(i\Phi(h(z_1, u_1)), 0) = (i\Phi(z_2, u_2), 0)$ by an element in G_a . Also (z_2, u_2) is sent to the same point by an element in RW. From these two it follows that $\Phi^{-1}(\mathcal{V})$ is contained in the orbit $G_a(z_1, u_1)$. Conversely take a point $g(z_1, u_1) \in G_a(z_1, u_1)$, where $g \in G_a$. If we write g in the form $(h, a, c) \in H \cdot RW$, then we have $\Phi(g(z_1, u_1)) = \rho(h)\Phi(z_1, u_1) \in \rho(h)\mathcal{V} = \mathcal{V}$. This implies the inclusion $\Phi^{-1}(\mathcal{V}) \supset G_a(z_1, u_1)$.

LEMMA 2.4. The correspondence $\Theta: \heartsuit \to \Phi^{-1}(\heartsuit)$ is a bijection between the set of all $\rho(H)$ -orbits in R and the set of all G_a -orbits in $R^c \times W$.

PROOF. Let \mathcal{D} be a G_a -orbit in $\mathbb{R}^c \times W$, and put $\mathcal{O} = \Phi(\mathcal{D})$. Then \mathcal{O} is a $\rho(H)$ -orbit in \mathbb{R} . Indeed, take two points $\Phi(z_i, u_i)$, where $(z_i, u_i) \in \mathcal{D}$, i=1, 2. Then there exists $g=(h, a, c) \in G_a$ such that $g(z_1, u_1)=(z_2, u_2)$. Therefore, by Lemma 2.1, we have $\Phi(z_2, u_2)=\Phi(g(z_1, u_1))=\rho(h)\Phi(z_1, u_1)$. Conversely, for an arbitrary element $h \in H$, we have $\rho(h)\Phi(z_1, u_1)=\Phi(h(z_1, u_1))\in \Phi(\mathcal{D})=\mathcal{O}$. Therefore we conclude $\mathcal{O}=\rho(H)\Phi(z_1, u_1)$. We want to show $\mathcal{D}=\Phi^{-1}(\mathcal{O})$. Take a point $(z, u)\in \Phi^{-1}(\mathcal{O})$. Then there exists a point $(z', u')\in \mathcal{D}$ such that $\Phi(z, u)=\Phi(z', u')$. By Corollary 2.2, we have $(z, u)\in \mathbb{R}W(z', u')\subset G_a(z', u')=\mathcal{D}$, which implies $\Phi^{-1}(\mathcal{O})\subset \mathcal{D}$. Thus we get $\Phi^{-1}(\mathcal{O})=\mathcal{D}$. This means that the map Θ is surjective. That Θ is injective is trivial.

From Lemma 2.4 we have

PROPOSITION 2.5. A Siegel domain D(V, F) is of G_a -finite type if and only if the cone V is of $\rho(H)$ -finite type.

COROLLARY 2.6. Every quasi-symmetric Siegel domain D(V, F) is of G_a -finite type.

PROOF. In this case the cone V is homogeneous self-dual, and consequently it is of finite type [9], [16]. Since D(V, F) is quasi-symmetric, we have $\rho(H) = G(V)$ ([11]). The corollary now follows from Proposition 2.5.

COROLLARY 2.7. A Siegel domain of the first kind D(V) is of G_a -finite type, if and only if the cone V is of finite type.

PROOF. Note that, for a Siegel domain of the first kind D(V), we have $\rho(H)=G(V)$.

§3. The relation between G_h -orbits and G_a -orbits.

Under the identifications of R with \mathfrak{g}_{-2} and of W with \mathfrak{g}_{-1} , Φ is viewed as a mapping of \mathfrak{a}_{-1} to \mathfrak{g}_{-2} . In the sequel we shall identify $R^c \times W$ (viewed as \mathfrak{a}_{-1}) with its image under the imbedding $\boldsymbol{\xi}$.

LEMMA 3.1 (Tanaka [12]). Let $X \in \mathfrak{g}_h$. Then the Lie derivative $L_X \Phi$ of Φ with respect to X, viewed as a vector field on \mathfrak{a}_{-1} , is given by

$$L_{X}\Phi = [B_{X}, \Phi],$$

where B_X is a g_0 -valued function on a_{-1} depending on X.

PROPOSITION 3.2. Let Ω be a G_a -orbit in $\mathbb{R}^c \times W$ and let \mathcal{M} be a unique G_h orbit in M containing Ω . Then we have dim Ω =dim \mathcal{M} .

PROOF. The proof is similar to that of Lemma 3.14 in Tanaka [13]: so we can omit the details. Here we use Lemmas 2.4, 3.1 and the fact that Φ is a submersion. Also note that the representation ρ of H is identified with its adjoint representation on g_{-2} .

The following theorem gives the relation between G_h -orbits and G_a -orbits.

THEOREM 3.3. Let $M = \coprod_{\lambda \in \Lambda} \mathcal{M}_{\lambda}$ be the orbit decomposition of M under G_h , and let $\mathcal{D}_{\lambda} = \mathcal{M}_{\lambda} \cap (\mathbb{R}^c \times W), \ \lambda \in \Lambda$. Then, for each $\lambda \in \Lambda$, every connected component of \mathcal{D}_{λ} is a G_a -orbit. Conversely every G_a -orbit in $\mathbb{R}^c \times W$ is obtained in this manner.

PROOF. By a result of Nakajima [7], \mathcal{D}_{λ} is not empty for each $\lambda \in \Lambda$. Let

 $\mathcal{D}_{\lambda} = \coprod_{\alpha \in A} \mathcal{D}_{\lambda \alpha}$ be the decomposition of \mathcal{D}_{λ} into its connected components. Take a point $p \in \mathcal{D}_{\lambda \alpha}$. Then the orbit $G_{a}p$ is contained in $\mathcal{M}_{\lambda} \cap (\mathbb{R}^{c} \times W) = \mathcal{D}_{\lambda}$. Therefore we have $G_{a}p \subset \mathcal{D}_{\lambda \alpha}$, which means that $\mathcal{D}_{\lambda \alpha}$ is G_{a} -stable. From Proposition 3.2 it follows that $G_{a}p$ is open in $\mathcal{D}_{\lambda \alpha}$. Suppose now that $G_{a}p \subseteq \mathcal{D}_{\lambda \alpha}$. Choose a point q in $\mathcal{D}_{\lambda \alpha} - G_{a}p$. Then the orbit $G_{a}q$ is contained in $\mathcal{D}_{\lambda \alpha} - G_{a}p$. Again by Proposition 3.2, $G_{a}q$ is open in $\mathcal{D}_{\lambda \alpha}$. Hence $\mathcal{D}_{\lambda \alpha} - G_{a}p$ is open in $\mathcal{D}_{\lambda \alpha}$. But this contradicts the fact that $\mathcal{D}_{\lambda \alpha}$ is connected. We have thus proved $G_{a}p$ $= \mathcal{D}_{\lambda \alpha}$. The second assertion can be analogously proved.

The set \mathcal{D}_{λ} ($\lambda \in \Lambda$) is called a *truncated* G_h -orbit in $\mathbb{R}^c \times W$. Note that the G_h -orbit through a point in D is thoroughly contained in D.

COROLLARY 3.4. Let \mathcal{M}_{λ} be a G_h -orbit contained in D. Then \mathcal{M}_{λ} is also a G_a -orbit.

PROOF. In this case we have $\mathcal{M}_{\lambda} = \mathcal{D}_{\lambda}$.

As a direct consequence we have the following corollary which was originally proved by Kaup-Matsushima-Ochiai [5].

COROLLARY 3.5. If the group G_h is transitive on D, then so is G_a .

Let $\tilde{\Omega}$ be the union of all k-dimensional G_h -orbits in M. Suppose that $\tilde{\Omega}$ is not empty. The intersection $\Omega = \tilde{\Omega} \cap (R^c \times W)$ is the union of all k-dimensional truncated G_h -orbits, and it is not empty (cf. the proof of Theorem 3.3).

LEMMA 3.6. $\tilde{\Omega}$ is a semi-analytic set in the real analytic manifold M.

PROOF. Let $\mathfrak{g}_h(p)$ denote the subspace of the tangent space $T_p(R^c \times W)$, $p \in R^c \times W$, which is spanned by the values at p of vector fields belonging to \mathfrak{g}_h . Let $\{X_1, \dots, X_r\}$ be a basis of \mathfrak{g}_h , and choose a real linear coordinate system (x_1, \dots, x_n) of $R^c \times W$. Let us express X_i in the form $X_i = \sum_{j=1}^n \xi_{ji} \partial/\partial x_j$ $(1 \le i \le r)$. Since X_i 's are polynomial vector fields on $R^c \times W$ [5], the components ξ_{ji} are polynomials on $R^c \times W$. We then have

(3.2)
$$\mathcal{Q} = \{ p \in \mathbb{R}^c \times W : \dim \mathfrak{g}_h(p) = \operatorname{rank}(\xi_{ji}(p)) = k \}.$$

This implies that Ω is a semi-algebraic set in $\mathbb{R}^c \times W$, more precisely, Ω is defined in $\mathbb{R}^c \times W$ by a finite number of polynomial equalities and polynomial inequalities. Let p be a point in M which does not belong to $\mathbb{R}^c \times W$. Then there exists $a \in G_h$ such that $ap \in \mathbb{R}^c \times W$ [7]. In the neighborhood $a^{-1}(\mathbb{R}^c \times W)$ of p in M, the intersection $\tilde{\Omega} \cap a^{-1}(\mathbb{R}^c \times W)$ is defined by a finite number of the equalities and the inequalities given by the real analytic functions which are the composites of the polynomial functions defining Ω and the transformation a. This implies that $\tilde{\Omega}$ is a semi-analytic set in M.

LEMMA 3.7. $\tilde{\Omega}$ has only finitely many connected components.

PROOF. Let $\tilde{\Omega} = \coprod_{\alpha \in A} \tilde{\Omega}_{\alpha}$ be the decomposition of $\tilde{\Omega}$ into its connected components. Then we have

(3.3)
$$\Omega = \lim_{\alpha \in A} \tilde{\Omega}_{\alpha} \cap (R^c \times W) \,.$$

Note that each term of the right-hand side is never empty, since each G_h -orbit always meets $R^c \times W$ [7]. On the other hand each term of the right-hand side of (3.3) is open and closed in Ω . By decompoing each term of the right-hand side of (3.3) into the connected components, we have the decomposition of Ω into its connected components. But, since Ω is a semi-algebraic set in $R^c \times W$, Ω has only finitely many connected components [6]. Therefore we conclude that the index set A is a finite set.

THEOREM 3.8. Suppose that M has at most countably many G_h -orbits. Then M has only finitely many G_h -orbits, and moreover each G_h -orbit is a semi-analytic set in M.

PROOF. Let $\{\mathcal{M}_1, \mathcal{M}_2, \cdots\}$ be the totality of k-dimensional G_h -orbits in M. We have

(3.4)
$$\tilde{\Omega} = \prod_{i=1}^{m} \mathcal{M}_i \,.$$

By Lemma 3.7 we can write

$$\tilde{\Omega} = \tilde{\Omega}_1 \parallel \tilde{\Omega}_2 \parallel \cdots \parallel \tilde{\Omega}_t,$$

where $\tilde{\mathcal{Q}}_1, \dots, \tilde{\mathcal{Q}}_t$ are the totality of the connected components of $\tilde{\mathcal{Q}}$. Since $\tilde{\mathcal{Q}}$ is semi-analytic in M, so is each $\tilde{\mathcal{Q}}_i$ [6]. $\tilde{\mathcal{Q}}$ is obviously G_h -invariant. Therefore each $\tilde{\mathcal{Q}}_i$ is also G_h -invariant, since G_h is connected. Thus each $\tilde{\mathcal{Q}}_i$ is a disjoint union of G_h -orbits \mathcal{M}_i . From this it follows that dim $\tilde{\mathcal{Q}}_i \geq k$ for each i. We have either one of the following two cases:

a) dim $\hat{\Omega}_i = k$ for $1 \leq i \leq t$,

b) there exists an i_0 such that dim $\hat{\Omega}_{i_0} > k$.

Suppose that the case b) occurs. Let $k_0 = \dim \tilde{\Omega}_{i_0}$, and let A be the set of k_0 dimensional regular points in $\tilde{\Omega}_{i_0}$. A is then a k_0 -dimensional submanifold of M which is open and dense in $\tilde{\Omega}_{i_0}$ [6]. Let A_{λ} be a connected component of A. G_h leaves A stable. Therefore, G_h being connected, A_{λ} is G_h -stable, and hence A_{λ} can be written as a disjoint union of at most countably many kdimensional G_h -orbits in M. Those G_h -orbits naturally define a k-dimensional involutive distribution on A_{λ} . Therefore, following the Chevalley's proof of the Frobenius theorem, one can find a cubic neighborhood Q of a point in A_{λ} in which each of those G_h -orbits can be expressed as k-dimensional slices, and

furthermore the number of those slices are at most countable for each G_h -orbit. Consequently it follows finally that the k_0 -dimensional cubic neighborhood Q is written as a disjoint union of at most a countable number of k-dimensional slices. But this is clearly a contradiction. Therefore we have to have the case a). In this case every G_h -orbit forming \tilde{Q}_i is open in \tilde{Q}_i , and hence \tilde{Q}_i must coincide with only one G_h -orbit, since \tilde{Q}_i is connected. As a consequence the two decompositions (3.4) and (3.5) are identical. Thus we have proved the theorem.

COROLLARY 3.9. Suppose that D is of finite type. Then every truncated G_h -orbit in $\mathbb{R}^c \times W$ has only finitely many connected components.

PROOF. As is seen in the proof of Theorem 3.8, (3.5) is the decomposition of $\tilde{\Omega}$ into k-dimensional G_h -orbits. We have

(3.6)
$$\mathcal{Q} = \coprod_{i=1}^{t} \tilde{\mathcal{Q}}_{i} \cap (R^{c} \times W) \,.$$

 $\tilde{\mathcal{Q}}_i \cap (R^c \times W)$ is a k-dimensional truncated G_h -orbit. Furthermore, $\tilde{\mathcal{Q}}_i \cap (R^c \times W)$ is open and closed in \mathcal{Q} and hence it can be written as a disjoint union of connected components of \mathcal{Q} . Since \mathcal{Q} has only finitely many connected components, the number of connected components of \mathcal{Q} forming $\tilde{\mathcal{Q}}_i \cap (R^c \times W)$ should be finite.

COROLLARY 3.10. Suppose that D is of finite type. Then every G_a -orbit and every truncated G_h -orbit are both semi-algebraic sets in $\mathbb{R}^c \times W$.

PROOF. Let \mathcal{D}_i be a G_a -orbit of dimension k. Then \mathcal{D}_i is a connected component of a truncated G_h -orbit $\tilde{\mathcal{Q}}_i \cap (\mathbb{R}^c \times W)$ (Theorem 3.3). That connected component is semi-algebraic, since it is a connected component of the semialgebraic set \mathcal{Q} [6]. By Corollary 3.9, every truncated G_h -orbit has only finitely many connected components which are all semi-algebraic, as was shown above. Therefore the truncated G_h -orbit is also semi-algebraic [6].

REMARK. Suppose that D is of finite type. Then, by Theorem 3.8 and Corollary 3.10, every G_n -orbit (resp. every truncated G_n -orbit) is locally closed in M (resp. $R^c \times W$) and so it is a regular submanifold of M (resp. $R^c \times W$) [1].

PROPOSITION 3.11. Suppose that D is of finite type. Then D is homogeneous, that is, the group G_h acts transitively on D.

PROOF. D can be written as the disjoint union of G_h -orbits \mathcal{M}_i which are contained in D:

$$D = \coprod_{i=1}^{s} \mathcal{M}_{i}.$$

By Corollary 3.10, each \mathcal{M}_i is semi-algebraic in $\mathbb{R}^c \times W$. Therefore D itself is

a semi-algebraic set in $\mathbb{R}^c \times W$; we have dim $D = \max_{1 \le i \le s} \dim \mathcal{M}_i$. Consequently there exists a G_n -orbit $\mathcal{M}_{i_0} \subset D$ which contains an open set in $\mathbb{R}^c \times W$. D has the Bergman metric, with respect to which G_n is a group of isometries of D. Hence it follows that $D = \mathcal{M}_{i_0}$.

COROLLARY 3.12. Suppose that D is not homogeneous. Then there exist noncountably infinite number of G_h -orbits in M.

PROOF. Otherwise D has to be of finite type (Theorem 3.8). Therefore, by Proposition 3.11 D is homogeneous, which is a contradiction.

PROPOSITION 3.13. D is of finite type if and only if it is of G_a -finite type.

PROOF. Suppose that D is of G_a -finite type. Let $M = \coprod_{\lambda \in \Lambda} \mathcal{M}_{\lambda}$ be the G_h orbit decomposition of M. As was remarked before (cf. the proof of Theorem 3.3), $\mathcal{D}_{\lambda} = \mathcal{M}_{\lambda} \cap (\mathbb{R}^c \times W)$ is not empty for every $\lambda \in \Lambda$. By Theorem 3.3, all connected components of all \mathcal{D}_{λ} ($\lambda \in \Lambda$) exhaust all G_a -orbits in $\mathbb{R}^c \times W$. That G_a orbits are finite in number implies that Λ is a finite set. Conversely suppose that M has only finitely many G_h -orbits $\mathcal{M}_1, \dots, \mathcal{M}_s$. Set $\mathcal{D}_i = \mathcal{M}_i \cap (\mathbb{R}^c \times W)$, $1 \leq i \leq s$. By Corollary 3.9, every \mathcal{D}_i has only finitely many connected components each of which is a G_a -orbit (cf. Theorem 3.3). Therefore D is of G_a finite type.

From the above proposition and Corollary 2.6, we have

COROLLARY 3.14. Every quasi-symmetric Siegel domain is of finite type.

Combining Proposition 3.13 with Proposition 2.5, we finally obtain

THEOREM 3.15. Let D=D(V, F) be a Siegel domain. Then D is of finite type if and only if the cone V is of $\rho(H)$ -finite type. In particular, a Siegel domain of the first kind D(V) is of finite type if and only if the cone V is of finite type.

Let $H(n, \mathbf{R})$ be the vector space of real symmetric $n \times n$ matrices and $V = H^+(n, \mathbf{R})$ be the convex cone in $H(n, \mathbf{R})$ consisting of all positive definite elements. Then we have

COROLLARY 3.16. If a Siegel domain $D=D(H^+(n, \mathbf{R}), F)$ is homogeneous, then it is of finite type.

PROOF. By Corollary 3.5, the group G_a is transitive on D. Hence $\rho(H)$ contains a maximal (connected) \mathbf{R} -triangular subgroup T_1 of G(V) ([2]). It is known [15] that there are only finitely many T_1 -orbits in $H(n, \mathbf{R})$. Consequently $H^+(n, \mathbf{R})$ is of $\rho(H)$ -finite type, which implies that D is of finite type.

EXAMPLE 3.17. Let D be a Siegel domain over the cone $H^+(2, \mathbf{R})$ in C^4 :

$$(3.8) D = \{(z_1, z_2, z_3, u) \in C^4 : (y_1 - |u|^2)y_2 - y_3^2 > 0, y_2 > 0\},\$$

where $z_k = x_k + iy_k$ (k=1, 2, 3). As is well-known, D is the lowest dimensional non-symmetric homogeneous Siegel domain. D serves an example of Siegel domains of finite type which are not quasi-symmetric.

EXAMPLE 3.18. Let D=D(V, F) be a homogeneous Siegel domain in C^{s} formed by all points (z_1, \dots, z_7, u) satisfying

(3.9)
$$\begin{cases} ((y_1 - |u|^2)y_3 - y_6^2 - y_7^2)(y_2y_3 - y_5^2) - (y_3y_4 - y_5y_6)^2 > 0, \\ y_2y_3 - y_5^2 > 0, \quad y_3 > 0, \end{cases}$$

where $z_k = x_k + iy_k$ ([4]). Then the underlying cone V is a homogeneous cone of rank 3 which are not self-dual [4]. One can verify by using a result of [9] that V is not of finite type, and so it is not of $\rho(H)$ -finite type. D provides an example of Siegel domains which are homogeneous but not of finite type.

Bibliography

- [1] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 2-3, Hermann, Paris, 1972.
- S. Kaneyuki, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967), 89-130.
- [3] S. Kaneyuki, Homogeneous Bounded Domains and Siegel Domains, Lecture Notes in Math., 241, Springer, 1971.
- [4] S. Kaneyuki and T. Tsuji, Classification of homogeneous bounded domains of lower dimension, Nagoya Math. J., 53 (1974), 1-46.
- [5] W. Kaup, Y. Matsushima and T. Ochiai, On the automorphisms of generalized Siegel domains, Amer. J. Math., 92 (1970), 475-497.
- [6] S. Lojasiewicz, Ensembles semi-analytiques, Lecture Notes, IHES, Bures-sur-Yvette, 1965.
- K. Nakajima, On Tanaka's imbeddings of Siegel domains, J. Math. Kyoto Univ., 14 (1974), 533-548.
- [8] K. Nakajima, On equivariant holomorphic imbeddings of Siegel domains to compact complex homogeneous spaces, J. Math. Kyoto Univ., 19 (1979), 471-480.
- [9] V.S. Pjaseckii, Classification of convex cones of finite type of rank three, Trudy Sem. Vektor. Tenzor. Anal., 19 (1979), 202-217.
- [10] I.I. Pyatetskii-Shapiro, Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.
- [11] I. Satake, Algebraic Structure of Symmetric Domains, Iwanami Shoten Publishers, Tokyo and Princeton Univ. Press, Princeton, 1980.
- [12] N. Tanaka, On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970), 180-212.
- [13] N. Tanaka, On affine symmetric spaces and the automorphism groups of product manifolds, 14 (1985), 277-351.
- [14] S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1964), 449-474.

606

- [15] V.S. Pjaseckii, Classification of convex cones of T-finite type, Trudy Moscow Math. Soc., 41 (1980), 37-82.
- [16] V.S. Pjaseckii, Finiteness problem in the theory of homogeneous convex cones, Trudy Moscow Math. Soc., 47 (1984), 219-244.

Soji Kaneyuki

Department of Mathematics Sophia University Kioicho, Tokyo 102 Japan