# Minimal 2-spheres with constant curvature in $P_{n}(\boldsymbol{C})$ 

By Shigetoshi Bando and Yoshihiro Ohnita

(Received Dec. 16, 1985)

## Introduction.

Minimal surfaces with constant curvature in real space forms have been classified completely (cf. [5], [9], [2]). A next interesting problem is to classify minimal surfaces with constant curvature in complex space forms. The purpose of this peper is to classify minimal 2 -spheres with constant curvature in complex projective spaces.

Now let $S^{2}(c)$ be a 2-dimensional sphere with constant curvature $c$ and $P_{n}(\boldsymbol{C})$ an $n$-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1. There are two typical classes of minimal isometric immersions of $S^{2}(c)$ into $P_{n}(\boldsymbol{C})$.

One is a class of holomorphic isometric imbeddings of $P_{1}(\boldsymbol{C})$ into $P_{n}(\boldsymbol{C})$ given by Calabi [4];

$$
\begin{aligned}
\psi_{n}: P_{1}(\boldsymbol{C})=S^{2}(1 / n) \longrightarrow & P_{n}(\boldsymbol{C}) \\
& \left(z_{0}, z_{1}\right) \longrightarrow\left(\sqrt{n!/(l!(n-l)!)} z_{0}^{l} z_{1}^{n-l}\right)_{l=0, \ldots, n},
\end{aligned}
$$

where $\left(z_{0}, z_{1}\right)$ is the homogeneous coordinate system of $P_{1}(\boldsymbol{C}) . \quad \psi_{n}$ is called the $n$-th Veronese imbedding of $P_{1}(\boldsymbol{C})$.

The other is a class of totally real minimal isometric immersions obtained by composing a Borůvka sphere $S^{2}(1 / 2 k(k+1)) \rightarrow S^{2 k}(1 / 4)$ (cf. [1]), a natural covering $S^{2 k}(1 / 4) \rightarrow P_{2 k}(\boldsymbol{R})$ and a totally real totally geodesic imbedding $P_{2 k}(\boldsymbol{R})$ $\rightarrow P_{2 k}(\boldsymbol{C})$;

$$
\mu_{k}: S^{2}(1 / 2 k(k+1)) \longrightarrow P_{2 k}(\boldsymbol{C}) .
$$

In this paper we give a family of minimal isometric immersions of 2 -spheres with constant curvature into $P_{n}(\boldsymbol{C})$ which are not always holomorphic or totally real, using the theory of unitary representations of $S U(2)$. For $n \geqq 3$, we get examples of minimal 2-spheres with constant curvature in $P_{n}(\boldsymbol{C})$ which are neither holomorphic nor totally real. We will get the following:

Theorem 1. For any nonnegative integers $n$ and $k$ with $0 \leqq k \leqq n$, there exists an SU(2)-equivariant minimal isometric immersion

$$
\psi_{n, k}: S^{2}(c) \longrightarrow P_{n}(\boldsymbol{C}),
$$

where $c=1 /(2 k(n-k)+n)$ and $\psi_{n, k}\left(S^{2}(c)\right)$ is not contained in any totally geodesic complex submanifold of $P_{n}(\boldsymbol{C})$. Furthermore $\left\{\psi_{n, k}\right\}$ satisfy the following statements:
(1) If $k=0$ or $k=n$, then $\psi_{n, k}$ is holomorphic (with respect to a suitable fixed complex structure of $\left.S^{2}(c)\right)$ and $\psi_{n, k}$ is congruent to $\psi_{n}$.
(2) If $n$ is even and $k=n / 2$, then $\psi_{n, k}$ is totally real and $\psi_{n, k}$ is congruent to $\mu_{k}$.
(3) If $n$ and $k$ are otherwise (necessarily, $n \geqq 3$ ), then $\psi_{n, k}$ is neither holomorphic nor totally real.

Moreover we will show the following rigidity theorem, using the twistor construction of harmonic maps of a 2-sphere into $P_{n}(\boldsymbol{C})$ (cf. [3], [6], [8], [7], [11]).

Theorem 2. Let $\psi: S^{2}(c) \rightarrow P_{n}(\boldsymbol{C})$ be a minimal isometric immersion and assume that $\psi\left(S^{2}(c)\right)$ is not contained in any totally geodesic complex submanifold in $P_{n}(\boldsymbol{C})$. Then there exists an integer $k$ with $0 \leqq k \leqq n$ such that $c$ is equal to $1 /(2 k(n-k)+n)$, and $\psi$ is congruent to $\psi_{n, k}$.

Recently Professor Kenmotsu showed that a minimal surface with constant curvature in $P_{2}(\boldsymbol{C})$ is holomorphic or totally real. Dr. N. Ejiri (Tokyo Metropolitan Univ.) also found independently examples in Theorem 1 in a manner different from ours.

The authors wish to thank Professor Kenmotsu and Professor Urakawa for their valuable suggestions and constant encouragement.

## 1. Preliminaries.

We begin by giving a description of the geometry of $P_{n}(\boldsymbol{C})$. For $X, Y \in$ $C^{n+1}$ the usual Hermitian inner pruduct is defined by
(1.1) $\quad(X, Y)=\sum_{\alpha} x_{\alpha} \bar{y}_{\alpha}, \quad X=\left(x_{0}, \cdots, x_{n}\right), \quad Y=\left(y_{0}, \cdots, y_{n}\right)$,
where we employ the index ranges $0 \leqq \alpha, \beta, \cdots \leqq n, 1 \leqq i, j, \cdots \leqq n$. The unitary group $U(n+1)$ is the group of all linear transformations on $C^{n+1}$ leaving the Hermitian product (1.1) invariant. $P_{n}(\boldsymbol{C})$ is the orbit space of $\boldsymbol{C}^{n+1}-\{0\}$ under the action of the group $\boldsymbol{C}^{*}=\boldsymbol{C}-\{0\} ; Z \rightarrow \lambda Z\left(\lambda \in \boldsymbol{C}^{*}\right)$. Let $\pi: \boldsymbol{C}^{n+1}-\{0\} \rightarrow P_{n}(\boldsymbol{C})$ be the natural projection. For a point $x \in P_{n}(\boldsymbol{C})$ a vector $Z \in \pi^{-1}(x)$ is called a homogeneous coordinate vector of $x$. We put $Z_{0}=Z /(Z, Z)^{1 / 2}$ so that ( $Z_{0}, Z_{0}$ ) $=1$. The Fubini-Study metric on $P_{n}(\boldsymbol{C})$ with constant holomorphic sectional curvature $c$ is defined by

$$
\begin{equation*}
d s^{2}=(4 / c)\left(\left(d Z_{0}, d Z_{0}\right)-\left(d Z_{0}, Z_{0}\right)\left(Z_{0}, d Z_{0}\right)\right) \tag{1.2}
\end{equation*}
$$

The Kaehler form of the Fubini-Study metric (1.2) is given by

$$
\omega=-(4 / c) \sqrt{-1} \partial \bar{\partial} \log |Z|^{2} .
$$

Now let $Z_{\alpha}$ be a unitary frame in $C^{n+1}$ so that $\left(Z_{\alpha}, Z_{\beta}\right)=\delta_{\alpha \beta}$. In the bundle of all unitary frames on $\boldsymbol{C}^{n+1}$ we have

$$
\begin{equation*}
d Z_{\alpha}=\Sigma_{\beta} \theta_{\alpha}^{\beta} Z_{\beta}, \tag{1.3}
\end{equation*}
$$

where $\theta_{\alpha}^{\beta}=-\bar{\theta}_{\beta}^{\alpha}=\left(d Z_{\alpha}, Z_{\beta}\right)$ is a 1-form. The $\theta_{\alpha}^{\beta}$ are the Maurer-Cartan forms of the group $U(n+1)$ and so satisfy the Maurer-Cartan structure equations

$$
\begin{equation*}
d \theta_{\beta}^{\alpha}=-\Sigma_{\gamma} \theta_{\gamma}^{\alpha} \wedge \theta_{\beta}^{\gamma} \tag{1.4}
\end{equation*}
$$

By (1.2) and (1.3) the Fubini-Study metric can be written as

$$
d s^{2}=(4 / c) \sum_{i} \theta_{0}^{i} \bar{\theta}_{0}^{i} .
$$

If we set $\phi^{i}=(2 / \sqrt{c}) \theta_{0}^{i}$ and $\psi_{j}^{i}=\theta_{j}^{i}-\delta_{j}^{i} \theta_{0}^{0}$, then these forms satisfy the structure equations

$$
d \phi^{i}=-\Sigma_{j} \psi_{j}^{i} \wedge \phi^{j}, \quad \phi_{j}^{i}+\bar{\psi}_{i}^{j}=0
$$

and

$$
d \psi_{j}^{i}=-\Sigma_{k} \psi_{k}^{i} \wedge \psi_{j}^{k}+\Psi_{j}^{i}
$$

where $\Psi_{j}^{i}=\theta_{0}^{i} \wedge \bar{\theta}_{0}^{j}+\delta_{j}^{i} \Sigma_{k} \theta_{0}^{k} \wedge \bar{\theta}_{0}^{k}$. Therefore $\psi_{j}^{i}$ are the connection forms of the Fubini-Study metric and $\Psi_{j}^{i}$ are its curvature forms.

Let $M$ be a Riemann surface. A full map of $M$ into $P_{n}(\boldsymbol{C})$ is one whose image lies in no proper totally geodesic complex submanifold of $P_{n}(\boldsymbol{C})$. We should note that a map of a compact Riemann surface of genus zero into a Riemannian manifold is harmonic if and only if it is a branched minimal immersion.

Next we review results on irreducible unitary representations of the 3dimensional special unitary group $S U(2)$.
$S U(2)$ is defined by

$$
S U(2)=\left\{g=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right) ; a, b \in \boldsymbol{C},|a|^{2}+|b|^{2}=1\right\}
$$

The Lie algebra $\mathfrak{s u}(2)$ of $S U(2)$ is given by

$$
\mathfrak{s u}(2)=\left\{X=\left(\begin{array}{ll}
\sqrt{-1} x & y \\
-\bar{y} & -\sqrt{-1} x
\end{array}\right) ; x, y^{\prime}, y^{\prime \prime} \in \boldsymbol{R}, y=y^{\prime}+\sqrt{-1} y^{\prime \prime}\right\} .
$$

We define a basis $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ of $\mathfrak{z u}(2)$ by

$$
\varepsilon_{1}=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad \varepsilon_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad \varepsilon_{3}=\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right) .
$$

Let $V_{n}$ be an $(n+1)$-dimensional complex vector space of all complex homo-
geneous polynomials of degree $n$ with respect to $z_{0}, z_{1}$. We define a Hermitian inner product (, ) on $V_{n}$ such that

$$
\left\{u_{k}^{(n)}=z_{0}^{k} z_{1}^{n-k} / \sqrt{k!(n-k)!} ; 0 \leqq k \leqq n\right\}
$$

is a unitary basis for $V_{n}$. We define a real inner product by $\langle\rangle=,\operatorname{Re}($,$) . A$ unitary representation $\rho_{n}$ of $S U(2)$ on $V_{n}$ is defined by

$$
\rho_{n}(g) f\left(z_{0}, z_{1}\right)=f\left(a z_{0}-\bar{b} z_{1}, b z_{0}+\bar{a} z_{1}\right)
$$

for $g \in S U(2)$ and $f \in V_{n}$. Then the action of $\mathfrak{s u}(2)$ on $V_{n}$ is described as follows;

$$
\begin{align*}
\rho_{n}(X)\left(u_{i}^{(n)}\right)= & (i-(n-i)) x \sqrt{-1} u_{i}^{(n)}  \tag{1.5}\\
& -\sqrt{i(n-i+1)} \bar{y} u_{i-1}^{(n)}+\sqrt{(i+1)(n-i)} y u_{i+1}^{(n)}
\end{align*}
$$

for $0 \leqq i \leqq n$ and any element $X$ of $\mathfrak{a u}(2)$.
Let $D(S U(2))$ be the set of all inequivalent irreducible unitary representations of $S U(2)$. Then it is well known that $D(S U(2))=\left\{\left(V_{n}, \rho_{n}\right) ; n=0,1,2, \cdots\right\}$.

We denote by $\left({ }_{R} V_{n},{ }_{R} \rho_{n}\right)$ an orthogonal representation of $S U(2)$ induced by the scalar restriction of $V_{n}$. Then the following proposition is well known:

Proposition 1.1. (1) If $n$ is odd, then $\left({ }_{R} V_{n},{ }_{R} \rho_{n}\right)$ is irreducible.
(2) If $n$ is even, then we have an orthogonal direct sum ${ }_{R} V_{n}=W_{l}+\sqrt{-1} W_{l}$, where $n=2 l$ and $W_{l}$ is the ${ }_{R} \rho_{2 l}\left(S U(2)\right.$-invariant irreducible real subspace of ${ }_{R} V_{2 l}$ spanned by

$$
\left\{u_{l}^{(2 l)},(\sqrt{-1})^{j}\left(u_{l+j}^{(2 l)}+u_{l-j}^{(2 l)}\right),(\sqrt{-1})^{j+1}\left(u_{l+j}^{(2 l)}-u_{l-j}^{(2 l)}\right) ; 1 \leqq j \leqq l\right\} .
$$

Put $T=\left\{\exp \left(t \varepsilon_{1}\right) \in S U(2) ; t \in \boldsymbol{R}\right\}$ and we have $S^{2}=S U(2) / T$. We identify the tangent space at $\{T\} \in S^{2}=S U(2) / T$ with a subspace $\operatorname{span}_{R}\left\{\varepsilon_{2}, \varepsilon_{3}\right\}$ of $\mathfrak{z u}(2)$. We fix a complex structure on $S^{2}$ so that $\varepsilon_{2}+\sqrt{-1} \varepsilon_{3}$ is a vector of type ( 1,0 ). Note that for any $S U(2)$-invariant Riemannian metric $g$ on $S^{2}$ there is a positive real number $a$ such that $\left\{a \varepsilon_{2}, a \varepsilon_{3}\right\}$ is an orthonormal basis with respect to $g$ and ( $S^{2}, g$ ) has the constant curvature $4 a^{2}$.

## 2. Construction of homogeneous minimal 2-spheres in $P_{n}(\boldsymbol{C})$.

Let ( $V_{n}, \rho_{n}$ ) be an irreducible unitary representation of $S U(2)$. We define the usual complex structure of $V_{n}$ by $J(v)=\sqrt{-1} v$, for $v \in V_{n}$. Put $S^{2 n+1}=$ $\left\{v \in V_{n} ;\langle v, v\rangle=4\right\}$ and define the usual $S^{1}$-action on $S^{2 n+1}$ by $\exp (\sqrt{-1} \theta) v$, for $\exp (\sqrt{-1} \theta) \in S^{1}$ and $v \in S^{2 m+1}$. Let $\pi: S^{2 n+1} \rightarrow P_{n}(\boldsymbol{C})$ be the natural Riemannian submersion. We also denote by $J$ the complex structure of $P_{n}(\boldsymbol{C})$. The action of $\rho_{n}(S U(2))$ on $S^{2 n+1}$ induces the action on $P_{n}(\boldsymbol{C})$ through $\pi$.

First we determine all orbits of $S U(2)$ on $P_{n}(\boldsymbol{C})$ which are 2-dimensional spheres immersed in $P_{n}(\boldsymbol{C})$.

Lemma 2.1. An orbit $M$ of $S U(2)$ on $P_{n}(\boldsymbol{C})$ is a 2-dimensional sphere immersed in $P_{n}(\boldsymbol{C})$ if and only if $M=\pi\left(\rho_{n}(S U(2)) 2 u_{k}^{(n)}\right)$ for some integer $k$ with $0 \leqq k \leqq n$.

Proof Assume that $M=\pi\left(\rho_{n}(S U(2)) w\right)$ for some $w \in S^{2 m+1}$ and $M$ is a 2dimensional sphere immersed in $P_{n}(\boldsymbol{C})$. Put $N=\rho_{n}(S U(2)) w$. Then the dimension of $N$ is 2 or 3 . Suppose that the dimension of $N$ is 3 . Since $\pi^{-1}(M)$ is a 3 -dimensional compact submanifold of $S^{2 m+1}$, we have $N=\pi^{-1}(M)$. Hence $N$ is invariant by the $S^{1}$-action. Thus there is an element $X$ of $\mathfrak{z u}(2)$ such that $\rho_{n}(X) w=\sqrt{-1} w$. Since we can write $X=\operatorname{Ad}(g)\left(x \varepsilon_{1}\right)$ for some element $g \in S U(2)$ and a nonzero real number $x$, we have $\rho_{n}\left(x \varepsilon_{1}\right) v=\sqrt{-1} v$, where $v=\rho_{n}\left(g^{-1}\right) w$. We put $v=2 \sum_{i=0}^{n} v^{i} u_{i}^{(n)}$, where $v^{i} \in \boldsymbol{C}$ and $\sum_{i=0}^{n}\left|v^{i}\right|^{2}=1$. By (1.5) we get

$$
\rho_{n}\left(x \varepsilon_{1}\right) v=2 x \sum_{i=0}^{n} v^{i}(i-(n-i)) \sqrt{-1} u_{i}^{(n)}=\sqrt{-1} v .
$$

Hence we have $v^{i}\{(2 i-n) x-1\}=0$ for $i=0,1, \cdots, n$. Since some $v^{k}$ with $k \neq n / 2$ is nonzero, we have $x=1 /(2 k-n)$ and $v^{i}=0$ for $i \neq k$. Hence $v=2 v^{k} u_{k}^{(n)}$, where $\left|v^{k}\right|=1$. Thus we obtain $M=\pi\left(\rho_{n}(S U(2)) 2 u_{k}^{(n)}\right)$. Next suppose that the dimension of $N$ is 2 . Then there is an element $X$ of $\mathfrak{z u}(2)$ such that $\rho_{n}(X) w=0$. By the argument similar to the former case we may put $X=x \varepsilon_{1}$ for some nonzero real number $x$. Write $w=2 \sum_{i=0}^{n} w^{i} u_{i}^{(n)}$, where $w^{i} \in C$ and $\sum_{i=1}^{n}\left|w^{i}\right|^{2}=1$. By (1.5) we get

$$
\rho_{n}(X) w=2 x \sum_{i=0}^{n} w^{i}(i-(n-i)) \sqrt{-1} u_{i}^{(n)}=0 .
$$

Hence $w^{i}(2 i-n)=0$ for $i=0,1, \cdots, n$. Thus $n$ is even. Put $k=n / 2$, and we have $w=2 w^{k} u_{k}^{(2 k)}$. Hence $\left|w^{k}\right|=1$. So we obtain $M=\pi\left(\rho_{n}(\operatorname{SU}(2)) 2 u_{k}^{(2 k)}\right)$.

Conversely suppose that $v=2 w^{k} u_{k}^{(n)} \in S^{2 n+1}$ and $M=\pi\left(\rho_{n}(S U(2)) v\right)$. (1.5) gives that

$$
\begin{align*}
\rho_{n}(X) v= & (2 k-n) x \sqrt{-1} v  \tag{2.1}\\
& +2 y^{\prime}\left(-\sqrt{k(n-k+1)} u_{k-1}^{(n)}+\sqrt{(k+1)(n-k)} u_{k+1}^{(n)}\right) \\
& +2 y^{\prime \prime}\left(\sqrt{k(n-k+1)} \sqrt{-1} u_{k-1}^{(n)}+\sqrt{(k+1)(n-k)} \sqrt{-1} u_{k+1}^{(n)}\right),
\end{align*}
$$

for any element $X \in \mathfrak{S u}(2)$. This implies immediately that $M$ is a 2 -dimensional sphere immersed in $P_{n}(\boldsymbol{C})$.
q. e. d.

Now for any nonnegative integers $n$ and $k$ with $0 \leqq k \leqq n$ we denote by $\psi_{n, k}$ the $S U(2)$-equivariant isometric immersion of a Riemann sphere $S^{2}(c)$ with constant curvature $c$ into $P_{n}(\boldsymbol{C})$ given by the orbit $\pi\left(\rho_{n}(S U(2)) 2 u_{k}^{(n)}\right)$;

$$
\begin{array}{rl}
\psi_{n, k}: S^{2}(c)=S U(2) / T & \longrightarrow P_{n}(\boldsymbol{C}) \\
U & U \\
g T & \longmapsto \pi\left(\rho_{n}(g) 2 u_{k}^{(n)}\right) .
\end{array}
$$

Here $c$ depends on $n$ and $k$. We show the following.
Proposition 2.2. (1) $\psi_{n, k}$ is full.
(2) $c$ is equal to $1 /(2 k(n-k)+n)$.
(3) $\psi_{n, k}$ is a minimal immersion.
(4) (a) If $k=0$ (resp. $k=n$ ), then $\psi_{n, k}$ is holomorphic (resp. anti-holomorphic).
(b) If $n$ is even and $k=n / 2$, then $\psi_{2 k, k}$ is totally real and $\psi_{2 k, k}\left(S^{2}(c)\right)$ is contained in a totally geodesic totally real submanifold $P_{2 k}(\boldsymbol{R})$ of $P_{2 k}(\boldsymbol{C})$. (c) If $n$ and $k$ are otherwise, then $\psi_{n, k}$ is neither holomorphic, anti-holomorphic nor totally real.
(5) $\quad \psi_{n, k}\left(S^{2}(c)\right)=\psi_{n, n-k}\left(S^{2}(c)\right)$.

Proof. From the irreducibility of $\left(V_{n}, \rho_{n}\right)$, (1) is clear. We put $v=2 u_{k}^{(n)}$. By (2.1) we have

$$
\begin{equation*}
\left\langle\boldsymbol{\rho}_{n}(X) v, \boldsymbol{\rho}_{n}(X) v\right\rangle=(2 k-n)^{2} x^{2}+4\{2 k(n-k)+n\}\left(y^{\prime 2}+y^{\prime \prime 2}\right), \tag{2.2}
\end{equation*}
$$

for any element $X$ of $\mathfrak{s u}(2)$. We define two elements $e_{2}$ and $e_{3}$ of $\mathfrak{z u}(2)$ by

$$
\begin{equation*}
e_{i}=(1 /(2 \sqrt{2 k(n-k)+n})) \varepsilon_{i}, \quad \text { for } i=2,3 . \tag{2.3}
\end{equation*}
$$

Then by (2.2) $\left\{\pi_{*}\left(\rho_{n}\left(e_{2}\right) v\right), \pi_{*}\left(\rho_{n}\left(e_{3}\right) v\right)\right\}$ is an orthonormal basis at $\pi(v)$ on $\psi_{n, k}\left(S^{2}(c)\right)=\pi\left(\rho_{n}(S U(2)) v\right)$. Hence we get (2). By (1.5) and (2.3) simple computations give

$$
\begin{align*}
& 4 \rho_{n}\left(e_{2}\right) \rho_{n}\left(e_{2}\right) v=-v+2 /(2 k(n-k)+n)  \tag{2.4}\\
& \times\left\{\sqrt{(k-1) k(n-k+1)(n-k+2)} u_{k-2}^{(n)}+\sqrt{(k+1)(k+2)(n-k-1)(n-k)} u_{k+2}^{(n)}\right\},
\end{align*}
$$

and

$$
\begin{align*}
& 4 \rho_{n}\left(e_{3}\right) \rho_{n}\left(e_{3}\right) v=-v-2 /(2 k(n-k)+n)  \tag{2.5}\\
& \times\left\{\sqrt{(k-1) k(n-k+1)(n-k+2)} u_{k-2}^{(n)}+\sqrt{ }(k+1)(k+2)(n-k+1)(n-k)\right. \\
& \left.u_{k+2}^{(n)}\right\} .
\end{align*}
$$

From (2.4) and (2.5) we get

$$
\rho_{n}\left(e_{2}\right) \rho_{n}\left(e_{2}\right) v+\rho_{n}\left(e_{3}\right) \rho_{n}\left(e_{3}\right) v=(-1 / 2) v .
$$

Hence the mean curvature vector of $\pi\left(\rho_{n}(S U(2)) 2 u_{k}^{(n)}\right)$ in $P_{n}(\boldsymbol{C})$ vanishes. Thus we get (3). (4) is easily showed from (2.1), When $m$ is even and $k=n / 2$, by (2) of Proposition 1.1 the orbit $\rho_{2 k}(S U(2)) v$ is contained in $W_{k}$. Hence $\psi_{2 k, k}\left(S^{2}(c)\right)$ is contained in a totally geodesic totally real submanifold $P_{2 k}(\boldsymbol{R})$ of $P_{2 k}(\boldsymbol{C})$. But $\psi_{2 k, k}\left(S^{2}(c)\right)$ is not contained in any totally geodesic submanifold of $P_{2 k}(\boldsymbol{R})$ because of the irreducibility of $W_{k}$. By simple computations we have

$$
\rho_{n}\left(\left(\begin{array}{rr}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\right) u_{k}^{(n)}=(-\sqrt{-1})^{n} \rho_{n}\left(\left(\begin{array}{cc}
\sqrt{-1 b} & \sqrt{-1} a \\
\sqrt{-1} \bar{a} & -\sqrt{-1} \bar{b}
\end{array}\right) u_{n-k}^{(n)} .\right.
$$

This implies (5).
q. e. d.

By the rigidity theorems of Calabi [4], [5], we have $\psi_{n, 0}=\psi_{n}$ and $\psi_{2 k, k}=\mu_{k}$. Thus we obtain Theorem 1.

Remark 2.3. By simple computations the Brouwer degree and the square length $\sigma$ of the second fundamental form of $\psi_{n, k}$ are given as follows:
(i) $\operatorname{deg} \psi_{n, k}=n-2 k$,
(ii) $\quad \sigma=1 / 2+\{n(3 n-4)-20 k(n-k)\} /\{2(2 k(n-k)+n)\}$.

Remark 2.4. In [10] Kenmotsu showed the following:
Let $\psi: M^{2} \rightarrow P_{n}(\boldsymbol{C})$ be a minimal isometric immersion of a 2 -dimensional compact Riemannian manifold $M^{2}$ into $P_{n}(\boldsymbol{C})$. If the square length $\sigma$ of the second fundamental form of $\psi$ satisfies $\sigma \leqq 1 / 2$, then (1) $M^{2}$ is homeomorphic to a 2sphere and $\psi$ is superminimal, or (2) $M^{2}$ is a flat torus and is totally real.

For any $(n, k)$ with $(5 n-\sqrt{10 n(n+2)}) / 10 \leqq k \leqq(5 n+\sqrt{10 n(n+2)}) / 10, \psi_{n, k}$ satisfies $\sigma \leqq 1 / 2$.

## 3. Twistor construction of harmonic maps into $P_{n}(\boldsymbol{C})$.

In this section we review the classification theorem of harmonic maps of a Riemann sphere $M_{0}$ into $P_{n}(\boldsymbol{C})$.

Theorem 3.1 (Burns [3], Din-Zakrzewski [6], Glaser-Stora [8]). There is a bijective correspondence between full harmonic maps $\phi: M_{0} \rightarrow P_{n}(\boldsymbol{C})$ and pairs $(f, r)$, where $f: M_{0} \rightarrow P_{n}(\boldsymbol{C})$ is a full holomorphic map and $r$ is an integer with $0 \leqq r \leqq n$.
$(f, r)$ is called the directrix of $\psi$.
We outline the construction of harmonic maps from holomorphic maps, following the papers of Eells-Wood [7] and Wolfson [11].

Let $f: M_{0} \rightarrow P_{n}(\boldsymbol{C})$ be a full holomorphic map. Choose a coordinate neighborhood ( $U, \zeta$ ) in $M_{0}$. In terms of homogeneous coordinates on $P_{n}(\boldsymbol{C}), f$ is given locally by a holomorphic vector valued function $Z(\zeta)=\left(z_{0}(\zeta), \cdots, z_{n}(\zeta)\right)$. The fullness of $f$ means that

$$
\begin{equation*}
Z \wedge(\partial Z / \partial \zeta) \wedge \cdots \wedge\left(\partial^{n} Z / \partial \zeta^{n}\right) \neq 0 \tag{3.1}
\end{equation*}
$$

except perhaps at isolated points. As $Z$ and its derivatives are all holomorphic functions of $\zeta$, any zeros of (3.1) are removable. This enables us to define a
field of unitary frames along $f$ which is intimately related to the osculating spaces of $f$.

Set $Z_{0}=Z /(Z, Z)^{1 / 2}$ and choose $Z_{l}: U \subset M_{0} \rightarrow \boldsymbol{C}^{n+1}-\{0\}$ such that $\left\{Z_{0}(x), \cdots\right.$, $\left.Z_{l}(x)\right\}$ forms a unitary basis for the vector space spanned by $Z(x),(\partial Z / \partial \zeta)(x)$, $\cdots,\left(\partial^{l} Z / \partial \zeta^{l}\right)(x)$ (the $l$-th osculating space of $f$ at $x$ ) for each $l=1, \cdots, n$ and $x \in U . \quad\left\{Z_{0}, \cdots, Z_{n}\right\}$ is a field of unitary frames along $f$ which satisfies

$$
\begin{align*}
d Z_{0} & =\theta_{0}^{0} Z_{0}+\theta_{0}^{1} Z_{1}, \\
d Z_{i} & =\theta_{i}^{i-1} Z_{i-1}+\theta_{i}^{i} Z_{i}+\theta_{i}^{i+1} Z_{i+1}, \quad 1 \leqq i \leqq n-1,  \tag{3.2}\\
d Z_{n} & =\theta_{n}^{n-1} Z_{n-1}+\theta_{n}^{n} Z_{n},
\end{align*}
$$

where $\theta_{i}^{i+1}$ is a form of type ( 1,0 ) for $0 \leqq i \leqq n-1$ and $\theta_{i}^{i-1}$ is a form of type $(0,1)$ for $1 \leqq i \leqq n$.

For an integer $r$ with $0 \leqq r \leqq n$, let $G_{r+1}\left(\boldsymbol{C}^{n+1}\right)$ be the Grassmann manifold of all $(r+1)$-dimensional complex subspaces of $\boldsymbol{C}^{n+1}$. By the Plücker imbedding $G_{r+1}\left(\boldsymbol{C}^{n+1}\right)$ is realized as a complex submanifold in the complex projective space $P\left(\Lambda^{r+1} C^{n+1}\right)$. We define $f_{r}: U \rightarrow G_{r+1}\left(\boldsymbol{C}^{n+1}\right)$ by $f_{r}(x)=\left[Z_{0} \wedge \cdots \wedge Z_{r}\right]$ for $x \in U$, where $\left[Z_{0} \wedge \cdots \wedge Z_{r}\right.$ ] denotes an $(r+1)$-dimensional complex subspace of $C^{n+1}$ spanned by $Z_{0}, \cdots, Z_{r} . f_{r}$ extends uniquely to a holomorphic map of $M_{0}$ into $G_{r+1}\left(\boldsymbol{C}^{n+1}\right)$ and is called the $r$-th associated curve of $f$. We put

$$
\mathscr{A}_{r, n-r}=\left\{(V, W) \in G_{r}\left(\boldsymbol{C}^{n+1}\right) \times G_{r+1}\left(\boldsymbol{C}^{n+1}\right) ; V \subset W\right\} .
$$

Here $G_{r}\left(\boldsymbol{C}^{n+1}\right) \times G_{r+1}\left(\boldsymbol{C}^{n+1}\right)$ has the Kaehler structure induced by $P\left(\Lambda^{r} \boldsymbol{C}^{n+1}\right) \times$ $P\left(\Lambda^{r+1} C^{n+1}\right)$, and $P\left(\Lambda^{r} C^{n+1}\right)$ and $P\left(\Lambda^{r+1} C^{n+1}\right)$ are equipped with the Fubini-Study metrics of the same constant holomorphic sectional curvature. $\mathscr{r}_{r, n-r}$ is a flag manifold $U(n+1) / U(r) \times U(1) \times U(n-r)$ and we have a Riemannian submersion $\pi_{r}: \mathscr{A}_{r, n-r} \rightarrow P_{n}(\boldsymbol{C})=U(n+1) / U(n) \times U(1)$.

Now we fix an integer $r$ with $0 \leqq r \leqq n$. We define a map $\Phi_{r}: M_{0} \rightarrow \mathscr{A}_{r, n-r}$ by $\Phi_{r}(x)=\left(f_{r-1}(x), f_{r}(x)\right)$ for $x \in M_{0}$. Then $\Phi_{r}$ is holomorphic with respect to the Kaehler structure on $\mathscr{A}_{r, n-r}$ induced from $G_{r}\left(\boldsymbol{C}^{n+1}\right) \times G_{r+1}\left(\boldsymbol{C}^{n+1}\right)$, and $\Phi_{r}$ is horizontal with respect to the Riemannian submersion $\pi_{r}: \mathscr{A}_{r, n-r} \rightarrow P_{n}(\boldsymbol{C})$. Thus $\phi_{r}=\pi_{r} \circ \Phi_{r}$ is a full harmonic map. $\phi_{r}$ is an extension of a map $\pi \circ Z_{r}: U \rightarrow P_{n}(\boldsymbol{C})$.

Conversely every full harmonic map of $M_{0}$ into $P_{n}(\boldsymbol{C})$ is manufactured in the above manner from a unique pair ( $f, r$ ).

Let $\left\{\psi_{n, k}\right\}$ be a family of full minimal immersions of $S^{2}$ into $P_{n}(\boldsymbol{C})$ constructed in Section 2. Then we have the following:

Proposition 3.2. The directrix of $\psi_{n, k}$ is $\left(\psi_{n}, k\right)$.
Proof. By (1.5) we have

$$
\begin{equation*}
\rho_{n}\left(\varepsilon_{2}-\sqrt{-1} \varepsilon_{3}\right)^{k} v \in C \cdot u_{k}^{(n)} \tag{3.3}
\end{equation*}
$$

for each integer $k$ with $0 \leqq k \leqq n$. Since $\pi_{*}\left(\rho_{n}\left(\varepsilon_{2}-\sqrt{-1 \varepsilon_{3}}\right) v\right)$ is a vector of type $(1,0)$ with respect to the complex structure defined on $S^{2}(c)$, from (3.3) it is easy to see that $\phi_{r}=\phi_{n, r}$ for $f=\phi_{n}$.
q.e.d.

## 4. Rigidity.

In this section we show that the minimal 2 -spheres $\left\{\psi_{n, k}\right\}$ constructed in Section 2 exhaust all minimal 2 -spheres with constant curvature in $P_{n}(\boldsymbol{C})$, using the twistor construction of harmonic maps explained in Section 3.

From (3.2) it follows that

$$
\begin{gather*}
d \theta_{i}^{i-1}=-\left(\theta_{i-1}^{i-1}-\theta_{i}^{i}\right) \wedge \theta_{i}^{i-1}  \tag{4.1}\\
d \theta_{i}^{i}=-\theta_{i}^{i-1} \wedge \bar{\theta}_{i}^{i-1}-\theta_{i}^{i+1} \wedge \bar{\theta}_{i}^{i+1} \tag{4.2}
\end{gather*}
$$

for $0 \leqq i \leqq n$, where $\theta_{0}^{-1}=\theta_{0}^{n+1}=0$.
Proposition 4.1. Let $\psi$ be a full minimal isometric immersion of a 2 -sphere with constant curvature into $P_{n}(\boldsymbol{C})$ and $(f, r)$ the directrix of $\psi$. Then $f$ is congruent to $\psi_{n}$.

Combining Theorem 3.1, Propositions 3.2 and 4.1, we obtain Theorem 2. We use the following lemma to prove Proposition 4.1.

Lemma 4.2. Let $f: P_{n}(\boldsymbol{C}) \rightarrow P_{l}(\boldsymbol{C})$ and $h: P_{n}(\boldsymbol{C}) \rightarrow P_{m}(\boldsymbol{C})$ be two holomorphic maps, where $P_{l}(\boldsymbol{C})$ and $P_{m}(\boldsymbol{C})$ are equipped with the Fubini-Study metrics of the same constant holomorphic sectional curvature $c$, and define a holomorphic map $F=(f, h): P_{n}(\boldsymbol{C}) \rightarrow P_{l}(\boldsymbol{C}) \times P_{m}(\boldsymbol{C})$ by $F(x)=(f(x), h(x))$. If the metric on $P_{n}(\boldsymbol{C})$ induced by $F$ is a Kaehler metric of constant holomorphic sectional curvature, then the metrics induced by $f$ and $h$ are Kaehler metrics of constant holomorphic sectional curvature, and they are homothetic.

Proof of Proposition 4.1. We use the same notation as in Section 3. Suppose that $\psi=\phi_{r}$ is a full minimal isometric immersion of a 2 -sphere $S^{2}$ with constant curvature into $P_{n}(\boldsymbol{C})$. We note that the metric induced by $\phi_{r}$ is congruent to the metric induced by $\Phi_{r}$. By (1.2) and (3.2), the metric on $S^{2}$ induced by $f_{l}: S^{2} \rightarrow G_{l+1}\left(\boldsymbol{C}^{n+1}\right) \subset P\left(\Lambda^{l+1} \boldsymbol{C}^{n+1}\right)$ is given by

$$
\begin{equation*}
(4 / c) \theta_{l}^{l+1} \bar{\theta}_{l}^{l+1} . \tag{4.3}
\end{equation*}
$$

Hence the metric induced by $\psi$ is given by

$$
\begin{equation*}
(4 / c)\left(\theta_{r-1}^{r} \bar{\theta}_{r-1}^{r}+\theta_{r}^{r+1} \bar{\theta}_{r}^{r+1}\right) \tag{4.4}
\end{equation*}
$$

By virtue of Lemma 4.2, $\theta_{r-1}^{r} \bar{\theta}_{r-1}^{r}$ and $\theta_{r}^{r+1} \bar{\theta}_{r}^{r+1}$ are metrics of constant curvature and are homothetic. From (4.1) the connection form of the Kaehler metric
$\theta_{r-1}^{r} \bar{\theta}_{r-1}^{r}$ is $\theta_{r-1}^{r-1}-\theta_{r}^{r}$. By (4.2) the curvature form of the Kaehler metric $\theta_{r-1}^{r} \bar{\theta}_{r-1}^{r}$ becomes

$$
\begin{equation*}
d\left(\theta_{r-1}^{r-1}-\theta_{r}^{r}\right)=\theta_{r-2}^{r-1} \wedge \bar{\theta}_{r-2}^{r-1}-2 \theta_{r-1}^{r} \wedge \bar{\theta}_{r-1}^{r}+\theta_{r}^{r+1} \wedge \bar{\theta}_{r}^{r+1} \tag{4.5}
\end{equation*}
$$

Since the Kaehler metric $\theta_{r-1}^{r} \bar{\theta}_{r-1}^{r}$ has constant curvature, (4.5) is a constant multiple of $\theta_{r-1}^{r} \wedge \bar{\theta}_{r-1}^{r}$. Hence $\theta_{r-2}^{r-1} \wedge \bar{\theta}_{r-2}^{r-1}$ is homothetic to $\theta_{r-1}^{r} \wedge \bar{\theta}_{r-1}^{r}$. Since the metric on $S^{2}$ induced by $\phi_{r-1}$ is $(4 / c)\left(\theta_{r-2}^{r-1} \bar{\theta}_{r-2}^{r-1}+\theta_{r-1}^{r} \bar{\theta}_{r-1}^{r}\right)$, it is a metric of constant curvature. By the induction we conclude that the metric induced by $f=\phi_{0}$ is a metric of constant curvature. By the rigidity theorem of Calabi for holomorphic isometric imbeddings, $f$ is congruent to the $n$-th Veronese imbedding $\psi_{n}$.
q.e.d.

Proof of Lemma 4.2. In terms of homogeneous coordinates, we express $f$ and $h$ as $f(z)=\left(f_{0}(z), \cdots, f_{l}(z)\right)$ and $h(z)=\left(h_{0}(z), \cdots, h_{m}(z)\right)$, where $f_{i}(i=0, \cdots, l)$ (resp. $h_{j}(j=0, \cdots, m)$ ) are homogeneous polynomials of degree $d_{1}$ (resp. $d_{2}$ ) with respect to $z=\left(z_{0}, \cdots, z_{n}\right)$, which have no common zeros. The Kaehler form induced by $f$ (resp. $h$ ) is given by

$$
-(4 / c) \sqrt{-1} \partial \bar{\partial} \log |f|^{2} \quad\left(\text { resp. }-(4 / c) \sqrt{-1} \partial \bar{\partial} \log |h|^{2}\right) .
$$

Let $\tilde{F}$ be the composite of $F=(f, h): P_{n}(\boldsymbol{C}) \rightarrow P_{l}(\boldsymbol{C}) \times P_{m}(\boldsymbol{C})$ and the Segre imbedding $P_{l}(\boldsymbol{C}) \times P_{m}(\boldsymbol{C}) \rightarrow P_{l m+l+m}(\boldsymbol{C})$;

$$
\begin{aligned}
\tilde{F}: P_{n}(\boldsymbol{C}) & \longrightarrow P_{l m+l+m}(\boldsymbol{C}) \\
z & \longrightarrow\left(f_{i}(z) h_{j}(z)\right)_{i, j} .
\end{aligned}
$$

Then by the assumption we have $\partial \bar{\partial} \log |\tilde{F}|^{2}=a c \partial \bar{\partial} \log |z|^{2}$ for some $a>0$. On the other hand, let $\tilde{\boldsymbol{\omega}}$ and $\omega$ be the generators of $H^{2}\left(P_{l m+l+m}(\boldsymbol{C}) ; \boldsymbol{Z}\right)$ and $H^{2}\left(P_{n}(\boldsymbol{C}) ; \boldsymbol{Z}\right)$, respectively. Then we have $\tilde{F}^{*} \tilde{\omega}=\left(d_{1}+d_{2}\right) \boldsymbol{\omega}$. Hence we have $a c=d_{1}+d_{2}$. Thus we get $\partial \bar{\partial} \log \left(|\tilde{F}|^{2} /|z|^{2 a c}\right)=0$. Since $\log \left(|\tilde{F}|^{2} /|z|^{2 a c}\right)$ is a harmonic function on $P_{n}(\boldsymbol{C})$, it is constant. Hence we have $|\tilde{F}|^{2}=b|z|^{2 a c}$ for some $b>0$. Thus we have $|f|^{2}|h|^{2}=b|z|^{2 a c}$. Put $z_{i}=x_{i}+\sqrt{-1} y_{i}(i=0,1, \cdots, n)$. Since $|z|^{2}$ is a real irreducible polynomial with respect to $x_{i}$ and $y_{i}$ we have $|f|^{2}=a_{1}|z|^{2 d_{1}}$ and $|h|^{2}=a_{2}|z|^{2 d_{2}}$ for some $a_{1}, a_{2}>0$. Therefore we get $\partial \partial \bar{\partial} \log |f|^{2}=\partial \partial \bar{\partial} \log a_{1}|z|^{2 d_{1}}=d_{1} \partial \bar{\partial} \log |z|^{2}$ and $\partial \bar{\partial} \log |h|^{2}=d_{2} \partial \bar{\partial} \log |z|^{2}$. $\quad$ q. e. d.

## References

[1] O. Borůvka, Sur les surfaces représentées par les fonctions sphériques de première espèce, J. Math. Pures Appl. (9), 12 (1933), 337-383.
[2] R. L. Bryant, Minimal surfaces of constant curvature in $S^{n}$, Trans. Amer. Math. Soc., 290 (1985), 259-271.
[3] D. Burns, Harmonic maps from $\boldsymbol{C} P^{1}$ to $\boldsymbol{C} P^{n}$, Harmonic Maps, Proceedings, New

Orleans 1980, Lecture Notes in Math., 949, Springer 1982, pp. 48-56.
[4] E. Calabi, Isometric imbeddings of complex manifolds, Ann. of Math., 58 (1958), 1-23.
[5] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry, 1 (1967), 111-125.
[6] A. M. Din and W. J. Zakrzewski, General classical solutions in the $\boldsymbol{C} P^{n-1}$ model, Nuclear Phys., B174 (1980), 397-407.
[7] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math., 49 (1983), 217-263.
[8] V. Glaser and R. Stora, Regular solutions of the $\boldsymbol{C} P^{n}$ models and further generalizations, preprint, 1980.
[9] K. Kenmotsu, On minimal immersions of $\boldsymbol{R}^{2}$ into $S^{n}$, J. Math. Soc. Japan, 28 (1976), 182-191
[10] K. Kenmotsu, On minimal immersions of $\boldsymbol{R}^{2}$ into $P^{n}(\boldsymbol{C})$, J. Math. Soc. Japan, 37 (1985), 665-682.
[11] J. G. Wolfson, On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature, Trans. Amer. Math. Soc., 290 (1985), 627-646.

| Shigetoshi Bando | Yoshihiro OHNITA |
| :--- | :--- |
| Mathematical Institute | Department of Mathematics |
| Tohoku University | Tokyo Metropolitan University |
| Sendai 980 | Fukasawa, Setagaya-ku |
| Japan | Tokyo 158 |
|  | Japan |

