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§1. Introduction.

Let S®™ be a unit n-sphere in R"*. Let M? be .a compact orientable
p-dimensional Riemannian manifold which is imbedded in S®. Let %(M?) be the
Euler characteristics of M? and z(M?) be the total curvature of M?. One of
Teufel’s main results in can be stated as follows.

1

Cn-l. n+1 an—x. n+1

(L) XM?P)=1(M?)+ XMPAR Q41 ney  for 35D,
where Gu-1,2+1 IS the oriented Grassmann manifold of all oriented (n—1)-dimen-
sional linear subspaces of R™*!, Cy-y n+y its volume and £,-; n+: its standard

volume element. Denote by V(M?) the volume of M?. We can show (Theoreml
4 in §4)

(1.2) A(M?) = r(Mz)-{——él;V(Mz).

In 1939, Weyl found the formula for the volume of a tube of radius r
about M?. The coefficients in the power series expansion of the volume are
expressed by the curvature invariants k.(M?) (e even, 0=e=<p) (see[2.1)), which
depend on the intrinsic geometry of M?. Notice that k,(M?)=V(M?). Let
7(M?) (1<e<p) be the e-th total mean curvature of M? (see [2.2)). Then we
have t(M?)=7,(M?), t,(M?)=0 for ¢ odd, and for ¢ even

(1.3) cM?) = (P2l ko(MP),
@2r)P 2 (n— pte—2! (2)

where we mean that m!!=m(m—2)---4:2 or m!!l=m(m—2)---3-1 according as
m is even or odd. S.S. Chern gives the kinematic formula and the linear
kinematic formula in R". Following Chern, we introduce curvature invariants
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2{MP) (e even, 0=<e=<p), which are closely related to Weyl’s invariants. In
fact, we have

(1.4) p(M?P) = B (M?) for e even, 0=e=<p.

1
(e—D)!! (fe’)

We will show the following linear kinematic formula in S* (Theorem 1)).

(1.5) ﬂe(MmeQH)QqH. n+1

SGq+1,n+1
_ (pt+g—n—ae)ll p!
T @m)2(p4-g—n)! (p—e)!!

where Cy41, 441 is the volume of the oriented Grassmann manifold Ggiy, n4a-
In this paper, using (1.1), and [1.5), we will prove

THEOREM. Let M be a compact oriented 2p-dimensional manifold which is
imbedded in a unit sphere S™ Then, we have

Cq+1,n+1#e(Mp) ’

1 D
—_ —1)n
(1.6) LUM) Gy kgo(Zk DY kop-gr(M).
REMARKS. (i) Since we have and [1.4), k;p-2:(M) in the above
formula are replaced by 7:p-2:(M) Or p2p-2:(M). For example, we have

Cnt (n—2k—2 2P (2p— DN
L7 M= 2 o o)t @p—ziyt M= VD).

(i) When p is odd, it follows that 7,(MP)=1, ,(M?NR" )= ..=
7,(MPNR"-?+%)=(, Hence applying Teufel’s formula (1.1), we get

1

lcn—p+2. n+1 SGn—p+2. n+1

M) = X(Mmen-p+z)‘Qn—p+2, n+le

In general, M?NR"-?** is a 1-dimensional compact manifold without boundary
and it holds X(M?NR™-?*%)=(0. Thus we obtain A(M?)=0. But it is well
known that the Euler characteristic of a compact odd dimensional manifold
without boundary is zero.

§2. The kinematic formula in S~”.

Let M be a p-dimensional submanifold in S™®. We take a local field of
orthonormal frames e -+, ¢, in R"*' such that for x€M, e¢(x)=x and
e,(x), -+, ep(x) are tangent to M. We shall make use of the following con-
vention on the range of indices unless otherwise stated;
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0=A,B,C=n, 1=a,bc=n, 154, 5,k<p, p+1=Za, B, vr=n.
The structure equations of R"*! are given by
dey = %: W4pes, | Wpt+wps =0,
dwp = % @4cN\WcE.
By putting w,=w®,,, the standard Riemannian metric on S" is given by
ds’=>.,w%. From the above, we obtain
dw, = Zb.‘.wo/\woa,
dwgp = %}wac/\wcb——wa/\wb.
We restrict these forms to M and denote them by the same symbols. On M,
it holds w,=0. This implies that 0=dw,=—3;w; Aw;,. Thus we obtain

Wiqg = ; haijwj, haij = haji'

The structure equations of M are given as follows
d(l)i = ; a),-/\wji ,
\ 1
dwi/ = g @i /\wkj"’ '2" g K,,-“w;, Aw;.

Put Hijpi=3s(hairhaji—hairthajr). Then we get
Hijkl = Kijkl'—(aikajl—ailajk):

which we call the modified curvature tensor of M. For ¢ even and 0=Ze=<p,
Weyl’s curvature invariants k(M) are defined as follows.

@1 kM) = 7(421/—2)1“51”(2 5(:;:1: o i?e)Hilim s Hyyytgsemsie) M,

where dM is the volume element of M and (z.,, e le ) is equal to +1 (—1)

J1y 00y Je
according as (7, -+, 7,) is an even (odd) permutation of (j,, ---, j.) respectively,

and is otherwise zero. We may define Chern’s curvature invariants p.(M)
byZ(1.4).

Let y=231,y.¢, be a vector normal to M. Then we define the e-th mean
curvature K(y) of M by

det(@i;+1 i) = (7 Ko,

where hij(y)=3,Y.hai;. We call the integral
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1

(2.2) (M) =

[ an

the e-th total mean curvature of M, where N is the unit normal bundle over
M, dN is the canonical volume element of N and O, is the volume of S*-,
that is, O,=2n"%/I'(n/2). Using Weyl's result (see pp.467-471 in or
Lemma 7.3 in [4]), we get [1.3).

Let M? and M? be compact submanifolds of dimensions p, ¢ in S™ respec-
tively. Let G be the group of motions in S”, that is, G=S0O(n+1). By gM¢,
we mean the submanifold obtained from M? by a transformation g&G. Then
M? and gM? generally intersect in a submanifold of dimension p+g—n. The
kinematic density in S™ is given (see, for example, [6]) by

dg = /\ woi/\wjk B /\ wi/\a)jk.
1, j<k 1, i<k

Since the following kinematic formula is shown by the same argument in §3-§6
in [2], we describe the result only.

2.3 [ sz ngModg = 33 DM (M),

where D,; are constants depending on n, p, g, ¢, [, and ¢ is an even integer
satisfying 0<e=p-+g—n. In this paper, unfortunately we can not decide con-
stant D,. But in a particular case, we will determine them and get the linear
kinematic formula. This will be achieved in §3.

§3. The linear kinematic formula in S™.

In this section, we assume that M?=S"NR*!, where R?*! is a (¢+1)-plane
through the origin in R™*!. The kinematic density dg has an expression

3.1 dg = dgl/\ng/\Qq+l,n+1)

where dg;, dg, and 4.1, 1+, are the volume elements of SO(g+1), SO(n—¢) and
Gg+1.n+1 respectively. From the definition, it follows that g.(S%)=0 for
2=e=<p+g—n. Since the volume of SO(n+1) is equal to 0,4,0, -+ O, using
(3.1), we get from [(2.3)

(3.2) #MPARYNQ . ooy = Eopt (M),

SGq+l,n+1
Where EezDee/<Oq+1 s Ogon—q o Og).

In this section, we take an arbitrary a with 0<¢<1 and put RP**=
{x=(x0, X1, =+, Xn); Xpsa= =» =x,=0}, RP*'={x€R?**;x,,,=a} and SZ=
S*N\R?P*, Let f,, --+,f, be the standard base of R**. Take Ilocal
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frame fields e, -+, e, in SZ such that for xS, ex)=x, e, (x)=
(1/V1=a®(f pr1i—aey), €prs(X)=Fpis, -+, €x(x)=F, and e;(x), ---, ep(x) are tan-
gent to SZ. We will use the same notations as in §2. Then the coefficients
of the second fundamental form of AM=S2? in S™ are given by

hpi1i;= \/—1%—35”, heiy=0 for p+2=a<n.

Hence the modified curvature tensor of M has the expression
a2
Hiju = W(‘sikajl_ailajk).
Thus we have

3.3) ©e(SE) = 0,051 —a?)P-o/2,

Let R?*! be moving (g+1)-dimensional linear subspaces in R"*!. For each
R RP*1 and R?*! intersect in a (p+¢—n-+1)-dimensional linear subspace
which we denote by R**!, where k=p+qg—n. Put S¥*=R*"'N\S"=S2NR,
Let O’ and O” be the centers of S2 and S* respectively. Let ¢ be the distance
of O” from O’. Then the distance of O” from the origin O is equal to
+/a®*+t*, and the radius of the sphere S* is v/ 1—a®—¢>. Thus we have

HUSENRT) = p(SY) = O @)/ — ) 407,
where k=p-+q—mn, t= the distance of O” from O’, and b=+/'1—a®.

Let 7r:Gq+1,n+1f+Gk+2,p+2 be a projection defined by n(RI*)=R**% where
we put R**?=R¥*'N\R?*2, Then the above integral invariants p,(SENR?") are
constant on each fibre #-}(R**?) of the projection n. Hence we obtain

(3.4) ﬂe(sngqH)Qqﬂ.nﬂ

SGq+l,n+1
_ On+10n Op+3g
Oq+10q or Opas Gr+2, pte

ﬂe(sngkH)QkH, pte-

Now we may consider that SZ is a sphere in R?*2 and that R**! are moving
linear subspaces in R?*2, Let t and x be the vectors from O’ to O” and O to
O” respectively. Put R¥H'=R?*'N\R*+?  We choose two local orthonormal
frame fields {e,, -:-, ep+:} and {f,, -+, fpii} such that {e, e, -+, €;41} is a
base of R**% and

e = x/|lx|, e.=1F;, -, €pi1 =Ty,
(3'5) t:tf(h fp+1:(0’ ”')0) 1))
€y = (tf0+afp+1>/ VvV a?+t?, €pi1 = (afo_tfpﬂ)/\/ a’+t*.

In this section, from now on we use the following notations of indices;
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1<i<k41, 0=<a,b=Zk+1, E+2=u,v=p, g+1=a, B=p+1.

The volume element 0f G4, 542 is given by

‘Qk+2,p+2 = A\ (ey, dea)/\(ep+1: dey)
U=k+2,, D

@, 0=0, 41

= /ey, de;) N\ (ep+1, de;)/\(e,, de;) A\(epyy, dey).
Using [(3.5), we can express £2;:s p+z as
Qisn, pra = Fa (@ +10) PRGN D, L, , NS,

where 241, ,=A(fy, df;) is the volume element of G,.;, and dS?=
A, df ) N(F,, df,) is the volume element of a unit sphere in R?*. Thus we get

Op ot O2Op+10k+1
Ok+1 Ozop—k—1 Oz

b
X a k+250(a2+t2)(¢—p—2)/2(b2_t2)(k —e)/2tp—-k—1dt s

(3.6)

#e(sk>gk+2, pte =

SGk+2, p+2

where b=+~/1—a% Now put t=abs2/+/1—b%s, s=0, we have

ath?-¢

3.7 S:(az—l—tz)“'l’—2>/2(b2_t2)(k-e)/ztp-k—ldt — S:s(p-k—2)/2(1_S)<k—e)/2ds

ab?* ¢ p—k  k—e+t2
B8P )
Taking account of B(u, v)=I'(w)I'(v)/I'(u-+v), we get from [3.2), [3.4), (3.6)
and (3.7)

_ (p+g—n—ae)ll p!
Ee - (zn.)(n—q)IZ(p_e)” (p_l_q_n)' Ctl+1,n+1.

Thus we have proved

THEOREM 1. Let M? be a compact oriented submanifold in S® For an even

integer e with 0=e=p, let p(M?P) be Chern’s curvature invariants given by (1.4).
Then we have the formula (1.5).

Since we have and [1.4), we can write as follows.

COROLLARY 2. Under the same assumption as Theorem 1, we have

(3.8) SG BMPORT) s s
(p—e—1
= (Zﬂ:)(n_q)/z(p_l_q__n_e__l)” Cq+1, n+1ke(Mp);
(3.9) I eMPAR) s
g+1, n+1

__ (ptg—n—all(n—p+e=2)!1 p!
 (p—!' @n—p—q+e—2) (p+q—n)!

Cq+1, nr1T(MP).
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§4. The Euler characteristic of a compact 2-dimensional submanifold
in S™.

In this section, we treat a 2-dimensional submanifold M in S*. For
L=R"*cGy-1,1+1, let R? be the orthogonal complement of L=R"-'. Following
Teufel [7], we define a level function hg:S"—L—S'=S"NR* by hy(x)=
(xALNS'N\S?, x=S™—L, where x AL is the n-dimensional linear subspace
spanned by x and L, and S? is the hemisphere of S® which contains the point
x. We denote by A¥ the restriction of h, to M. Then it is defined on M—L.
Let B.(h¥) be the number of critical points of index % of A¥. Put

(R = 33 (—D*Ba(hl).

o

In general, M and L are transversal in R®*', In this case MNL is a finite
set of points in R™*'. We set MNL={P,, ---, P;}. Denote by #(MNL) the
number of points in MNL, that is, # MNL)=I[. We will prove

LEMMA 3. Assume that M and L are transversal in R™*', and that h¥ has
no degenerate critical point. Then it holds

4.1) UM) = B(hE)+#(MNL).

Proor. We will show that there is a neighborhood V of MNL and a
vector field X on M such that X=grad h¥ on M—V, points of MNL are zeros
of X and there is no other zero of X in V. Take a point P, of MNL=
{P,, ---, P,}. We may assume that R?={(0, x4, x., 0, ---, 0), x,, x,=R} and
P,=(1,0,---,0). Since for x=(x,, X3, ==+, x2)ES®, hz(x)=(0, x4, x5, 0, -, 0) S,
to consider h; as a function, we may assume that it is represented as hp(x)=
tan-%(x,/x,). As M and L are transversal, we can take a local coordinate
neighborhood U of P, in M

U = {(folus, us), f1lus, us), -, falths, us))=f (s, us), ui+ui<e}

such that (0, 0)=p,=(1,0, ---,0), fi(uy, us)=us, folts, us)=1, and UN{P,, -+, P}}
=@. Moreover we may assume

of
au 1

00=0,10-,0, 2L00=0010-,0.

Then we can put f,(u;, us)=A{ul+2A%uu+ A%ui+0w?®) for 3=a=n, where
we set u=+u?+ui We consider that (xi, -+, x,) is a local coordinate
of a point x=(x,, x4, -+, X,) in a neighborhood of P, in S®. With respect to
(x4, ***, Xa), the standard Riemannian metric g,, of S™ is expressed by
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XaXp
av =0pt+—5—, xi=1—3 xi.
Xo
Hence the Riemannian metric g;; of M is expressed near P, by

gi; = 0:;+0u?).

Hence we have, near P,
g =8, +0(u?).

Put A=h¥=tan *(u,/u,). With respect to the local coordinate (u,, u.), gradh
is written locally as
. o0h 0
— My -
4.2) grad h 15‘_,]g S ou,
_ (——uz—}—O(u"’)\ 0 (u1+0(u3)\ 0
N witud /o witud /ou,

For a sufficiently small positive ¢, let ¢ and b be constants with 0<a<b<e.
Then we can construct a C* function 4 on R? which satisfies

ultu for uitui<a,
AUy, us) =
1 for b<ultui<e.

Now we set
| Alua, uy)grad hY on U,
| grad h¥ on M—U.

Then X, is a vector field on M—{P,, P,, ---, P,} and the zeros of X; are those
of grad h¥ and P,. Since we have (4.2), by an easy calculation, we can show
that P, is a zero of index 1 of X, (see, for example, pp. 132-136 in [3]).

In the above method, we can construct a vector field X on M whose zeros
are those of grad h¥ and {P,, ---, P,}. Moreover, each P, (1=<k=!) is a zero
of index 1 of X. Thus the desired result follows from the Poincaré-Hopf index
theorem. Q.E.D.

Teufel proved in
1

Cr-1,241 SGn—l,n+1

(M) = 5(h%"‘1>gn—l,n+1-

Combining this with [4.I), we obtain

THEOREM 4. Let M be a compact oriented 2-dimensional submanifold in S™.
Denote by #(MNR™"') the number of points in MNR™™'. Then we have
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MM = M)t #MOR™2acsnes

Cn—l, n+1

1
= T(M)-!-E;V(M).
To get the second equation in the above theorem, we need the following
integral formula (see the formula (14.70) in [6).

LEMMA 5 (L. A. Santalo). Let M? be a compact p-dimensional Riemannian
submanifold in S™. Let O, be the volume of S**. Then we have

On+10n Op+2 V(M) .

P n-p+1 —
#(MPNR )20 p11,n41 On-p+100_p - Oy

SGn-p+1,n+1

§5. Proof of the main theorem.

Our preparations are complete. We will prove the theorem stated in § 1.
Let M be a compact oriented 2p-dimensional submanifold in S®. Applying
Teufel’s formula (1.1) to a submanifold MNR"-* in S™-2, we get

UMAR™™ = £y s(MOR™ 45—

n-8,n-1

Sx«MmRn-l)mRn-wn-s.,H.

In this section, we omit domains of integration. From this and (1.1), it follows
that

XM) = rop( M)+

n-1,n+1

——L-SX(M/‘\R"J)Q”_& n+1e

Cn—s, n+l

[eap-sMAR )20 s
+
By a continuation of the above argument, we finally get
p-2 1

(6.1)  UM) = Top(M)+ 2

k=1 cn+1—2k,n+8—2k

L SX(MmRnM_Zp)QnH—Zp, n+1e

Cn+s—2p.n+1

Sr2p—2k(MﬂRn+l_2k)‘Qn+1—2k. n+3-2k

+

Since MNR"*3-2? are generally 2-dimensional submanifolds in S"*2-2?, Hence,
by we have

(5.2) LMNR™*3-2P) = 7,(MN\R"+%-2P)
+ 1 S# (MARM3-22)\RAH-2D)Q e o

Cn+1~2p, n+8-2p

Thus from (5.1) and we get
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(5.3)

T. ISHIHARA

p-1 1

M) = Top(M)+ szp—2k(MmRn+l_2k)Qn+1-2k, n+3-2k

k=1 Cn+1—2k,n+3—2k

1 S#(MmRn+1—2p)Qn+1—2p.n+l-

Cn+1—2p, n+1

+

Using and from (5.3) we obtain (1.7), from which the desired
formula follows.
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