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\S 1. Introduction.

Let $G$ be a topological group. The notion of a Hopf G-space is first noted
by G. E. Bredon [3]. He defined a Hopf G-space to be a space which has a
G-equivariant multiplication. Some people did their works in this area, K. Iriye
[6] on Hopf $Z_{2}$-spheres, G. Triantafillou [11] on rational cases, etc.

In this paper we shall construct some examples of equivariant Hopf spaces
by a method analogous to Zabrodsky’s. Actually, A. Zabrodsky exploited his
mixing homotopy method ([13], [14] and [15]) to obtain many non-classical
Hopf spaces (including the Hilton-Roitberg’s example, etc.). We shall discuss
an equivariant version of his method under some conditions. For this, we shall
use the equivariant localization of J. P. May, et al. [9].

Our main results are the following two theorems. Throughout the paper, we
assume that $G$ is a compact Lie group.

THEOREM 1.1. Let $S^{n}$ be the $n$-sphere wzth $n$ $odd>1$ , on which $G$ acts
desusPendabIy, $i.e.$ , the action is the $su\phi emon$ of a G-action on $S^{n-1}$ . Let $E$ be
a compact Lie group on which $G$ acts by automorphsm. Moreover assume that
$E$ acts on $S^{n}$ transitively and the induced fibration $\pi:Earrow S^{n}$ is a G-fibration, $i.e$ .
$\pi$ is a $G$-map and has a $G$-homotopy covering prOperty. Let $h_{\lambda}$ : $S^{n}arrow S^{n}$ be the
$G$-maP which is of degree $\lambda\in Z$ , that is, $h_{\lambda}$ is $\lambda$ times the identity map of $S^{n}$ in
$[S^{n}, S^{n}]_{G}$, and $T$ be a collection of pnme numbers. Then the pull back $W_{h_{\lambda}}$ in
the following diagram

$W_{h_{\lambda}}S^{n}\downarrowarrow Earrow S^{n}h_{\lambda}\downarrow\pi$

has a Hopf G-structure, if the followzng three conditions are $sa\hslash sfied$.
a) $E^{H}$ and $(S^{n})^{H}$ are connected, and $(S^{n})^{H}$ is also a sphere, for each closed

subgroup $H$ of $G$ .
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b) The eqztzvariant localization $SF$ is a $G$-homotopy commutative Hopf $G$-sPace
and the set $[S_{T}^{n}\cross S_{T}^{n}, S_{T}^{n}]_{G}$ becomes a group.

c) $p|\lambda$ implies $P\in T$ .
REMARK. We shall prove Theorem 1.1 under more general situation by

inrroducing the G-equivariant operation. But all examples of section 4 will
satisfy the conditions written above.

THEOREM 1.2. Let $S^{m}$ be an odd dimensional sphere and $G$ acts on $S^{m}$ such
that $(S^{m})^{H}$ is an odd dimenszonal sphere for each closed subgroup H. Let 1 be a
collection of Pnme numbers such that $2m<P(t_{0}+1)-3$ for each $p\in l$, where
$t_{0}= \min\{\dim(S^{m})^{H} ; H<G\}$ . Then $S_{l}^{m}$ ($equivar\tau ant$ localization at l) is a $G$-homotopy
commutative Hopf $G$-space.

This paper will be organized as follows. In section 2 we prove an equi-
variant version of Zabrodsky’s theorem. In section 3, Theorem 1.2 above will be
shown by means of previous sections. In the final section, we present examples
of Theorem 1.1.

We shall use the following notation throughout the paper. If $X$ is a G-CW
complex and $T$ is a collection of primes, we shall write $X_{T}$ for an equivariant
localization of $X$ at $T$ in the sense of [9]. We write $[, ]_{G}$ for a G-homotopy
classes of G-maps. One should refer Bredon [3], Matumoto [7], Warner [12],

for general references on G-CW theory.
The author would like to thank Professors A. Kono and M. Mimura.

\S 2. Equivariant Zabrodsky’s theorem.

In this section we shall prove an equivariant version of Zabrodsky’s theorem
([15]) under some conditions. We would rather use the proof by M. Arkowitz
[2] (Zabrodsky did not use any words “ localization “).

DEFINITION 2.1. Let $X=S^{1}\wedge Y$ be the reduced suspension of a space $Y$.
A G-action on $X$ is said to be desuspendable if there is a G-action on $Y$ such
that $g(t, y)=(t, gy)$ for $(t, y)\in X,$ $g\in G$ .

Then the G-homotopy set $[X, Z]_{G}$ becomes a group in the usual way.

DEFINITION 2.2. Suppose $G$ acts desuspendably on $S^{n}$ , $n\geqq 1$ . A G-map
$h_{\lambda}$ : $S^{n}arrow S^{n}$ is said to be of degree $\lambda\in Z$ if $h_{\lambda}$ is $\lambda$ times the identity map in
$[S^{n}, S^{n}]_{G}$ .

DEFINITION 2.3. Let $f:Xarrow Y$ be a G-map. A G-equivariant operation of
$X$ on $Y$ is a G-map $\mu:X\cross Yarrow Y$ such that
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$\mu i_{1}\simeq Gf$ : $Xarrow Y$ , $\mu i_{2}\simeq G$ Id : $Yarrow Y$ ,

where $i_{1},$ $j_{2}$ are inclusions.

To state our result, we prepare the following data.

(2.4) (a) an n-sphere $S^{n},$ $n$ odd $>1$ , on which $G$ acts desuspendably.
(b) a Hopf G-space $E$ with multiplication $\mu_{E}$ .
(c) a G-fibration $\pi;Earrow S^{n}$ .
(d) a G-equivariant operation $\mu:E\cross S^{n}arrow S^{n}$ compatible with the multi-

plication $\mu_{E}$ via $\pi$ , that is,

$\pi\mu_{E}\simeq G\mu(1\cross\pi)$ : $E\cross Earrow S^{n}$ .
(e) a G-map $h_{\lambda}$ : $S^{n}arrow S^{n}$ of degree $\lambda\in Z$ .
(f) a set $T$ of primes.
(g) the pull back $W=W_{h_{\lambda}}$ given by the pull back diagram:

$W_{h_{\lambda}}S^{n}\downarrow rarrow S^{n}arrow Eh_{\lambda}\downarrow$

.
Then our theorem is stated as follows:

THEOREM 2.5. Assume (2.4) and that
(a) $E^{H}$ and $(S^{n})$ are connected and $(S^{n})^{H}$ is also a sphere, for each closed

subgrouP $H$.
(b) The $eq\iota\dot{u}va\dot{n}ant$ localizatim $S_{T}^{n}$ is an abelian Hopf $G$-sPace and

$[SP\cross Sf, S\beta]_{G}$ becomes a group.
(c) $p|\lambda$ implies $P\in T$.
$Thm$ the pull back $W$ has a HoPf G-stmcture.

REMARK 2.6. In case $G=e,$ $i.e.$ , the nonequivariant case, a compact Lie
group $E$ acting transitively on $S^{n}$ satisfies conditions $(b)-(d)$ of (2.4). Theorem
1.1 is the equivariant version in this special situation.

REMARK 2.7. If $G=e$ and $T$ is a set of odd primes, then the above theorem
is (the nonequivariant) Zabrodsky theorem [15].

We need some definitions before the proof.

DEFINITION 2.8. Given spaces and maps

$Xarrow^{f}AY\underline{g}$

define
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$W(f, g)=\{(x, w, y)|x\in X,$ $w\in A^{I},$ $y\in Y$,

$f(x)=w(0),$ $g(y)=w(1)\}$ ,

the weak pull back of $f$ and $g$ . So we obtain the following homotopy com-
mutative diagram;

$W(f, gr\downarrow Xarrow A)arrow Yfs\downarrow g$

where $\gamma$ and $s$ are the canonical maps. We note that $W(f, g)$ becomes canoni-
cally a G-space when $f$ and $g$ are G-maps. In this case we should note that
$W(f, g)^{H}=W(f^{H}, g^{H})$ is a weak pull back of $f^{H}$ and $g^{H}$ , for each closed
subgroup $H$.

Here we should note that $W(f, g)$ can be replaced by a G-CW complex up
to weak G-equivalence (see [12], [8]).

DEFINITION 2.9. Let $f,$ $g$ be G-maps. The following G-homotopy commu-
tative square

$b$

$Warrow Y$

a $X\downarrowarrow^{f}A\downarrow g$

is called a G-weak pull back diagram if there exists a G-homotopy equivalence
$\delta:Warrow W(f, g)$ such that $r\delta_{G}\simeq a,$ $s\delta\simeq bG$

Also here we should note that we obtain a nonequivariant sense weak pull
back diagram for every $W^{H}$ .

PROOF OF THEOREM 2.5. Let $T’$ be the complementary set of primes for
$T$ , i.e. $T\cap T’=\emptyset,$ $T\cup T’=al1$ primes. The following square is a G-weak pull
back diagram, where $j$ and $j’$ are the G-localization maps.

$W_{TUT’}arrow W_{T}$

$\downarrow$

$E_{T}\downarrow s_{T}$

$W_{T’}arrow^{s_{T’}}E_{T’}arrow^{j’}E|j$
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Therefore there is a G-map $d:W_{T\cup T’}arrow W(js_{T}. j’s_{T’})$ , which is a G-homotopy
equivalence.

$s_{T’}$ is a G-homotopy equivalence as we consider homotopy exact sequences
of G-fibrations $W_{T’}arrow S_{T}^{n}$ , and $E_{T’}arrow S_{T’}^{n}$ . Then $W_{T’}$ has a Hopf G-structure $\mu_{0}’$

such that $s_{T’}$ is a Hopf G-map (that is, $(\mu_{E})_{T^{\prime^{Q}}}(s_{T’}\cross s_{T’})G\simeq s_{T^{\prime^{\Phi}}}\mu_{0}’$). If we can
define a Hopf G-structure $\mu_{0}$ on $W_{T}$ such that $(\mu_{E})_{T^{\circ}}(s_{T}\cross s_{T})G\simeq s_{T}\circ\mu_{0}$ , then it is
easy to obtain a Hopf G-structure $\mu_{W}$ on $W$, since $js_{T}$ becomes a Hopf G-maps
and $j’s_{T’}$ is already so.

Now we shall construct a Hopf G-structure $\mu_{0}$ on $W_{T}$ . As the following
square is a G-weak pull back diagram, it is enough to construct it on the weak
pull back $W(h_{T}, \pi_{T})$

$(W_{h})_{T}E_{T}\underline{s_{T}}$

$\gamma_{T}^{f}\downarrow$

$h_{T}$

$\downarrow\pi_{T}$

$S_{T}^{n}$ $arrow S_{T}^{n}$ .
We label G-homotopies as follows. Let $\mu_{s}$ be the Hopf G-structure on $S_{T}^{n}$ .

$F:E_{T}\cross S_{T}^{n}arrow(S_{T}^{n})^{I}$ ; $F()(0)=\mu()$ , $F()(1)=wq+\mu_{s}(\pi_{T}\cross 1)$ .
Here $\mu\simeq wq+\mu_{s}(\pi_{T}\cross 1)$ for some $W\in[E_{T}\wedge S_{T}^{n}, S_{T}^{n}]$ , which is obtained from the
G-Puppe sequence argument, and $q:E_{T}\cross S_{T}^{n}arrow E_{T}\Lambda S_{T}^{n}$ is the projection.

$H$ : $E_{T}\cross E_{T}arrow(S_{T}^{n})^{I}$ ; $H()(0)=\mu(1\cross\pi_{T})()$ , $H()(1)=\pi_{T}(\mu_{E})_{T}($ $)$ ,

the homotopy as in (2.4) (d).

As we may take $h_{T}$ : $S_{T}^{n}arrow S_{T}^{n}$ as a map of $\lambda$ times the identity map of $S_{T}^{n}$

by the multiplication $\mu_{S},$
$h_{T}$ can be considered as a Hopf G-map. Therefore,

there is a homotopy as follows.

$J$ : $S_{T}^{n}\cross S_{T}^{n}\cross S_{T}^{n}-(S_{T}^{n})^{I}$ ; $J()(0)=h_{T}(\mu_{s}(1\cross\mu_{s}))$ ,

$J()(1)=\mu_{s}(1\cross\mu_{s})(h_{T}\cross h_{T}\cross h_{T})$ .
Finally, we prepare the following homotopy.

$K$ : $E_{T}\wedge S_{T}^{n}arrow(S_{T}^{n})^{I}$ ; $K()(0)=h_{T}w$ , $K()(1)=w(1\wedge h_{T})$ .
We remark that $F$ and $J$ are taken as relative to $E_{T}\vee S_{T}^{n}$ and $S_{T}^{n}\vee S_{T}^{n}\vee S_{T}^{n}$

respectively because of the following fact.

LEMMA 2.10. ((G-) James theorem, see [16]). SuPpose $\Sigma A\subset\Sigma B$ is G-retract
and (X, $\mu$) a Hopf $G$-space. If two $G$-homotopfc maps $g_{0},$ $g_{1}$ from $B$ to $X$ satisfy
that $g_{0}|A=g_{1}|A$ then $g_{0}$ and $g_{1}$ are $G$-homotolnc rel $A$ .

PROOF. This is exactly the same as the nonequivariant case. So we omit
the proof.
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We define a path from $h_{T}(\mu_{s}(wq(y, x’),$ $\mu_{s}(x, x’)))$ to $\pi_{T}(\mu_{E})_{T}(y, y’)$ by the
above homotopies as

$H\circ F^{-1}\circ\mu_{s}(w(y, \psi’),$ $\mu_{s}(\psi, \psi’))\circ K\circ J$

for $(x, \psi, y),$ $(x’, \psi’, y’)\in(W_{h})_{T}$ , with $h_{T}(x)=\psi(0)$ , $\pi_{T}(y)=\psi(1)$ , $h_{T}(x’)=\psi’(0)$

and $\pi_{t}(y’)=\psi’(1),$ $x,$ $x’\in S_{T}^{n},$ $y,$ $y’\in E_{T}$ . $F^{-1}$ denotes the inverse path of $F$.
We denote this path as $M=M((x, \psi, y), (x’, \psi’, y’))$ . Then the desired

Hopf G-structure $\mu_{0}$ on $W_{T}$ can be obtained by

$\mu_{0}((x, \psi, y), (x’, \psi’, y’))=(\mu_{s}(wq(y, x’),$ $\mu_{s}(x, x’)),$ $M,$ $(\mu_{E})_{T}(y, y’))$ .

\S 3. A sufficient condition for $S^{n}$ to be a Hopf G-space.

In [1], J. F. Adams has shown that the odd dimensional sphere can be
considered as a Hopf space mod $p$ . Here we give some condition for the
equivariant analogue of his result to hold with some specific action on the
sphere. Let $S^{m}$ be an odd dimensional sphere and $G$ acts on $S^{m}$ . Assume that
$(S^{m})^{H}$ is always an odd dimensional sphere and we denote that $r_{0}=$

min $\{\dim(S^{m})^{H} ; H<G\}$ , where $H$ is any closed subgroup of $G$ .
THEOREM 1.2. Let $l$ be a collection of Pnmes. Assume that for any $p\in l$,

$2m<P(t_{0}+1)-3$ . Then $S_{l}^{m}$ is a G-commutative Hopf $G$-space.

PROOF. Embed $S_{l}^{m}$ equivariantly in $\Omega^{2\Sigma 2}S_{l}^{m}$ by the natural G-map $j$ . It is
well known that for an odd dimensional sphere $S^{t},$ $\pi_{i}(\Omega^{2\Sigma 2}S^{t}, S^{t})_{(p)}=0$, for
$i<P(t+1)-2,$ $P$ an odd prime (see [10], p. 516). Therefore, $\pi_{i}(\Omega^{2}\Sigma 2(S_{l}^{m})^{H}, (S_{l}^{m})^{H})$

$=0$ if $i<P(t_{0}+1)-2,$ $p\in l$ . Making use of Proposition (3.3) of [7], we obtain
the following bijection if $2m<P(t_{0}+1)-3$ ;

$[S_{l}^{m}\cross S_{l}^{m}, S_{l}^{m}]_{G}arrow[S_{l}^{m}\cross S_{l}^{m}j^{*}\Omega^{2}\Sigma 2S_{l}^{m}]_{G}$ .
Let $\mu:\Omega^{2}\Sigma 2S_{l}^{m}\cross\Omega^{2}\Sigma 2S_{l}^{m}arrow\Omega^{2}\Sigma 2S_{l}^{m}$ be the loop multiplication. Then $\mu$ is

clearly a G-homotopy commutative G-structure. Now we define

$m=(i^{*})^{-1}(\mu(j^{*}\cross j^{*}))$ : $S_{l}^{m}\cross S_{l}^{m}arrow S_{l}^{m}$ .
It is clear that $m$ is a Hopf G-structure on $S_{l}^{m}$ which is G-homotopy commutative.

\S 4. Examples.

In this section we will give examples for Theorem 2.5. We will introduce
some actions on Lie groups which induce the actions on odd dimensional spheres
mentioned in section 3.
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First we introduce the following lemma which is observed by Bredon [3]
when $G$ is finite.

LEMMA 4.1. Let $B$ be a $G$-space such that $B^{H}$ is connected and simple for
each closed subgroup H. Then a $G$-map $\pi:Earrow B$ has the G-covering homotopy
prOperty for every G-CW complex, if and only if $\pi^{H}$ : $E^{H}arrow B^{H}$ is a fibration in
a nonequivariant sense for each closed subgroup $H$.

PROOF. Let $X$ be a G-CW complex. Let $f_{t}$ : $Xarrow B$ be a G-homotopy and
$g;Xarrow E$ be a G-map such that $\pi g=f_{0}$ . We are able to use the induction on
G-cells of $X$ to construct a required homotopy. Actually, if $G/H\cross D^{n}$ is a
G-cell of $X$, our lifting problem can be considered as a nonequivariant problem
through the bijection

$[G/H\cross D^{n}\cross I, G/H\cross S^{n}\cross I ; B, E]_{G}\simeq[D^{n}\cross I, S^{n}\cross I ; B^{H}, E^{H}]$ .

EXAMPLE 4.2. The case $G=Z_{2},$ $E=U(n)$ and the usual transitive operation
$\mu:U(n)\cross S^{2n-1}arrow S^{2n-1}$ . We represent $Z_{2}$ as the subgroup of $U(n)$ generated by

$a_{t}=[ \frac{\frac-1.t.-11^{\frac{n.-t}{0}}}{01^{1}\cdot 1})$

, $1\leqq r\leqq n$

which defines an action $*ofZ_{2}$ on $U(n)$ by the conjugation:

$a_{t}*A=a_{t}Aa_{t}$ , $A\in U(n)$ .

We call this action to be of type $t$ . With this action, $U(n)$ can be considered
as a Hopf $G(=Z_{2})$-space. The induced action on $U(n)/U(n-1)=S^{2n-1}$ can be
seen as follows. Take $x\in S^{2n-1},$ $x=(x_{1}, \cdots , x_{n}),$ $\Sigma_{i}|x_{i}|^{2}=1,$ $x_{i}\in C$. Then the
induced action $*onS^{2n-1}$ becomes

$a_{t}*x=$ $(-x_{1}, \cdots , -x_{t}, x_{t+1}, \cdots , x_{n})$ .
Now we observe fixed point sets of this action as follows.

$U(n)^{Z_{2}}=\{(\begin{array}{ll}A 00 B\end{array})\in U(n)$ ; $A\in U(t),$ $B\in U(n-f)\}$ ,

$(S^{2n-1})^{Z_{2}}=\{(0, \cdots , 0, x_{t+1}, \cdots , x_{n})\in S^{2n-1}\}$ .
Therefore we see that $U(n)^{Z_{2}}arrow(S^{2n-1})^{Z_{2}}$ is the fibration. This corresponds to
the condition (c) of (2.4) by Lemma 4.1. For adopting (2.4), we have to check
the conditions other than (c) above. But for the condition (d), the above
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operation $\mu$ can be considered as a $G(=Z_{2})$-operation. For (a) and (e), we
should add the assumption $n-t\geqq 1$ . Finally, for the condition (b) of Theorem
2.5, we appeal to Theorem 1.2. Let $\lambda$ be an integer such that if a prime $p$

dividing $\lambda$ satisfies $p>(4n+1)/(2n-2t)$ . We should take $T$ in (2.4) to be satisfied
that $p>(4n+1)/(2n-2t)$ for each $p\in T$. Then we obtain a Hopf $Z_{2}$-space $W_{h_{\lambda}}$

by the following pull back, where $h_{\lambda}$ is the map of degree $\lambda$ .
$U(n-1)$ – $U(n-1)$

$S^{2n-1}W_{h_{\lambda}}\downarrow\downarrowarrowarrow h_{\lambda}S^{2n-1}U(n)\downarrow\downarrow$

.
For small values of $t$, we may choose the degree $\lambda$ as follows,

$t=1$ ;
$\lambda=\{\begin{array}{ll}an odd integer if n\geqq 4an odd integer with (\lambda, 3)=1 if n=2,3\end{array}$

$t=2$ ;

$\lambda=\{\begin{array}{ll}an odd integer if n\geqq 7an odd integer with (\lambda, 3)=1 if n=4,5,6an odd integer with (\lambda, 3)=1 and (\lambda, 5)=1 if n=3. \end{array}$

For example, in case of $n=4,$ $t=1,$ $\lambda=3$ , we obtain a Hopf $Z_{2}$-space by the map
$h$ of degree 3.

$W_{h_{\theta}}arrow U(4)$

$S^{7}\downarrowarrow^{h_{3}}S^{7}\downarrow$

.
This corresponds to the example of Curtis-Mislin [4].

EXAMPLE 4.3. The case $G=Z_{2},$ $E=Sp(n),$ $Z_{2}$-action, of type $t,$ $n-t\geqq 1$ , as
above. We then obtain Hopf $Z_{2}$-spaces $W_{h_{\lambda}}$ in the same way as above if $p|\lambda$

implies $p>(8n+1)/4(n-t)$ .
For example take $n=2,$ $t=1$ , then the pull back

$W_{h_{5}}S^{7}\downarrowarrow S^{7}arrow Sp(2)h_{5}\downarrow$

is a Hopf $Z_{2}$-space. This corresponds to the Hilton-Roiterberg’s example.

Next we consider a $Z_{p}$-action ( $p$ : an odd prime). Let $p_{k,l}$ be the following
representation
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$k$ 1

$\rho_{k,l}(\gamma)=(^{\overline{e^{-\xi}}}e_{0}^{-\xi},e^{\xi}-\sim e^{\xi}...01.$

$1)\in U(n)$ ,

where $\xi=2\pi i/p$ and $\gamma$ is a generator of $Z_{p}$ .
EXAMPLE 4.4. The case $G=Z_{p},$ $E=U(n)$ (as in 4.1) with $Z_{p}$-action $*on$

$U(n)$ :
$a*A=\rho_{k.l}(a)A\rho_{k.l}(-a)$ , $a\in Z_{p},$ $A\in U(n)$ .

Let $n>k+l$ and $\lambda$ be an integer satisfying the condition that if a prime $P$

divides $\lambda$ then $p>(4n+1)/2(n-k-1)$ . Then the pull back $W_{h_{\lambda}}$ by the map
$h_{X}$ : $S^{2n-1}arrow S^{2n-1}$ is a Hopf $Z_{p}$-space.

In this case the fixed point sets of a subgroup $K<Z_{p}$ are obtained as
follows.

$U(n)^{K}=\{\begin{array}{l}: C\in U(n-k-l),ifK\neq A\in U(k),B\in U(l)ande, U(n) if K=e.\end{array}$

$(S^{2n-1})^{K}=\{\begin{array}{ll}S^{2(n-k-l)-1} if K\neq e,S^{2n-1} if K=e.\end{array}$

Next we consider the case $G=S^{1}(=e^{i\theta\pi}, 0\leqq\theta\leqq 2\pi)$ . Let $\rho_{k.0}$ be the rep-
resentation as above, that is;

$\rho_{k.l}(e^{i\theta\pi})=(\begin{array}{llllllllll}e^{i\theta r} . \dot{e}^{i\theta\pi} ’ e^{-i\theta\pi} 0 \ddots ’ 0 e^{-i\theta\pi} 1 \ddots 1\end{array})\underline{k}$

.

EXAMPLE 4.5. The case $G=S^{1}$ and $E=U(n)$ , with action as in the example
above. Let $n>l+k$ and $\lambda$ be an integer satisfying the condition that if a prime
$p$ divides $\lambda$ then $P>(4n+1)/2(n-k-l)$ . Then the pull back $W_{h_{\lambda}}$ by the map
$h_{\lambda}$ is a Hopf $S^{1}$-space.
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In this case the fixed point sets are as follows.

$U(n)^{K}=\{\begin{array}{ll} if K\neq e, Z_{2}, if K=Z_{2}.\end{array}$

Here, $A\in U(k),$ $A’\in U(l+k),$ $B\in U(l)$ and $C\in U(n-l-k)$ . Define an $S^{1}$-action
on $Sp(n)$ by;

$(\begin{array}{llll}e^{i\theta\pi} 0 1 \ddots 0 1\end{array})\cdot A\cdot(\begin{array}{lll}e^{-i\theta\pi} 01 \ddots 0 1\end{array})$ , $A\in Sp(n)$ .

We also obtain the following example.

EXAMPLE 4.6. The case $G=S^{1},$ $E=Sp(n)$ , with the above action. Let $n\geqq 2$

and $\lambda$ be an integer satisfying the condition that if a prime $p$ divides $\lambda$ then
$p>(8n+1)/4(n-1)$ . Then the pull back $W_{h_{\lambda}}$ is a Hopf $S^{1}$-space.
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