Construction of Hopf G-spaces

Dedicated to the memory of late Professor Shichirô Oka

By Ken-ichi Maruyama

(Received Jan. 10, 1985)
(Revised Sept. 14, 1985)

§ 1. Introduction.

Let G be a topological group. The notion of a Hopf G-space is first noted by G. E. Bredon [3]. He defined a Hopf G-space to be a space which has a G-equivariant multiplication. Some people did their works in this area, K. Iriye [6] on Hopf Z_{2}-spheres, G. Triantafillou [11] on rational cases, etc.

In this paper we shall construct some examples of equivariant Hopf spaces by a method analogous to Zabrodsky's. Actually, A. Zabrodsky exploited his mixing homotopy method ([13], [14] and [15]) to obtain many non-classical Hopf spaces (including the Hilton-Roitberg's example, etc.). We shall discuss an equivariant version of his method under some conditions. For this, we shall use the equivariant localization of J. P. May, et al. [9].

Our main results are the following two theorems. Throughout the paper, we assume that G is a compact Lie group.

Theorem 1.1. Let S^{n} be the n-sphere with n odd >1, on which G acts desuspendably, i.e., the action is the suspension of a G-action on S^{n-1}. Let E be a compact Lie group on which G acts by automorphisms. Moreover assume that E acts on S^{n} transitively and the induced fibration $\pi: E \rightarrow S^{n}$ is a G-fibration, i.e. π is a G-map and has a G-homotopy covering property. Let $h_{\lambda}: S^{n} \rightarrow S^{n}$ be the G-map which is of degree $\lambda \in Z$, that is, h_{λ} is λ times the identity map of S^{n} in $\left[S^{n}, S^{n}\right]_{G}$, and T be a collection of prime numbers. Then the pull back $W_{h_{\lambda}}$ in the following diagram

has a Hopf G-structure, if the following three conditions are satisfied.
a) E^{H} and $\left(S^{n}\right)^{H}$ are connected, and $\left(S^{n}\right)^{\boldsymbol{H}}$ is also a sphere, for each closed subgroup H of G.
b) The equivariant localization S_{T}^{n} is a G-homotopy commutative Hopf G-space and the set $\left[S_{T}^{n} \times S_{T}^{n}, S_{T}^{n}\right]_{G}$ becomes a group.
c) $p \mid \lambda$ implies $p \in T$.

Remark. We shall prove Theorem 1.1 under more general situation by introducing the G-equivariant operation. But all examples of section 4 will satisfy the conditions written above.

Theorem 1.2. Let S^{m} be an odd dimensional sphere and G acts on S^{m} such that $\left(S^{m}\right)^{H}$ is an odd dimensional sphere for each closed subgroup H. Let l be a collection of prime numbers such that $2 m<p\left(t_{0}+1\right)-3$ for each $p \in l$, where $t_{0}=\min \left\{\operatorname{dim}\left(S^{m}\right)^{H} ; H<G\right\}$. Then S_{l}^{m} (equivariant localization at l) is a G-homotopy commutative Hopf G-space.

This paper will be organized as follows. In section 2 we prove an equivariant version of Zabrodsky's theorem. In section 3, Theorem 1.2 above will be shown by means of previous sections. In the final section, we present examples of Theorem 1.1.

We shall use the following notation throughout the paper. If X is a $G-C W$ complex and T is a collection of primes, we shall write X_{T} for an equivariant localization of X at T in the sense of [9]. We write $[,]_{G}$ for a G-homotopy classes of G-maps. One should refer Bredon [3], Matumoto [7], Warner [12], for general references on G-CW theory.

The author would like to thank Professors A. Kono and M. Mimura.

§ 2. Equivariant Zabrodsky's theorem.

In this section we shall prove an equivariant version of Zabrodsky's theorem ([15]) under some conditions. We would rather use the proof by M. Arkowitz [2] (Zabrodsky did not use any words "localization").

Definition 2.1. Let $X=S^{1} \wedge Y$ be the reduced suspension of a space Y. A G-action on X is said to be desuspendable if there is a G-action on Y such that $g(t, y)=(t, g y)$ for $(t, y) \in X, g \in G$.

Then the G-homotopy set $[X, Z]_{G}$ becomes a group in the usual way.
Definition 2.2. Suppose G acts desuspendably on $S^{n}, n \geqq 1$. A G-map $h_{\lambda}: S^{n} \rightarrow S^{n}$ is said to be of degree $\lambda \in Z$ if h_{λ} is λ times the identity map in $\left[S^{n}, S^{n}\right]_{G}$.

Definition 2.3. Let $f: X \rightarrow Y$ be a G-map. A G-equivariant operation of X on Y is a G-map $\mu: X \times Y \rightarrow Y$ such that

$$
\mu i_{1} \widetilde{G} f: X \rightarrow Y, \quad \mu i_{2} \widetilde{\widetilde{G}} \text { Id }: Y \rightarrow Y,
$$

where i_{1}, i_{2} are inclusions.
To state our result, we prepare the following data.
(2.4) (a) an n-sphere S^{n}, n odd >1, on which G acts desuspendably.
(b) a Hopf G-space E with multiplication μ_{E}.
(c) a G-fibration $\pi: E \rightarrow S^{n}$.
(d) a G-equivariant operation $\mu: E \times S^{n} \rightarrow S^{n}$ compatible with the multiplication μ_{E} via π, that is,

$$
\pi \mu_{E} \widetilde{G} \mu(1 \times \pi): E \times E \rightarrow S^{n} .
$$

(e) a G-map $h_{\lambda}: S^{n} \rightarrow S^{n}$ of degree $\lambda \in Z$.
(f) a set T of primes.
(g) the pull back $W=W_{h_{\lambda}}$ given by the pull back diagram:

Then our theorem is stated as follows:
Theorem 2.5. Assume (2.4) and that
(a) E^{H} and $\left(S^{n}\right)$ are connected and $\left(S^{n}\right)^{H}$ is also a sphere, for each closed subgroup H.
(b) The equivariant localization S_{T}^{n} is an abelian Hopf G-space and $\left[S_{T}^{n} \times S_{T}^{n}, S_{T}^{n}\right]_{G}$ becomes a group.
(c) $p \mid \lambda$ implies $p \in T$.

Then the pull back W has a Hopf G-structure.
Remark 2.6. In case $G=e$, i.e., the nonequivariant case, a compact Lie group E acting transitively on S^{n} satisfies conditions (b)-(d) of (2.4). Theorem 1.1 is the equivariant version in this special situation.

Remark 2.7. If $G=e$ and T is a set of odd primes, then the above theorem is (the nonequivariant) Zabrodsky theorem [15].

We need some definitions before the proof.
Definition 2.8. Given spaces and maps

$$
X \xrightarrow{f} A \stackrel{g}{\longleftarrow} Y,
$$

define

$$
\begin{aligned}
W(f, g)=\{(x, w, y) \mid & x \in X, w \in A^{I}, y \in Y \\
& f(x)=w(0), g(y)=w(1)\}
\end{aligned}
$$

the weak pull back of f and g. So we obtain the following homotopy commutative diagram;

where r and s are the canonical maps. We note that $W(f, g)$ becomes canonically a G-space when f and g are G-maps. In this case we should note that $W(f, g)^{H}=W\left(f^{H}, g^{H}\right)$ is a weak pull back of f^{H} and g^{H}, for each closed subgroup H.

Here we should note that $W(f, g)$ can be replaced by a G-CW complex up to weak G-equivalence (see [12], [8]).

Definition 2.9. Let f, g be G-maps. The following G-homotopy commutative square

is called a G-weak pull back diagram if there exists a G-homotopy equivalence $\delta: W \rightarrow W(f, g)$ such that $r \delta \widetilde{\bar{G}} a, s \delta \widetilde{G} b$.

Also here we should note that we obtain a nonequivariant sense weak pull back diagram for every W^{H}.

Proof of Theorem 2.5. Let T^{\prime} be the complementary set of primes for T, i. e. $T \cap T^{\prime}=\varnothing, T \cup T^{\prime}=$ all primes. The following square is a G-weak pull back diagram, where j and j^{\prime} are the G-localization maps.

Therefore there is a G-map $d: W_{T \cup T^{\prime}} \rightarrow W\left(j s_{T}, j^{\prime} s_{T^{\prime}}\right)$, which is a G-homotopy equivalence.
$s_{T^{\prime}}$ is a G-homotopy equivalence as we consider homotopy exact sequences of G-fibrations $W_{T^{\prime}} \rightarrow S_{T^{\prime}}^{n}$ and $E_{T^{\prime}} \rightarrow S_{T^{\prime}}^{n}$. Then $W_{T^{\prime}}$ has a Hopf G-structure μ_{0}^{\prime} such that $s_{T^{\prime}}$ is a Hopf G-map (that is, $\left.\left(\mu_{E}\right)_{T^{\prime}} \circ\left(s_{T^{\prime}} \times s_{T^{\prime}}\right) \widetilde{G}_{G} s_{T^{\prime}} \circ \mu_{0}^{\prime}\right)$. If we can define a Hopf G-structure μ_{0} on W_{T} such that $\left(\mu_{E}\right)_{T^{\circ}}\left(s_{T} \times s_{T}\right) \widetilde{G} s_{T}{ }^{\circ} \mu_{0}$, then it is easy to obtain a Hopf G-structure μ_{W} on W, since $j s_{T}$ becomes a Hopf G-maps and $j^{\prime} s_{T^{\prime}}$ is already so.

Now we shall construct a Hopf G-structure μ_{0} on W_{T}. As the following square is a G-weak pull back diagram, it is enough to construct it on the weak pull back $W\left(h_{T}, \pi_{T}\right)$

We label G-homotopies as follows. Let μ_{s} be the Hopf G-structure on S_{T}^{n}.

$$
F: E_{T} \times S_{T}^{n} \longrightarrow\left(S_{T}^{n}\right)^{I} ; \quad F()(0)=\mu(), \quad F()(1)=w q+\mu_{s}\left(\pi_{T} \times 1\right) .
$$

Here $\mu \simeq w q+\mu_{s}\left(\pi_{T} \times 1\right)$ for some $w \in\left[E_{T} \wedge S_{T}^{n}, S_{T}^{n}\right]$, which is obtained from the G-Puppe sequence argument, and $q: E_{T} \times S_{T}^{n} \rightarrow E_{T} \wedge S_{T}^{n}$ is the projection.

$$
\begin{aligned}
H: & E_{T} \times E_{T} \longrightarrow\left(S_{T}^{n}\right)^{I} ; \quad H()(0)=\mu\left(1 \times \pi_{T}\right)(), \quad H()(1)=\pi_{T}\left(\mu_{E}\right)_{T}(), \\
& \text { the homotopy as in }(2.4)(\mathrm{d}) .
\end{aligned}
$$

As we may take $h_{T}: S_{T}^{n} \rightarrow S_{T}^{n}$ as a map of λ times the identity map of S_{T}^{n} by the multiplication μ_{S}, h_{T} can be considered as a Hopf G-map. Therefore, there is a homotopy as follows.

$$
\begin{array}{ll}
J: S_{T}^{n} \times S_{T}^{n} \times S_{T}^{n} \longrightarrow\left(S_{T}^{n}\right)^{I} ; \quad & J()(0)=h_{T}\left(\mu_{s}\left(1 \times \mu_{s}\right)\right), \\
& J()(1)=\mu_{s}\left(1 \times \mu_{s}\right)\left(h_{T} \times h_{T} \times h_{T}\right) .
\end{array}
$$

Finally, we prepare the following homotopy.

$$
K: E_{T} \wedge S_{T}^{n} \longrightarrow\left(S_{T}^{n}\right)^{I} ; \quad K()(0)=h_{T} w, \quad K()(1)=w\left(1 \wedge h_{T}\right) .
$$

We remark that F and J are taken as relative to $E_{T} \vee S_{T}^{n}$ and $S_{T}^{n} \vee S_{T}^{n} \vee S_{T}^{n}$ respectively because of the following fact.

Lemma 2.10. ((G-) James theorem, see [16]). Suppose $\Sigma A \subset \Sigma B$ is G-retract and (X, μ) a Hopf G-space. If two G-homotopic maps g_{0}, g_{1} from B to X satisfy that $g_{0}\left|A=g_{1}\right| A$ then g_{0} and g_{1} are G-homotopic rel A.

Proof. This is exactly the same as the nonequivariant case. So we omit the proof.

We define a path from $h_{T}\left(\mu_{s}\left(w q\left(y, x^{\prime}\right), \mu_{s}\left(x, x^{\prime}\right)\right)\right)$ to $\pi_{T}\left(\mu_{E}\right)_{T}\left(y, y^{\prime}\right)$ by the above homotopies as

$$
H \circ F^{-1} \circ \mu_{s}\left(w\left(y, \psi^{\prime}\right), \mu_{s}\left(\psi, \psi^{\prime}\right)\right) \circ K \circ J
$$

for $(x, \psi, y),\left(x^{\prime}, \phi^{\prime}, y^{\prime}\right) \in\left(W_{h}\right)_{T}$, with $h_{T}(x)=\psi(0), \pi_{T}(y)=\phi(1), h_{T}\left(x^{\prime}\right)=\phi^{\prime}(0)$ and $\pi_{t}\left(y^{\prime}\right)=\psi^{\prime}(1), x, x^{\prime} \in S_{T}^{n}, y, y^{\prime} \in E_{T} . \quad F^{-1}$ denotes the inverse path of F.

We denote this path as $M=M\left((x, \psi, y),\left(x^{\prime}, \psi^{\prime}, y^{\prime}\right)\right)$. Then the desired Hopf G-structure μ_{0} on W_{T} can be obtained by

$$
\mu_{0}\left((x, \phi, y),\left(x^{\prime}, \psi^{\prime}, y^{\prime}\right)\right)=\left(\mu_{s}\left(w q\left(y, x^{\prime}\right), \mu_{s}\left(x, x^{\prime}\right)\right), M,\left(\mu_{E}\right)_{T}\left(y, y^{\prime}\right)\right) .
$$

§3. A sufficient condition for S^{n} to be a Hopf \boldsymbol{G}-space.

In [1], J. F. Adams has shown that the odd dimensional sphere can be considered as a Hopf space mod p. Here we give some condition for the equivariant analogue of his result to hold with some specific action on the sphere. Let S^{m} be an odd dimensional sphere and G acts on S^{m}. Assume that $\left(S^{m}\right)^{H}$ is always an odd dimensional sphere and we denote that $t_{0}=$ $\min \left\{\operatorname{dim}\left(S^{m}\right)^{H} ; H<G\right\}$, where H is any closed subgroup of G.

Theorem 1.2. Let l be a collection of primes. Assume that for any $p \in l$, $2 m<p\left(t_{0}+1\right)-3$. Then S_{l}^{m} is a G-commutative Hopf G-space.

Proof. Embed S_{l}^{m} equivariantly in $\Omega^{2} \Sigma^{2} S_{l}^{m}$ by the natural G-map j. It is well known that for an odd dimensional sphere $S^{t}, \pi_{i}\left(\Omega^{2} \Sigma^{2} S^{t}, S^{t}\right)_{(p)}=0$, for $i<p(t+1)-2$, p an odd prime (see [10], p. 516). Therefore, $\pi_{i}\left(\Omega^{2} \Sigma^{2}\left(S_{l}^{m}\right)^{H},\left(S_{l}^{m}\right)^{H}\right)$ $=0$ if $i<p\left(t_{0}+1\right)-2, p \in l$. Making use of Proposition (3.3) of [7], we obtain the following bijection if $2 m<p\left(t_{0}+1\right)-3$;

$$
\left[S_{l}^{m} \times S_{l}^{m}, S_{l}^{m}\right]_{G} \xrightarrow{j^{*}}\left[S_{l}^{m} \times S_{l}^{m}, \Omega^{2} \Sigma^{2} S_{l}^{m}\right]_{G} .
$$

Let $\mu: \Omega^{2} \Sigma^{2} S_{l}^{m} \times \Omega^{2} \Sigma^{2} S_{l}^{m} \rightarrow \Omega^{2} \Sigma^{2} S_{l}^{m}$ be the loop multiplication. Then μ is clearly a G-homotopy commutative G-structure. Now we define

$$
m=\left(j^{*}\right)^{-1}\left(\mu\left(j^{*} \times j^{*}\right)\right): S_{l}^{m} \times S_{l}^{m} \longrightarrow S_{l}^{m} .
$$

It is clear that m is a Hopf G-structure on S_{l}^{m} which is G-homotopy commutative.

§4. Examples.

In this section we will give examples for Theorem 2.5. We will introduce some actions on Lie groups which induce the actions on odd dimensional spheres mentioned in section 3.

First we introduce the following lemma which is observed by Bredon [3] when G is finite.

Lemma 4.1. Let B be a G-space such that B^{H} is connected and simple for each closed subgroup H. Then a G-map $\pi: E \rightarrow B$ has the G-covering homotopy property for every G-CW complex, if and only if $\pi^{H}: E^{H} \rightarrow B^{H}$ is a fibration in a nonequivariant sense for each closed subgroup H.

Proof. Let X be a G-CW complex. Let $f_{t}: X \rightarrow B$ be a G-homotopy and $g: X \rightarrow E$ be a G-map such that $\pi g=f_{0}$. We are able to use the induction on G-cells of X to construct a required homotopy. Actually, if $G / H \times D^{n}$ is a G-cell of X, our lifting problem can be considered as a nonequivariant problem through the bijection

$$
\left[G / H \times D^{n} \times I, G / H \times S^{n} \times I ; B, E\right]_{G} \simeq\left[D^{n} \times I, S^{n} \times I ; B^{H}, E^{H}\right] .
$$

Example 4.2. The case $G=Z_{2}, E=U(n)$ and the usual transitive operation $\mu: U(n) \times S^{2 n-1} \rightarrow S^{2 n-1}$. We represent Z_{2} as the subgroup of $U(n)$ generated by

$$
a_{t}=\overbrace{\begin{array}{c|c}
-1 & 0 \\
\ddots & 0 \\
-1 & 0 \\
0 & \ddots \\
1
\end{array}}^{t} \overbrace{\substack{n-t}} \quad 1 \leqq t \leqq n
$$

which defines an action $*$ of Z_{2} on $U(n)$ by the conjugation:

$$
a_{t} * A=a_{t} A a_{t}, \quad A \in U(n) .
$$

We call this action to be of type t. With this action, $U(n)$ can be considered as a Hopf $G\left(=Z_{2}\right)$-space. The induced action on $U(n) / U(n-1)=S^{2 n-1}$ can be seen as follows. Take $x \in S^{2 n-1}, x=\left(x_{1}, \cdots, x_{n}\right), \Sigma_{i}\left|x_{i}\right|^{2}=1, x_{i} \in C$. Then the induced action $*$ on $S^{2 n-1}$ becomes

$$
a_{t} * x=\left(-x_{1}, \cdots,-x_{t}, x_{t+1}, \cdots, x_{n}\right)
$$

Now we observe fixed point sets of this action as follows.

$$
\begin{aligned}
& U(n)^{Z_{2}}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \in U(n) ; A \in U(t), B \in U(n-t)\right\}, \\
& \left(S^{2 n-1}\right)^{Z_{2}}=\left\{\left(0, \cdots, 0, x_{t+1}, \cdots, x_{n}\right) \in S^{2 n-1}\right\} .
\end{aligned}
$$

Therefore we see that $U(n)^{Z_{2} \rightarrow\left(S^{2 n-1}\right)^{Z_{2}}}$ is the fibration. This corresponds to the condition (c) of (2.4) by Lemma 4.1. For adopting (2.4), we have to check the conditions other than (c) above. But for the condition (d); the above
operation μ can be considered as a $G\left(=Z_{2}\right)$-operation. For (a) and (e), we should add the assumption $n-t \geqq 1$. Finally, for the condition (b) of Theorem 2.5, we appeal to Theorem 1.2. Let λ be an integer such that if a prime p dividing λ satisfies $p>(4 n+1) /(2 n-2 t)$. We should take T in (2.4) to be satisfied that $p>(4 n+1) /(2 n-2 t)$ for each $p \in T$. Then we obtain a Hopf Z_{2}-space $W_{h_{\lambda}}$ by the following pull back, where h_{λ} is the map of degree λ.

For small values of t, we may choose the degree λ as follows,

| $t=1 ;$ | $\lambda= \begin{cases}\text { an odd integer } & \text { if } n \geqq 4 \\ \text { an odd integer with }(\lambda, 3)=1 & \text { if } n=2,3\end{cases}$ |
| :--- | :--- | :--- |
| $t=2 ;$ | $\lambda= \begin{cases}\text { an odd integer } & \text { if } n \geqq 7 \\ \text { an odd integer with }(\lambda, 3)=1 & \text { if } n=4,5,6 \\ \text { an odd integer with }(\lambda, 3)=1 \text { and }(\lambda, 5)=1\end{cases}$ |
| if $n=3$. | |

For example, in case of $n=4, t=1, \lambda=3$, we obtain a Hopf Z_{2}-space by the map h of degree 3 .

This corresponds to the example of Curtis-Mislin [4].
ExAmple 4.3. The case $G=Z_{2}, E=S p(n), Z_{2}$-action, of type $t, n-t \geqq 1$, as above. We then obtain Hopf Z_{2}-spaces $W_{h_{\lambda}}$ in the same way as above if $p \mid \lambda$ implies $p>(8 n+1) / 4(n-t)$.

For example take $n=2, t=1$, then the pull back

is a Hopf Z_{2}-space. This corresponds to the Hilton-Roiterberg's example.
Next we consider a Z_{p}-action (p : an odd prime). Let $\rho_{k, l}$ be the following representation
where $\xi=2 \pi i / p$ and γ is a generator of Z_{p}.
Example 4.4. The case $G=Z_{p}, E=U(n)$ (as in 4.1) with Z_{p}-action $*$ on $U(n)$:

$$
a * A=\rho_{k, l}(a) A \rho_{k, l}(-a), \quad a \in Z_{p}, \quad A \in U(n) .
$$

Let $n>k+l$ and λ be an integer satisfying the condition that if a prime p divides λ then $p>(4 n+1) / 2(n-k-l)$. Then the pull back $W_{h_{\lambda}}$ by the map $h_{\lambda}: S^{2 n-1} \rightarrow S^{2 n-1}$ is a Hopf $Z_{p \text {-space. }}$

In this case the fixed point sets of a subgroup $K<Z_{p}$ are obtained as follows.

$$
\begin{aligned}
U(n)^{K} & = \begin{cases}\left(\begin{array}{ll}
A & 0 \\
0 & C
\end{array}\right) ; & \begin{array}{l}
A \in U(k), B \in U(l) \text { and } \\
C \in U(n-k-l), \\
\text { if } K \neq e,
\end{array} \\
U(n) & \text { if } K=e .\end{cases} \\
\left(S^{2 n-1}\right)^{K} & = \begin{cases}S^{2(n-k-l)-1} & \text { if } K \neq e, \\
S^{2 n-1} & \text { if } K=e .\end{cases}
\end{aligned}
$$

Next we consider the case $G=S^{1}\left(=e^{i \theta \pi}, 0 \leqq \theta \leqq 2 \pi\right)$. Let $\rho_{k, 0}$ be the representation as above, that is;

$$
\rho_{k, l}\left(e^{i \theta \pi}\right)=\left(\begin{array}{ccccc}
\begin{array}{c}
e^{i \theta \pi} \\
\\
\ddots
\end{array} & \overbrace{e^{i \theta \pi}}, & & & \\
& & e^{-i \theta \pi} & 0 & \\
& & \ddots \dot{e^{-i \theta \pi}}, & & \\
& 0 & & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right) .
$$

Example 4.5. The case $G=S^{1}$ and $E=U(n)$, with action as in the example above. Let $n>l+k$ and λ be an integer satisfying the condition that if a prime p divides λ then $p>(4 n+1) / 2(n-k-l)$. Then the pull back $W_{n_{\lambda}}$ by the map h_{λ} is a Hopf S^{1}-space.

In this case the fixed point sets are as follows.

$$
U(n)^{K}= \begin{cases}\left(\begin{array}{ll}
A & 0 \\
& B \\
0 & C
\end{array}\right) & \text { if } K \neq e, Z_{2} \\
\left(\begin{array}{ll}
A^{\prime} & 0 \\
0 & C
\end{array}\right) & \text { if } K=Z_{2}\end{cases}
$$

Here, $A \in U(k), A^{\prime} \in U(l+k), B \in U(l)$ and $C \in U(n-l-k)$. Define an S^{1}-action on $S p(n)$ by ;

$$
\left(\begin{array}{cccc}
e^{i \theta \pi} & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right) \cdot A \cdot\left(\begin{array}{cccc}
e^{-i \theta \pi} & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right), \quad A \in S p(n)
$$

We also obtain the following example.
Example 4.6. The case $G=S^{1}, E=S p(n)$, with the above action. Let $n \geqq 2$ and λ be an integer satisfying the condition that if a prime p divides λ then $p>(8 n+1) / 4(n-1)$. Then the pull back $W_{n_{\lambda}}$ is a Hopf S^{1}-space.

References

[1] J. F. Adams, The sphere considered as an H-space $\bmod p$, Quart. J. Math., 12 (1961), 52-60.
[2] M. Arkowitz, Localization and H-spaces, Lecture Notes Series, 44, Mathematik Institut, Aarhus Univ., Aarhus, 1976.
[3] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Math., 34, Springer, 1967.
[4] M. L. Curtis and G. Mislin, H-spaces which are bundles over S^{7}, J. Pure Appl. Alg., 1 (1971), 27-40.
[5] P. Hilton and J. Roitberg, On principal S^{3}-bundles over spheres, Ann. of Math., 90 (1969), 91-107.
[6] K. Iriye, Hopf τ-spaces and τ-homotopy groups, J. Math. Kyoto Univ., 22 (1983), 719-727,
[7] T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18 (1971-72), 363-374.
[8] T. Matumoto, N. Minami and M. Sugawara, On the set of free homotopy classes and Brown's construction, Hiroshima Math. J., 14 (1984), 359-369.
[9] J. P. May, J. McClure and G. Triantafillou, Equivariant localization, Bull. London Math. Soc., 14 (1982), 223-230.
[10] E. H. Spanier, Algebraic topology, McGraw-Hill, 1966.
[11] G. Triantafillou, Rationalization of Hopf G-spaces, Math. Z., 182 (1983), 485-500.
[12] S. Warner, Equivariant homotopy theory and Milnor's theorem, Trans. Amer. Math. Soc., 258 (1980), 351-368.
[13] A. Zabrodsky, Homotopy associativity and finite $C W$-complexes, Topology, 9 (1970) 121-128.
[14] A. Zabrodsky, On sphere extensions of classical Lie groups, Algebraic Topology, Proc. Symp. Pure Math., 22, 1971, pp. 279-283.
[15] A. Zabrodsky, On the construction of new finite CW H-spaces, Invent. Math., 16 (1972), 200-216.
[16] A. Zabrodsky, Hopf spaces, North-Holland Math. Studies, 22, 1976.

Ken-ichi Maruyama
Department of Mathematics
Kyushu University 33
Hakozaki, Fukuoka 812
Japan

