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1. Introduction.

This paper extends some results of [2, 3, 6]. We have an interest in the
invariant subspace structure of certain subalgebras of von Neumann algebras
constructed as crossed products of finite von Neumann algebras by trace-preserv-
ing automorphisms. These subalgebras were studied systematically by McAsey,
Muhly and the second author (and by others) [2, 3, 4, 5, 6, 7, etc.] under the
name “nonselfadjoint crossed products” ; nowadays, for a variety of reasons, we
call them “analytic crossed products”.

In this paper, our setting is the following. Let (X, $\mu$ ) be a $\sigma- finite$ standard
Borel space and let $\tau$ be an invertible measure-preserving ergodic transformation
on $X$. Then $\tau$ induces uniquely a unitary operator $u$ on $L^{2}(X, \mu)$ such that
$(ux)(f)=x(\tau^{-1}t)$ , $x\in L^{\infty}(X, \mu)\cap L^{2}(X, \mu)$ . Form the Hilbert sPace $L^{2}=l^{2}(Z)$

$\otimes L^{2}(X, \mu)$ and consider the operators $L_{x},$ $x\in L^{\infty}(X, \mu)$ and $L_{\delta}$ defined on $L^{2}$

by the formulae $L_{x}=I\otimes x$ and $L_{\delta}=S\otimes u$ where $S$ is the usual shift on $l^{2}(Z)$ .
Then the von Neumann crossed product determined by $L^{\infty}(X, \mu)(=M)$ and $\tau$ is
defined as the von Neumann algebra $\mathfrak{L}$ on $L^{2}$ generated by $\{L_{x} : x\in L^{\infty}(X, \mu)\}$

$(=L(M))$ and $L_{\delta}$ , while the subalgebra which we call an analytic crossed pro-
duct is the $\sigma$-weakly closed subalgebra $\mathfrak{L}_{+}$ generated by $L(M)$ and the positive
powers of $L_{\delta}$ . Let $H^{2}$ be the subspace $l^{2}(Z_{+})\otimes L^{2}(X, \mu)$ of $L^{2}$ , where $Z_{+}=$

$\{n\in Z:n\geqq 0\}$ . We shall denote by $Lat(\mathfrak{L}_{+})$ the set of all invariant subspaces
$\mathfrak{M}$ under $\mathfrak{L}_{+}$ such that $\bigcap_{n\geq 0}L_{\delta}^{n}\mathfrak{M}=\{0\}$ .

In $[2, 3]$ , McAsey introduced the notion of canonical models for $Lat(\mathfrak{L}_{+})$ .
That is, a family of left-pure, left-full, left-invariant subspaces $\{\mathfrak{M}_{i}\}_{i\in I}$ in $Lat(\mathfrak{L}_{+})$

constitutes a complete set of canonical models for $Lat(\mathfrak{L}_{+})$ in case (a) for no two
distinct indices $i$ and $j,$ $P_{\mathfrak{M}_{i}}$ is unitary equivalent to $P_{\mathfrak{M}_{j}}$ by a unitary operator
in $\Re(=\mathfrak{L}’)$ ; and (b) for every $\mathfrak{M}$ in $Lat(\mathfrak{L}_{+})$ , there is an $i$ in $I$ and a partial
isometry $V$ in $\Re$ such that $VP_{\mathfrak{M}_{i}}V^{*}=P_{\mathfrak{M}}$ , so that $\mathfrak{M}=V\mathfrak{M}_{i}$ . Let $M=l^{\infty}(X)$ ,
where $X$ is a finite set with elements $t_{0},$ $t_{1},$ $\cdots$ , $t_{k-1}$ and let $\tau$ be the permuta-
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tion of $X$ defined by $\tau(t_{i})=t_{i+1}(i\neq k-1)$ and $\tau(t_{k-1})=t_{0}$ . Then McAsey [4]
studied a complete set of canonical models for $Lat(\mathfrak{L}_{+})$ which consists of two-
sided invariant subspaces of $L^{2}$ . Further, Solel [6] studied a complete set of
canonical models for $Lat(\mathfrak{L}_{+})$ in case (X, $\mu$ ) is a non-atomic standard Borel space
with a finite measure $\mu$ . We refer the reader to [1, 5, 7, etc.] concerning in-
variant subspace structure in more general framework.

In this paper, we consider a complete set of canonical models for $Lat(\mathfrak{L}_{+})$

in the following setting. Let $X$ be a standard Borel space with a $\sigma- finite$

infinite positive measure $\mu$ , that is, $\mu(X)=\infty$ . $Let\tau$ be an invertible measure-
preserving ergodic transformation on $X$. First we shall prove that, for every
$Z_{+}\cup\{\infty\}$ -valued measurable function $m$ on $X$, there exists a left-pure, left-
invariant subspace $\mathfrak{M}$ of $L^{2}$ with the multiplicity function $m$ . As a corol-
lary, we can construct a left-pure, left-full, left-invariant subspace $\mathfrak{M}_{\infty}$ of $L^{2}$

such that $m(t)=\infty$ for almost everywhere $t$ in $X$ where $m$ is the multiplicity
function of $\mathfrak{M}_{\infty}$ . Therefore, we have that, for every non-zero $\mathfrak{M}\in Lat(\mathfrak{L}_{+})$ , there
exists a partial isometry $V$ in $\Re$ such that $VP_{\mathfrak{M}_{\infty}}V^{*}=P_{\mathfrak{M}}$ , so that $\mathfrak{M}=V\mathfrak{M}_{\infty}$ .
This implies that the complete set of canonical models is the singleton $\{\mathfrak{M}_{\infty}\}$ in
this case. Finally we shall consider the structure of two-sided invariant sub-
spaces of $L^{2}$ and the case that (X, $\mu$ ) is an atomic measure space.

2. Definitions and preliminaries.

Let (X, $\mu$ ) be a $\sigma- finite$ standard Borel space with $\mu(X)=\infty$ . Let $\tau$ be an
invertible measure-preserving ergodic transformation on $X$. Using the product
of the counting measure on the integers $Z$ , and the measure $\mu$ on $X$, we may
realize $Z\cross X$ as a measure space. The space $L^{2}(Z\cross X)$ of all measurable func-
tions on $Z\cross X$ satisfying

$\sum_{n\Leftarrow Z}\int_{X}|f(n, t)|^{2}d\mu(t)<\infty$ ,

is a Hilbert space with inner product

$(f, g)= \sum_{n\in Z}\int_{X}f(n, t)\overline{g(n,t)}d\mu(t)$ , $f,$ $g\in L^{2}(Z\cross X)$ .

We shall denote it by $L^{2}$ . Define the following bounded linear operators on $L^{2}$ ;

$(L_{\delta}f)(n, t)=f(n-1, \tau^{-1}t)$ ,

$(R_{\delta}f)(n, t)=f(n-1, t)$ ,

$(L_{\phi}f)(n, t)=\phi(t)f(n, t)$ , $\phi\in L^{\infty}(X)$

and
$(R_{\psi}f)(n, t)=\phi(\tau^{-n}t)f(n, t)$ , $\phi\in L^{\infty}(X)$ .
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Note that $L_{\delta}$ and $R_{\delta}$ are unitary operators on $L^{2}$ . Put $M=L^{\infty}(X)$ . Let $L(M)$

(resp. $R(M)$ ) denote the algebra generated by $\{L_{\phi} : \phi\in M\}$ (resp. $\{R_{\phi}$ : $\phi\in M\}$ ).

Clearly $L(M)$ and $R(M)$ are abelian von Neumann algebras. The left (resp.
right) von Neumann crossed product of $L^{\infty}(X)$ by $\tau$ is defined as the von Neu-
mann algebra $\mathfrak{L}$ (resp. $\Re$) generated by $L(M)$ and $L_{\delta}$ (resp. $R(M)$ and $R_{\delta}$).

Define the left (resp. right) analytic crossed product as the a-weakly closed
subalgebra $\mathfrak{L}_{+}$ (resp. $\Re_{+}$ ) generated by $L(M)$ and $L_{\delta}$ (resp. $R(M)$ and $R_{\delta}$).

Furthermore, we define $H^{2}=\{f\in L^{2} : f(n, \cdot)=0, n<0\}$ .

DDFINITION 2.1. Let $\mathfrak{M}$ be a closed subspace of $L^{2}$ . We shall say that $\mathfrak{M}$

is left-invariant if $\mathfrak{L}_{+}\mathfrak{M}\subset \mathfrak{M}$ , left-reducing if $\mathfrak{L}\mathfrak{M}\subset \mathfrak{M}$ , left-pure if $\mathfrak{M}$ contains no
non-trivial left-reducing subspace and left-full if the smallest left-reducing sub-
space containing $\mathfrak{M}$ is $L^{2}$ itself. The right-hand versions of these concepts are
defined similarly, and a closed subspace which is both left- and right-invariant
will be said to be two-sided invariant.

In this paper, all results will be formulated in terms of left-invariant sub-
spaces. We leave it to the reader to rephrase them to obtain “right-hand”
statements.

An important tool for dealing with invariant subspaces is the notion of
multiplicity function introduced in $[2, 3]$ . To obtain it, note that the space $L^{2}$

may be identified with the direct integral $\int_{X}^{\oplus}l^{2}(Z)d\mu(t)$ , and the algebra $L(M)’$ ,

acting on it, may be identified with $\int_{X}^{\oplus}B(l^{2}(Z))d\mu(t)$ , where $B(l^{2}(Z))$ is the alge-

bra of all bounded linear operators on $l^{2}(Z)$ . Let $\mathfrak{M}$ be a left-invariant subspace

of $L^{2}$ . Then the orthogonal projection $P_{\mathfrak{F}}$ on $\mathfrak{M}\ominus L_{\delta}\mathfrak{M}=\mathfrak{F}$ lies in $L(M)’$ , so it

is written as a direct integral $\int_{X}^{\oplus}P(t)d\mu(t)$ , where $P(t)$ is a projection in $B(l^{2}(Z))$

for almost everywhere $t\in X$. We define the multiplicity function $m$ by letting
$m(t)$ be the dimension of the range of $P(t)$ . Then it is cleart hat $m$ is a meas-
urable function on $X$ with values in $Z_{+}\cup\{\infty\}$ . By [3, Theorem 3.4], we have
the following proposition.

PROPOSITION 2.2. For $i=1,2$ , let $\mathfrak{M}_{i}$ be a left-pure, left-invariant subspace

of $L^{\mathfrak{g}}$ . Let $\mathfrak{F}_{i}=\mathfrak{M}_{i}\ominus L_{\delta}\mathfrak{M}_{t}$ and $m_{i}$ the multiplictty function of $\mathfrak{M}_{i}$ . Then the
following statements are equivalent:

(1) $P_{\mathfrak{M}_{1}}=VP_{\mathfrak{M}_{2}}V^{*}$ for a partial isometry $V$ in $\Re$ , so that $\mathfrak{M}_{1}=V\mathfrak{M}_{2}$ ,

(2) $m_{1}(t)\leqq m_{2}(t)$ $a.e.$ , and
(3) $P_{\mathfrak{F}_{1}}\leq P_{\mathfrak{F}_{2}}$ in $L(M)’$ .

Let $\mathfrak{M}$ be a left-pure, left-invariant subspace of $L^{2}$ . We shall denote the
multiplicity function by $m[\mathfrak{M}](t)$ in this note.
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3. Invariant subspace structure.

Keep the notations and the assumptions in \S 2. Our aim in this section is
to construct a left-pure, left-full, left-invariant subspace of $L^{2}$ such that the
multiplicity function $m(t)=\infty$ for almost everywhere $t$ in $X$. To do this, we
need some lemmas.

LEMMA 3.1. Let $\{\mathfrak{M}_{i}\}_{i\in I}$ is a fimte or $co$untable collection of left-pure, left-
invariant subspaces of $L^{2}$ such that Mi is orthogonal to $\mathfrak{M}_{f}$ , for $i\neq j$ . Then
$\mathfrak{M}=\sum_{i\in I}\oplus \mathfrak{M}_{i}$ is a left-pure, left-invariant subspace with the $multipli\alpha ty$ function
$m[ \mathfrak{M}](t)=\sum_{i\in I}m[\mathfrak{M}_{i}](t),$ $a$ . $e$ .

PROOF. See [6, Lemma 3.1].

Let $\chi_{E}$ be a characteristic function of a measurable subset $E$ in $X$. We
define a projection $P$ in $L(M)’$ by

$(Pf)(n, t)=\{\begin{array}{ll}\chi_{E}(t)f(0, t), n=0,0, n\neq 0.\end{array}$

Let $E_{n}$ be the projection on $L^{2}$ defined by the formula

$(E_{n}f)(k, t)=\{\begin{array}{ll}f(k, t), k=n,0, k\neq n.\end{array}$

Since $P\leqq E_{0}$ and since $\{L_{\delta}^{n}E_{0}L_{\delta}^{*n}\}_{n\in Z}$ is mutually orthogonal, $\{L_{\delta}^{n}PL_{\delta}^{*n}\}_{n\in Z}$ is
mutually orthogonal. We define a subspace $\mathfrak{M}(E)$ of $L^{2}$ by $\mathfrak{M}(E)=$

$\sum_{n=0}^{\infty}\oplus(L_{\delta}^{n}PL_{\delta}^{*n})L^{2}$ . As in [6, Lemma 3.2] and [5, Lemma 5.1], we have

LEMMA 3.2. (i) $\mathfrak{M}(E)$ is a left-pure left-invariant subspace of $H^{2}$ with the
$multipli\alpha ty$ function $\chi_{E}(t)$ .

(ii) If $\mu(E)<\infty$ , then $\mathfrak{M}(E)$ is the closed linear sPan of {Lff $L_{\phi}e_{0}$ : $\phi\in L^{\infty}(X, \mu)$ ,
$n\geqq 0\}$ , where $e_{0}(n, t)=0$ if $n\neq 0$ and $e_{0}(0, t)=x_{E}(t)$ .

Let $E$ and $F$ be measurable subsets of $X$ such that there are measurable
subsets $\{E_{n}\}_{n=0}^{\infty}$ and $\{F_{n}\}_{n=0}^{\infty}$ with the following properties:

(1) $E_{n}\subset E$ and $F_{n}\subset F$, $n\geqq 0$ ,

(2) $E_{n}\cap E_{m}=F_{n}\cap F_{m}=\emptyset$ , $n\neq m$ ,

(3) $f\mu(E\backslash \bigcup_{n=0}^{\infty}E_{n})=\mu(F\backslash \bigcup_{n=0}^{\infty}F_{n})=0$ , and

(4) $F_{n}=\tau^{n}(E_{n})$ , $n\geqq 0$ .
Then we have the following lemma.
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LEMMA 3.3 ([6, Lemma 3.4]). $U=\Sigma_{\succ-0}^{\infty}L_{\chi_{F_{k}}}$ L\S is a partial isometry in $\mathfrak{L}_{+}$

with the initial projection $L_{\chi_{E}}$ and the final pr0jecti0n $L_{\chi_{F}}$ .

By the proof of [6, Lemma 3.5] and [5, Lemma 5.4], we have

LEMMA 3.4. Let $E,$ $F,$ $\{E_{n}\},$ $\{F_{n}\}$ be as (1) $\sim(4)$ in the above. SuPpose that
$\mu(E)=\mu(F)<\infty$ . Then there exists a left-pure, left-invariant subsPace $\mathfrak{M}$ of $\mathfrak{M}(E)$

such that $m[\mathfrak{M}](t)=x_{F}(t)a$ . $e$ . and $\sum_{n\in Z}LffP_{\mathfrak{F}}Lf^{n}=R_{\chi_{E}}$ where $\mathfrak{F}=\mathfrak{M}\ominus L_{\delta}\mathfrak{M}$ .
Let $\mathfrak{M}$ be a left-pure, left-invariant subspace of $L^{2}$ . Then $m[\mathfrak{M}](t)$ is a

measurable function with values in $Z_{+}\cup\{\infty\}$ . Conversely, we have the following

THEOREM 3.5. Let $m$ be a measuable function on $X$ with values in $Z_{+}\cup\{\infty\}$ .
Then there exzsts a left-pure, left-invariant subspace $\mathfrak{M}$ of $L^{2}$ with the multiPlicity
function $m(t)$ .

PROOF. Put $E_{n}=\{t\in X:m(t)\geqq n\}$ for all $n\in Z_{+}\cup\{\infty\}$ . Then $E_{n}$ is a
measurable subset of $X$ and $m(t)=\Sigma_{n=1}^{\infty\chi_{E_{n}}}(t)$ . If $\mu(E_{n})=\infty$ , by the $\sigma- finiteness$

of $\mu$ , tlhere exists a family $\{E_{nk}\}_{k=1}^{\infty}$ of mutually disjoint measurable subsets of
$X$ such that $\mu(E_{nk})<\infty$ , for all $k$ , and such that $E_{n}=\Sigma_{k=1}^{\infty}E_{nk}$ . Therefore we
may rewrite

$m(t)= \sum_{n=1}^{\infty}\chi_{E_{n}’}(t)$ , $\mu(E_{n}’)<\infty$ , $n\geqq 1$ .

At first, put $F_{1}=E_{1}’$ . Define the set $\{F_{2}^{(k)}\}_{k=0}^{\infty}$ and $\{G_{2}^{(k)}\}_{k=0}^{\infty}$ , inductively as fol-
lows. For $k=0$ , let $F_{2}^{(0)}=E_{2}’\cap(X\backslash F_{1})$ and $G_{2}^{(0)}=F_{2}^{(0)}$ . For $k\geqq 1$ , put

$F_{2}^{(k)}= \tau^{-k}(E_{2}’\backslash \bigcup_{n=0}^{k-1}G_{2}^{(n)})\cap(X\backslash \bigcup_{n=0}^{k-1}F_{2}^{(n)})\cap(X\backslash F_{1})$

and
$G_{2}^{(k)}=\tau^{k}(F_{2}^{(k)})$ .

Then $\{F_{2}^{(k)}\}_{k=0}^{\infty}$ and $\{G_{2}^{(k)}\}_{k=0}^{\infty}$ are mutually disjoint respectively. Put $F_{2}=$

$\bigcup_{k=0}^{\infty}F_{2}^{(k)}$ and $G_{2}= \bigcup_{k=0}^{\infty}G_{2}^{(k)}$ . Then $F_{1}\cap F_{2}=\emptyset$ and $G_{2}\subset E_{2}’$ . For $k\geqq 1$ , we have

$\emptyset=F_{2}^{(k)}\cap(X\backslash F_{2}^{(k)})$

$=\tau^{-k}(E_{2}’\backslash \overline{\bigcup_{n=0}^{k1}}G_{2}^{(n)})\cap(X\backslash \overline{\bigcup_{n=0}^{k1}}F_{2}^{(n)})\cap(X\backslash F_{1})\cap(X\backslash F_{2}^{(k)})$

$=\tau^{-k}(E_{2}’\backslash \overline{\bigcup_{n=0}^{k1}}G_{2}^{(n)})\cap(X\backslash \overline{\bigcup_{n=0}^{k1}}F_{2}^{(n)})\cap(X\backslash F_{1})$

$\supset\tau^{-k}(E_{2}’\backslash G_{2})\cap(X\backslash F_{2})\cap(X\backslash F_{1})$

$=\tau^{-k}(E_{2}’\backslash G_{2})\cap(X\backslash (F_{1}\cup F_{2}))$ .
Thus $\tau^{-k}(E_{2}’\backslash G_{2})\subset F_{1}\cup F_{2}$ for all $k\geqq 1$ . Put $K=U_{k=1}^{\infty}\tau^{-k}(E_{2}’\backslash G_{2})$ . Then $\tau^{-1}(K)\subset$

$K\subset F_{1}\cup F_{2}$ . Since $\tau$ is measure-preserving and $\mu(F_{1}\cup F_{2})<\infty,$ $\mu(K\backslash \tau^{-1}(K))=C$
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and so $\tau^{-1}(K)=Ka.e$ . Thus $\mu(K)=0$ . This implies that $\mu(E_{2}’\backslash G_{2})=0$ . Thus
$\{F_{2}^{(k)}\}_{k=0}^{\infty}$ and $\{G_{2}^{(k)}\}_{k=0}^{\infty}$ satisfy the following conditions:

(1) $F_{2}= \sum_{k=0}^{\infty}F_{2}^{(k)}$ and $E_{2}’= \sum_{k=0}^{\infty}G_{2}^{(k)}a.e.$ , and

(2) $G_{2}^{(k)}=\tau^{k}(F_{2}^{(k)}),$ $k\geqq 0$ .
Inductively, we can define the measurable subsets $\{F_{n}\}_{n=1}^{\infty},$ $\{F_{n}^{(k)}\}_{k=1}^{\infty}$ and $\{G_{n}^{(k)}\}_{k=1}^{\infty}$

with the following properties: for $n\geqq 1$ ,

(1) $F_{n}= \sum_{k=0}^{\infty}F_{n}^{(k)},$ $F_{n}^{(k)}\cap F_{n}^{(k’)}=\emptyset(k\neq k’)$ and $E_{n}’= \sum_{k=0}^{\infty}G_{n}^{(k)}$ ,

(2) $G_{n}^{(k)}=\tau^{k}(F_{n}^{(k)}),$ $k\geqq 0,$ $G_{n}^{(k)}\cap G_{n}^{(k’)}=\emptyset(k\neq k’)$ and

(3) $F_{n}\cap F_{m}=\emptyset$ , for $n\neq m$ .
By Lemma 3.4, there exists a left-pure, left-invariant subspace $\mathfrak{M}_{n}$ of $\mathfrak{M}(F_{n})$ such
that $\uparrow n[\mathfrak{M}_{n}](t)=x_{E_{n}’}(t)$ . Since $\{F_{n}\}_{n=1}^{\infty}$ is mutually disjoint, the family $\{\mathfrak{M}(F_{n})\}_{n=1}^{\infty}$

of left-pure, left-invariant subspaces of $L^{2}$ is mutually orthogonal. Put $\mathfrak{M}=$

$\sum_{n=1}^{\infty}\oplus \mathfrak{M}_{n}$ . By Lemma 3.1, $\mathfrak{M}$ is a left-pure, left-invariant subspace of $L^{2}$ and

$m[ \mathfrak{M}](t)=\sum_{n=1}^{\infty}m[\mathfrak{M}_{n}](t)=\sum_{n=1}^{\infty}\chi_{E_{n}’}(t)=m(t)$ .

Thus the multiplicity function of $\mathfrak{M}$ is $m$ . This completes the proof.

COROLLARY 3.6. Let $m$ be a measurable function on $X$ such that $m(t)=\infty$

for almost all $t\in X$. Then there exists a left-pure, left-full, left-invariant sub-
space $\mathfrak{M}_{\infty}$ of $L^{2}$ such that $m[\mathfrak{M}_{\infty}](t)=\infty$ for almost all $t\in X$.

PROOF. Since (X, $\mu$ ) is $\sigma- finite$ , there exists a family $\{E_{n}’\}_{n=1}^{\infty}$ of measurable
subsets of $X$ such that $X=U_{n=1}^{\infty}E_{n}’,$ $E_{1}’\subset E_{2}’\subset$ $\subset E_{n}’\subset\ldots$ and $\mu(E_{n}’)<\infty,$ $n\geqq 1$ .
Then we have $m(t)=\Sigma_{n=1}^{\infty\chi_{E_{n}’}}(t)=\infty a.e$ . Let $\{F_{n}\}_{n=1}^{\infty}$ be the family of mutually

disjoint measurable subsets of $X$ as in the proof of Theorem 3.5. Thus there exists
a left-pure, left-invariant subspace $\mathfrak{M}$ of $L^{2}$ such that $m[\mathfrak{M}](t)=\infty$ , for almost
all $t$ in $X$ and $\Sigma_{n\in Z}L_{\delta}^{n}P_{\mathfrak{F}}L_{\delta}^{*n}=R_{x_{U_{n=1}^{\infty}F_{n}}}$ , where $\mathfrak{F}=\mathfrak{M}\ominus L_{\delta}\mathfrak{M}$ . Put $F_{0}=X\backslash u_{n=1}^{\infty}F_{n}$ .
Define $\mathfrak{M}_{\infty}=\mathfrak{M}(F_{0})\oplus \mathfrak{M}$ . It is clear that $\mathfrak{M}_{\infty}$ is a left-full, left-pure, left-invariant
subspace of $L^{2}$ such that $m[\mathfrak{M}_{\infty}](t)=\infty$ . This completes the proof.

By Corollary 3.6, we can construct a left-pure, left-full, left-invariant sub-

$\mathfrak{M}_{\infty}space$

of $L^{2}$ such that $m(t)=\infty$ for almost all $t\in X$. We denote this space by
Then we have the following theorem.

THEOREM 3.7. Let $\mathfrak{M}$ be a left-pure, left-invariant subspace of $L^{2}$ . Then
there exists a partial isometry $V$ in $\Re$ such that $P_{\mathfrak{M}}=VP_{\mathfrak{M}_{\infty}}V^{*}$ , so that $\mathfrak{M}=V\mathfrak{M}_{\infty}$ .

PROOF. Since $m[\mathfrak{M}](t)\leqq\infty=m[\mathfrak{M}_{\infty}](t)$ , Proposition 2.2 implies the conclusion.
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4. Remarks.

In this section, we shall remark the structure of two-sided invariant sub-
spaces of $L^{2}$ . Keep the notations and the assumptions as in \S 2 and \S 3.

At first, we suppose that (X, $\mu$ ) is non-atomic and $\mu(X)=\infty$ . As in the
proof of [6, Theorem 4.1], we have the following theorem.

THEOREM 4.1. Let $m(t)$ be a non-zero measurable function with values in
$Z_{+}\cup t\infty\dagger$ . Then there is a two-sided invariant subspace $\mathfrak{M}$ with multiplictty func-
tion $m(t)$ if and only if there is a measurable function $d$ on $X$ with values in $Z$

such that $d(t)-d(\tau^{-1}(t))=1-m(t)a.e$ . and $|d(t)|<\infty a.e$ .
By Theorem 4.1, if $m(t)$ is a multiplicity function of a two-sided invariant

subspace $\mathfrak{M}$ of $L^{2}$ , then $\mu(m^{-1}(\{\infty\}))=0$ . However, by Corollary 3.6, we can
construct a left-pure, left-full, left-invariant subspace $\mathfrak{M}_{\infty}$ such that { $t\in X$ :
$m[\mathfrak{M}_{\infty}](t)=\infty\}=X$. Thus, $\mathfrak{M}_{\infty}$ is not two-sided invariant. Therefore, it is im-
possible to find a complete set of canonical models among the two-sided invari-
ant subspaces.

Finally, we suppose that (X, $\mu$ ) is atomic and $\mu(X)=\infty$ . Thus the space $X$

is countably discrete. Let $X=\{x_{n}\}_{n=-\infty}^{\infty}$ and the map $\tau$ will be the translation
$\tau(x_{i})=x_{i+1}$ of $X$. In this case, McAsey studied the structure of invariant sub-
spaces in [2, Chapter IV]. He considered the four classes of all non-negative
$Z_{+}\cup\{\infty\}$ -valued functions on $X$. A function $m$ from $X$ to $Z_{+}\cup\{\infty\}$ is of type
$0$ (resp. 1, 2) in case the cardinality of the set $m^{-1}(\{\infty\})$ is $0$ (resp. 1, 2). Such
a function is of type 3 in case the cardinality is greater than or equal to 3.
Further, he defined the notion of admissible functions. That is, the function $m$

from $X$ to $Z_{+}\cup\{\infty\}$ is an admissible function in case $m$ is either of
i) type $0$ , or

ii) type 1 (suppose $m(x_{k})=\infty$ ) and one of the following conditions holds:
a) supp $m=\{x_{k}\}$ ,
b) supp $m\subset\{x_{k}\}\cup C$ and supp $m\neq\{x_{k}\}$ ,
c) supp $m\subset\{x_{k}\}\cup D$ and supp $m\neq\{x_{k}\}$ ,

where $C=\{x_{k-1}, x_{k-2}, x_{k-3}, \}$ and $D=\{x_{k+1}, x_{k+2}, x_{k+3}, \}$ ,
iii) type 2 (suppose that $m(x_{k})=m(x_{j})=\infty,$ $j>k$ ) and supp $m\cap(C\cup E)=\emptyset$ ,

where $C=\{x_{k-1}, x_{k-2}, x_{k-3}, \}$ and $E=\{x_{j+1}, x_{j+2}, x_{j+3}, \}$ . By [1, Theorem
4.13], a function $m$ from $X$ to $Z_{+}\cup\{\infty\}$ is an admissible multiplicity function
if and only if it is the multiplicity function of a two-sided invariant subspace.
However, in \S 3, we constructed a left-pure, left-full, left-invariant subspace $\mathfrak{M}_{\infty}$

such that $m[\mathfrak{M}_{\infty}](x_{k})=\infty$ for all $k\in Z$. Of course, $\mathfrak{M}_{\infty}$ is not two-sided invariant.
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