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Introduction.

A compact complex threefold is called a Moishezon threefold if it has three
algebraically independent meromorphic functions on it. The purpose of this
article is to prove

THEOREM. A Moishezon threefold homeomorphic to complex Projective sPace
$P^{3}$ is isomorphic to $P^{3}$ if the Kodaira dimension of it is less than three.

As a corollary to it, we obtain,

THEOREM. An arbitrary complex analytic (global) deformation of $P^{8}$ is iso-
$morpf\dot{u}c$ to $P^{3}$ .

As for the (topological) characterization of $P^{n}$ , it is known that an arbi-
trary K\"ahlerian complex manifold homeomorphic to $P^{n}$ is isomorphic to $P^{n}$ by
Hirzebruch-Kodaira [9] and Yau [24] (see also [17]). However neither of the
above theorems are entirely clear from this because both a Moishezon threefold
and a complex analytic deformation of a compact K\"ahlerian threefold can be
nonK\"ahlerian as Hironaka’s example shows [6]. Recently Tsuji [23] claims
that he is able to prove the second theorem for $P^{n}$ , whereas Peternell [19]

asserts both of the above theorems in a stronger form. However there is a
gap in the proof of [19], as the author of [19] himself admits at the end of
the article. After completing this article, I received two preprints of Peternell
[20], [21] via Tsunoda and Nishiguchi, in which Peternell claims that he com-
pletes the proof of [19]. See (3.3).

In this article, we make an approach different from theirs and give an
elementary proof of the above theorems.

Our idea of the proof of the first theorem is as follows. Let $X$ be a
Moishezon threefold homeomorphic to $P^{8}$ whose Kodaira dimension is less than
three. Let $L$ be the generator of PicX $(\cong Z)$ with $L^{3}$ equal to one. First we
notice that $K_{X}=-4L$ [8], [171 and that diml $L|$ is not less than three. For
an arbitrary pair $D$ and $D’$ in the complete linear system $|L|$ , the scheme-
theoretic complete intersection 1 of $D$ and $D’$ is a pure one dimensional con-
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nected closed analytic subspace of $X$ with no embedded components. We show
that 1 is a nonsingular rational curve with $Ll$ equal to one whose normal bundle
is isomorphic to $\mathcal{O}_{l}(1)\oplus \mathcal{O}_{l}(1)$ for arbitrary $D$ and $D’$ . We also see that the base
locus of the linear system $|L|$ is the same as that of $|L_{l}|$ and diml $L|$ is equal
to $2+\dim|L_{l}|,$ $L_{l}$ being the restriction of $L$ to $l$ . Since $L_{l}$ is isomorphic to
$O_{l}(1),$ $|L|$ is therefore base point free and diml $L|$ is equal to three. Thus we
have a bimeromorphic morphism $f$ of $X$ onto $P^{3}$ associated with the linear
system $|L|$ . The exceptional set of $f$ is a Cartier divisor of $X$ whose image
in $P^{3}$ is zero or one dimensional. Since $f_{*}$ induces an isomorphism of PicX
onto $PicP^{3}$ , this shows that $f$ is an isomorphism of $X$ onto $P^{3}$ .

The outline of the article is as follows. In sections 1 and 2, we consider a
compact complex threefold $X$ with a line bundle $L$ such that PicX$=ZL,$ $L^{3}$ is
positive, $K_{X}=-dL(d\geqq 4)$ and $\kappa(X, L)\geqq 1$ . (See [10] for the definition of
$\kappa(X, L).)$ The last condition $\kappa(X, L)\geqq 1$ is equivalent to the existence of a
positive integer $m$ such that diml $mL|$ is positive. In section 1, we prove that
diml $L|$ is not less than three. We also prove some vanishing lemmas of cer-
tain cohomology groups. In section 2, we study the scheme-theoretic complete
intersection 1 of two distinct members $D$ and $D’$ of the linenar system $|L|$ . In
view of the vanishing lemmas in section 1, $l_{red}$ consists of nonsingular rational
curves (intersecting transversally), among which there is a unique irreducible
component $C$ of $l_{red}$ such that $LC$ is positive (indeed, equal to one). We shall
show in (2.7) that $l$ is isomorphic to $C$ for an arbitrary pair $D$ and $D’$ and
that $|L|$ is base point free. We shall prove in (2.8) that $X$ is isomorphic to
$P^{3}$ and therefore $L^{3}=1,$ $d=4$ . We remark that (1.1) gives a characterization
of $P^{3}$ in arbitrary characteristic by a slight modification, see (2.10). In section
3, we complete the proofs of the theorems mentioned above by applying the
results in section 2.

ACKNOWLEDGEMENT. We are very grateful to A. Fujiki, T. Fujita, F. Hidaka,
T. Suwa and K. Ueno for their encouragement and valuable advices. Fujiki
kindly pointed out an error in the first version of the article. This article is
dedicated to my wife and children.

List of notations and terminologies.

$Z$ the ring of integers or the infinite cyclic group
threefold a connected complex manifold of three dimension
$\kappa(X, L)$ L-dimension of $X,$ $L$ being a line bundle on $X[10]$

$H^{q}(X, \mathcal{F})$ the q-th cohomology group of $X$ with coefficients in
a coherent sheaf $\mathcal{F}$
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$h^{q}(X, \mathcal{F})$ $\dim_{C}H^{q}(X, \mathcal{F})$

$\chi(X, \mathcal{F})$ $\Sigma_{q\in Z}(-1)^{q}h^{q}(X, \mathcal{F})$

Bsl $L|$ the set of base points of the linear system $|L|$

$O_{X’}\mathcal{O}_{X}^{*}$ the sheaf of germs over $X$ of holomorphic
(resp. nonvanishing holomorphic) functions

$\Omega g$ the sheaf of germs over $X$ of holomorphic p-forms
$K_{X}$ the canonical line bundle of $X$

$[D]$ the line bundle associated with a Cartier divisor $D$

$c_{q}$ the q-th Chern class (of $X$ )
$c_{1}(E)$ the first Chern class of a vector bundle $E$

$b_{q}$ the q-th Betti number (of $X$ )

\S 1. Threefolds with $K_{X}=-dL(d\geqq 4)$ .
Our first aim is to prove

(1.1) THEOREM. Let $X$ be a compact complex threefold with PicX$=Z$ . As-
sume that there is a complex line bundle $L$ on $X$ such that $L^{3}>0,$ $K_{X}=-dL$

$(d\geqq 4)$ and $\kappa(X, L)\geqq 1$ . Then $L^{3}=1,$ $d=4$ and $X$ is isomorphc to complex prOjec-
tive space $P^{3}$ .

Compare [4] and [14].

Sections 1 and 2 are devoted to proving (1.1). The proof of (1.1) is com-
pleted in (2.8).

Throughout sections 1 and 2, we always assume that $X$ is a compact complex
threefold satisfying the conditions in (1.1). By taking thereby a generator of
PicX for $L$ if necessary, we may assume $L$ generates Pic $X$.

(1.2) LEMMA. $H^{0}(X, -mL)=0$ for $m>0$.
PROOF. Suppose $H^{0}(X, -mL)\neq 0$ for some $m>0$. Then there is an effec-

tive divisor $D$ on $X$ such that $[D]=-mL$ . Since $\kappa(X, L)\geqq 1$ , there are an $m_{0}$

$(>0)$ and an effective divisor $D_{0}$ such that $[D_{0}]=m_{0}L$ . Hence $mD_{0}+m_{0}D$ is
linearly equivalent to zero, which contradicts $h^{0}(X, O_{X})=1$ . $q$ . $e.d$ .

(1.3) LEMMA. $H^{q}(X, O_{X})=0$ for $q=1,3$ and $c_{1}c_{2}\geqq 24$ , $\chi(X, mL)\geqq$

$(m+1)(m+2)(m+3)/6$.
PROOF. Since Pic $X$ is discrete, we have $H^{1}(X, O_{X})=0$ . By (1.2), $h^{3}(X, O_{X})$

$=h^{0}(X, K_{X})=h^{0}(X, -dL)=0$. Hence $\chi(X, O_{X})\geqq 1$ . By Riemann-Roch-Hirzebruch
formula, $c_{1}c_{2}=24\chi(X, O_{X})\geqq 24$ and $\chi(X, mL)=x(X, \mathcal{O}_{X})+m(c_{1}^{2}+c_{2})L/12+m^{2}c_{1}L^{2}/4$

$+m^{8}L^{3}/6$ . Hence $c_{2}L\geqq 24/d$ and $\chi(X, mL)\geqq 1+m(d^{2}+(24/d))/12+m^{2}d/4+m^{3}/6$

by $L^{3}\geqq 1$ . For $d\geqq 4$ , we have $d^{2}+(24/d)\geqq 22$ , whence $\chi(X, mL)\geqq(\begin{array}{l}m+33\end{array})$ . $q.e.d$ .
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(1.4) LEMMA. Let $D$ be a reduced and connected effective divisor on $X$.
Then $H^{1}(X, O_{X}(-D))=0$.

PROOF. Consider the exact sequence

$0arrow O_{X}(-D)arrow O_{X}arrow \mathcal{O}_{D}arrow 0$ .
It follows from this that $0arrow H^{1}(X, O_{X}(-D))arrow H^{1}(X, O_{X})$ is exact. Hence by

(1.3), we have $H^{1}(X, O_{X}(-D))=0$. $q.e.d$ .
(1.5) LEMMA. $h^{0}(X, L)\geqq 4$ .
PROOF. The proof is given in a series of sublemmas.

(1.5.1) SUBLEMMA. SuPpose $h^{0}(X, L)\geqq 1$ . Then any member of $|L|$ is re-
duced and irreducible.

PROOF. Let $D$ be an arbitrary member of $|L|$ . Let $D=a_{1}D_{1}+\cdots+a_{r}D_{r}$

with $a_{i}>0$ , $D_{i}$ irreducible. Since $L$ is a generator of Pic $X$, then there are
$b_{i}>0$ such that $[D_{i}]=b_{i}L$ by (1.2). Hence $a_{1}b_{1}+$ $+a_{r}b_{r}=1$ , whence $r=1$ ,
$a_{1}=b_{1}=1$ . Therefore $D$ is reduced and irreducible. $\square$

(1.5.2) SUBLEMMA. Assume $h^{0}(X, L)\geqq 2$. Then $h^{0}(X, L)\geqq 4$ .
PROOF. Since $h^{0}(X, L)\geqq 2$ , we can choose infinitely many distinct $D_{i}’ s$ from

$|L|$ . Then by (1.5.1), $D_{i}$ is reduced and connected. Since $D_{i}D_{j}D_{k}=L^{3}\geqq 1,$ $D_{i}’ s$

intersect each other. Hence $D_{1}+\cdots+D_{m}$ is reduced and connected. Hence
$H^{1}(X, -mL)=H^{1}(X, -(D_{1}+\cdots+D_{m}))=0$ in view of (1.4). In particular, $h^{2}(X, L)$

$=h^{1}(X, K_{X}-L)=h^{1}(X, -(d+1)L)=0$. Consequently, by (1.3), $h^{0}(X, L)\geqq\chi(X, L)$

$\geqq 4$ . $\square$

(1.5.3) SUBLEMMA. $h^{0}(X, L)\geqq 2$.
PROOF. Suppose $h^{0}(X, L)\leqq 1$ to derive a contradiction. By $\kappa(X, L)\geqq 1$ ,

there exists $p(\geqq 2)$ such that $h^{0}(X, L)\leqq 1$ for $1\leqq k\leqq P-1$ and $h^{0}(X, pL)\geqq Z$

Then any general member of $|pL|$ is reduced and irreducible. Indeed, other-
wise, $D\in|pL|$ is written as $D=D’+D’$ with $D’,$ $D’$ effective. Since $h^{0}(X, kL)$

$\leqq 1(1\leqq k\leqq p-1)$ , we see that $D‘\in|aL|,$ $D’\in|bL|$ are the unique members for
some $a,$ $b>0,$ $a+b=P$ . Hence $h^{0}(X, pL)=1$ , which is absurd. Hence any
general member of $|pL|$ is reduced and irreducible. Therefore by taking dis-
tinct members $D_{1},$ $\cdots$ , $D_{m}$ of $|pL|$ , we apply (1.3), (1.4) and the proof of (1.5.2)

so as to show $H^{1}(X, -pmL)=0$ for any $m\geqq 0$. Hence $H^{2}(X, (pm-d)L)=0$ for
any $m\geqq 0$. Let $d=pa+b,$ $0\leqq b\leqq p-1$ . If $b>0$, then $h^{0}(X, (P-b)L)\geqq\chi(X, (p-b)L)$

$\geqq(\begin{array}{l}p-b+33\end{array})\geqq 4$ . This contradicts $h^{0}(X, kL)\leqq 1$ for $k\leqq p-1$ . When $b=0$ , we

assume moreover tha $t$ there is $q$ not divistble by $P$ such that $q>P,$ $h^{0}(X, qL)\geqq-’$ .
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We take minimal such $q$ . Then any general member of $|qL|$ is reduced and
connected. In fact, let $D$ be a general member of $|qL|$ and assume that $D=$

$D’+D’’,$ $D’\in|q’L|,$ $D’’\in|q’’L|$ . By the choice of $q$ , there are two possibilities;
Case 1. $q’<p,$ $q’’<p$ , Case 2. $q’<p,$ $p|q’’$ . In Case 1, $h^{0}(X, q’L)=h^{0}(X, q’’L)=1$ ,
whence $h^{0}(X, qL)=1$ . This is absurd. In Case 2, $h^{0}(X, q’L)=1$ . By the choice
of $q$ and $h^{0}(X, pL)\geqq 2$ , we see that $q=q’+P,$ $q’’=P$ and $h^{0}(X, sL)=0$ for $s<q’$.
Clearly the unique member of $|q’L|$ is reduced and irreducible. Therefore any
general member of $|qL|(=D’+|pL|)$ is reduced and connected. By applying
(1.4) to a sum of members of $|qL|$ and $|pmL|$ , we have $H^{1}(X, -(pm+q)L)=0$.
Hence $H^{2}(X, (Pm+q-d)L)=0$ for $m\geqq 0$. Letting $m=a-1(\geqq 0)$ , we obtain
$h^{2}(X, (q-P)L)=0$, whence $h^{0}(X, q’L)=h^{0}(X, (q-P)L)\geqq 4$ . This contradicts
$h^{0}(X, q’L)=1$ .

Thus in order to complete the proof of (1.5.3), it suffices to prove

(1.5.4) SUBLEMMA. There exists $q$ not divisible by $P$ such that $q>P$ ,
$h^{0}(X, qL)\geqq 2$ .

PROOF. Any general member $D$ of $|pL|$ is reduced and irreducible. Since
another general member of $|pL|$ gives a nontrivial element of $H^{0}(D, pL)$ , we
have $H^{0}(D, -sL)=0$ for any $s>0$. Since the dualising sheaf $\omega_{D}$ of $D$ is given
by $(p-d)L\otimes O_{D}$ , we have $h^{2}(D, kL)=h^{0}(X, (P-d-k)L)=0$ for $k>p-d$ . Con-
sider the exact sequence

$0arrow \mathcal{O}_{X}((k-P)L)arrow \mathcal{O}_{X}(kL)arrow\Theta_{D}(kL)arrow 0$ .

Then it follows that $h^{2}(X, kL)\leqq h^{2}(X, (k-P)L)$ for $k>p-d$ . Let $A=$

$\max\{h^{2}(X, jL);0\leqq!\leqq P-1\}$ . Then $h^{2}(X, kL)\leqq A$ for $k>0$. Hence $h^{0}(X, kL)$

$\geqq(\begin{array}{l}k+33\end{array})-A$ for $k>0$. Consequently there exists $k_{0}$ such that $h^{0}(X, kL)>1$ for

$k>k_{0}$ . This guarantees the existence of the desired $q$ . $\square$

Combining $(1.5.1)-(1.5.4)$ , we obtain (1.5). $q$ . $e$ . $d$ .
(1.6) LEMMA. Let $D$ and $D’$ be distinct members of $|L|,$ $l:=D\cap D’$ the

scheme-theoretic intersection of $D$ and $D’$ . Then $0arrow O_{D}(-L)arrow O_{D}arrow O_{l}arrow 0$ is exact.

PROOF. Let $I_{D}$ (resp. $I_{D’}$ ) be the ideal sheaf of $D$ (resp. $D’$ ) and $I_{l}$ $:=$

$I_{D}+I_{D’}$ . Then $0_{D}=0_{X}/I_{D},$ $0_{l}=0_{X}/I_{l}$ . We have an exact sequence

$0arrow I_{D}+I_{D’}/I_{D}(=I_{D’}/I_{D}\cap I_{D’})arrow 0_{D}arrow 0_{l}arrow 0$ .
Once one shows $I_{D}\cap I_{D’}=I_{D}I_{D’}$ , we see $I_{D’}/I_{D}\cap I_{D’}=I_{D’}/I_{D}I_{D’}=I_{D’}\otimes_{\mathcal{O}_{X}}\mathcal{O}_{X}/I_{D}=$

$O_{D}(-L)$ . It suffices to prove that $D$ and $D’$ have no common locally irreducible
components anywhere on $X$. Let $\Phi=\{U_{j}\}$ be an open covering of an open
neighborhood of $D’\backslash SingD’$ by open balls $U_{j}$ and let $f_{j}$ be a generator of $I_{D}$
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on $U_{j}$ . We assume that $D$ and $D’$ have a common irreducible component at
$p\in X,$ $p\in the$ closure of $U_{0}$ for some $U_{0}\in\Phi$ and that $f_{0}$ vanishes identically on
$U_{0}\cap D’$ . By the connectedness of $D’\backslash SingD’(1.5.1)$ , there is $U_{1}\in\Phi$ such that
$U_{0}\cap U_{1}\neq\emptyset$ . Then $f_{0}$ vanishes identically on $U_{0}\cap U_{1}\cap D’$ , so that $f_{1}$ vanishes
identically there. Hence $f_{1}$ vanishes identically on $U_{1}\cap D’$ by Hartog’s con-
tinuation theorem. By repeating the argument, we see that in view of (1.5.1),
$D$ contains $D’\backslash SingD’$ , hence $D’$ . Conversely $D’$ contains $D$ , whence $D=D’$.

$q.e.d$ .
We also notice that for any point $p$ of $X$, the defining equations $f$ and $f’$

of $D$ and $D’$ form a regular sequence in the local ring $O_{X.p}$ and therefore the
intersection $l$ is Gorenstein and has no embedded components [1, pp. 54-55].

(1.7) LEMMA. Let $D,$ $D’$ and $l=D\cap D’$ be the same as in (1.6). Then we
have,

(1.7.1) $H^{q}(X, -mL)=0$ for $q=0,1,$ $m>0;q=2,0\leqq m\leqq d;q=3,0\leqq m\leqq d-1$ ,

(1.7.2) $H^{q}(D, -mL_{D})=0$ for $q=0,$ $m>0;q=1,0\leqq m\leqq d-1;q=2,0\leqq m\leqq d-2$ ,

(1.7.3) $H^{0}(l, -mL_{l})=0$ for $1\leqq m\leqq d-2$ ; $H^{1}(l, -mL_{l})=0$ for $0\leqq m\leqq d-3$ ,

(1.7.4) $H^{0}(X, O_{X})=H^{0}(D, O_{D})=H^{0}(l, O_{l})=C$ ,

(1.7.5) $H^{3}(X, -dL)=H^{2}(D, -(d-1)L_{D})=H^{1}(l, -(d-2)L_{l})=C$.
PROOF. By (1.5.1), any member of $|L|$ is reduced and irreducible. Since

$h^{0}(X, L)\geqq 4$ , we can choose distinct $D_{i}’ s$ ($i=1,$ $\cdots$ , m) from $|L|$ . Hence $D_{1}+\cdots$

$+D_{m}$ is reduced and connected. Hence by (1.4), $H^{1}(X, -mL)=0$ for any $m>0$ .
Hence $h^{2}(X, -mL)=h^{1}(X, -(d-m)L)=0$ for $0\leqq m\leqq d-1$ . It follows from (1.3)

that $h^{2}(X, -dL)=h^{1}(X, O_{X})=0$. The rest of (1.7.1) is clear from (1.2). (1.7.2)

follows from (1.7.1) and the exact sequence $0arrow O_{X}(-D)arrow O_{X}arrow O_{D}arrow 0$. (1.7.3)

follows from (1.7.2) and (1.6). The remaining assertions can be proved simi-
larly. $q$ . $e.d$ .

(1.8) COROLLARY. $H^{2}(X, O_{X})=0$ and $\chi(X, O_{X})=1$ .

PROOF. Clear from (1.7.1) and (1.3). $q$ . $e.d$ .

\S 2. Base points of the linear system $|L|$ .
(2.1) Here we recall the intersection theory in analytic geometry briefly

from [2], [3] and [12]. To an arbitrary closed complex analytic subset $A$ of
pure complex dimension $m$ in a compact complex manifold $X$, one associates a
(Borel-Moore) homology class cl $(A)\in H_{2m}(X, Z)$ . Two analytic subset $D$ and
$D’$ of $X$ are said to intersect properly if any irreducible component $B$ of $D\cap D’$
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has the same dimension $\dim D+\dim D’-\dim X$ anywhere on $(D\cap D’)_{red}$ . Given
two analytic subsets $D$ and $D’$ intersecting properly, the intersection cycle
$D\cap D’$ is defined so that cl $(D\cap D’)=c1(D)\cap c1(D’)$ , where the right hand side
is the cap product. If we are given another topological cycle $\gamma$ , then we have
$\gamma\cap c1(D\cap D’)=(\gamma\cap c1(D))\cap c1(D’)$ by the topological associativity. In the sequel,
we omit the symbol $\cap for$ the cap product for brevity.

We notice that three kinds of intersection theory–topological [2], analytic
[3] and current-theoretic [12]–are the same by [12, p. 211]. We also note
that the associativity law and the projection formula in the intersection theory
are true [2], [3].

Coming back to our situation where $l=D\cap D’$ in (1.6), we see that there
are positive integers $n_{i}$ such that cl $(l)=n_{1}$ cl $(A_{1})+\cdots+n_{s}$ cl $(A_{s})\in H_{2}(X, Z)$

where $A_{i}$ ranges over all the irreducible components of $l_{red}$ .

(2.2) LEMMA. $d=4,$ $K_{X}=-4L$ .
PROOF. Let $l_{red}=A_{1}+\cdots+A_{s}$ be the decomposition into irreducible com-

ponents. Let $I_{l}$ (resp. $I_{j}$) be the ideal sheaf in $O_{X}$ defining $l$ (resp. $A_{j}$). By
definition, $0_{l}=0_{X}/I_{l},$ $O_{A_{j}}=0_{X}/I_{j}$. It follows from $H^{1}(O_{l})=0$ that $H^{1}(O_{A_{j}})=0$.
Hence $A_{j}$ is a nonsingular rational curve. Suppose $d>4$ . Then by (1.7),
$H^{1}(\mathcal{O}_{l}(-2L))=0$ , whence $H^{1}(O_{A_{j}}(-2L))=0$ for any $j$. Therefore $c_{1}(L_{A_{j}})\leqq 0$ for
any $j$. However $c1(L)(n_{1}c1(A_{1})+ +n_{s}c1(A_{s}))=c1(L)$ cl (1) $(=:Ll)=L\cdot D\cdot D’=$

$L^{3}\geqq 1$ , whence there exists $i$ such that $LA_{i}$ $:=c1(L)$ cl $(A_{i})>0$. This shows that
$c_{1}(L_{A_{i}})=c1(L_{A_{i}})=c1(L)c1(A_{i})(\in H_{0}(A_{i}, Z)\cong Z)$ is positive. This is a contradic-
tion. Therefore $d=4$ and $K_{X}=-4L$ . $q.e.d$ .

(2.3) LEMMA. Let $D$ and $D’$ be two distinct members of $|L|,$ $l:=D\cap D’$ ,
$A=l_{red}=A_{1}+$ $+A_{a+b}$ the decompOsjtjOn of $l_{red}$ into irreducible compOnents, and
let $B=A_{a+1}+$ $+A_{a+b}$ be the one dimensional part of Bs $|L|,$ $C=A-B=A_{1}+$

$...+A_{a}$ . Then there is a unique irreducible compOnent $A_{i}(1\leqq i\leqq a)$ of $C$ such
that $LA_{i}>0$, say, $LA_{1}>0$. Moreover

(2.3.1) each $A_{i}$ is a nonsingular ratimal curve,

(2.3.2) $LA_{1}=1,$ $LA_{t}=0(2\leqq i\leqq a),$ $LA_{j}\leqq 0(a+1\leqq]\leqq a+b)$ ,

(2.3.3) $A,$ $B$ and $C$ are connected and if moreover $B\neq\emptyset$ , then $B$ and $C$ intersect
at a unique pOint of $A_{1}$ .

PROOF. The assertion (2.3.1) is clear from the proof of (2.2). By (2.1), we
set $c1(l)=n{}_{1}C1(A_{1})+$ $+n_{a+b}c1(A_{a+b})$ for $n_{i}>0$. Since $Ll\geqq 1$ , there is at least
one $i$ such that $LA_{i}=c1(L)c1(A_{i})>0$. By the exact sequences
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$0arrow(I_{A}/I_{l})\otimes \mathcal{O}_{X}(-2L)arrow O_{l}(-2L)arrow O_{A}(-2L)arrow 0$

$0arrow O_{A}(-2L)arrow\nu_{*}(\oplus O_{A_{j}}(-2L))arrow \mathcal{H}arrow 0$

where $\nu;\bigcup_{j}A_{j}arrow A$ is the normalization and $\mathcal{H}=\nu_{*}(\oplus_{j}O_{A_{j}})/O_{A}$ is a sheaf sup-
ported by Sing A, we see that $h^{1}(\mathcal{O}_{l}(-2L))\geqq h^{1}(O_{A}(-2L))\geqq\Sigma_{j=1}^{a+b}h^{1}(\mathcal{O}_{A_{j}}(-2L))$

and $h^{1}(\mathcal{O}_{l}(-2L))=1$ in view of (1.7). Since $A_{j}$ is a nonsingular rational curve,
this proves that $LA_{i}=1$ and $LA_{j}\leqq 0$ for $j\neq i$. In order to complete the proof
of (2.3.2), we prove

(2.3.4) SUBLEMMA. The unique irreducible compment $A_{i}$ of $A$ with $LA_{i}>0$

is not contained in $B$ .

PROOF OF (2.3.4). First we notice that if $LA_{j}<0$ , then $A_{j}\subset B$ . In fact,
since $H^{0}(\mathcal{O}_{A_{j}}(L))=0$, any element of $H^{0}(X, L)$ vanishes identically on $A_{j}$. Hence
$A_{j}\subset B$ . Next we notice that if $LA_{j}=0$, and if $A_{j}$ intersects $B$ , then $A_{j}\subset B$ .
Indeed, then $H^{0}(\mathcal{O}_{A_{j}}(L))=H^{0}(O_{A_{j}})=C$. Any element of $H^{0}(X, L)$ vanishes at
$A_{j}\cap B(\neq\emptyset)$ , whence it vanishes identically on $A_{j}$. Therefore $A_{j}\subset B$ . Hence
in particular, if $LA_{j}=0$ , and $A_{j}\subset C$, then $A_{f}\cap B=\emptyset$ . Suppose that $A_{i}$ (the
unique component of $A$ with $LA_{t}>0$) is contained in $B$ . Then since $A$ is con-
nected by $H^{0}(O_{l})=C$ in (1.7), any irreducible component $A_{j}$ of $A$ is contained
in $B$ by the above argument. Namely, $A=B$ . Notice that this is valid for
any pair of $D$ and $D’$ if the unique component $A’$ of $(D\cap D’)_{red}$ with $LA’>0$

is contained in $B$ . Let $D$“ be an arbitrary member of $|L|,$ $D’’\neq D$ . Then
since $(D\cap D’’)_{red}\supset B\supset A_{1}$ , we have therefore $(D\cap D’’)_{red}=B$ . Since ${\rm Im}(H^{0}(X, L)$

$arrow H^{0}(D, L_{D}))(=H^{0}(D, L_{D}))$ is at least 3 dimensional, and since $D$ is reduced
irreducible, the curves $(D\cap D’)_{red},$ $D’\in|L|$ covers $D$ . This is a contradiction. $\square$

By (2.3.4), we have $C\neq\emptyset$ and $A_{i}\subset C$, so we may assume $i=1$ without loss
of generality. This completes the proof of (2.3.2). It remains to prove (2.3.3).

By the proof of (2.3.4), no irreducible components $A_{j}(2\leqq j\leqq a)$ of $C$ except $A_{1}$

intersect $B$ . Clearly $A_{1}$ intersects $B$ at exactly one point if $B\neq\emptyset$ . Since $A$

is connected by (1.7.4), both $B$ and $C$ are connected. This completes the proof
of (2.3.3). $q.e$ . $d$ .

(2.4) LEMMA. Let $A_{j}$ and $B$ be the same as in (2.3). SuPpose that $Bs|L|$

has no one dimensional compOnenis, $i$ . $e.,$ $B=\emptyset$ . Then $Bs|L|$ consists of at most
one point $P$ of $A_{1} \backslash (\bigcup_{j\geq 2}A_{j})$ .

PROOF. By (2.3), $LA_{j}=0(2\leqq]\leqq a)$ . If Bsl $L|\cap A_{j}=\{q, \}\neq\emptyset$ for some
$j\geqq 2$, then $Bs|L|$ contains $Bs|L_{A_{j}}-q|=A_{j}$ by $H^{0}(\mathcal{O}_{A_{j}}(L))=H^{0}(O_{A_{j}})=C$. This
$\omega ntradictsB=\emptyset$ . Hence Bsl $L|\cap A_{j}=\emptyset$ . Suppose Bsl $L|=\{p, q, \},$ $P\neq q$.
Then $A_{1}$ contains $p$ and $q$. Therefore $Bs|L|$ contains $Bs|L_{A_{1}}-p-q|=A_{1}$ ,
which is absurd. Hence if Bsl $L|\neq\emptyset$ , then Bsl $L|=\{p\}$ where $p\in A_{1},$ $p\not\in A_{j}$
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$(j\geqq 2)$ . $q.e.d$ .
(2.5) LEMMA. Let 1, $A,$ $B$ and $C$ be the same as in (2.3). Let $D’’$ be a

member of $|L|$ other ihan $D$ and $D’$ , and let $l’=D\cap D’,$ $A’=(l’)_{red},$ $A’=C’+B$ .
Let $A_{1}’$ be the unique irreducible comPonent of $A’$ with $LA_{1}’=1$ . Assume that
Bsl $L|\neq\emptyset$ and $A\neq A’$ . Then we have

(2.5.1) $A_{1}\neq A_{1}’$ and $A_{1}\cap A_{1}’=Bs|L|$ (resp. $A_{1}\cap A_{1}’\cap B$ ) if $B=\emptyset$ (resp. if
$B\neq\emptyset)$ ,

(2.5.2) no irreducible components of $C$ (resp. of $C’$ ) distinct from $A_{1}$ (resp.

from $A_{1}’$ ) intersect $C’$ (resp. $C$).

PROOF. Let $C_{j}$ be an irreducible component of $C-A_{1}$ ( $:=the$ closure of
$C\backslash A_{1})$ . Suppose $C_{j}$ intersects $C’$ . Then $C_{j}$ meets $D’’$ . Since $D’’C_{j}=LC_{j}=0$ by
(2.3), $D’’$ contains $C_{j}$. Hence any irreducible component $C_{k}$ of $C$ intersecting
$C_{j}$ meets $D’’$ , hence it is contained in $D’’$ if $LC_{k}=0$. If $A_{1}$ intersects $C_{j}$ , then
$A_{1}$ is also contained in $D’’$ . In fact, by the assumption $Bs|L|\neq\emptyset,$ $D’’$ contains
a point Bsl $L|$ (resp. $B\cap A_{1}$ ) if $B=\emptyset$ (resp. if $B\neq\emptyset$ ) by (2.4) and (2.3.3). If
$A_{1}$ intersects $C_{j}$ , then $A_{1}\cap C_{j}$ is contained in $D’’$ , where $A_{1}\cap C_{j}$ is disjoint from
Bsl $L|$ or $B\cap A_{1}$ . Therefore $D’’$ contains at least two points of $A_{1}$ . However
$D’’A_{1}=LA_{1}=1$ , which implies that $D’’$ contains $A_{1}$ . Since $C$ is connected, it can
be shown by repeating this argument that $D’’$ contains $C$ and that $A’$ contains
$A$ . By the uniqueness of $A_{1}$ and $A_{1}’$ , we have $A_{1}=A_{1}’$ . Hence $D’$ contains $A_{1}’$ .
By the same argument as above, any irreducible component of C’ is contained
in $D’$. Hence $A’\subset A$ whence $A=A’$ . This contradicts our assumption. This
proves that no irreducible components of $C-A_{1}$ meet $C’$ . By the symmetry of
the roles of $D’$ and $D’’$ , we complete the proof of (2.5.2).

Next we shall show (2.5.1). Suppose $A_{1}=A_{1}’$ . Hence either $C\neq A_{1}$ or $C’\neq A_{1}$

because $A\neq A’$ . By the symmetry of roles of $C$ and $C’$ , we may assume $C\neq A_{1}$ .
Then $(C-A_{1})\cap C’$ contains $(C-A_{1})\cap A_{1}’=(C-A_{1})\cap A_{1}\neq\emptyset$ whence $(C-A_{1})\cap C’$ is
not empty. This contradicts (2.5.2). Hence $A_{1}\neq A_{1}’$ . If $A_{1}\cap A_{1}’=\{p, q, \}$ ,
$p\neq q$, then $D’’$ contains two points $p$ and $q$ of $A_{1}$ , hence $D’’$ contains $A_{1}$ by
$D’’A_{1}=LA_{1}’’=1$ . By the uniqueness (2.3) of $A_{1}$ and $A_{1}’$ , we have $A_{1}=A_{1}’$ , which
is absurd. Hence $A_{1}\cap A_{1}’$ consists of at most one point. If $B=\emptyset$ , then $A_{1}\cap A_{1}’$

$=A\cap A’=Bs|L|$ by (2.4). If $B\neq\emptyset$ , and if $A_{1}$ intersects $A_{1}’$ outside $B$ , then
$D’’\supset A_{1}$ and $A_{1}=A_{1}’$ because $D’’$ contains $B\cap A_{1}\neq\emptyset$ by (2.3.3). But $A_{1}=A_{1}’$ is
absurd. Therefore if $B\neq\emptyset$ , then $A_{1}$ intersects $A_{1}’$ only in $B$ . This proves
$A_{1}\cap A_{1}’=A_{1}\cap A_{1}’\cap B$ . This completes the proof of (2.5.1). $q$ . $e.d$ .

(2.6) LEMMA. Let $D,$ $D’\in|L|$ and let 1, $A,$ $B$ andC be the same as in (2.3).

SuppOse Bsl $L|\neq\emptyset$ . Then by choosing a sufficiently general pair $D$ and $D’,$ $C$ is
irreducible.
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PROOF. Assume that $C$ is reducible for any pair $D,$ $D’(D\neq D’)$ . Choose a
pair $D$ and $D’$ such that $l=D\cap D’$ has the minimum number of irreducible com-
ponents. Take a one parameter family $D_{t}’\in|L|(t\in P^{1})$ such that $D_{0}=D’,$ $l_{t}$ $:=$

$D\cap D_{t}’$ is one dimensional for any $t\in P^{1}$ . Let $l_{t.red}=C_{t}+B,$ $C_{t}=A_{t,1}+\cdots+$

$A_{t.a(t)}$ with $LA_{t,1}=1,$ $LA_{t.j}=0(j\geqq 2)$ and $B=B_{1}+\cdots+B_{b}(=A_{a+1}+ +A_{a+b})$ ,
$a_{\min}= \min a(t)$ . Then there is an open dense subset $U$ of $P^{1}$ such that $a(t)$

$=a_{\min}(\geqq 2)$ for any $t\in U$ . Let $d$ (resp. $di$ ) be the equation defining $D$ (resp.
$D_{t}’)$ and define an analytic subset $Z$ of $X\cross P^{1}$ by $Z=\{(x, t)\in X\cross P^{1}$ ; $d(x)=$

$di(x)=0\}$ . Let $p_{j}(j=1,2)$ be the j-th projection of $X\cross P^{1}$ . Then $Z$ is a pro-
per flat family by $p_{2}$ , whose fiber $p_{2}^{-1}(r)$ is $l_{t}$ . The analytic space $Z$ is there-
fore two dimensional. Let $Z_{j}(1\leqq]\leqq k)$ be all the irreducible components of
$Z_{red},$ $Y_{j}$ the normalization of $Z_{j},$ $\psi_{j}$ the natural map of $Y_{j}$ into $X\cross P^{1}$ . Let

$\pi_{j}$ $h_{j}$

$Y_{j}arrow U_{j}arrow P^{1}$ be the Stein factorization of $p_{2}\psi_{j}$. Then $U_{j}$ is a nonsingular
curve. Since $Y_{j}$ is Cohen-Macaulay (normal and two dimensional), and since
$\pi_{j}$ is equidimensional, $\pi_{j}$ is flat. Therefore there exists a Zariski dense open
subset $V_{j}$ of $U_{j}$ such that $\pi_{j}^{-1}(v)$ is irreducible nonsingular for any $v\in V_{j}$.

Since $\psi_{j}$ is a birational map of $Y_{j}$ onto $Z_{j}$, we may assume, by taking a
smaller Zariski open subset of $V_{j}$ if necessary, that $\pi_{j}^{-1}(v)$ is mapped birationally
onto an irreducible component of $(l_{t})_{red}$ where $t=h_{j}(v)$ . By (2.3), any irreducible
component of $(l_{t})_{red}$ is non-singular, so $\pi_{j}^{-1}(v)$ is isomorphic to the image
$P_{1}\psi_{j}(\pi_{j}^{-1}(v))$ , a reduced irreducible component of $(l_{t})_{red}$ . Since $\pi_{j}$ is flat, the
images of fibers of $\pi_{j}$ over $V_{j}$ by $p_{1}\psi_{j}$ are algebraically equivalent. Choosing
$A_{t_{1}.1}$ for $A_{1}$ for a generic $t_{1}\in P^{1}$ if necessary, we may assume $A_{1}=p_{1}\psi_{1}(\pi_{1}^{-1}(v_{1}))$

for some $v_{1}\in V_{1}$ . Hence the image by $P_{1}\psi_{1}$ of any fiber of $\pi_{1}$ over $V_{1}$ is alge-
braically equivalent to $A_{1}$ , so that it is just the unique irreducible component
$A_{t,1}$ of $C_{t}$ with $LA_{t.1}=1$ for some $t\in P^{1}$ .

Hence irreducible components of $C_{t}-A_{t.1}$ can appear only in the image
$p_{1}\psi_{1}\pi_{1}^{-1}(U_{1}\backslash V_{1})$ or in $P_{1}\psi_{j}(Y_{j})(!\geqq 2)$ , hence those $A_{t.j}(]\geqq 2)$ which are contained
in $p_{1}\psi_{1}(Y_{1})$ are only finitely many. Therefore there exists $\pi_{2}$ ; $Y_{2}arrow U_{2}$ such that
$P_{1}\psi_{2}(\pi_{2}^{-1}(v_{2}))=A_{t_{2}.2}$ for some $v_{2}\in V_{2}$ and $t_{2}=h_{2}(v_{2})\in P^{1}$. Here we may assume
$A_{t_{2}.2}=A_{2}$ without loss of generality. The image $P_{1}\psi_{2}(\pi_{2}^{-1}(v))$ of a fiber $\pi_{2}^{-1}(v)$ ,
$v\in V_{2}$ is therefore algebraically equivalent to $A_{2}$ , whence $Lp_{1}\psi_{2}(\pi_{2}^{-1}(v))=LA_{2}=0$.
Hence $P_{1}\psi_{2}(\pi_{2}^{-1}(v))(v\in V_{2})$ is contained in $C_{t}-A_{t.1}+B$ . Since $A_{2}\cap B=\emptyset$ , we
may assume, by taking a smaller $V_{2}$ if necessary, that $P_{1}\psi_{2}(\pi_{2}^{-1}(v))$ is an irre-
ducible component, say, $A_{t.j(v)}$ of $C_{t}-A_{t.1}$ where $t=h_{2}(v),$ $j(v)\geqq 2$ .

Since $A_{t,1}\cap A_{s,j}=\emptyset$ for $t\neq s,$ $t,$ $s\in P^{1}$ and $j\geqq 2$ by (2.5), $A_{t.1}(t\in P^{1})$ can
intersect $P_{1}\psi_{2}(\pi_{2}^{-1}(V_{2}))$ only along $A_{t,1}\cap(C_{t}-A_{t.1})$ by (2.3), whose cardinality is
bounded by $a_{\min}-1$ .

This shows that $p_{1}\psi_{1}(\pi_{1}^{-1}(V_{1}))$ and $P_{1}\psi_{2}(\pi_{2}^{-1}(V_{2}))$ intersect along at most a
(possibly reducible) curve, hence that the intersection of $P_{1}\psi_{1}(Y_{1})$ and $p_{1}\psi_{2}(Y_{2})$
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is at most one dimensional. However since the irreducible surface $p_{1}\psi_{j}(Y_{j})$ is
contained in an irreducible surface $D$ , we have $D=p_{1}\psi_{1}(Y_{1})=p_{1}\psi_{2}(Y_{2})$ . This is
a contradiction. Therefore for a sufficiently general pair $D$ and $D’,$ $C$ is irre-
ducible. $q$ . $e$ . $d$ .

(2.7) LEMMA. Bsl $L|$ is empty and the complete intersection $l:=D\cap D’$ is
an irredztczble nonsingular rational curve with $Ll=1$ for any $p\alpha rD$ and $D’\in|L|$

with $D\neq D’$.
PROOF. We first assume Bsl $L|\neq\emptyset$ to derive a contradiction. By (2.6), $C$

is irreducible by choosing a general pair $D$ and $D’$. Since $D$ (and $D’$) are
reduced, the movable part of $D\cap D’$ is reduced somewhere, hence reduced over
a Zariski open subset $U$ of $C$ (see [11, Theorem 7.18]). This implies that 1 is
reduced and isomorphic to $C$ over $U$.

Let $I_{l}$ (resp. $I_{C}$ ) be the ideal sheaf in $O_{X}$ defining 1 (resp. $C$ ). Then $I_{\iota}\subset I_{C}$

and the natural inclusion of $I_{l}$ into $I_{C}$ induces an isomorphism of $(I_{l}/I_{l}^{2})\otimes O_{G}$

into $I_{C}/I_{C}^{2}$ because $I_{l}/I_{l}^{2}$ is locally $O_{l}$-free and $O_{C}$ is torsion free. By Grothen-
dieck’s theorem, we write $I_{c}/I_{c}^{2}=\mathcal{O}_{C}(-p)\oplus O_{C}(-q)$ for some integers $p$ and $q$.
Since $LC=1$ and $I_{l}/I_{l}^{2}=O_{l}(-L)\oplus \mathcal{O}_{l}(-L)$ , we have $(I_{l}/I_{l}^{2})\otimes \mathcal{O}_{C}=\mathcal{O}_{C}(-1)\oplus \mathcal{O}_{C}(-1)$

Hence we have $p\leqq 1,$ $q\leqq 1$ . From the exact sequence

$0arrow I_{C}/I\partialarrow\Omega_{X}^{1}\otimes 0_{c}arrow\Omega_{c}^{1}arrow 0$ ,

we infer $c_{1}(I_{C}/I_{C}^{2})+c_{1}(\Omega_{c}^{1})=c_{1}(\Omega_{X}^{1}\otimes \mathcal{O}_{C})=K_{X}C=-4LC=-4$ . Hence $p+q=2$. This
shows $p=q=1$ and that $(I_{l}/I_{l}^{2})\otimes \mathcal{O}_{C}\cong I_{C}/I_{C}^{2}$ . But when $B\neq\emptyset$ , either of the two
generators (chosen suitably) of $I_{l}/I_{l}^{2}$ at $p;=C\cap B$ vanishes at $p$ , whence
$(I_{l}/I_{l}^{2})\otimes O_{C}$ is not isomorphic to $I_{C}/I_{c}^{2}$ . Hence $B=\emptyset$ . By (2.4), $Bs|L|$ is one
point. Consider the exact sequence

$0arrow I_{C}/I_{l}arrow O_{l}arrow O_{C}arrow 0$ .
Since $l_{red}=C$, the support of $I_{c}/I_{l}$ is isolated. Since $H^{0}(l, O_{l})=H^{0}(C, O_{C})=C$ by
(1.7.4), we have $I_{C}/I_{l}=0$ , whence $I_{l}=I_{C},$ $l\cong C$. By (1.7), Bsl $L|=Bs|L_{D}|=$
$Bs|L_{l}|=Bs|L_{C}|=Bs|O_{P1}(1)|=\emptyset$ . This contradicts Bsl $L|\neq\emptyset$ .

Now we consider the case Bsl $L|=\emptyset$ . Then by Bertini’s theorem, any
general member $D$ of $|L|$ is nonsingular. The divisor $D$ is irreducible by
(1.5.1). The linear system $|L_{D}|$ is base point free because Bsl $L|=Bs|L_{D}|$ in
view of (1.7). Hence any general member $l$ of $|L_{D}|$ is nonsingular by Bertini’s
theorem. The natural homomorphism of $H^{0}(X, L)$ into $H^{0}(D, L_{D})$ is surjective
so that the curve $l$ is just a complete intersection $D\cap D’$ for some $D\in|L|$ .
By (1.7.4), $l$ is connected, hence it is irreducible. By (2.3), $l$ itself is also the
unique irreducible component of $(D\cap D’)_{red}$ ( $=D\cap D’$ in this case) with $Ll=1$ .
Hence 1 is a nonsingular rational curve with $Ll=1$ .
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Let $D’’$ and $D’’’$ be arbitrary members of $|L|$ with $D’\neq D’’’$ and let $l’$ $:=$

$D’’\cap D’’’$ be the complete intersection. Then by (2.3) and by Bsl $L|=\emptyset$ , we
have $c1(l’)=n{}_{1}C1(A_{1})+\cdots+n_{a}c1(A_{a})$ for some $n_{i}>0$ and $A_{j}$ irreducible, where
$LA_{1}=1,$ $LA_{j}=0(2\leqq j\leqq a)$ . Hence $n_{1}=Ll’=Ll=1$ . This shows in view of the
criterion of multiplicity one [2, Prop. 4.6] (see also [4, Prop. 2.2]) that $l’$ is
reduced at a generic point of $A_{1}$ , hence reduced over a Zariski open dense sub-
set of $A_{1}$ . Then by the same argument as the first half of (2.7), $(I_{l’}/I_{l’}^{2})\otimes O_{A_{1}}$

$\cong I_{1}/I_{1}^{2}\cong O_{A_{1}}(-1)\oplus \mathcal{O}_{A_{1}}(-1),$ $l’\cong A_{1}$ . Thus 1’ is also a nonsingular rational curve
with $Ll’=1$ . $q.e.d$ .

(2.8) COMPLETION OF THE PROOF OF (1.1). Let $X$ be a compact threefold as
in (1.1). Then $l:=D\cap D’$ is a nonsingular rational curve for arbitrary $D$ and
$D’\in|L|,$ $D\neq D$ by (2.7). Hence by (1.7), we have $h^{0}(X, L)=h^{0}(D, L_{D})+1=$

$h^{0}(l, L_{l})+2=4$ . By (2.7), we have a morphism $f$ of $X$ onto $P^{3}$ associated with
the complete linear system $|L|$ . Since $L^{3}=L\cdot D\cdot D’=Ll=1$ by (2.7), $f$ is sur-
jective and bimeromorphic. Let $E$ be the exceptional set of $f$, that is, the
divisor defined by $(\det(Jacf))$ on $X$. Then $E$ is a Cartier divisor whose image
by $f$ is zero or one dimensional. Hence $f_{*}E=0$. However since $f_{*}$ induces an
isomorphism of Pic $X$ onto Pic $P^{3},$ $E$ is empty. Hence $f$ is unramified, so that
$f$ is an isomorphism of $X$ onto $P^{3}$ . $q$ . $e$ . $d$ .

(2.9) Here is another proof of (1.1) which makes use of (2.7) in full strength,
making however less use of $PicX\cong Z$. Let $X$ be a compact threefold as in
(1.1). In the same manner as in (2.8), we have $h^{0}(X, L)=4$ and a bimero-
morphic morphism $f$ of $X$ onto $P^{3}$ . Suppose that $f$ is not an isomorphism.
Then there is an irreducible curve $C$ on $X$ such that $LC=0$. Take a point $P$

of $C$. Then by (2.7) and $h^{0}(X, L)=4$ , we can choose two distinct members $D$

and $D’$ of $|L|$ passing through $p$ . Let $l=D\cap D’$ be the complete intersection.
Then by (2.7), $l$ is a nonsingular rational curve with $Ll=1$ . Since $DC=D’C=$
$LC=0,$ $C$ is contained in both $D$ and $D’$ , hence it is contained in $l_{red}=l$. There-
fore $C=l$ , which contradicts $LC\neq Ll$ . Hence $f$ is an isomorphism of $X$ onto $P^{3}$ .

$q.e.d$ .
(2.10) REMARK. The assumption $PicX\cong Z$ in (1.1) was made use of only

in the proof of (1.3) and (1.5). It is conjectured that the following is true;

CONJECTURE. If a compact threefold $X$ has a complex line bundle $L$ such
that $L^{3}>0,$ $K_{X}=-dL(d\geqq 4)$ , then $X$ is isomorphic to $P^{3}$ .

Fujita kindly pointed out that (1.1) is true in the category of algebraic
varieties over an algebraically closed field of arbitrary characteristic by addi-
tionally assuming that $H^{1}(X, O_{X})=0$. He kindly gave necessary modifications
in the proof of (2.7). We notice that we have an alternative proof similar to
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(but much simpler than) [18] which works in arbitrary characteristic.

\S 3. Main theorems.

(3.1) THEOREM. A Moishezon threefold homeomorphc to $P^{3}$ is isomorphjc
to $P^{3}$ if the Kodaira dimenszon of it is less than three.

PROOF. Let $X$ be a Moishezon threefold homeomorphic to $P^{3}$ . Then the
Hodge spectral sequence $E_{1}^{p,q}=H^{q}(X, \Omega_{X}^{p})$ with abutment $H^{n}(X, C)$ degenerates
at $E_{1}[22, P. 99]$ . Hence $h^{q}(X, O_{X})=0$ for $q>0$ and $\chi(X, O_{X})=1$ because $b_{1}=b_{3}=0$ ,
$b_{2}=1$ . Hence Pic $X=H^{2}(X, Z)=H^{2}(P^{3}, Z)=Z$. Let $L$ be a generator of Pic $X$

with $L^{3}=1$ . Then by [8, pp. 207-208] (see also [17, pp. 317-318]), $K_{X}=-4L$ .
Since $X$ is Moishezon and PicX$=Z$, we have either $\kappa(X, L)=3$ or $\kappa(X, -L)=3$ .
In the second case, the Kodaira dimension of $X$ is 3, which contradicts the
assumption. Hence $\kappa(X, L)=3$ . (See (3.3) below.) Therefore by (1.1), $X$ is
isomorphic to $P^{3}$ . $q$ . $e$ . $d$ .

(3.2) THEOREM. An arbitrary complex analytic (global) deformation of $P^{3}$

is isomorphc to $P^{3}$ .

PROOF. Let $X$ be an arbitrary complex analytic deformation of $P^{3}$ . Then
by the upper semi-continuity, $h^{0}(X, -mK_{X})$ behaves as a polynomial of degree
3 in $m$ as $m$ goes to infinity. Hence $X$ is Moishezon and the Kodaira dimen-
sion of $X$ is $-\infty$ . Hence $X$ is isomorphic to $P^{3}$ by (3.1). $q$ . $e$ . $d$ .

(3.3) REMARK. It seems very plausible that a Moishezon threefold homeo-
morphic to $P^{3}$ has Kodaira dimension less than three. However $\kappa(X, L)\geqq 1$ is
not a consequence of PicX$=ZL$ with $L^{3}>0$. The assertion $\mu>0$ in [19, p. 403,
line 19] is equivalent to $\kappa(X, L)\geqq 1$ . This part requires a proof. Indeed, as
the following example of Fujiki (or someone else?) shows, there is a Moishezon
threefold $X$ with Pic$X=ZL$ such that $L^{3}<0,$ $K_{X}=-2L,$ $\kappa(X, L)=3$ . This also
gives a counterexample to [21] Theorem 5.3. We shall show the example.

Let $S$ be a nonsingular quadric surface in $P^{3},$ $f_{i}$ a fiber of two rulings via
the isomorphism $S\cong P^{1}\cross P^{1},$ $C$ a nonsingular curve on $S$ with $[C]=3f_{1}+kf_{2}\in$

Pic $S(k\geqq 7)$ . Let $f$ : $Yarrow P^{3}$ be the blowing up of $P^{3}$ with $C$ center, $E=f^{-1}(C)_{red}$ ,
$T=f^{*}S-E,$ $e_{i}=f^{-1}(f_{i})_{red}$ . Then $T$ (resp. $e_{i}$) is isomorphic to $S$ (resp. $f_{i}$).

One sees readily that $N_{T/y}=-e_{1}-(k-2)e_{2}$ . Hence by the contraction theorem
of Nakano-Fujiki, there is a contraction $g:Yarrow X$ with $X$ nonsingular, $g(T)$ a
nonsingular rational curve, $g(e_{2})$ a point. Let $H$ be a hyperplane bundle of $P^{3}$ ,
$L=g_{*}f^{*}H$ Then we see $K_{X}=-2L,$ $L^{3}=6-k(<0),$ $\kappa(X, L)=3$ .

First we see
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$(f^{*}H)^{2}T=((f^{*}H)_{T})^{2}=(e_{1}+e_{2})^{2}=2$ ,

$(f^{*}H)T^{2}=(f^{*}H)_{T}[T]_{T}=(e_{1}+e_{2})(-e_{1}-(k-2)e_{2})=1-k$ ,

$T^{3}=([T]_{T})^{2}=(-e_{1}-(k-2)e_{2})^{2}=2k-4$ ,

$L^{8}=(f^{*}H+T)^{3}=6-k$ .
Next we shall show $K_{X}=-2L$ . Since PicX$=Z$, it suffices to prove

$K_{X}g_{*}f^{*}l=-2Lg_{*}f^{*}l$ for a line 1 in $P^{3}$ . We see

$K_{X}g_{*}f^{*}l=(g^{*}K_{X})(f^{*}l)=(-6f^{*}H+2E)(f^{*}l)=-6$ ,

$Lg_{*}f^{*}l=(f^{*}H)(g^{*}g_{*}f^{*}l)=(f^{*}H)(f^{*}l+2e_{2})=3$ .
Since $H$ is a hyperplane bundle, $\kappa(X, L)=3$ is clear.
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