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Singular hyperbolic systems, VI.
Asymptotic analysis for Fuchsian hyperbolic
equations in Gevrey classes

By Hidetoshi TAHARA

(Received March 22, 1986)

In the previous papers [11, 12, 13], the author has investigated Fuchsian
hyperbolic equations in C= function spaces. But, here, Fuchsian hyperbolic
equations are studied in Gevrey function spaces.

The motivation is as follows. Let

P:__" (tat>2~tleazrl—tzxza.ztz_*_tllal(ty x)ax1+t12a2(tr x>a.2‘2+b(t; x)(tat)+c(t) x)’

where (¢, x)=(, x,, x.)€[0, TIXR?, 2k, 2k5, I1, LEN (={1, 2, 3, ---}), a.(t, x),
ast, x), b, x), c(t, x)e C=([0, T]XR*), a,(0, x)==0 and a40, x)70. Let p,(x),
ps(x) be the roots of p®+b(0, x)p+c(0, x)=0 and assume that p,(x), p(x)EZ.
(=10, 1, 2, ---}) for any x€R?% Then, by Tahara and Mandai we can
see the following: Pu=f is well-posed in C=([0, TJxXR?*, if and only if
“l,.=zk, and [,=k,” holds. Hence, if we want to treat P without “/,=«, and
l,=k,”, we must restrict ourselves to the study in suitable subclasses of
C=([0, TJX R?*. For this purpose, Gevrey classes seem to be very fitting. This
is the reason why the author has come to treat the equation in Gevrey classes.

§1. Main Theorem.

First, we state our Main Theorem and its background.
Let (¢, x)=[0, TJXR™ (T >0), and let us consider

P(t, x, t0,, 05) = (t6¢>"‘+,+]2$ ta g, W (t, x)(t0,)0%, (1.1)
iem

where x=(x,, ---, x,), 0,=0/d{, 0,=(0/0xy, ---, 0/0x,), meN (={1, 2, 3, --+}),
a=(ay, , an)E Z-’i‘- (:{O, L2 }n)’ |a|=a;+ - +a, and ag:(a/axx)al (a/axn)an-
Assume the following conditions:

(A, I(J, @) eR (j+|a|<m and j<m) satisfy
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I(j, @) = k,ay+ - +ka,, when j+la|=m and j<m,
(j, @) >0, when j+|a|<m and |a]>0,
I(j, ) 20, when j+|al<m and |a|=0

for some k=(k;, -+, £,)€R™ such that £;>0 (1=:<n).
(B) All the roots A;(¢, x, &) (1<:i<m) of
A"+ . > aj,a(t; x)/vf“ =0
Jt+lal=m
j<m
are real, simple and bounded on {(t, x, £)[0, TIXR"XR™; |&]|=1}.
Then, this operator P(t, x, td,, 0,) (=P) is a good generalization of the

operator in the introduction. In this case, the characteristic exponents
0i(x), -+, pn(x) of P are defined by the roots of

o™+ 3 ay(x)p? =0,
j<m

where a;(x)=[t'7""a; .0 x)]]i=0 (F<m).
In Tahara [11, 12], we have discussed Fuchsian hyperbolic equations.in C*
function spaces, and established the following result.

THEOREM (Tahara [11, 12]). Assume that I(j, a)eZ, (+|a|<m and j<m),
that a; ., x)e C=([0, T], E&R™)) (F+lal=m and j<m), and that (A.), (B) and
the condition

(T) I, a)=ka1+ -+ +Kknan, when j+|a|<m and |a|>0
are satisfied. Then, we have the following results.

(1) (Unique solvability, [11]). If pix)&Z, holds for any x<R™ and
1=<i<m, the equation

P(t, x, 10;, 0,)u = f in C=([0, T1, &(R™)

s uniquely solvable.
(I) (Asymptotic expansions, [12]). If p(x)—p;(x)&EZ holds for any x= R™
and 1=i+#j=<m, the general solution of

P(t, x, 1d;, 05)u =0 in C=((0, T), &(R™))

is characterized as follows. (I-1) Any solution u(t, x)e C=((0, T), &(R™)) can be
expanded asymptotically into the form
m ®©  mk X
ut, x) ~ 3 (o4 S B g oeserH(log fym)
(as t—+0) for some unique ¢@ix), ein(x)€&(R™). (I-2) Conversely, for any
0i(x), =+, om(x)EE(R™) there exist a unique solution u(t, x)e C=((0, T), &(R™))
and unique coefficients @i (x)e&(R™) 1=i<m, 1=k<co and 0=h=<mk) such that
the asymptotic relation in (II-1) holds.
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Here, &(R™) means the space of all C* functions on R™ equipped with the
usual topology, and C=([0, T], &R™)) (resp. C=((0, T), €&(R™))) means the space
of all infinitely differentiable functions on [0, T'] (resp. (0, T)) with values in
E(R™).

In the above theorem, we have assumed the condition (T). But, here, we
want to consider the case without (T).

When (T) is not satisfied, it seems impossible to have good results in
C=([0, T], &(R™) or C=(0, T), &(R™). In fact, we can see the following:
under the conditions a; ,(0, x)%0 (j+|a|<m and |a|>0), (T) is the necessary
and sufficient condition for the flat Cauchy problem for P to be C* well-posed
(by Tahara and Mandai [7, 8]). Therefore, if we want to discuss the
case without (T), we must restrict ourselves to the study in suitable subclasses
of C=([0, T], &R™) or C=((0, T), &(R™). This is the starting point of this
paper. Especially, our interest lies in the following. What kind of subclasses
are suitable ? By what quantities are the admissible classes characterized ?

A function f(x)eC=(R™) is said to belong to the Gevrey class &(R™"), if
f(x) satisfies the following: for any compact subset K of R", there are C>0
and ~A>0 such that

ilé%l&’;}f(?:)l < Ch'e(lalh)® for any acZ?. (1.2)

As a locally convex space, &9 (R™) is defined as follows. For A>0 and a
regular compact subset K of R™ we denote by &%-*(K) the space of all
functions f(x)e C=(K) satisfying for some C>0. By the norm |f|=
sup{|0¢f(x)|/h'*'(|a|V)®; x K and acZ?}, &% *(K) becomes a Banach space.
Then,

£WI(K) = lim £ M(K),

h—oo

8(3)(Rn) = LET} g(s}(K)
KeR™

(see Komatsu [5]). By C=([0, T], &*(R™) (resp. C=((0, T), &“(R™))) we denote
the space of all infinitely differentiable functions on [0, T'] (resp. (0, T)) with
values in €%(R™) equipped with the locally convex topology above.

In this paper, we employ the class C=([0, T], &(R™)) or C=((0, T), &9 (R™))
as a framework of our discussion, following the case of the Cauchy problem
for analogous operators in Ivrii [4], Igari [3], Uryu [16]. Then, we can set
up our problem as follows: determine the precise bound of the index s of the
Gevrey class &' for which the results—the unique solvability in C*([0, T],
&¥(R™) and the asymptotic expansions of solutions in C=((0, T'), &*'(R™))—are
valid.
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The conclusion of this paper is as follows. Let P(¢, x, td,, 0;) be as in
(1.1}, and assume that (A,) and (B) are satisfied. Define the irregularity index
o (=1) of Pby

o= max[l, max {min(maxM,-,a(r, r))H R (1.3)

Jrlal<m \rep \1s7rsn
lal>0

where &, is the permutation group of n-numbers and

Di=ilkeciy—Eeen) ey +(M— Ky — (7, @) . (1.4)

Mj,o(z, 1) = (m—j—la| )k

Then, the results desired in our problem are valid, if s satisfies the following
condition :

C) 1<s<ao/(e—1).

MAIN THEOREM. Assume that [(j, e)eZ, (G+la|=<m and j<m), that
a;j ., x)eC[0, T, E(R™) (G+|al<m and j<m), and that (A,), (B) and (C)
are satisfied. Then, we have the following results.

(I) (Unique solvability). If pi(x)&Z, holds for any x€R™ and 1<i<m,
the equation

P(t, x, 10,, 9:)u = f in C=([0, T], &¥'(R™))

is uniquely solvable.
(I) (Asymptotic expansions). If pix)—px)&Z holds for any xR™ and
1<i#j7<m, the general solution of

P(t; X, tat; az)u = 0 in Cw((o’ T)) S(S)(Rn)>

is characterized as follows. (II-1) Any solution u(t, x)e C=(0, T), &S (R™) can
be expanded asymptotically into the form

ut, ) ~ B (e + 5 B oot logymi-r) (L)

i=1

(as t—+0) for some unique ¢i(x), pih(x)e&(R™). (LI-2) Conversely, for any
0:1(x), -, Eu(x)EEW(R™) there exist a unique solution u(t, x) C=((0, T), E(R™))
and unique coefficients @fh(x)e&(R™) (1=i<m, 1<k<oo and 0Sh<mk) such
that the asymptotic relation in (I1-1) holds.

Here, the meaning of the asymptotic relation (1.5) is as follows: for any
a>0 and any compact subset K of R™, there is an N, N such that

t~%t0,)'Ry(t, )|k =0 in &9(K)
(as t——+0) for any N=N, and /e Z,, where
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m mk
=1

Rytt, ) = utt, 0)— 3 (pdareo+ 3

[ k=1 h=0

QLR K log ().

REMARK. (1) ¢=1 is equivalent to (T) (see Lemma 1). In this case, (C)
is read as 1<s<Coo.
(2) In the case k,= - =k, (=Fk), ¢ is given by

m—j—I(j, a)/k )]

a:max[l, max ( m—j—lal

s
(3) In the case k;= -+ =k,, Uryu has defined an index ¢, (=1) and
obtained the unique solvability of P(t, x, td,, 0.)u=f in C=([0, T], &*(R™)) for
1<s<(o,/(6,—1)). But, even in this case, our condition (C) is better than his.
In fact, we can see the following: (i) 1=¢=0c, holds in general, and (ii)
1<o <o, holds in the case P=(td,)((td,)*—t**0%)+1?0%+1%,+c with (k, p, ¢)=
5,9, 3), (6, 10, 3), (6, 11, 4), ---.
(4) Also in the case {(J, &)@ (J+|a|=m and j<m), we can obtain the
same result as in (II). To see this, we have only to apply the change of
variables /¥ —¢ and x—x. See §7 of Tahara [12].

(5) See also Ivrii [4], Igari [3], Wasow [17], Tahara [10], Bove-Lewis-
Parenti [2], and the remarks and references in [12].

ExaMpPLE. (1) Let P, be of the form
P, = (10,2 —1%*0% +tta(t, x)0,+b(t, x)(td,)+c(t, x),
where (¢, x)e[0, T]XR and 2x,/=N. Then, ¢ is given by

g = max«{l, 21:——1}.

(2) Let P, be of the form
P, = (10,)*—1*%10%  —1*20% -+ 1'1a,(t, x)05,+1'2a,(t, x)05,+b(t, x)(td,)+c(t, x),
where (¢, x)e[0, T1X R? and 2k, 2k, I3, [,eN. Then, ¢ is given by

o= max{l, 26— , 2'52_12}.
£ s

(3) Let P, be of the form
Py = (10,)((0,)*—1**10% ,—1**203% ) +t'a(t, x)02,04,,
where (¢, x)=[0, T]XR? and 2k, 2x,, [€N. Then, ¢ is given by
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( max{l, BKI_Z, xl+2ﬁ2_l}, when 0<k,<k,,
K Ky
g —
max{l, 2k, , 3":2_[}, when 0<x,<k;.
K Ky

APPLICATION. Let A(t, x, 0;, 0;) be a linear partial differential operator of
order m with {#=0} as a non-characteristic hypersurface, and assume that
™A, x, 0;, 0,) satisfies our conditions in Main Theorem. Then, by (I) in
Main Theorem we can obtain the following result (see Tahara [14]): the Cauchy
problem for A is well-posed in C=([0, T'], &' (R™)), if s satisfies the condition (C).

As to the necessity of (C), by Ivrii we can see the following: if the
coefficients of A are analytic and if x,=--- =k,, then (C) is necessary for the
Cauchy problem for A to be &' well-posed.

The author believes that (C) is necessary also in the general case. But, as
far as the author knows, it is still open. The following example seems to be
very instructive. Let A be of the form

A = 07 —1710%  —1720,,+1P1a,(t, )0, +1P2a,(t, x)0,,+b(t, x)0,+c(, x).
Then, our condition (C) for 24 is 1<s<¢/(6—1) with

2v;— Py 2”2“‘1)2 }
V1+1 ’ }J2+1 )

In this case, by we can see that (C) is also the necessary condition (under
the assumptions that a,(t, x), a,{t, x), b(t, x), c(t, x) are analytic and that
a0, x)=Z£0, a0, x)=0).

The paper is organized as follows. In §2 we state two theorems (Theo-
rems 1 and 2) without proofs. In §3 we show that Main Theorem above is
obtained from Theorems 1 and 2. So, from §4 to §8 we confine ourselves to
proving Theorems 1 and 2. In §4 we discuss the condition (C), in §5 we
prepare formal norms in Leray-Ohya [6], and in § 6 we establish two kinds of
a priori estimates. After these preparations, we prove Theorem 1 in §7 and
Theorem 2 in §8 Thus, at the end of §8, the proof of Main Theorem is
completed in the true sense.

Throughout this paper, we use the following notations: N={l, 2, 3, ---},
Z,=1{0,1,2, -~} and Z72={0, 1, 2, --}™

o= max{l,

§ 2. Basic results in asymptotic analysis.

Secondly, we state two theorems (Theorems 1 and 2) from which Main
Theorem is obtained. Our asymptotic analysis in this paper consists mainly of
these two theorems. As to the C*-versions, see Tahara [13].
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Let P(t, x, td,, 0;) (=P) be the operator in In Theorems 1 and 2
given below, we treat

(S) P(t, x, t0;, 0,)u = f in C=((0, T), E¥(R™))

under (A,), (B), (C) and the following condition:

(D) a; .t x)eC=0, T), &9 (R™) (j+|a|<m and j<m) and they satisfy
(td,)'a; o, x)e CY[0, T], &9(R™) for any € Z,.

To state Theorems 1 and 2, we prepare some terminologies. For
v(t, x)e C=((0, T), E(R™)), p(x)er"(R™) and K&R", we define

v(t, x) = o(t*® ; V=, &(K)) (as t—-+0)

by the following : (t0,) (¢ *®v(t, x))|x — 0 in €“(K) (as t—-+0) for any (e Z..
Here and hereafter, KER"™ means that K is a compact subset of R”. Also,

we define
v(t, x) = o(tP® ; V=, &'9(R™)) (as t—-+0)

by the following: v({f, x)=o0(?*; V>, &¥(K)) (as t—-+0) for any K&R" We
say that w(t, x)e C=(0, T), €(R™)) is tempered in E(R™) (as t—+0), if
w(t, x)=0(t*® ;J=, &9(R™) (as t—+0) for some A(x)e&¥(R"), or equivalently,
if w(t, x) satisfies the following : for any K&R™, there is an a= R such that
w(t, x)=o0(%; V>, &¥(K)) (as t—-+0). Then, we can state Theorems 1 and 2
as follows.

THEOREM 1 (Unique solvability with bounds). Assume that P and s satisfy
(Ay), B), (C) and (D). Let Ax), p(x)=s&(R™) such that

1sis

Then, if f@, x)eC=((0, T), &9 (R™) satisfies [(t, x)=o(t*®+4; Y= &9(R™)) (as
t—+0) for some A=0, (S) has a unique solution u(t, x)= C=((0, T), &' (R™)) such
that u(t, x)=o0@#®+4 ;> &9(R™) (as t—+0).

ma}n(1 Re(p:(x)) < Re(pu(x)) < Re(A(x)) on R™.

THEOREM 2 (Tempered growth condition). Assume that P and s satisfy
(A)), (B), (C) and (D). Then, P has the tempered growth condition in the follow-
ing sense. If u(t, x), f(t, x)eC=((0, T), & (R™)) satisfy (S) and if f(t, x) is
tempered in E¥(R™) (as t—+0), then u(t, x) is also tempered in £ (R™) (as
t—+0).

§3. From Theorems 1 and 2 to Main Theorem.

Thirdly, we show that Main Theorem is obtained from Theorems 1 and 2.
Assume that Theorems 1 and 2 are true, let A(x), u(x)c&"*'(R™) be as in
Theorem 1, and let ¢ (x)=&(R")NCF(R™) (j=1, 2, ---) such that 23,¢;(x) is
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a locally finite sum and that >7.,¢,(x)=1 on R® Then, we can prove Main

[Theoreml as follows.

PROOF OF (1) IN MAIN THEOREM. Let f(¢, x)e C=([0, T], &*(R™)). Then,
we can uniquely determine the coefficients u,(x)=&®(R™) (0< k<o) so that
for any NeN

£, =P, 5, 10, 0.)( Z, us(x)i*) = ot¥;9%, €(R™) (a5 t+0).

Therefore, by choosing N;eN (j=1, 2, ---) so that N;>Re(A(x)) on supp(¢;), we
have the following :

N i+l

U, ) = 5o 5 walt)

(I=1, 2, ---) satisfy (f—PU,)t, x)=o(?®+ ;Y= gB(R™) (as t—-40). Hence, by
we have a solution V,(¢, x)e C=((0, T), &*(R™)) of P(t, x, td,, 0,)V,
=(f—PU,;) such that V,(, x)=0@#®*L; V=, €(R™)) (as t—+0). In addition,
by [Theorem 1] we can see that (U,+V,)=U,+V,) for any [, k€N, because
W=U,+V,)—U,+V,) satisfies P(t, x, td;, 0, )W =0 and W({, x)=o(r®+;
V=, &8(R™) (as t—+0) for k>/[ Thus, by putting u(, x)=U,+V ), x)
(I=1, 2, ---) we obtain a solution u(t, x)e C=((0, T), &"YR™)) of P(¢t, x, t0;, 0. )u=f
such that

ut, x) = U, ¢, x)+o(#*t; V=, &¥(R™))

(as t—-+0) for any /N, that is,
ult, x) ~ é}ouk(x)tk in &*(R™ (as t—-0). (3.1)

This leads us to the existence of a solution in C=([0, T'], &*(R™)), because
is equivalent to u(t, x)e C=([0, T], &%(R™)).

The uniqueness of solutions is proved as follows. Let u,(¢, x), u,f, x)E
C=([0, T], &*'(R™)) be two solutions of P(¢, x, t9;, 0,)u=f. Then, we have

{ P(t) X, tat’ az)(ul—uZ) = 0,

(uy—us)t, x)~0 in &*(R™) (as t—+0), 52

because the Taylor coefficients (in t) of the solution of P(t, x, t0;, 0,)u=f are

uniquely determined by f(¢, x). Therefore, by applying to (3.2) we
have (u;—u,)(t, x)=0, that is, u,(f, x)=u,(t, x) on [0, TJXR". Q.E.D.

PrROOF OF (II-1) IN MAIN THEOREM. Note that under the assumptions}in
(II-1) we have the following facts.
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6)) in §2). Any solution u(f, x)eC=(0, T), &9(R™) of
P, x, 10;, 0,)u=0 is tempered in &9(R™) (as {—+0).

(2) (Tahara [12, Proposition 3]). If ¢ (x)e&™(U) (1=5i<m, 0=k <oo and
0<h<mk) satisfy

3

' irmtilog ™ r in €9(U) (as t—+0)

0

Ms

ONE1

k=0

>
i}

(where U is an open subset of R*), then we have ¢{%(x)=0 on U for any i,
k and h.

(3) (by a -calculation). For ¢(x), p(x)e&®(U) and [eZ,, we have
Gl ®(logt) e C=((0, T), £¥(U)) and @(x)t* = (logt) =0, V>, &(U)) (as
t—+0) for any ¢>0.

Hence, we can obtain (II-1) in the same way as [12, Theorem 1]. In
other words, the proof of [12, Theorem 1] becomes a proof of (II-1), if we
replace C=(U), C((0, T)xU), u~w on U (as t—+0), u=o0(t**>;V>) on U (as
t—+0), --- by &), C=(0, T), &), u~w in &%) (as t—+0), u=o(t*®;
Ve, &(U)) (as t—+0), ---, respectively. So, we may omit the details. Q.E.D.

PROOF OF (II-2) IN MAIN THEOREM. Let ¢i(x), -, on(x)e&®(R™). Then,
we can uniquely determine the coefficients @it (x)e&W(R™) (1=i<m, 1Sk<co
and 0<h<mk) in (1.5) so that the following condition is satisfied: for any a>0
and any K&ER™", there is an Ne N such that for any [le N

m N+l mk X
PG, 5,10, 02| 35 (putwtrco+ S B pifuame o og i)

i=1
= o(t2*! ; V=, &¥(K)) (as t—+0)
(see [12, Proposition 7]). Therefore, we can choose N;eN (j=1, 2, ---) so that
Nj+l

Uitt, ) = 50 & (puareio+ 5 8 ot log ymi-r)}

({=1, 2, --) satisfy (PU)(¢, x)=0(t*®*t; Y= &(R™) (as t—-0). Hence, by the
same argument as in the proof of (I) we obtain a solution u(t, x)e
C=((0, T), &(R™) of P, x, 10;, 0,)u=0 such that

ult, x) = Ult, x)+o(tr >+ ; 7=, €9(R™))

(as t—»+0) for any /eN. This immediately leads us to the existence part of

(II-2). The uniqueness part of (II-2) may be proved in the same way as
(1) Q.E.D.

Hence, from now on we confine ourselves to proving Theorems 1 and 2. In
§§4~8, we use the following notations for a=(a,, -+, @), b=(by, -+, bp)ER":
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a<b means that a,<b; for any 7, a<b means that a;<b; for any 7, |al
=la,|+ - +la,| and <a, b)=a;b;+ - +anba.

§4. Interpretation of the condition (C).
Fourthly, we give an interpretation of the following condition :
€ 1s<a/(a—1).

PROPOSITION 1. Let ¢ be as in (1.3) with [(J, @)>0 (j+|a|<m and |a]>0)
and ;>0 (1=:i<n). Assume that s satisfies (C'). Then, there are z(j, a)c R
(G+lal<mand |a|>0) such that (0, ---, 0)=z(j, a)<a, |z(J, a)| <|al, <k, 2(7, a)>
2y, a) (where k=(ky, -, k), and
m—j—12(j, &)l

S < al— 120, &)l

(4.1)

Before the proof, we present some discussions. Let M; ,(z, r) be as in
and &, be the permutation group of n-numbers. For simplicity, we use the
following notations for &=(ky, -, k), a=(ay, -, @), 1=<r<n and 7€6,:
<k, a3,=0, <k, a>,=kia1+ - tEar, K=Ky, =, Kecny), @ =(Qecry, 5 Aeend)y
kF, a7y=0 and <&7, a™),=k. -yt - FEem@en. Note that <k, ap=<&, a),
=<k, ap.

LEMMA 1. Assume that 0<k,Zk, < --- <k, and that [(j, a)>0. Denote by id
the identity element of &,. Then, we have the following results.
(1) If iy, a)=<k, a>, then

min (max M, o(z, 1)) < Mj o(id, n) < 1. (4.2)

€8, \1s757

@) If {7, a)<<k, @) and if <k, a>,-1<I(j, @)=Lk, @>, for some p (1= p=n),
then

min (max M;, (7, r) = M; ,(id, p)> 1. 4.3)

€6y \1sr=n
PrOOF. The proof of (1) is as follows. Since

M, o(id, r+1)— M;, o(id, 7) = =8, &)=<k, av,) (4.4

(m—j—|a|)k ks, ’

we have M; ,(id, r+1)=M; ,(id, ) for 1=r<n, that is,

max M; ,(id, r) = M;, ,(id, n).

lsr=n

This immediately leads us to [4.2}
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The proof of (2) is as follows. Since <k, a),-:<I(J, )<<k, a),, by (4.4) we
have

max M; .(id, ) = M; .(id, p).

1srsn

Therefore, to obtain it is sufficient to show that

max M; «(t, r) = M; .(id, p) (4.5)

lsrsn

holds for any r=&,. Take any r=&, and fix it. Define r, €&, (k=1, 2, ---, n)
by the following: 7,()=7() for 1=<:<k, and 7,(k)<7,(k+1)< - <7p(n). Then,
we have 7,=id, 7,=t and 7,0)=t,+() for 1=:<k<n. Since I(J, a)<<k, a)
(=<, @>,), we can choose p,eN (k=1, 2, ---, n) such that 1=<p,<n, p,=» and

<’£tk; ark>l’k—1 < K], a) g <’£Tky ark>pk-

Hence, by given below we obtain M; o(ts, Pa)SM; o(Thss, Dre1) for
1<k<n, that is, M; .(id, p)SM; o(z, pn). This immediately leads us to [4.5).
Q.E.D.

LEMMA 2. Assume that 0<k,<k,<--<k,. Let 7,veS, and p,q, ks
{1, 2, -, n} such that t()=v(@) for 1Zi<k, t(k)<t(k+1)< - <z(n), v(k+1)<
Y(k+2)< - <y(n), <k, a1 <l(j, a)SLE5, atyp and &% a1 <I(f, ) =<K, a*),.
Then, we have M; .(t, P)SM; (v, ¢).

PROOF. Since u(k)e{r(i); k<i<n}, we have y(k)=rz(h) for some h
(kZh=n). Then,

(1), for 1<i<k or h<i<n,
v(z) =< w(h), for 1=k, (4.6)
z(—1), for k<iZh.

When A=Fk, we have r=y, p=¢ and hence M; ,(z, p)=M; (v, q). Therefore,
we may assume hA>k from now on.

When 1=<p<k or hA<p=n, we have <&, a,_(=<k", ap-)<I(j, a)<
k¥, @ p(=<k", a*),) and hence p=gq; therefore, by (4.6) we have M; ,(z, p)=
M; .(v, ¢). When 1=¢g<k or h<g<n, we can obtain M; ,(z, p)=M; (v, ¢) in
the same way. When 2<p<h and g=k, M; .(t, P)SM; (v, q) is verified by
the following facts: k. =kux>=kcn> ZEkecpy, Krciy =kepy fOr E<i<p and

Mj,a(y; Q)_Mj,a(fy P)

_ (Byepy—Ezp))U(F, @)=Lk, a@Dgc1) | 2Er(Becpy—EKecid)Qeci
(m—7—la|)Eprkucp (m—j—la|)kp

When k< p<h, k<qg<h and p=q—1, M; .(t, p)=<M; (v, q) is verified by the
following facts: &.cny=k.p and
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(ﬁr(h)’—lfr(p))ar(m
M; (v, ¢)—M; ,(z, = - .
»alvs 4) 5al®, D) (m—j—lakp

When ksp=h, k<gsh and p=qg, M;.(z, p)=<M;.(v, ¢) is verified by the
following facts: Ky =Fcq-1SKeipySFery, Keciy SEepy fOr ¢<i<p and

(Kecpy—Eui (KK, @217, )
M' a\¥y _M a\ly - q £
s )= Moz, 2) g ) ER.
+ (ﬁrch)—lfr<p))ar(n)+2§’=q(l€r(p)“‘lcr<i>)ar(i)
(m—j—lal)kp ’

Here, we note the following: if £<¢—2<h, we have

KT, A Dgoy = K7, ADgoatEecny ey
=LK, e < U7, a) £ &5, ayp

and hence ¢—2<p. Therefore, we need not consider the case: ~Zp=h,
k<g<h and p=qg-—2. Thus, all the cases are covered. Q.E.D.

PROOF OF PROPOSITION 1. Without loss of generality, we may assume
that 0<k, <k, < --- <k,. When [(j, @) =<k, a>, we choose z(j, &) R™ so that
©, -, 0=z(J, @)<a, |z(J, a)|<|a| and that z(j, a) is sufficiently close to a.
Then, <k, z(j, a)>=<<k, a)<I(j, @) is clear, and is verified by the fact that
the right hand side of tends to +oo as |z(j, a)| —|a].

When [(j, a)<<k, a), we take p (1=p=mn) such that <k, ay,;<I(j, @)=
{k, ayp, and then define z(j, a)=(zy, -, z,)€R™ by

a;, for 1<5i<p,
Zi — l(]y a>_<’6’ a>p-—1 , fOI‘ Z:p,
Ep
0, for p<i<n.

Then, (0, -+, 0)=z(j, @)=a, |2(j, &)|<|a| and <k, z(j, a)>=I(j, @) are clear,
and is verified by the following: by we have ¢=M; ,(id, p) and
this is equivalent to

m—j—|z(J, a)]
lal—1z(j, @)| °

g/(6—1) < Q.E.D.

As a corollary, let us give a variation. Put [/.(j, a)=[(j, a)—e¢ and let o,
be the one defined by with being I(j, @) replaced by /.(j, @). Then, in the
situation of [Proposition 1, we can choose ¢>0 and s,<s, such that

(7, ) >0 (+|al<m and |a|>0),

(4.7)
1 é S < So < S1 < 05/(05_1>-
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Therefore, by applying to (4.7) we have z.(j, e)e R™ (J+|a|<m
and |a]>0) such that (0, ---, 0)<z.(j, a)<a, |z.(j, a)| <|al, <k, 2.(J, a))=ZI(7, a)
and ,

m—j—z(j, a)l

5, < : .
YT al—lz(], a)l

COROLLARY TO PROPOSITION 1. Let ¢>0 and so,<ls, be as above, and let
de N be sufficiently large. Then, for any sequence (ji;, @))EL+XZE (1=1, 2, )
such that ji+law|<m and |ag,| >0, we can choose a sequence BnEZ%}
(=1, 2, ---) so that the following (i)~(iv) are valid for any 1:

(i) ©,-,0= /9<i> = @,

(ii) <=, .3(1)+ +,8<i>> Sy, agy)t +IU(71, acpy)—et,

(iii) (Jawl=1B8w )+ - +ag+e-vl—1Bu+re-nl) 21,

(iv) (m—j— lﬁ(i)i)“’" o (M—Jira-1— |f9(i+d—1) 1)

(law | —1Bw D+ +lagra-vl = Bara-nl)

> 8.

PROOF. Put z=2z.(Js, awy) (G=1,2, ) and define B2} (=1, 2, )
inductively by the following formulae:

B = [zt +2wy—Bwr— - —Ba-n]

(=1, 2, ), where B,=(0, ---,0), [(xy, ==, x2)J=(x], -+, [xx]) and [x:]=
max{kcZ;k<x;}. Then, we can see that the sequence B¢, (=1, 2, --)
satisfies (i)~(iv) for any 7 in the following way.

(1) is verified by

©, -, 0=zt +zw—Bw— - —Pu-»
< Z(i)+(1) Tty 1) é a(i)+(1’ Tty 1)

(i) is verified by B+ +Bw=zwmt - +zw and <k, z2ay> SL(Jh, @)=
{(Fr, acry)—¢ (1=k=0). Since 0=Z(lzg |+ +1ze|— |/3<1)|_ _|;8(k>|)<"
for any k, we have —n<(|zw|+ - +12¢re-nl—1Bwl— " —1Bu+a-n)<n.
Therefore, (iii) is verified by the following:

(law | — 18w+ - +acsa-nvl — | Bara-n 1)

= (lawl— 1z D+ +lagra-vl—12¢gsa-p)—n

= cd—n,

where c=min{|a|—z.(j, a)| ; j+|a|<m and |a| >0} (>0). Since (m—j,—|zw])
>s,(lagy | —1za,]) for any k, (iv) is verified by the following:
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(m—7i— By )+ - +m—Jira-1— | Bes+a-n!)

= (m—ji—|zw )+ +n—Jira-1— 1 Zara-n)—n

> si(lacy | —lza D+ +sil@cra-v ] —2¢4a-n1)—n

= sof{(law ] — 1z D4+ agre-n | —2¢a+a-n D (81— S0)ed—n

= So{(law | —1Bw D+ +(laura-v | =1 Bara-n DI (s1—So)ed—(so+Dn .
Q.E.D.

§5. Formal norms.

Fifthly, we prepare formal norms to estimate functions in Gevrey classes.
Our formulation is a variation of Leray-Ohya [6].

Let p, leZ,, reR, and k=(k, -, £,)=R™ such that £,>0 (1=/=n). For
f¢, x)e C=((0, T), H*(R™)) we define |VZ=f(#)| by

WPfOl =5 | T, i 3 s O san O

g=0 j+iaisp jla!

(which is a formal power series in p whose coefficients are functions in f), and
[VE-=V. . f(DI by

IV O = S I9p =410 O]
Similarly, for a(t, x)e C=((0, T)X R") satisfying (t9,)'0%a(t, x) B°([0, T]XR™")

(the space of all bounded continuous functions on 2=[0, T]XR"™) for any
(, BeZ,xZ%, we define |[V»~a|. by

= 1 ] q
V7] = 3 1£8,)795+8 a | 10y

g=0 j+izisp jlal 1h1=¢ q!

(which is a formal power series in p). Also, for a differential operator
R, x, td;, 0;) (=R) of the form

R(t; X, tat; ax) = E t“’ a>aj,a<t) x)(tat)]ag- (5-1)

jHlaizsm

we define ||V? °R|. by

IN?“Rle = 3> [V7=a; 4l
J+

falsm

The convenience of introducing these formal norms lies in Lemmas 3, 4 and
5 given below.
LEMMA 3. The following formulae are valid.

1) NVE=@f YD K IVP=alo X[ VE=FD)] .
2) 8,IVP=f Ol € T3l VE=0z, f (D]
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@) NVP=0,,f O] € 8,IVE~f@)] (=j=n).
4) If p=1 and if R (n [B.1) satisfies am o .. 0(t, x)=1 on [0, TIXR™,
then
ILVE=, R(t, x, to,+7r, 0,)1f @)l

L VP =Rl X (14100, VP =VE DI,

where p=min{k,, -+, £,} (>0), and ¢>0 s a constan! depending only on n, m, p,
k; (1<i<n) and T.

Here, 27 a,0? € 270 b,p? means that | a,| <b, for any ¢q, [A, B]=AB -BA
and

I~ 0 — < l Al jan+ pq
ICVE=, AT —qgo j+|§|§pj_!671 |ﬁ\=q”[(tat+r) 05+h, A]f(t)“L?(R")?-

Note that (1), (2), (3) and (4) in correspond respectively to the
formulae (10.1), (10.2), (10.3) and (10.4) in Leray-Ohya [6]. Therefore, we can
obtain by the argument quite parallel to that in [6]. So, we omit
the details.

Let 1<s<co and put

0.p) = 3 (2 5.2)
q=0 q.

For a formal power series ¢(t, p) in p, we write
o(t, p)e&® uniformly on [0, T], (5.3)

if ¢(t, p)<BOykp) on [0, T] for some B>0 and £>0. Then, by using Sobolev's
lemma (for example, Mizohata [9, Theorem 2.8]) we can see

LEMMA 4. Assume that f(t, x)= CY[0, T], H°(R™) and that supp(f)C[0, T]
X K for some K&R™, Then, the following (i) and (ii) are equivalent:

(i) [, x) e CA[0, T], &*(R™)),

i) Ve=f) € &% uniformly on [0, T].

We say that ¢(f, p)=2Z0¢(1)p? satisfies (M,), if ¢(t, p) satisfies the fol-
lowing condition :

(b’
(M) o]

P (t) = @pso(t) on (0, T) for any p, g€ Z,.

LEMMA 5. Let 1=s<oo, and assume that ¢(t, p) (>0) satisfies (M;). Then,
for any 0<2k<h we have

0s(kp)p(t, hp) < 2¢(t, hp).
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PROOF.

8.k, ho) = 3 5 Y ko) (o)

=0 ¢=0 p!

€ 3 5 () ppdtihoy

=0

Yy
& (I=k/h)(t, hp) < 2¢(t, hp). Q.E.D.

For simplicity, in §6 we write ¢, 0)=20@t)p?cP(p; E) (where
E=CY[0, T]), C((0, T]) etc.), if ¢(t, p) is a formal power series in p whose
coeflicients ¢,(t) (¢=0, 1, 2, ---) belong to E.

§6. A priori estimates.

Sixthly, we give two kinds of a priori estimates by combining formal norms

in §5 with energy inequalities in Tahara [11, 12].
The operator L(t, x, 10;, 0,) (=L) treated here is as follows:

L(t, x, 10, 0,) = (t0,)"+ 2 1% a;,(t, x)10,)0s, (6.1)

Jtlals
Jj<m

where k=(k,, -, £,) and <k, a)=k;a;+ - +£k,a,. Throughout this section, we
assume that £;>0 (1=/<n), that a; .t x) (G+|a|<m and j<m) satisfy
(10,)'0%a; (¢, x)e BY[0, T]1x R™) for any (/, )= Z. X Z?, and that the following
condition is satisfied :

(B’) (B) is satisfied. In addition, there is a ¢>0 such that

|44t x, £)—4,, x, 8)] z ¢
n {(¢, x, &[0, TIXR"XR™; |&|=1} for any 1<i#j<m.
First, let us show our first a priori estimate, which is the one for
L, x,t0,, 0,)(tTv) =1"g (6.2},

on [0, T]XR", where 7 is a real parameter. Note that (6.2), is equivalent to
L(t, x, to;, 0;)u=f under u=t"v and f=t"g. For a>0, b=0, >0, g=Z, and
0(t)e C([0, T]), we define R, ,[01(t)e C([0, THNCH(O, T)) by

R®, [01t) =t¢ ”‘1”’”Sor“"e‘b“#’”(‘)(r)dr.

For (1, p)=2XF00(t)p?e P(p; C[0, T1), we define Ras.Lelt, p)E
P(p;C[0, THNC(O, T)) by

Renulodt, o) =§‘,<)R;<{>M[%]<i)pq
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Then, we have

PROPOSITION 2. Let 1<s<co and peN. Assume that |[V?*L|.< Bl(kp)
for some B>0 and £>0. Then, there is an a,>0 which satisfies the following
condition. If r>ay, if v, x), git, x)eC=((0, T), H*(R™) satisfy (6.2), and
(td)'v(t, x), (80,)'g(t, x)e CX[0, T], H*(R™) for any (€Z,, and if |[VP=g®)|
Lo(t, hp) for some hz=2k and some ¢(t, p)ePB(p; CU[0, T))) satisfying (M),
then we have

IV2-=T2530(t)| & ¢(Ra.s, )01, ho) (6.3);

on [0, T] for j=1,2, -, m, where p=min{k,, ---, £} (>0), and a>0, b>0,
¢>0 are constants independent of v, v(t, x), gt, x), ¢(t, p) and h.

Before the proof, we prepare some results.

LEMMA 6. There is an a,>0 which satisfies the following condition. If
r>a,, and if v(t, x), g(t, x)e C=((0, T), H*(R™)) satisfy (6.2), and (10.)"v(, x),
(td,)'g(t, x)e CU[0, T, H*(R™) for any I Z,, then we have

170l < et -0t g(a)fdr (6.4)
on [0, T], where
VRO = | 3 [ @A) 0500) zocams

+laism

(6.5)
le®l = lg@llL2crns

and ¢,>0 7s a constant independent of v, v(t, x) and g(t, x).

PROOF. Since is equivalent to
IV < o e o0 | glte)dy

under t=te7?, is clear from [11, Proposition 2.1] with e=0=1,
p=min{k;, -, £z} and Q@, E)=2F17ME A ... H2®n=mgE . Q.E.D.

LEMMA 7. Let a>0, b=0, >0 and o(t, p)P(o; CA[0, T1)). Then, we
have the following results. (1) Rga. x[t41¢, 0)=t4Rss4.0, .[@1(t, p) for any
A=0. (2) If ¢(t, p) satisfies o, p)>0 and (My), Rgs L], p) also satisfies
My). (3) The equation

(t0,+a—bt*pd,)D(, p) = ¢(t, p) (6.6)

has a unique solution @(t, p) in P(p; CU[0, THNCXO, T))) and it is given by
O, p)=Ra,5, L]t 0). &) If o 0)>0, then Ry s, ,[0,0](t, 0) K3, Ra.s, xL](E, 0).
(6) If B=0, h=z2k>0, rza+2B and b=2B, if ¢(t, p) satisfies ¢(t, p)>0 and
M,), and if T(t, p)=B(p; C([0, THNCH O, T)) satisfies ¥(t, p)>0 and
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(1o, +nT ¢, p) € BO(kp)1+41*00,)¥(t, p)+¢(t, hp), (6.7)
then U(t, p)L Rq v, [1(t, hp). (6) If r=a and if ¢(t, p)>0, then

t
t'TSOTT‘lgo(z-, )t £ R L@, 0).

ProoF. (1) and (2) are clear from the definition. Since is equivalent to
(t0,+a—bgt")D (1) = ¢t), ¢=0,1,2, - (6.8)

under @@, p)=22,D,()p? and ¢, p)=2r o (t)p? by solving we have
O,t)=R®, ,Le ) (¢=0, 1, 2, ---) and hence (3). If ¢(t, p)>0, by operating 9,

on we have
0 < 0,0(t, p) = (t0,+a—0bt"pd,)0,D(t, p)—bt*d,D(t, p)
& (t0,+a—bt"p0d,)d,D(t, p).

(6.9)

Therefore, by applying Ra,5 [ ] to (6.9) we have R, , ,[0,0]¢, 0)<06,0(, p).
This implies (4). Under the conditions in (5), by (2), (3), and the
fact that pd,R,.» .[¢], p) also satisfies (M,) we have

o(t, hp)+BO(kp)1+t00,)Ra,s, L[], hp)
L (t0,+a—bt"p0,)Ra b, J[@1(t, ho)+2B(1+1#00,)R .5, L], hp) (6.10)
L (0, +1)Ra0, L@, hp).
Therefore, by combining and (6.10) we have
(t0,+rT(t, p) < BO(kp)1-+1t*00, ¥ (t, p)
+(0,+7r—BO(kp)1+1*00,))R. L[, hp).
Hence, (5) is verified by given below. Since

<t0z+r)(t‘fgzr"1go(r, p)df) = (i, p),

(6) is verified in the same way as (5) with B=0. Q.E.D.

LEMMA 8. Let B(p)=370B?>0, r>B, p>0 and U, p), O, p)e
Plo; CULO, THNCH(O, T)). If they satisfy T(t, p)>0 and

(0. +r¥(t, p) < B(p)(1+t#00,)¥ (¢, p)
+(t0,+r—B(p)1+1*03,))D(t, p),

(6.11)

then U(t, p)< (L, p).

PROOF. Put a=r—By>0, b=B,=0, ¥, p)=3c,¥()p? and O, p)=
S0 D (t)p? Then, by (6.11) we have
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(t3,+ a — bt (1) — ‘lg\; By (17t ,0)
= (6.12)
= (0:+a—bgt")Py(t)— 2 By-,(1+71")0(t)

(g=0,1, 2, ---). Therefore, by applying R, ,[ ] to (6.12) we have
q-1
wq(t)_ ]go Bq—th(zq,)b, o [(1+]t‘u)wj](t)
g-1 .
_.g. d)q<t>_ ];) Bq—th(Lq,)b,,u[(l_*']t‘u)@j](t)

(g=0,1, 2, ---). Hence, by induction on ¢ we can obtain ¥ (1)< @ t) for any gq.
Q.E.D.

PROOF OF PROPOSITION 2. Since (£3,)(t"w)=1"(td,~+r)w, by operating ({9,)70%*#
on both sides of (6.2), we have

L{#7((t0,+7)03+Fv)) = t7((td,+7) 03+ F g— [0, +7r)05*#, L,Jv),  (6.13)

where L,=L(t, x, td,+7, d,). Therefore, if r>a, by applying to
(6.13) we have

[ VE-=Vru@)|

< eitrrreol wroeon {[9pg()] + T2 Lot} de
for some ¢;>0. Hence, by using [|[VF~g(H)| K¢, ho), ||V =L|.< Bl(kp) and
the formula (4) in we obtain

VPN ()]

(6.14)
£ clt‘”“OS:fT‘“O‘l{go(z', hp)+ B (ko) 14-1#06,) V2 =V 2 v(T)| }dr .

Here, we denote by ¥(¢, p) the right hand side of (6.14). Then, V2=V u(t)]
L¥(t, p) and

(0, +r—an)¥(t, p) € cp, hp)+cBO(kp)1+t*00,)¥ (¢, p) (6.15)
for any c¢=c,. Therefore, if a>0, b=2¢B, c=c, and r=a,+a-+2cB, we can

obtain (6.3); by applying (5) in to [6.I5). Since

o(t) = t“TSZz”“(fa,-{—r)G(r)dz'
holds for any 6(t)e CY[0, TIINCY (0, T)) and >0, we have

T2V < et | 2 Tp =T (o) de (6.16)

t
0
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for some ¢,>0. Hence, if c=c¢,, we can obtain (6.3); (=2) by induction on j
as follows: by applying (6.3);-, to the right hand side of and then using
(6) in [Lemma 7, we have

IVp-=Tm=iu(t)]| < cch-lt-TS:rM(Ra,b,,,>f-1[go1<r, ho)de
<L cj(Ra,b,#)j[gp:l(t, hp). Q.E.D.

COROLLARY TO PROPOSITION 2. Let >0, and let (j, a)€Z. . XZ7? such that
J+lal<m and |a|>0. Then, under the situation in Proposition 2 and the con-
dition that ¢(t, p)=tp(t, p) for some AZ=0 and @, p)=P(p; CA[0, T7I)) we
have

V2 =t4(t0,+7)050(t)| « Ct!+4-® PG " 1BYR 14 a5, )™ 7P 1 [@o](2, ho)  (6.17)

on [0, T] for any B&Z%} such that 0, -, 0)S<B<a and <k, BO>=I+A, where
C>0 is a constant independent of r, v(t, x), g(t, x), A and @.(t, p).

ProoF. Let f&€Z?% such that (0, -+, 0)<pB=a and <, 8><(+A. Then, by

(3) in Lemma 3 we have
INE- =, +7)05u(@)]| = | VP =45 Pa3 (1= P10, +7)'65u(D)) | (6.18)
< ot~ Pga=1B [T =TI P (o) '

for some ¢;>0. Therefore, by applying (6.3)m-;-15 (With ¢(t, p) replaced by
t4oo(t, p)) to (6.18) and using (1) in Lemma 7, we can easily obtain (6.17) on
[0, T]. QE.D.

Next, let us show our second a priori estimate, which is the one for

{ L(t; X, iat; a.‘c)u:f,

otulier =0 for 7=0,1, .-, m—1

(6.19)

on (0, TIJXR™ For acR, b=0, p>0, g=Z, and 0@¢)=C°(0, T]), we define
S@, [01()e C(0, T]) by

T
S0, [010) = tmee 0w 1n| cazighe’tung(zde.
For o(f, p)=Z00,(t) 0?2 B(p; C°((0, T])), we define S.,,.[elt p)E
B(p; CY(O0, TI)) by
Se.nsLp1t, 0) = 33, @, WL d00"
Then, we have

PROPOSITION 3. Let 1<s<oo and peN. Assume that |N?>L|.<Bl(kp)
for some B>0 and k>0. Then, we have the following condition. If u(t, x),
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f@t, x)eC=((0, T], H*(R™)) satisfy (6.19) and 0iu|,-r=0 for:=0,1, ---, m+p—1,
and if |[VP=fl<pt, hp) for some h=2k and some ¢(t, p)eP(p; C°((0, TI)
satisfying (M), then we have

N2 =VEsiu®)| € ¢/(Sa.s L@l ho) (6.20);
on (0, T] for j=1,2, -+, m, where p=min{k,, -+, k,} (>0), and a>0, b>0,
c¢>0 are constants independent of u(t, x), f(t, x), ¢, p) and h.

The proof of is quite similar to that of [Proposition 2. So,

we give only a sketch.

LEMMA 9. If u(t, x), f(t, x)=C=((0, T], H*(R™)) satisfy (6.19), then we have
Izl = et 2o @)l de

on (0, T, where |N*7'u®l, 1 f@)| are the same as in (6.5), and a,>0, ¢,>0 are
constants independent of u(t, x) and f(¢, x).

LEMMA 10. Let acsR, b=0, >0 and ¢(t, p)=B(p; C°(O, T1). Then, we
have the following results. (1) Sg  [t401(t, p) =1t4Sesa,6, L@, p) for any
AeR. (2) If ¢, p) satisfies ¢(t, p)>0 and (My), Sa.s [e](t, p) also satisfies
My). (3) The equation

(——tat_a"—bt‘upap>@(ty .0) = ﬂp(t, P);
O(T, p)=0

has a unique solution @, p) in B(p; C*(0, T1)) and it is given by @(t, p)=
Sa,b,,u[ﬁo:l(t, P) 4 If GD(t; P)>>0, then Sa,b,p[ap@](t: p)<<apsa,b,p[90:|(t: P) )
If B=0, h=2k>0, a=r+2B and b=2B, if ¢(t, p) satisfies ¢(t, p)>0 and (My),
and if T, p)=B(p; CHO, T1)) satisfies T(¢t, p)>0, ¥(T, 0)=0 and

(=10, —7rT(t, p) € BO(kp)(1-+t*0p0,)¥ (¢, p)+ot, hp),
then T(t, p)<KSa,v, uL@1(t, ho). (6) If r=a and if ¢(t, 0)>0, then

Sfr—1¢<f, )t & Savs, L1, p).

is clear from the proof of [12, Proposition 5] with p=
min{ky, -+, £.} and Q(t, &)=12®1=Mg2 4 ... 4+ 2@n-m¢2 - [Lemma 10 is proved in the
same way as [Lemma 7.

PROOF OF PROPOSITION 3. By operating (£9,)702*# on both sides of (6.19),
we have
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L((t6,)705+Pu) = (13,)05+8 f—[(t6.)03**, L]u, 690
{8,95 u |pup = 0 for 7=0,1, -+, m—L. o
Therefore, by applying to (6.21) we have
[V =T u@®)l
(6.22)

r
< 70| 220 (e, ho)+BOLkp) L+ 03, VP T2 u(e)] }d
for some ¢;>0. Here, we denote by ¥(¢, p) the right hand side of (6.22). Then,
IV2=Nrstu®)| <¥ (¢, ), ¥(T, p)=0 and
(—19;—a)¥(t, p) L cp(t, hp)+cBO(kp)1+t"00,)¥(t, o)

for any ¢=¢,;. Hence, if a=a,+2¢B, b=2cB and c¢=c¢,. we can obtain (6.20),
by (5) in Lemma 10l Since
T
1795w < e = IV3 =VE* u(e)ldz

for some ¢,>0, we can also obtain (6.20); (7=2) by induction on 5. Q.E.D.

COROLLARY TO PROPOSITION 3. Let [>0, and let (j, a)Z, X Z7? such that
jt+lal<m and |a|>0. Then, under the situation in Proposition 3 and the con-

dition that ¢, p)=t'p.E, p) for some A=R and o(t, p)&PB(p; C0, T])) we
have

V8 =410, 05u()]| < Ct*+4=@ 3G, =181 (S s 4 5, )™ 718 012, hp)

on (0, T1 for any B=Z} such that (0, -, O)ZB=a, where C>0 is a constant
independent of u(t, x), f(t, x), A and ¢, p).

§7. Proof of Theorem 1.

Seventhly, we prove (in §2). Our plan is as follows: first we
establish an L? version of by treating (S) in the L? framework, and

then we obtain by the cut-off argument.
Let P(, x, to;, ;) (=P) be the operator in [1.I), and let us consider

P@, x, 10, 8,)(tv) =1"g, (7.1),

where » is a real parameter. Note that (7.1), is equivalent to (S) under u=t"
and f=t"g. In order to treat (7.1), in the L? framework, we impose the
following condition on the coefficients:

(Dy) aj4, x)eC((0, T)XR™) (j+|a|<m and j<m) satisfy (10,)'0%a; .(¢, x)
= B([0, TJxXR™) for any (I, B)eZ,XZ?% and
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NP =a; 4] € £,
Then, we have

PROPOSITION 4. Let p=N. Assume that P and s satisfy (A,), B, (C)
and (Dy). Then, there is an a;>0 which satisfies the following condition. If
r>as and if gt, x)= C=((0, T), H=(R™)) satisfies (t0,)'g(t, x) C%[0, T, H*(R™))
for any leZ,. and |VP=gt)|le&® uniformly on [0, T], (7.1), has a unique
solution v(t, x)€ C=((0, T), H*(R™)) such that (1d,)'v(t, x)= C[0, T, H*(R™)) for
any (&Z, and that NN v|ee™ uniformly on [0, T). In addition, if
g(t, x) satisfies supp(g)CC,0, K) for some K&R™, v(t, x) also satisfies supp(v)
cC,0, K).

Here, C,(0, K) is defined by the case #,=0 of

Zmaka"ﬂ

Cults, K) = {t, ¥ €0, TIXR™ 5 min|x—y| < s}, (7.2)
' yeK

where pg=min{k,, -+, £,}, k=max{k,, -, £,} and Ama.x is the least upper bound
of |4, x, &) (1=i=m) on {(t, x, §)€[0, TIXR"XR"; |§|=1}.
Put Q; .(t, x, td;, ;) (j+|a|<m and |a|>0) and L(t, x, td,, d,) as follows:

Qj,a(t) x; tat; ax) = (_“1>t“j,a)aj,a(t; x)(tat)]a; ’
L, x, td,, 0,) = P(t, x, 10, 0,)+ X Qjalt, x, 10, 0,).

JHial<m
la12>0

Then, L(t, x, td;, 0,) has the form and (7.1), is equivalent to

(7.3)

L, x, td,, axxzfv):f(gne S Q, ., x, 10,47, 0. ).
it
Therefore, to solve (7.1), we can use the method of successive approximations:
first we solve

L@, x, t0;, 0,)(tTvy) =1'g, (7.4)
L(ty X, taﬁ) az‘)(zrvk) = t7< Qj,(l(t7 X, tat+7’7 ax)vk»l): k_-——l, 2) Tty

JHilal<m
la 120

and then we show the convergence of 2% ,v,(¢, x) by using the a priori esti-
mates in §6. The existence of {v,(t, x)}i=o IS guaranteed by

LEMMA 11. Let L(t, x, t0,, 0,) be as above. Then, there is an a,>0 which
satisfies the following condition. If r>a,, and if g, x)eC=((0, T), H*(R™))
satisfies (16,)'g(t, x)e C([0, T], H*(R™)) for any l€Z., L, x, t0;, 0,)(t'v)=t"g
has o wumique solution v(t, x)e C=((0, T), H*(R™) such that (19,)'g(t, x)€
C[0, T, H=(R™)) for any leZ.. In addition, if g(t, x) satisfies supp(g)C
C,0, K) for some KER", v(t, x) also satisfies supp(v)C C (0, K).
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PrOOF. Since L(t, x, td;, d;) has the form [6.I), we can apply [11, Theo-
rem 2.3] with a=¢=1, pg=min{k,, -, £,} and Q, §)=t>*1"ME} - ... 4-{2ln=mEZ
Q.E.D.

PROOF OF PROPOSITION 4. Let @,>0 be as in[Proposition 2, let a,>0 be as
in Lemma 11, and put a,=max{a, a;}. Then, for any r>a; we can apply
Proposition 2 and [Lemma 11l to L(¢, x, td,, 0,). Take any »>a, and fix it
hereafter. For simplicity, we write L=L(¢ x,1t0,,0,) and Q,(j, a)=
Qj o, x, td,+r, 0,).

Let g(t, x) be as in Then, by we can solve (7.4)
successively and obtain v,(¢, x)e C=((0, T), H*(R™)) (k=0,1, 2, ---) such that
(o) v, (¢, x)e CY[0, T], H*(R™) for any /eZ,. If we have

ki'j:ﬂ 192 V7:1,(0)| € & uniformly on [0, T,

v(t, x)=2mov(t, x) becomes a desired solution in [Proposition 4. Therefore, to
obtain the existence part of it is sufficient to show that

[V2-=Vmtn, (1) « K *+

Gy 0He) on [0, 7], £=0,1,2, - (7.5)

for some K >0, v>0 and H>0.
Let us reduce the problem to a simpler case. For any sequence (j;, a¢))E

Z. XZ? (1=1,2,---, k) such that j,+|au|<m and |agy|>0, we define
w((Jy, awy), -, i, awy))@, x)e C((0, T), H(R™)) (i=1, 2, ---, k) by the solution
of

L(tv((j1, awy)) = 17Q:(J1, awy)vo,

L@ v((j1, aw), =5 (i, @) (7.6)

=1"Q(Js, ay((J1, @), -+, (Ji-1, Qei-ny)), =2, -, k

such that (#0)((j1, @w), ==, (i, ay))(t, x)€ CY([0, T], H*(R™)) for any /eZ,
Then, by the uniqueness part of we have

Ve = | e (7, aawy), = Uer Q) -
Jitlayi<m  jptiagg i<m

la (1) 1>0 la gy 10

Hence, our problem is reduced to proving the following: there are K;>0, >0
and H>0 such that

"vf‘wv?}r_lv((]}, ags), <y, Gr a))@®] € K

for any (Ji, @), =, Jr, @ry) and k=1, 2, ---. We will show this from now on.

By the conditions in we may assume that
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V2= Lllw, VP *a; 4l < BOs(kp),
[V2-=g(t)|| €« Ab(hp) on [0, T]

for some A>0, B>0 and hA=2k>0. Therefore, by applying to
(k+1)-times to (7.6) and by using (1) in Lemma 3, Lemma 5l and
(1), (2), 4) in Lemma 7, we have

(VPN u((f1, @), 5 (e @)D

Y A(ZB)ka+1tll+"'+lk—<ﬁ:ﬁ(x)+"'+ﬁ(k)>xa;|a(1)I—Iﬁ(l)|)+--~+(|a(k)l—|ﬂ(k)I)

(7.8)
XRak_,_l,b,pX(Ra,k,b,y)m-jk—Iﬂ(k)'>< X(Ral,b,y)m—jl—lﬂ(l)I[es](t; hP)

on [0, T] for any BneZ? (=1, 2, ---, k) such that (0, -+, )< B <aw, and
<k, Byt - +Bw>=h+ - +1;, where we put [;=((J;, aw), a,=a,

a; = a+i+ -+l —<k, ﬂ(l)+ ot By

(=2, ---, k+1), and >0, a>0, b>0, C>0 are the same as in to
Proposition 2. Here, we notice the following lemma (the proof will be given
later).

LEMMA 12. Let ¢;>0 (¢=1,2, -+, k), b=0 and p>0. Then, we have

Rck.b,yx T XRcl,b,‘u[:ﬁs](t, p) <K 1‘ - 0s(ebT#//‘p) . (7.9)
C1Cp - C

k

Hence, by applying to (7.8) we obtain
IVE-=NET (1, @), 5 (Tas @)@l

& Cie+1tll+"-+lk—<x. Bay++B ) X

Ap+1

% [((14(13‘—|/3(1>|)+ - +(lag | —lﬁ(kyl))!]s

a}n—h-lﬁu)!x xd}an—jk—lﬂ(k)*

(7.10)

0s(Hp)

for some C;>0 and H>O0.

Now, let s<s,<s;, €0 and d=N be as in [Corollary|] to [Proposition II.
Choose BneZ? (1=1, 2, -, k) in (7.10) so that (i)~(iv) in to Prop-
osition 1 are satisfied, and put p;, h;eN (1=1,2, ---,[k/d] (=max{geZ;q<k/d}))
as follows:

pi = (laci-vasn|— lﬁ((i—1>d+1)|)+ o+ aga | — Iﬁ(id)}),
h;= (m_j(i—l)d-!-l"' ‘ﬁ((i—l)dﬂ)l)‘*" +(m—]‘id_" lﬁ(id)\)-

Then, we have 1<p;<md, d<h,<md and (h;/p;)>s, for any 7. Since
Lt +1i—<k, Byt - +Bw>=er and a;=a-+ei for any 7, by (7.10) we have
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V2=V (1, @), s Ue, o))

[(P1+Pz+ +]9gk/¢3)!]s
(@)**(a+e)"2---(a+([k/d]—1)e) tra

[(pi+ Dot o+ Drrsa)t]® ,
Wm@)te (k) d])rwas O HO)

& Chrigek

0,(Hp) (7.11)

& Céﬂ—l

for some C,>0 and C,>0. In addition, we have

(;Dl+f72+ *J‘D[k/d])! é (Pl)pl(;bx+]>z)p2 (pl+p2+ ’}“p[le/d])p["”dj
< (nd)®P1(2md)?2 --- ([ k/dImd)Pwer a1
< (md)™*(1)P1(2)P2--- ([k/d])Prra1,
hi—sp;=p((hs/ p:)—8)= pi(so—8)=(S,—s) for any 7, and hence

L(prt+pet -+ Prara!]®
(1)r1(2)r2... ([ p/d]) ki a1

1
(1)r1=3P1(Q)he=3P2 . ([ fo /d]) ks a1~ 5Ps 2]
1
(Ck/d]n)so=> "

Therefore, by and we obtain (7.7). Thus, the existence part of
is proved.

Let v, x), v (¢, x) be two solutions of (7.1), in [Proposition 4. Then,
P, x, to;, 0.)t" (v’ —v®))=0. Therefore, by the same argument as above we
can show that

< (md)*™*

(7.12)

< (md)s™*

[V =VE 0P —v®)(D)] < K** 0(Hp),  for k=0,1,2, - (7.13)

(kY)Y
for some K>0, v>0 and H>0. Hence, by letting k—oo in (7.13) we obtain
WP —v®)(¢, x)=0, that is, v®(, x)=v*®(t, x) on [0, T]XR". Thus, the unique-
ness part is also proved.

The support condition is verified by the above construction of the solution
v(t, x)=230vs(t, x). Assume that supp(g)CC,(0, K) for some K&R™. Then,
by we have supp(v,)CC,0, K) (k=0, 1,2, ---). Hence, we obtain
supp()C C (0, K). Q.E.D.

PROOF OF LEMMA 12. This is verified by the following:

tcke'bq”l”’Rc(‘};,b,,,X XRéi?b,p[l](l‘)

t T3 Ty
< S 4R =17t X e XS 752‘01‘1d72S 1 dr,
0 0

= —{, Q.E.D.
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COROLLARY TO PROPOSITION 4. Assume that P and s satisfy (A.), (B), (C)
and (D). Then, for any K&ER™ there is an ax>0 which satisfies the following
condition. If f(t, x)eC=((0, T), E¥'(R™)) satisfies supp(f)CC,0, M) for some
MCK and f(t, x)=o0(*;V=, &(R™)) (as t—+0) for some A>ag, (S) (in §2)
has a unique solution u(t, x)e C=((0, T), &¥'(R™)) such that supp(u)ZC,0, M) and
u(t, x)=o(t®; V=, ER™)) (as t—+0) for any B<A.

PRrROOF. Let f(f, x) be as above and put g(t, x)=t"4f(t, x). Then, we can
apply Proposition 4 to

P(t, x, t0;, 0.)(t*) = t4g (7.14)

and obtain a solution v(t, x) of [7.14). By putting u(¢, x)=t4v(t, x), we have a
desired solution of (S). The uniqueness is proved in the same way. Q.E.D.

PROOF OF THEOREM 1. Note that it is sufficient to show the case A=0.
Therefore, by using [Corollary] to [Proposition 4, we can prove (with
A=0) in the same way as Tahara [13, Theorem 1]. In other words, the proof
of [13, Theorem 1] becomes a proof of (with A=0), if we use
Corollary to instead of [13, Lemma 1] and if we replace C*(R™"),
C=((0, TYXR™), u=o(t**; V=) on R™ (ast—-+0), --- by &(R™), C=((0, T), E*(R™)),
u=o(t°® ; V=, &9(R™) (as t—+0), ---, respectively. So, we may omit the
details. Q.E.D.

§8. Proof of Theorem 2.

Lastly, we prove [Theorem 2 (in §2) and complete the proof of Main Theo-
rem in the true sense.

Let P(t, x, td,, d,;) (=P) be the operator in [I.I}, and let us consider

{ P<t’ X, tat; ax)u :f’

X . 8.1
oiu|,;-r =0 for ;=0,1, -, m—1

in the L*® framework. Then, we have

PROPOSITION 5. Let peN. Assume that P and s satisfy (A,), (B), (C’) and
(Dyp). Then, if f(t, x)C=((0, T], H*(R™)) satisfies 0if | ;-r=0 for i=0, 1, -, p—1
and tANP=fOlee™ uniformly on (0, T] for some A>0, (8.1) has a unique
solution u(t, x)eC=((0, T], H*(R™)) such that diu|;-z=0 for =0, 1, ---, m+p—1
and that tB|NP =N u@)| €& uniformly on (0, T] for some B>0. In addition,
if f@, x) satisfies supp(f)CC(T, K) for some KER", u(t, x) also satisfies
supp(u)CCu(T, K). Here, C,(T, K) is defined by the case t,=T of (7.2).
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ProOOF. Let L, x, td;, 0;) and Q; .(t, x, td;, 0;) (j+|a|<m and |a|>0) be
the same as in (7.3). Then, we can solve (8.1) by the method of successive
approximations as follows. Let uo(t, x)=C>((0, T], H*(R™)) be the solution of

{ L(t; x; tat: ax)uo = f’

. (8.2
agu()lL:T = O fOI‘ Z:O, 1, tt m-l—ﬁ-—l,
and let u,(t, x)C=((0, T], H*(R™)) (k=1, 2, --) be the solution of
L(t, x, tau 0z)uy = ) > Qj,a(t: x, 10, 0)Up-1,
A" (8.2),
0%uyl;-r =0 for i=0,1, ---, m+p—1

(k=1, 2, --). The unique solvability of (8.2), (=0, 1, 2, ---) is guaranteed by
the fact that L(t, x, t0;, d,) is a regularly hyperbolic operator on [e, T]XR"

for any ¢>0 (see Mizohata [9]). Then, by the same argument as in the proof
of (7.5) we can show that

[VE-=VEe u, ()| < t~BK #+!

(k!)” os(H‘O) on (0’ T:I’ k:O’ 1: 2; (83)

for some B>0, K>0, v>0 and H>0, by using [Corollary] to [Proposition 3| and
(given below) instead of [Corollary] to [Proposition 2 and Lemma 12,
respectively. Hence, by putting u(t, x)=>mou:(f, x) We obtain a desired

solution u(t, x) of (8.1) in [Proposition 5. The other part may be proved in the
same way. Q.E.D.

LEMMA 13. Let ¢;>0, ¢,>c¢; (=1, -, k—1), b=0 and p>0. Then, for
any A=0 we have

Sck-A,b,pX Xscl—A.b,,ul:as](t; P)
1 (T

Ck
—_— 03 0T p .
(cp—cC1) - (Cp—Cp-1)cp \ T ) (e 2

L

PROOF. Since S ., [01)<SE,, [01(t) for any 6(t)=0, is
verified by the following :

tcke"bq(T#‘tp)/FSc(%)—A, b X e Xséf)-A,b,p‘:l](t)

< torgte TS D | e X SP [11(0)

IIA

T T T
Stz‘zk'”k—l'ldrkx XS rgz'cl'ldrzg Té1~ldr,
T2

73

IA

T T T
Sorzk"‘k-l“ldrkx XS rgz‘cl‘ldrgg é1-dr,

73 T2
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T c1-1 1 cg—C1—1 k-1 Cp-C -1
== Tll dfl TZZ 1 dfgx e X Tkk k—1 di
0 0 0

= L Tex, Q.E.D.

(cr—c1) -+ (Cr—Cr-1)Ch

COROLLARY TO PROPOSITION 5. Assume that P and s satisfy (A,), (B), (C)
and (D). Then, if f(t, x)€C=((0, T), £*(R™)) satisfies supp(f)CCu (T, K)N{t<T/2}
for some KER™ and f(t, x)=o0(t"4;V>, &5(R™)) (as t—+0) for some A>0, (S)
(in §2) has a unique solution u(t, x)eC=((0, T), E¥YR™)) such that supp(u)C
CuT, K)N{t<T/2} and u(t, x)=0(t"2;V>, &9(R™)) (as t—+0) for some B>0.

Proor oF THEOREM 2. Assume that u(t, x), f{t, x)sC=((0, T), &(R"™)
satisfy (S) and that f(¢, x) is tempered in €*(R") (as t—+0). Let p(t)eC=(R)
such that p(f)=1 for t<T/4 and p(*)=0 for t=T/2, and let ¢,(x)=E&(R™)N
CP(R™) (=1, 2, ---) such that 3%, ¢i(x) is a locally finite sum and that 237, ¢:(x)
=lon R™ Put (pu)t, x)=p®)ult, x), g:¢, x)=¢(x)(Pou)t, x) and K;=supp(¢;).
Then, supp(g:)CCu(T, K)N{t<T/2} and gq(t, x)=o(t™4:; V=, £¥(R™)) (as t—-+0)
for some A;>0. Therefore, by Corollary to Proposition 5 we have a solution
vi(t, x)eC=((0, T), &*'(R™) of P(t, x, t0,, 0-)v;=g; such that supp(v)CC,(T, K;)
N{tZT/2} and vit, x)=o0( B ; V=, &¥(R™)) (as t—+0) for some B;>0. By
putting v(f, x)=>7,v:(f, x) we obtain a solution v(t, x)=C>=((0, T), &*(R™)) of

{ P(t’ X, tah ax)v - (Ppu>:

supp(v) C {t<T/2}. (8.4)

Here, we note that (pu)t, x) also satisfies (8.4) and that P(t, x, td;, 0,) is a
strictly hyperbolic operator on (0, T)XR™. Hence, we have (pw)(, x)=v(t, x)
on (0, T)xXR™ This immediately leads us to the conclusion of
because we know from the construction that v(f, x) is tempered in &' (R") (as
t—40). Q.E.D.

CORRECTION. There is a serious misprint in [12, p. 471, [ [ 4]: Q=§¥*1-»
+ - &%= ghould be read as Q=t2*1"#&2 | ... |- f2Un-£2
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