Minimal 2-spheres with constant curvature in $P_n(C)$

By Shigetoshi BANDO and Yoshihiro OHNITA

(Received Dec. 16, 1985)

Introduction.

Minimal surfaces with constant curvature in real space forms have been classified completely (cf. [5], [9], [2]). A next interesting problem is to classify minimal surfaces with constant curvature in complex space forms. The purpose of this peper is to classify minimal 2-spheres with constant curvature in complex projective spaces.

Now let $S^2(c)$ be a 2-dimensional sphere with constant curvature c and $P_n(C)$ an *n*-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 1. There are two typical classes of minimal isometric immersions of $S^2(c)$ into $P_n(C)$.

One is a class of holomorphic isometric imbeddings of $P_1(C)$ into $P_n(C)$ given by Calabi [4];

$$\begin{split} \psi_n : P_1(C) &= S^2(1/n) \longrightarrow P_n(C) \\ (z_0, z_1) \longrightarrow (\sqrt{n!/(l!(n-l)!)} z_0^l z_1^{n-l})_{l=0, \dots, n}, \end{split}$$

where (z_0, z_1) is the homogeneous coordinate system of $P_1(C)$. ψ_n is called the *n*-th Veronese imbedding of $P_1(C)$.

The other is a class of totally real minimal isometric immersions obtained by composing a Borůvka sphere $S^2(1/2k(k+1)) \rightarrow S^{2k}(1/4)$ (cf. [1]), a natural covering $S^{2k}(1/4) \rightarrow P_{2k}(\mathbf{R})$ and a totally real totally geodesic imbedding $P_{2k}(\mathbf{R})$ $\rightarrow P_{2k}(\mathbf{C})$;

$$\mu_k : S^2(1/2k(k+1)) \longrightarrow P_{2k}(C).$$

In this paper we give a family of minimal isometric immersions of 2-spheres with constant curvature into $P_n(C)$ which are not always holomorphic or totally real, using the theory of unitary representations of SU(2). For $n \ge 3$, we get examples of minimal 2-spheres with constant curvature in $P_n(C)$ which are neither holomorphic nor totally real. We will get the following:

THEOREM 1. For any nonnegative integers n and k with $0 \le k \le n$, there exists an SU(2)-equivariant minimal isometric immersion S. BANDO and Y. OHNITA

$$\psi_{n, k}$$
 : $S^2(c) \longrightarrow P_n(C)$,

where c=1/(2k(n-k)+n) and $\psi_{n,k}(S^2(c))$ is not contained in any totally geodesic complex submanifold of $P_n(C)$. Furthermore $\{\psi_{n,k}\}$ satisfy the following statements:

(1) If k=0 or k=n, then $\psi_{n,k}$ is holomorphic (with respect to a suitable fixed complex structure of $S^2(c)$) and $\psi_{n,k}$ is congruent to ψ_n .

(2) If n is even and k=n/2, then $\psi_{n,k}$ is totally real and $\psi_{n,k}$ is congruent to μ_k . (3) If n and k are otherwise (necessarily, $n \ge 3$), then $\psi_{n,k}$ is neither holomorphic nor totally real.

Moreover we will show the following rigidity theorem, using the twistor construction of harmonic maps of a 2-sphere into $P_n(C)$ (cf. [3], [6], [8], [7], [11]).

THEOREM 2. Let ψ : $S^2(c) \rightarrow P_n(C)$ be a minimal isometric immersion and assume that $\psi(S^2(c))$ is not contained in any totally geodesic complex submanifold in $P_n(C)$. Then there exists an integer k with $0 \leq k \leq n$ such that c is equal to 1/(2k(n-k)+n), and ψ is congruent to $\psi_{n,k}$.

Recently Professor Kenmotsu showed that a minimal surface with constant curvature in $P_2(C)$ is holomorphic or totally real. Dr. N. Ejiri (Tokyo Metropolitan Univ.) also found independently examples in Theorem 1 in a manner different from ours.

The authors wish to thank Professor Kenmotsu and Professor Urakawa for their valuable suggestions and constant encouragement.

1. Preliminaries.

We begin by giving a description of the geometry of $P_n(C)$. For $X, Y \in C^{n+1}$ the usual Hermitian inner pruduct is defined by

(1.1)
$$(X, Y) = \sum_{\alpha} x_{\alpha} \overline{y}_{\alpha}, \qquad X = (x_0, \dots, x_n), \qquad Y = (y_0, \dots, y_n),$$

where we employ the index ranges $0 \leq \alpha$, β , $\dots \leq n$, $1 \leq i, j, \dots \leq n$. The unitary group U(n+1) is the group of all linear transformations on C^{n+1} leaving the Hermitian product (1.1) invariant. $P_n(C)$ is the orbit space of $C^{n+1}-\{0\}$ under the action of the group $C^*=C-\{0\}$; $Z \rightarrow \lambda Z$ ($\lambda \in C^*$). Let $\pi : C^{n+1}-\{0\} \rightarrow P_n(C)$ be the natural projection. For a point $x \in P_n(C)$ a vector $Z \in \pi^{-1}(x)$ is called a homogeneous coordinate vector of x. We put $Z_0=Z/(Z, Z)^{1/2}$ so that (Z_0, Z_0) =1. The Fubini-Study metric on $P_n(C)$ with constant holomorphic sectional curvature c is defined by

(1.2)
$$ds^{2} = (4/c)((dZ_{0}, dZ_{0}) - (dZ_{0}, Z_{0})(Z_{0}, dZ_{0})).$$

The Kaehler form of the Fubini-Study metric (1.2) is given by

$$\omega = -(4/c)\sqrt{-1}\,\partial\bar{\partial}\log|Z|^2.$$

Now let Z_{α} be a unitary frame in C^{n+1} so that $(Z_{\alpha}, Z_{\beta}) = \delta_{\alpha\beta}$. In the bundle of all unitary frames on C^{n+1} we have

(1.3)
$$dZ_{\alpha} = \sum_{\beta} \theta^{\beta}_{\alpha} Z_{\beta} ,$$

where $\theta_{\alpha}^{\beta} = -\bar{\theta}_{\beta}^{\alpha} = (dZ_{\alpha}, Z_{\beta})$ is a 1-form. The θ_{α}^{β} are the Maurer-Cartan forms of the group U(n+1) and so satisfy the Maurer-Cartan structure equations

(1.4)
$$d\theta^{\alpha}_{\beta} = -\sum_{r} \theta^{\alpha}_{r} \wedge \theta^{r}_{\beta} .$$

By (1.2) and (1.3) the Fubini-Study metric can be written as

$$ds^2 = (4/c) \sum_i \theta^i_0 \bar{\theta}^i_0$$
.

If we set $\phi^i = (2/\sqrt{c})\theta_0^i$ and $\psi_j^i = \theta_j^i - \delta_j^i \theta_0^o$, then these forms satisfy the structure equations

 $d\phi^i = -\sum_j \phi^i_j \wedge \phi^j, \quad \phi^i_j + \bar{\phi}^j_i = 0$

and

$$d\psi^i_j = -\sum_k \psi^i_k \wedge \psi^k_j + \Psi^i_j$$
,

where $\Psi_j^i = \theta_0^i \wedge \bar{\theta}_0^j + \delta_j^i \sum_k \theta_0^k \wedge \bar{\theta}_0^k$. Therefore ψ_j^i are the connection forms of the Fubini-Study metric and Ψ_j^i are its curvature forms.

Let M be a Riemann surface. A full map of M into $P_n(C)$ is one whose image lies in no proper totally geodesic complex submanifold of $P_n(C)$. We should note that a map of a compact Riemann surface of genus zero into a Riemannian manifold is harmonic if and only if it is a branched minimal immersion.

Next we review results on irreducible unitary representations of the 3dimensional special unitary group SU(2).

SU(2) is defined by

$$SU(2) = \left\{ g = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}; \ a, b \in C, \ |a|^2 + |b|^2 = 1 \right\}.$$

The Lie algebra $\mathfrak{su}(2)$ of SU(2) is given by

$$\mathfrak{su}(2) = \left\{ X = \begin{pmatrix} \sqrt{-1}x & y \\ -\bar{y} & -\sqrt{-1}x \end{pmatrix}; x, y', y'' \in \mathbf{R}, y = y' + \sqrt{-1}y'' \right\}.$$

We define a basis $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ of $\mathfrak{su}(2)$ by

$$\varepsilon_1 = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad \varepsilon_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } \quad \varepsilon_3 = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}.$$

Let V_n be an (n+1)-dimensional complex vector space of all complex homo-

geneous polynomials of degree n with respect to z_0 , z_1 . We define a Hermitian inner product (,) on V_n such that

$$\{u_k^{(n)} = z_0^k z_1^{n-k} / \sqrt{k!(n-k)!}; 0 \le k \le n\}$$

is a unitary basis for V_n . We define a real inner product by $\langle , \rangle = \text{Re}(,)$. A unitary representation ρ_n of SU(2) on V_n is defined by

$$\rho_n(g)f(z_0, z_1) = f(az_0 - bz_1, bz_0 + \bar{a}z_1)$$

for $g \in SU(2)$ and $f \in V_n$. Then the action of $\mathfrak{gu}(2)$ on V_n is described as follows;

(1.5)
$$\rho_n(X)(u_i^{(n)}) = (i - (n - i))x\sqrt{-1} u_i^{(n)} -\sqrt{i(n - i + 1)} \overline{y} u_{i-1}^{(n)} + \sqrt{(i + 1)(n - i)} y u_{i+1}^{(n)}$$

for $0 \leq i \leq n$ and any element X of $\mathfrak{gu}(2)$.

Let D(SU(2)) be the set of all inequivalent irreducible unitary representations of SU(2). Then it is well known that $D(SU(2)) = \{(V_n, \rho_n); n=0, 1, 2, \dots\}$.

We denote by $(_{R}V_{n}, _{R}\rho_{n})$ an orthogonal representation of SU(2) induced by the scalar restriction of V_{n} . Then the following proposition is well known:

PROPOSITION 1.1. (1) If n is odd, then $({}_{R}V_{n}, {}_{R}\rho_{n})$ is irreducible.

(2) If n is even, then we have an orthogonal direct sum $_{R}V_{n} = W_{l} + \sqrt{-1} W_{l}$, where n=2l and W_{l} is the $_{R}\rho_{2l}(SU(2))$ -invariant irreducible real subspace of $_{R}V_{2l}$ spanned by

$$\{u_{l}^{(2l)}, (\sqrt{-1})^{j}(u_{l+j}^{(2l)}+u_{l-j}^{(2l)}), (\sqrt{-1})^{j+1}(u_{l+j}^{(2l)}-u_{l-j}^{(2l)}); 1 \leq j \leq l\}.$$

Put $T = \{\exp(t\varepsilon_1) \in SU(2) ; t \in \mathbb{R}\}\$ and we have $S^2 = SU(2)/T$. We identify the tangent space at $\{T\} \in S^2 = SU(2)/T$ with a subspace $\operatorname{span}_R\{\varepsilon_2, \varepsilon_3\}\$ of $\mathfrak{gu}(2)$. We fix a complex structure on S^2 so that $\varepsilon_2 + \sqrt{-1}\varepsilon_3$ is a vector of type (1, 0). Note that for any SU(2)-invariant Riemannian metric g on S^2 there is a positive real number a such that $\{a\varepsilon_2, a\varepsilon_3\}\$ is an orthonormal basis with respect to g and (S^2, g) has the constant curvature $4a^2$.

2. Construction of homogeneous minimal 2-spheres in $P_n(C)$.

Let (V_n, ρ_n) be an irreducible unitary representation of SU(2). We define the usual complex structure of V_n by $J(v) = \sqrt{-1}v$, for $v \in V_n$. Put $S^{2n+1} =$ $\{v \in V_n ; \langle v, v \rangle = 4\}$ and define the usual S¹-action on S^{2n+1} by $\exp(\sqrt{-1}\theta)v$, for $\exp(\sqrt{-1}\theta) \in S^1$ and $v \in S^{2m+1}$. Let $\pi : S^{2n+1} \rightarrow P_n(C)$ be the natural Riemannian submersion. We also denote by J the complex structure of $P_n(C)$. The action of $\rho_n(SU(2))$ on S^{2n+1} induces the action on $P_n(C)$ through π .

First we determine all orbits of SU(2) on $P_n(C)$ which are 2-dimensional spheres immersed in $P_n(C)$.

LEMMA 2.1. An orbit M of SU(2) on $P_n(C)$ is a 2-dimensional sphere immersed in $P_n(C)$ if and only if $M = \pi(\rho_n(SU(2))2u_k^{(n)})$ for some integer k with $0 \le k \le n$.

PROOF Assume that $M=\pi(\rho_n(SU(2))w)$ for some $w \in S^{2m+1}$ and M is a 2dimensional sphere immersed in $P_n(C)$. Put $N=\rho_n(SU(2))w$. Then the dimension of N is 2 or 3. Suppose that the dimension of N is 3. Since $\pi^{-1}(M)$ is a 3-dimensional compact submanifold of S^{2m+1} , we have $N=\pi^{-1}(M)$. Hence N is invariant by the S¹-action. Thus there is an element X of $\mathfrak{su}(2)$ such that $\rho_n(X)w=\sqrt{-1}w$. Since we can write $X=\mathrm{Ad}(g)(x\varepsilon_1)$ for some element $g\in SU(2)$ and a nonzero real number x, we have $\rho_n(x\varepsilon_1)v=\sqrt{-1}v$, where $v=\rho_n(g^{-1})w$. We put $v=2\sum_{i=0}^n v^i u_i^{(n)}$, where $v^i \in C$ and $\sum_{i=0}^n |v^i|^2=1$. By (1.5) we get

$$\rho_n(x\varepsilon_1)v = 2x\sum_{i=0}^n v^i(i-(n-i))\sqrt{-1}\,u_i^{(n)} = \sqrt{-1}\,v\,.$$

Hence we have $v^i\{(2i-n)x-1\}=0$ for $i=0, 1, \dots, n$. Since some v^k with $k \neq n/2$ is nonzero, we have x=1/(2k-n) and $v^i=0$ for $i \neq k$. Hence $v=2v^k u_k^{(n)}$, where $|v^k|=1$. Thus we obtain $M=\pi(\rho_n(SU(2))2u_k^{(n)})$. Next suppose that the dimension of N is 2. Then there is an element X of $\mathfrak{su}(2)$ such that $\rho_n(X)w=0$. By the argument similar to the former case we may put $X=x\varepsilon_1$ for some nonzero real number x. Write $w=2\sum_{i=0}^n w^i u_i^{(n)}$, where $w^i \in C$ and $\sum_{i=1}^n |w^i|^2=1$. By (1.5) we get

$$\rho_n(X)w = 2x \sum_{i=0}^n w^i (i - (n-i)) \sqrt{-1} u_i^{(n)} = 0.$$

Hence $w^i(2i-n)=0$ for $i=0, 1, \dots, n$. Thus *n* is even. Put k=n/2, and we have $w=2w^k u_k^{(2k)}$. Hence $|w^k|=1$. So we obtain $M=\pi(\rho_n(SU(2))2u_k^{(2k)})$.

Conversely suppose that $v=2w^k u_k^{(n)} \in S^{2n+1}$ and $M=\pi(\rho_n(SU(2))v)$. (1.5) gives that

(2.1)
$$\rho_n(X)v = (2k-n)x\sqrt{-1}v + 2y'(-\sqrt{k(n-k+1)}u_{k-1}^{(n)} + \sqrt{(k+1)(n-k)}u_{k+1}^{(n)}) + 2y''(\sqrt{k(n-k+1)}\sqrt{-1}u_{k-1}^{(n)} + \sqrt{(k+1)(n-k)}\sqrt{-1}u_{k+1}^{(n)}),$$

for any element $X \in \mathfrak{su}(2)$. This implies immediately that M is a 2-dimensional sphere immersed in $P_n(\mathbf{C})$. q. e. d.

Now for any nonnegative integers n and k with $0 \le k \le n$ we denote by $\psi_{n,k}$ the SU(2)-equivariant isometric immersion of a Riemann sphere $S^2(c)$ with constant curvature c into $P_n(C)$ given by the orbit $\pi(\rho_n(SU(2))2u_k^{(n)})$;

S. BANDO and Y. OHNITA

Here c depends on n and k. We show the following.

- PROPOSITION 2.2. (1) $\psi_{n,k}$ is full.
- (2) c is equal to 1/(2k(n-k)+n).
- (3) $\psi_{n,k}$ is a minimal immersion.

(4) (a) If k=0 (resp. k=n), then $\psi_{n,k}$ is holomorphic (resp. anti-holomorphic). (b) If n is even and k=n/2, then $\psi_{2k,k}$ is totally real and $\psi_{2k,k}(S^2(c))$ is contained in a totally geodesic totally real submanifold $P_{2k}(\mathbf{R})$ of $P_{2k}(\mathbf{C})$. (c) If n and k are otherwise, then $\psi_{n,k}$ is neither holomorphic, anti-holomorphic nor totally real.

(5) $\psi_{n,k}(S^2(c)) = \psi_{n,n-k}(S^2(c)).$

PROOF. From the irreducibility of (V_n, ρ_n) , (1) is clear. We put $v=2u_k^{(n)}$. B_V (2.1) we have

(2.2)
$$\langle \rho_n(X)v, \rho_n(X)v \rangle = (2k-n)^2 x^2 + 4\{2k(n-k)+n\}(y'^2+y''^2),$$

for any element X of $\mathfrak{gu}(2)$. We define two elements e_2 and e_3 of $\mathfrak{gu}(2)$ by

(2.3)
$$e_i = (1/(2\sqrt{2k(n-k)+n}))\varepsilon_i$$
, for $i=2, 3$.

Then by (2.2) $\{\pi_*(\rho_n(e_2)v), \pi_*(\rho_n(e_3)v)\}\$ is an orthonormal basis at $\pi(v)$ on $\psi_{n,k}(S^2(c)) = \pi(\rho_n(SU(2))v)$. Hence we get (2). By (1.5) and (2.3) simple computations give

(2.4)
$$\begin{aligned} 4\rho_n(e_2)\rho_n(e_2)v &= -v + 2/(2k(n-k)+n) \\ &\times \{\sqrt{(k-1)k(n-k+1)(n-k+2)}u_{k-2}^{(n)} + \sqrt{(k+1)(k+2)(n-k-1)(n-k)}u_{k+2}^{(n)}\}, \end{aligned}$$
 and

(2.5)
$$4\rho_{n}(e_{3})\rho_{n}(e_{3})v = -v-2/(2k(n-k)+n)$$
$$\times \{\sqrt{(k-1)k(n-k+1)(n-k+2)u_{k-2}^{(n)}} + \sqrt{(k+1)(k+2)(n-k+1)(n-k)u_{k+2}^{(n)}}\}.$$

From (2.4) and (2.5) we get

$$\rho_n(e_2)\rho_n(e_2)v + \rho_n(e_3)\rho_n(e_3)v = (-1/2)v.$$

Hence the mean curvature vector of $\pi(\rho_n(SU(2))2u_k^{(n)})$ in $P_n(C)$ vanishes. Thus we get (3). (4) is easily showed from (2.1). When m is even and k=n/2, by (2) of Proposition 1.1 the orbit $\rho_{2k}(SU(2))v$ is contained in W_k . Hence $\psi_{2k,k}(S^2(c))$ is contained in a totally geodesic totally real submanifold $P_{2k}(\mathbf{R})$ of $P_{2k}(\mathbf{C})$. But $\psi_{2k,k}(S^2(c))$ is not contained in any totally geodesic submanifold of $P_{2k}(\mathbf{R})$ because of the irreducibility of W_k . By simple computations we have

$$\rho_n\Big(\begin{pmatrix}a&b\\-\bar{b}&\bar{a}\end{pmatrix}\Big)u_k^{(n)}=(-\sqrt{-1})^n\rho_n\Big(\begin{pmatrix}\sqrt{-1}b&\sqrt{-1}a\\\sqrt{-1}\bar{a}&-\sqrt{-1}\bar{b}\end{pmatrix}\Big)u_{n-k}^{(n)}.$$

This implies (5).

By the rigidity theorems of Calabi [4], [5], we have $\psi_{n,0} = \psi_n$ and $\psi_{2k,k} = \mu_k$. Thus we obtain Theorem 1.

REMARK 2.3. By simple computations the Brouwer degree and the square length σ of the second fundamental form of $\psi_{n,k}$ are given as follows:

- (i) $\deg \phi_{n,k} = n 2k$,
- (ii) $\sigma = 1/2 + \{n(3n-4)-20k(n-k)\}/\{2(2k(n-k)+n)\}.$

REMARK 2.4. In [10] Kenmotsu showed the following:

Let $\psi: M^2 \to P_n(C)$ be a minimal isometric immersion of a 2-dimensional compact Riemannian manifold M^2 into $P_n(C)$. If the square length σ of the second fundamental form of ψ satisfies $\sigma \leq 1/2$, then (1) M^2 is homeomorphic to a 2sphere and ψ is superminimal, or (2) M^2 is a flat torus and is totally real.

For any (n, k) with $(5n - \sqrt{10n(n+2)})/10 \le k \le (5n + \sqrt{10n(n+2)})/10$, $\psi_{n,k}$ satisfies $\sigma \le 1/2$.

3. Twistor construction of harmonic maps into $P_n(C)$.

In this section we review the classification theorem of harmonic maps of a Riemann sphere M_0 into $P_n(C)$.

THEOREM 3.1 (Burns [3], Din-Zakrzewski [6], Glaser-Stora [8]). There is a bijective correspondence between full harmonic maps $\psi: M_0 \rightarrow P_n(C)$ and pairs (f, r), where $f: M_0 \rightarrow P_n(C)$ is a full holomorphic map and r is an integer with $0 \leq r \leq n$.

(f, r) is called the *directrix* of ψ .

We outline the construction of harmonic maps from holomorphic maps, following the papers of Eells-Wood [7] and Wolfson [11].

Let $f: M_0 \to P_n(C)$ be a full holomorphic map. Choose a coordinate neighborhood (U, ζ) in M_0 . In terms of homogeneous coordinates on $P_n(C)$, f is given locally by a holomorphic vector valued function $Z(\zeta) = (z_0(\zeta), \dots, z_n(\zeta))$. The fullness of f means that

$$(3.1) Z \wedge (\partial Z / \partial \zeta) \wedge \cdots \wedge (\partial^n Z / \partial \zeta^n) \neq 0$$

except perhaps at isolated points. As Z and its derivatives are all holomorphic functions of ζ , any zeros of (3.1) are removable. This enables us to define a

q. e. d.

S. BANDO and Y. OHNITA

field of unitary frames along f which is intimately related to the osculating spaces of f.

Set $Z_0 = Z/(Z, Z)^{1/2}$ and choose $Z_l: U \subset M_0 \to C^{n+1} - \{0\}$ such that $\{Z_0(x), \dots, Z_l(x)\}$ forms a unitary basis for the vector space spanned by $Z(x), (\partial Z/\partial \zeta)(x), \dots, (\partial^l Z/\partial \zeta^l)(x)$ (the *l*-th osculating space of *f* at *x*) for each $l=1, \dots, n$ and $x \in U$. $\{Z_0, \dots, Z_n\}$ is a field of unitary frames along *f* which satisfies

(3.2)

$$dZ_{0} = \theta_{0}^{0}Z_{0} + \theta_{0}^{1}Z_{1},$$

$$dZ_{i} = \theta_{i}^{i-1}Z_{i-1} + \theta_{i}^{i}Z_{i} + \theta_{i}^{i+1}Z_{i+1}, \quad 1 \leq i \leq n-1,$$

$$dZ_{n} = \theta_{n}^{n-1}Z_{n-1} + \theta_{n}^{n}Z_{n},$$

where θ_i^{i+1} is a form of type (1, 0) for $0 \leq i \leq n-1$ and θ_i^{i-1} is a form of type (0, 1) for $1 \leq i \leq n$.

For an integer r with $0 \leq r \leq n$, let $G_{r+1}(\mathbb{C}^{n+1})$ be the Grassmann manifold of all (r+1)-dimensional complex subspaces of \mathbb{C}^{n+1} . By the Plücker imbedding $G_{r+1}(\mathbb{C}^{n+1})$ is realized as a complex submanifold in the complex projective space $P(\Lambda^{r+1}\mathbb{C}^{n+1})$. We define $f_r: U \to G_{r+1}(\mathbb{C}^{n+1})$ by $f_r(x) = [Z_0 \land \cdots \land Z_r]$ for $x \in U$, where $[Z_0 \land \cdots \land Z_r]$ denotes an (r+1)-dimensional complex subspace of \mathbb{C}^{n+1} spanned by Z_0, \cdots, Z_r . f_r extends uniquely to a holomorphic map of M_0 into $G_{r+1}(\mathbb{C}^{n+1})$ and is called the *r*-th associated curve of f. We put

$$\mathcal{H}_{r,n-r} = \{ (V, W) \in G_r(\mathbb{C}^{n+1}) \times G_{r+1}(\mathbb{C}^{n+1}) ; V \subset W \}.$$

Here $G_r(C^{n+1}) \times G_{r+1}(C^{n+1})$ has the Kaehler structure induced by $P(\Lambda^r C^{n+1}) \times P(\Lambda^{r+1}C^{n+1})$, and $P(\Lambda^r C^{n+1})$ and $P(\Lambda^{r+1}C^{n+1})$ are equipped with the Fubini-Study metrics of the same constant holomorphic sectional curvature. $\mathcal{H}_{r,n-r}$ is a flag manifold $U(n+1)/U(r) \times U(1) \times U(n-r)$ and we have a Riemannian submersion $\pi_r: \mathcal{H}_{r,n-r} \to P_n(C) = U(n+1)/U(n) \times U(1).$

Now we fix an integer r with $0 \leq r \leq n$. We define a map $\Phi_r: M_0 \to \mathcal{H}_{r,n-r}$ by $\Phi_r(x) = (f_{r-1}(x), f_r(x))$ for $x \in M_0$. Then Φ_r is holomorphic with respect to the Kaehler structure on $\mathcal{H}_{r,n-r}$ induced from $G_r(C^{n+1}) \times G_{r+1}(C^{n+1})$, and Φ_r is horizontal with respect to the Riemannian submersion $\pi_r: \mathcal{H}_{r,n-r} \to P_n(C)$. Thus $\phi_r = \pi_r \cdot \Phi_r$ is a full harmonic map. ϕ_r is an extension of a map $\pi \cdot Z_r: U \to P_n(C)$.

Conversely every full harmonic map of M_0 into $P_n(C)$ is manufactured in the above manner from a unique pair (f, r).

Let $\{\phi_{n,k}\}$ be a family of full minimal immersions of S^2 into $P_n(C)$ constructed in Section 2. Then we have the following:

PROPOSITION 3.2. The directrix of $\psi_{n,k}$ is (ψ_n, k) .

PROOF. By (1.5) we have

(3.3)

$$ho_n (arepsilon_2 - \sqrt{-1} arepsilon_3)^k v \in C \cdot u_k^{(n)}$$

for each integer k with $0 \le k \le n$. Since $\pi_*(\rho_n(\varepsilon_2 - \sqrt{-1}\varepsilon_3)v)$ is a vector of type (1, 0) with respect to the complex structure defined on $S^2(c)$, from (3.3) it is easy to see that $\phi_r = \phi_{n,r}$ for $f = \phi_n$. q.e.d.

4. Rigidity.

In this section we show that the minimal 2-spheres $\{\psi_{n,k}\}$ constructed in Section 2 exhaust all minimal 2-spheres with constant curvature in $P_n(C)$, using the twistor construction of harmonic maps explained in Section 3.

From (3.2) it follows that

(4.1)
$$d\theta_i^{i-1} = -(\theta_{i-1}^{i-1} - \theta_i^i) \wedge \theta_i^{i-1},$$

(4.2)
$$d\theta_i^i = -\theta_i^{i-1} \wedge \bar{\theta}_i^{i-1} - \theta_i^{i+1} \wedge \bar{\theta}_i^{i+1},$$

for $0 \leq i \leq n$, where $\theta_0^{-1} = \theta_0^{n+1} = 0$.

PROPOSITION 4.1. Let ψ be a full minimal isometric immersion of a 2-sphere with constant curvature into $P_n(C)$ and (f, r) the directrix of ψ . Then f is congruent to ψ_n .

Combining Theorem 3.1, Propositions 3.2 and 4.1, we obtain Theorem 2. We use the following lemma to prove Proposition 4.1.

LEMMA 4.2. Let $f: P_n(\mathbf{C}) \to P_l(\mathbf{C})$ and $h: P_n(\mathbf{C}) \to P_m(\mathbf{C})$ be two holomorphic maps, where $P_l(\mathbf{C})$ and $P_m(\mathbf{C})$ are equipped with the Fubini-Study metrics of the same constant holomorphic sectional curvature c, and define a holomorphic map $F=(f, h): P_n(\mathbf{C}) \to P_l(\mathbf{C}) \times P_m(\mathbf{C})$ by F(x)=(f(x), h(x)). If the metric on $P_n(\mathbf{C})$ induced by F is a Kaehler metric of constant holomorphic sectional curvature, then the metrics induced by f and h are Kaehler metrics of constant holomorphic sectional curvature, and they are homothetic.

PROOF OF PROPOSITION 4.1. We use the same notation as in Section 3. Suppose that $\phi = \phi_r$ is a full minimal isometric immersion of a 2-sphere S^2 with constant curvature into $P_n(C)$. We note that the metric induced by ϕ_r is congruent to the metric induced by Φ_r . By (1.2) and (3.2), the metric on S^2 induced by $f_l: S^2 \rightarrow G_{l+1}(C^{n+1}) \subset P(\Lambda^{l+1}C^{n+1})$ is given by

(4.3)
$$(4/c)\theta_{l}^{l+1}\bar{\theta}_{l}^{l+1}$$
.

Hence the metric induced by ψ is given by

(4.4)
$$(4/c)(\theta_{r-1}^{r}\bar{\theta}_{r-1}^{r}+\theta_{r}^{r+1}\bar{\theta}_{r}^{r+1}).$$

By virtue of Lemma 4.2, $\theta_{r-1}^r \bar{\theta}_{r-1}^r$ and $\theta_r^{r+1} \bar{\theta}_r^{r+1}$ are metrics of constant curvature and are homothetic. From (4.1) the connection form of the Kaehler metric

 $\theta_{r-1}^r \bar{\theta}_{r-1}^r$ is $\theta_{r-1}^{r-1} - \theta_r^r$. By (4.2) the curvature form of the Kaehler metric $\theta_{r-1}^r \bar{\theta}_{r-1}^r$ becomes

(4.5)
$$d(\theta_{r-1}^{r-1} - \theta_r^r) = \theta_{r-2}^{r-1} \wedge \bar{\theta}_{r-2}^{r-1} - 2\theta_{r-1}^r \wedge \bar{\theta}_{r-1}^r + \theta_r^{r+1} \wedge \bar{\theta}_r^{r+1}.$$

Since the Kaehler metric $\theta_{r-1}^r \bar{\theta}_{r-1}^r$ has constant curvature, (4.5) is a constant multiple of $\theta_{r-1}^r \wedge \bar{\theta}_{r-1}^r$. Hence $\theta_{r-2}^{r-1} \wedge \bar{\theta}_{r-2}^{r-1}$ is homothetic to $\theta_{r-1}^r \wedge \bar{\theta}_{r-1}^r$. Since the metric on S^2 induced by ϕ_{r-1} is $(4/c)(\theta_{r-2}^{r-1}\bar{\theta}_{r-2}^{r-1} + \theta_{r-1}^r\bar{\theta}_{r-1}^r)$, it is a metric of constant curvature. By the induction we conclude that the metric induced by $f = \phi_0$ is a metric of constant curvature. By the rigidity theorem of Calabi for holomorphic isometric imbeddings, f is congruent to the *n*-th Veronese imbedding ψ_n .

PROOF OF LEMMA 4.2. In terms of homogeneous coordinates, we express f and h as $f(z)=(f_0(z), \dots, f_l(z))$ and $h(z)=(h_0(z), \dots, h_m(z))$, where f_i $(i=0, \dots, l)$ (resp. h_j $(j=0, \dots, m)$) are homogeneous polynomials of degree d_1 (resp. d_2) with respect to $z=(z_0, \dots, z_n)$, which have no common zeros. The Kaehler form induced by f (resp. h) is given by

$$-(4/c)\sqrt{-1}\partial\bar{\partial}\log|f|^2 \qquad (\text{resp. } -(4/c)\sqrt{-1}\partial\bar{\partial}\log|h|^2).$$

Let \tilde{F} be the composite of $F=(f, h): P_n(C) \to P_l(C) \times P_m(C)$ and the Segre imbedding $P_l(C) \times P_m(C) \to P_{lm+l+m}(C)$;

$$\widetilde{F}: P_n(C) \longrightarrow P_{l\,m+l+m}(C)$$
$$z \longrightarrow (f_i(z)h_j(z))_{i,j}$$

Then by the assumption we have $\partial \bar{\partial} \log |\tilde{F}|^2 = ac\partial \bar{\partial} \log |z|^2$ for some a > 0. On the other hand, let $\tilde{\omega}$ and ω be the generators of $H^2(P_{lm+l+m}(C); Z)$ and $H^2(P_n(C); Z)$, respectively. Then we have $\tilde{F}^* \tilde{\omega} = (d_1 + d_2)\omega$. Hence we have $ac = d_1 + d_2$. Thus we get $\partial \bar{\partial} \log(|\tilde{F}|^2/|z|^{2ac}) = 0$. Since $\log(|\tilde{F}|^2/|z|^{2ac})$ is a harmonic function on $P_n(C)$, it is constant. Hence we have $|\tilde{F}|^2 = b|z|^{2ac}$ for some b > 0. Thus we have $|f|^2 |h|^2 = b|z|^{2ac}$. Put $z_i = x_i + \sqrt{-1}y_i$ $(i=0, 1, \dots, n)$. Since $|z|^2$ is a real irreducible polynomial with respect to x_i and y_i we have $|f|^2 = a_1|z|^{2d_1}$ and $|h|^2 = a_2|z|^{2d_2}$ for some $a_1, a_2 > 0$. Therefore we get $\partial \bar{\partial} \log |f|^2 = \partial \bar{\partial} \log a_1|z|^{2d_1} = d_1 \partial \bar{\partial} \log |z|^2$ and $\partial \bar{\partial} \log |h|^2 = d_2 \partial \bar{\partial} \log |z|^2$. q. e. d.

References

- [1] O. Borůvka, Sur les surfaces représentées par les fonctions sphériques de première espèce, J. Math. Pures Appl. (9), 12 (1933), 337-383.
- [2] R. L. Bryant, Minimal surfaces of constant curvature in Sⁿ, Trans. Amer. Math. Soc., 290 (1985), 259-271.
- [3] D. Burns, Harmonic maps from CP^1 to CP^n , Harmonic Maps, Proceedings, New

Orleans 1980, Lecture Notes in Math., 949, Springer 1982, pp. 48-56.

- [4] E. Calabi, Isometric imbeddings of complex manifolds, Ann. of Math., 58 (1958), 1-23.
- [5] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry, 1 (1967), 111-125.
- [6] A. M. Din and W. J. Zakrzewski, General classical solutions in the CPⁿ⁻¹ model, Nuclear Phys., B174 (1980), 397-407.
- [7] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math., 49 (1983), 217-263.
- [8] V. Glaser and R. Stora, Regular solutions of the CP^n models and further generalizations, preprint, 1980.
- [9] K. Kenmotsu, On minimal immersions of R² into Sⁿ, J. Math. Soc. Japan, 28 (1976), 182-191
- [10] K. Kenmotsu, On minimal immersions of R² into Pⁿ(C), J. Math. Soc. Japan, 37 (1985), 665-682.
- [11] J. G. Wolfson, On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature, Trans. Amer. Math. Soc., 290 (1985), 627-646.

Shigetoshi BANDO Mathematical Institute Tohoku University Sendai 980 Japan Yoshihiro Ohnita

Department of Mathematics Tokyo Metropolitan University Fukasawa, Setagaya-ku Tokyo 158 Japan