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\S 1. Introduction.

Momentum mappings for symplectic actions on a symplectic manifold are
group theoretical analogues of the linear and angular momentum associated with
the translational and rotational invariance. The existence of (coadjoint equi-
variant) momentum mappings is important in the mechanics because they give
some conservative quantities. This result is known as Noether’s theorem (cf.
$[6, 9])$ . There are some works which discuss whether a given symplectic action
admits a (coadjoint equivariant) momentum mapping or not (cf. [6, 9]).

A Poisson manifold $M$ is a differentiable manifold with a Lie algebra
structure on $C^{\infty}(M)$ which is a derivation in each of its arguments. So, Poisson
manifolds are a generalization of symplectic manifolds. A Poisson bracket $\{$ , $\}$

on $M$ is one-to-one corresponding to an exterior contravariant 2-tensor field $P$

on $M$ satisfying the Schouten bracket $[P, P]=0(P$ is called a Poisson tensor on
$M)$ by the following relation $\{f, g\}=\langle P|df\wedge dg\rangle=-[[P, f],$ $g$] (cf. [3, 5, 7]).

Weinstein [10] studied the local structure of general Poisson structures and says
that every Poisson manifold is essentially a union of symplectic manifolds which
fit together in a smooth way. But a general Poisson structure is quite different
from the Poisson structure induced from a symplectic structure in some aspects.
For example, the center of Poisson algebra $C^{\infty}(M)$ induced from the symplectic
structure of $M$ is the O-dimensional de Rham cohomology group $H^{0}(M, R)$ . The
center of Poisson algebra $C^{\infty}(M)$ of the general Poisson manifold $M$ (functions

in the center of the Poisson algebra $C^{\infty}(M)$ are called Casimir functions on $M$)

is not so obvious.
We can consider momentum mappings of natural actions on Poisson mani-

folds (we will call these Poisson actions) through analogy with symplectic
actions on symplectic manifolds. Since Noether’s theorem for momentum
mappings of a Poisson action holds good (cf. [3, 5]), the notion of momentum
mappings is also important in Poisson manifolds with symmetry, so it is inter-
esting to study the existence or coadjoint equivariancy of momentum mappings
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of Poisson actions. There are analogous theorems for momentum mappings of
Poisson actions like the theorems of momentum mappings of symplectic actions
(cf. [5]).

Corresponding to symplectic structures on even dimensional manifolds, we
have contact structures on odd dimensional manifolds. The function space
$C^{\infty}(M)$ of a contact manifold $M$ has a natural Lie algebra structure with the
Lagrange bracket and it is Lie algebra isomorphic to the Lie algebra of
infinitesimal contact transformations. We can also consider momentum mappings
of a group of strictly contact transformations. In this case, the coadjoint
equivariancy of a momentum mapping is valid automatically.

There is a structure in $C^{\infty}(M)$ more general than contact structures, Poisson
structures, and symplectic structures. This is called a local Lie algebra structure
in $C^{\infty}(M)$ (cf. [2]). In this paper, we shall study local Lie algebra structures,

Lie group actions preserving a local Lie algebra structure, and their momentum
mappings.

The author would like to express his sincere thanks to Professors Y.
Hatakeyama and S. Tanno for all their advice and encouragement.

\S 2. A local Lie algebra structure in $C^{\infty}(M)$ .
Though there is an idea of local Lie algebra structure in the space of

sections of a vector bundle over a manifold $M$ (cf. [2]), we only consider in
this paper local Lie algebra structures in the space of sections of the trivial
line bundle over a manifold $M$. The space of sections of this bundle is
$C^{\infty}(M):=the$ space of real valued smooth functions on $M$.

DEFINITION 1 (cf. [2]). A local Lie algebra structure in $C^{\infty}(M)$ is a bracket
operation in $C^{\infty}(M)$ satisfying the following conditions:

(1) it defines a Lie algebra structure in $C^{\infty}(M)$ over $R$,
(2) $\{f, g\}$ is continuous both in $f$ and $g$ ,
(3) $supp\{f, g\}\subset suppf\cap suPpg$ for each $f$ and $g$ , where supp $f$ is the

support of a function $f$.
Since $\{$ , $\}$ is skew-symmetric, R-bilinear, and its support is not increasing,

there are a vector field $\xi$ and a 2-vector field $P$ on $M$ from which the bracket
$\{f, g\}$ of $f$ and $g$ is expressed as $\{f, g\}=f(\xi g)-g(\xi f)+\langle P|df\wedge dg\rangle$ . $\xi$ and $P$

must satisfy the following relations: Lie differentiation $L_{\xi}P=0$ and $\delta P\wedge P$

$=\xi\wedge P+(1/2)\delta(P\wedge P)$ , where the operator $\delta$ is defined by the formula

$- \delta S=\sum_{i}\partial_{i}S^{ij\cdots k}\partial_{j}\wedge\cdots\wedge\partial_{k}$ .

As remarked in [2], this definition does not depend on the choice of local
coordinate “system. Since $\delta$ is related to the Schouten bracket, we recall the
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definition of the Schouten bracket. By $\wedge^{\iota}(M)$ , we mean the space of exterior
contravariant tensor fields on $M$ of degree $k$ . Let $\wedge^{*}(M)$ be the graded direct
sum $of\wedge^{k}(M)s$ , that is, $\wedge^{*}(M)=\sum_{k=0}^{\dim K}\wedge^{k}(M)$ . By $\bigwedge_{k}(M)$ , we mean the space
of exterior covariant tensor fields on $M$ of degree $k$ . $\wedge^{0}(M)=\bigwedge_{0}(M)=C^{\infty}(M)$ .
Let $\bigwedge_{*}(M)$ be the graded direct sum of $\bigwedge_{k}(M)s$ , that is, $\bigwedge_{*}(M)=\sum_{k=0}^{\dim M}\bigwedge_{k}(M)$ .

DEFINITION 2 (cf. [5, 8]). The Schouten bracket is a homogeneous bideri-
vation on $\wedge^{*}(M)$ of degree $-1$ uniquely determined by

(1) $[f, g]=0$ for all $f,$ $g\in\wedge^{0}(M)$ ,

(2) [X, $f$ ] $=X\rfloor df=Xf$ for all $X\in\wedge^{1}(M),$ $f\in\wedge^{0}(M)$

and
(3) [X, $Y$ ] $=the$ Lie bracket of $X$ and $Y$ for $X,$ $Y\in\wedge^{1}(M)$ .
The Schouten bracket satisfies the following formulas: For each $S\in\wedge^{S}(M)$ ,

$T\in\wedge^{t}(M),$ $U\in\wedge^{u}(M),$ $X\in\wedge^{1}(M)$ , and $f_{j}\in\wedge^{0}(M)$ , we have
(4) $[S, T\wedge U]=[S, T]$ A $U+(-1)^{(s-1)t}T\wedge[S, U]$ ,

(5) $[S\wedge T, U]=S\wedge[T, U]+(-1)^{t(u-1)}[S, U]\wedge T$ ,

(6) $[S, T]=(-1)^{(s-1)(t-1)+1}[T, S]$ ,

(7) $S.TU\mathfrak{S}.(-1)^{(s-1)(u-1)}[[S, T],$
$U$] $=\mathfrak{S}(-1)^{(s-1)(u-1)}[Ss.\tau.u[T, U]]=0$ ,

where $\mathfrak{S}$ means the cyclic sum with respect to $S,$ $T,$ $U$ . This formula
is called the generalized Jacobi identity.

(8) [X, $S$] $=L_{X}S$ , where $L_{X}$ is the Lie differentiation with respect to $X$,
and

(9) $[[\cdots[[S, f_{1}],$ $f_{2}$]
$,$

], $f_{s}$] $=-\langle S|df_{1}\wedge df_{2}\wedge\cdots\wedge df_{s}\rangle$ , $(s\geqq 2)$ .
REMARKS. ( $iD$ We can get the Schouten bracket on $\wedge^{*}(M)$ inductively

from (1), (2), (3), (4), and (6).

(ii) We can also define the Schouten bracket $[S, T]$ axiomatically; For
$S\in\wedge^{s}(M)$ , let $i_{S}$ be the inner product of $S,$ $i$ . $e.,$ $\langle T|i_{S}\mu\rangle=\langle S\wedge T|\mu\rangle$ , and let
$L_{S}$ be

$L_{S}$ $:=[d, i_{S}]_{l}$ $:=d\circ i_{S}-(-1)^{s}i_{S}\circ d$ ,

$i$ . $e.$ , the left-twisted derivation of $d$ and is, which is a generalization of the
Lie differentiation. For $S\in A^{S}(M)$ and $T\in\wedge^{t}(M)$ , we have a derivation $j(S, T)$

on $\bigwedge_{*}(M)$ defined by

$j(S, T)$ $:=[L_{S}, i_{T}]_{r}$ $:=(-1)^{(s-1)t}L_{S}\circ i_{T}-i_{T}\circ L_{S}$ ,

$i$ . $e.$ , the right-twisted derivation of $L_{S}$ and $i_{T}$ . Then we can get the Schouten
bracket $[S, T]$ by $i_{[S.T]}:=j(S, T)$ on $\bigwedge_{*}(M)$ . The above definitions of $L_{S}$ or
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$j(S, T)$ are slightly different from those of [5]. The Schouten bracket $[S, T]$

in this paper is equal to $-[T, S]$ in [8].
(iii) If we define the degree of $S\in A^{s}(M)$ as $s-1$ , then the Schouten bracket

makes $\wedge^{*}(M)$ a Lie superalgebra in the sense of [2].

The local Lie algebra structure in $C^{\infty}(M)$ can be written as $\{f, g\}=f[\xi, g]$

$-g[\xi, f]-[[P, f],$ $g$]. $\xi$ and $P$ must satisfy the following relations $[\xi, P]=0$

and $[P, P]+2\xi\wedge P=0$ . These equations are corresponding to the Jacobi
identity of $\{$ , $\}$ . Now we review some results of transitive local Lie algebra
structures, which say that local Lie algebra structures are more general than
symplectic or contact structures. “ Transitive ‘’ means that the vector fields $\xi$

and $[P, f](f\in C^{\infty}(M))$ span the tangent space of $M$ everywhere.

PROPOSITION 2.1 ([2]). Every transitive local Lie algebra structure $\{$ , $\}$ in
$C^{\infty}(M^{2n})$ is written locally as $\{f, g\}=e^{-r}\{e^{r}f, e^{r}g\}_{0}$ , where $\{$ , $\}_{0}$ is the Poisson
bracket of a local symplectic structure and $r$ is a function on some neighbourhood
at each Point.

PROPOSITION 2.2 ([2]). Let $M^{2n+1}$ be an odd dimensional manifold. Then
every transitive local Lie algebra structure in $C^{\infty}(M^{2n+1})$ is determined by the
Lagrange bracket of some contact structure on $M$.

By the analogy to Hamiltonian vector fields on symplectic manifolds or
infinitesimal contact transformations on contact manifolds (cf. [1]), we consider
a linear map $\beta_{0}$ of $\wedge^{0}(M)$ into $\wedge^{1}(M)$ defined by $\beta_{0}(f):=f\xi-[f, P]$ . Also we
define linear mappings $\beta_{s}$ of A$s(M)$ into $\wedge^{S+1}(M)$ by $\beta_{s}(S);=S\Lambda\xi-[S, P]$ .
Using the generalized Jacobi identity for the Schouten bracket and the Jacobi
identity for the local Lie algebra structure, that is, $[\xi, P]=0$ and $[P, P]+2\xi\wedge P$

$=0$ , we have

PROPOSITION 2.3. (1) $\beta_{0}$ is a Lie algebra homomorphism of $\wedge^{0}(M)$ into
$\wedge^{1}(M)$ .

(2) $\beta_{s+1^{\circ}}\beta_{s}(S)=-[[P, P],$ $S$] $/2$ holds for each $S\in\wedge^{\epsilon}(M)$ and $s=0,$ $\cdots$ ,
dim $M-1$ .

(3) If $[P, P]=0$ identically, then $\{\wedge^{s}(M), \beta_{s}\}_{s=0^{M}}^{\dim}$ forms a cochain comPlex.
REMARKS. (i) In the case of a Poisson manifold, (3) of the above Prop-

osition is already known in [5].
(ii) Because $[P, P]=0$ is equivalent to $\xi\wedge P=0$ , any Iocal Lie algebra

structure in $C^{\infty}(M^{2n+1})$ satisfying $[P, P]=0$ does not define a contact structure.

Casimir functions on a symplectic manifold are the constant functions on
each connected component of $M$. We use the following notations: $\bigwedge_{\xi}^{0}(M):=$

$\{f\in\wedge^{0}(M)|[f, \xi]=0\}$ , and $Z:=the$ center of $\wedge^{0}(M):=the$ space of Casimir
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functions. For Casimir functions of a local Lie algebra structure in $C^{\rho 0}(M)$ , we
have

PROPOSITION 2.4 ([2]). (1) $\bigwedge_{\xi}^{0}(M)$ is a subalgebra of $\wedge^{0}(M)$ .
(2) $f$ is a Casimir function if and only if $f$ satisfies $[f, \xi]=0$ and $f\xi-[f, P]$

$=0,$ $i.e.,$ $Z= \bigwedge_{\xi}^{0}(M)\cap Ker(\beta_{0})$ .
PROOF. (1) Take $f,$ $g \in\bigwedge_{\xi}^{0}(M)$ . Since $\{f, g\}=-[[P, f],$ $g$] and $[\xi, P]$

$=0$, we have $[\xi, \{f, g\}]=[\xi, -[[P, f], g]]=0$ .
(2) Let $f$ be a Casimir function. Since $0=\{f, 1\}=f[\xi, 1]-[\xi, f]-$

$[[P, f],$ $1$ ] $=-[\xi, f]$ and so $\{f, g\}=f[\xi, g]-g[\xi, f]-[[P, f],$ $g$ ] $=$

$[f\xi-[P, f],$ $g$], we have $[\xi, f]=0$ and $f\xi-[P, f]=0$ . If $[\xi, f]=0$ and
$f\xi-[P, f]=0$, then $\{f, g\}=f[\xi, g]-[f\xi, g]=0$ .

\S 3. Actions and momentum mappings.

Consider a finite dimensional connected Lie group $G$ with its Lie algebra
$\mathfrak{g}$ . $G$ acts on $\mathfrak{g}$ as the adjoint representation and acts on $\mathfrak{g}^{*}$ as the coadjoint
representation: for each $a\in G$ ,

$a\cdot\zeta$ $:=Ad(a)(\zeta)$ $(\zeta\in \mathfrak{g})$ , and

$a\cdot\mu$ $:=Ad(a^{-1})^{*}(\mu)=\mu\circ Ad(a^{-1})$ $(\mu\in \mathfrak{g}^{*})$ .

Now let $G$ act on a manifold $M$ by $\phi:G\cross Marrow M$. Then we have three
more induced actions: for each $a\in G$ ,

(1) an action on a space of maps on $M$ : $\underline{a}\cdot F:=F\circ\phi_{a^{-1}}$

(2) an action on a space of $\mathfrak{g}^{*}$-valued functions: $=a\cdot F:=Ad(a^{-1})^{*}\circ F$,
(3) an action on the Lie $algebra\wedge^{1}(M)$ of vector fields on $M$ with the Lie

bracket: $a\cdot X:=T(\phi_{a})(X)$ .
For each $\zeta\in \mathfrak{g}$ , we have the infinitesimal generator (or the fundamental

vector field) $\rho(\zeta)$ of $-\zeta$ on $M$ defined by

$\rho(\zeta)(f)=[\rho(O, f]:=\frac{d}{dt}((\underline{\exp t\zeta)}\cdot f)|_{t=0}$

for each $f\in C^{\infty}(M)$ . $\rho$ is a Lie algebra homomorphism of $\mathfrak{g}$ into $\wedge^{1}(M)$ and
satisfies $\rho(a\cdot\zeta)=a\cdot(\rho(\zeta))$ for each $a\in G$ and $\zeta\in \mathfrak{g}$ .

Assume that $G$ acts on the manifold $M$ and preserves the local Lie algebra
structure, that is, $\underline{a}\cdot\{f, g\}=\{\underline{a}\cdot f,\underline{a}\cdot g\}$ holds for each $a\in G$ and $f,$ $g\in C^{\infty}(M)$ .

Let $X$ be a vector field on $M$ and $\{\psi_{t}\}$ be the flow of X. $\{\psi_{t}\}$ preserves
the local Lie algebra structure ( $i$ . $e.,$ $\psi_{t}^{*}\{f, g\}=\{\psi_{t}^{*}f, \psi_{t}^{*}g\}$ for each $t$ , and
$f,$ $g\in\wedge^{0}(M))$ if and only if [X, $\xi$] $=0$ and [X, $P$] $=0$ . We say that the vector
field $X$ preserves the local Lie algebra structure if [X, $\xi$] $=0$ and [X, $P$] $=0$
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hold, that is, if the flow of $X$ preserves the local Lie algebra structure. Thus
we have

PROPOSITION 3.1. The action of Gpreserves the local Lie algebra structure in
$C^{\infty}(M)$ if and only if it leaves $\xi$ and $P$ invariant, that is, all the infinitesimal
generators $\rho(\zeta)$ of the action of Gpreserve the local Lie algebra structure.

PROPOSITION 3.2. For $f\in\wedge^{0}(M)$ , $\beta_{0}(f)$ preserves the local Lie algebra
structure if and only if $[f, \xi]=0$, that is, $f \in\bigwedge_{\xi}^{0}(M)$ . In particular, $\bigwedge_{\xi}^{0}(M)$ is
G-invariant.

PROOF. For each $f\in\wedge^{0}(M)$ , we have

$[\beta_{0}(f), \xi]=[f, \xi]\xi-[[f, P],$ $\xi$]

$=[f, \xi]\xi-\{[[P, \xi], f]-[[\xi, f], P]\}$

$=[f, \xi]\xiarrow[[f, \xi],$ $P$]

and
$[\beta_{0}(f), P]=f[\xi, P]-[f, P]$ A $\xi-[[f, P],$ $P$]

$=-[f, P]\wedge\xi+[[P, P],$ $f$] $/2$

$=-[f, P]A\xi-[\xi AP, f]$

$=-[f, P]$ A $\xi-\xi$ A $[P, f]-[\xi, f]P$

$=[f, \xi]P$ .
If $[f, \xi]=0$, then we have $[\beta_{0}(f), \xi]=0$ and $[\beta_{0}(f), P]=0$ from the above
equations. Conversely, let $[\beta_{0}(f), \xi]=0$ and $[\beta_{0}(f), P]=0$ , that is, $[f, \xi]\xi-$

$[[f, \xi],$ $P$] $=0$ and $[f, \xi]P=0$ . Take an arbitrary point $x\in M$. If $P\neq 0$ at $x$ ,
then we have $[f, \xi]=0$ at $x$ . If $P=0$ at $x$ , then we have $[f, \xi]\xi=0$ at $x$ from
the first equation. If $\xi\neq 0$ at $x$ , then $[f, \xi]=0$ . If $\xi=0$ at $x$ , then $[f, \xi]=0$

in general. Therefore we have $[f, \xi]=0$ . Using the generalized Jacobi’s
identity, we have

$[[\rho(\zeta), f], \xi]=-[[f, \xi],$ $\rho(\zeta)$ ] $-[[\xi, \rho(\zeta)], f]=0$

because $G$ preserves the locaI Lie algebra structure. Thus we complete the
proof of Proposition 3.2.

Let $\Gamma$ be an abelian group of $\mathfrak{g}^{*}$-valued functions on $M$. Define the k-th
cochain complex $C^{k}(G, \Gamma)(k=0, 1, )$ as the space of maps of $G\cross G\cross\cdots\chi G$

(k-times) into $\Gamma$. Define additive maps $\partial_{k}$ : $C^{k}(G, \Gamma)arrow C^{k+1}(G, \Gamma)(k=0, 1, )$ by

$(\partial_{k}F)$ ( $a_{1},$
$\cdots$ , a $k$ , a $k+1$) $=\approx a_{1}\cdot F$( $a_{2},$

$\cdots$ , a $k+1$)

$+ \sum_{i=1}^{k}(-1)^{i}F$( $\cdots$ , a $iai+1’$ ) $+(-1)^{k+1}F$( $a_{1},$ $\cdots$ , a $k$ ).
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By a direct calculation, we have

PROPOSITION 3.3. $\partial_{k+1^{Q}}\partial_{k}=0$ holds for $k=0,1,$ $\cdots$ and so there are cohomol-
ogy groups $H^{k}(G, \Gamma):=Ker(\partial_{k})/{\rm Im}(\partial_{i-1})$ of $G$ with the coefficient $\Gamma$.

By analogy to momentum mappings of symplectic actions, we have the
notion of momentum mappings of the action of $G$ which preserves the local
Lie algebra structure. The definition of momentum mapping for the action is
as follows:

DEFINITION 3. A map $J:Marrow \mathfrak{g}^{*}$ is a momentum mapping of the action of
$G$ if $\beta_{0^{\circ}}\hat{J}=\rho$ holds good on $\mathfrak{g}$ , where $\hat{J}:\mathfrak{g}arrow\wedge^{0}(M)$ is defined by $\hat{J}(\zeta)(x)=\langle\zeta, J(x)\rangle$

for each $\zeta\in \mathfrak{g}$ and $x\in M$ and is called the co-momentum mapping of $J$.
For momentum mappings of the action of $G$ preserving a local Lie algebra

structure, we have the same theorem as Noether’s theorem by adding one more
condition.

NOETHER’S THEOREM. Let $f$ be a G-invariant function on M. Then $\hat{J}(\zeta)$ is
a first integral of $\beta_{0}(f)$ for each $\zeta\in \mathfrak{g}$ if $f$ is invariant by $\xi$ .

For the existence of momentum mappings of the action of $G$ , we have

PROPOSITION 3.4. If the action of $G$ admits a momentum $map\mu ng$ , then
${\rm Im}(\beta_{1}\circ\rho)$ is included in $[[P, P],$ $\wedge^{0}(M)$ ].

PROOF. Since the action of $G$ admits a momentum mapping, for each $\zeta\in \mathfrak{g}$

we have $g_{\zeta} \in\bigwedge_{\xi}^{0}(M)$ such that $\rho(\zeta)=\beta_{0}(g_{\zeta})$ . Therefore, we have $\beta_{1^{o}}\rho(\zeta)=$

$\beta_{1^{\circ}}\beta_{0}(g_{(})=-[[P, P],$ $g_{\zeta}$] $/2$ from Proposition 2.4 (2).

REMARK. Proposition 3.4 means that $\beta_{1}\circ\rho=0$ if the local Lie algebra
structure is defined by the pair $(0, P)$ , $i$ . $e.$ , if it is a Poisson structure (cf.
$[5, 9])$ .

$J$ is called coadjoint equivariant if and only if $J(a\cdot x)=a\cdot(J(x))$ holds for
each $a\in G$ and $x\in M$, or equivalently, $\underline{a}^{-1}\cdot(\hat{J}(\zeta))=\hat{J}(a^{-1}\cdot\zeta)$ holds for each $a\in G$

and $\zeta\in \mathfrak{g}$ .
Now let $\theta(a, \zeta)$ be $\underline{a}^{-1}\cdot\hat{J}(\zeta)-\hat{J}(a^{-1}\cdot\zeta)$ . It is an obstruction of coadjoint

equivariancy of momentum mapping $J$.
PROPOSITION 3.5. $\zetaarrow\theta(a, \zeta)$ is linear and $\theta(a, \zeta)$ is a Casimir function on

$M$ for each $a\in G$ and $\zeta\in \mathfrak{g}$ .
PROOF. Linearity of $\zetarightarrow\theta(a, \zeta)$ is obvious from the definition of momentum

mapping $J$. Since we have
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$\beta_{0}(\theta(a, \zeta))=\beta_{0}(\underline{a}^{-1}\cdot\hat{J}(\zeta))-\beta_{0}(\hat{J}(a^{-1}\zeta))$

$=a^{-1}\cdot(\beta_{0^{\circ}}\hat{J}(\zeta))-\rho(a^{-1}\cdot\zeta)=0$

for each $a\in G$ and $\zeta\in g,$ $\theta(a, \zeta)$ is contained in $Ker(\beta_{0})$ . From PropositiOn 3.2
$\hat{J}(\zeta),\hat{J}(a^{-1}\cdot\zeta)$ and $\theta(a, \zeta)$ are contained in $\bigwedge_{\xi}^{0}(M)$ . Therefore, $\theta(a, \zeta)$ is a
Casimir function on $M$ by Proposition 2.4.

LEMMA 1. Each Casimir function on $M$ is G-invanant under the assumption
that the action of $G$ admi $fs$ a momentum $map\mu ng$ .

PROOF. Let $f$ be an arbitrary Casimir function on $M$, that is, $f$ satisfies
$[f, \xi]=0$ and $f\xi-[f, P]=0$ . It is sufficient only to prove that $[f, \rho(\zeta)]=0$ for
each $\zeta\in \mathfrak{g}$ because $G$ is connected. Since the action of $G$ has a momentum
mapping, there is a function $g$ in $\bigwedge_{\xi}^{0}(M)$ satisfying

$\rho(\zeta)=\beta_{0}(g)=g\xi-[g, P]$ .
We have

$[f, \rho(\zeta)]=[f, g\xi-[g, P]]=g[f, \xi]-[f, [g, P]]$

$=[g, [f, P]]=[g, f\xi]=f[g, \xi]=0$ .
This lemma is the key lemma in our discussion of coadjoint equivariancy

of momentum mappings. In the case of symplectic manifolds, each Casimir
function is automatically G-invariant because it is Iocally constant. From this
Lemma 1, we can develop similar discussions as in the symplectic category and
get a theorem which is a generalization of coadjoint equivariancy theorems of
momentum mappings for symplectic or Poisson actions.

LEMMA 2. $a-\Theta(a);=\underline{a}^{-1}\cdot I_{=}^{-a}\cdot I$ is a cocycle in $C^{1}(G, Z\otimes \mathfrak{g}^{*})$ .

LEMMA 3. Let $J_{1}$ and $J_{2}$ be momentum mappjngs of the action of $G$ on $M$,

and $\Theta_{1}$ and $\Theta_{2}$ be the correspOnding cocycles of $J_{1}$ and $J_{2}$ respectively. Then $\Theta_{1}$

and $\Theta_{2}$ are cohomologous in $C^{1}(G, Z\otimes \mathfrak{g}^{*})$ .

The result which we obtained is the following:

THEOREM. Let $G$ be a connected Lie group acting on $M$, preservjng the local
Lie algebra structure in $C^{\infty}(M)$ , and having a momentum mappjng J. Then $G$

adrmts a coadjoint equivamant momentum mappjng if and only if $[\Theta]=0$ in
$H^{1}(G, Z\otimes \mathfrak{g}^{*})$ , where $\Theta(a)=\underline{a}^{-1}\cdot I_{=}^{-a}\cdot I$ and $Z$ is the space of all Casrmir functions
on $M$.

PROOF. Assume that $[\Theta]=0$ in $H^{1}(G, Z\otimes \mathfrak{g}^{*})$ . Then there is a O-dimensional
cochain $F\in C^{0}(G, Z\otimes \mathfrak{g}^{*})=Z\otimes \mathfrak{g}^{*}$ such that $\Theta=\partial_{0}F$. Then $\Theta(a)=aF-F=$. holds
for each $a\in G$ . Define $\hat{J}_{1}$ by $\hat{J}_{1}(\zeta);=\hat{J}(\zeta)+\langle F, \zeta\rangle$ . Since $\zetarightarrow\hat{J}_{1}(\zeta)$ is linear from
$g$ into $C^{\infty}(M)$ and
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$\beta_{0}(\hat{J}_{1}(\zeta))=\beta_{0}(\hat{J}(\zeta))+\beta_{0}(\langle F, \zeta\rangle)$

$=\rho(\zeta)$

holds good, $J_{1}$ is a momentum mapping of the action of $G$ . Coadjoint equivari-
ancy of $J_{1}$ comes from

$\hat{J}_{1}(a\cdot\zeta)=\hat{J}(a\cdot\zeta)+\langle F, a\cdot\zeta\rangle$

$=\underline{a}\cdot\hat{J}(\zeta)-\langle\Theta(a^{-1}), \zeta\rangle+\langle F, a\cdot\zeta\rangle$

$=\underline{a}\cdot(\hat{J}(\zeta)-\langle F, \zeta\rangle)-\langle\Theta(a^{-1})-aF=\cdot, \zeta\rangle$

$=\underline{a}\cdot\hat{J}_{1}(\zeta)-\langle F+\Theta(a^{-1})-a\cdot F=’\zeta\rangle$

$=\underline{a}\cdot J_{1}(\zeta)$

using that Casimir function $F$ is $\underline{G}$-invariant. If the action of $G$ has a coadjoint
equivariant momentum mapping, then $\Theta=0$ identically, and of course $[\Theta]=0$ .
This completes the proof of our theorem.

COROLLARY. If the Lie grouP $G$ is compact, then the action of $G$ admits a
coadjoint equivariant momentum mapmng under the assumptjOm of the theorem.

PROOF. It is sufficient only to show that $H^{1}(G, Z\otimes \mathfrak{g}^{*})=0$ if $G$ is compact.
Let $F$ be a k-cocycle. Then we have

$0=(\partial_{k}F)$ ( $a_{1},$
$\cdots$ , a $k$ , a $k+1$) $==a_{1}\cdot F$ ( $a_{2},$

$\cdots$ , a $k+1$)

$+ \sum_{i=1}^{k}(-1)^{i}F$ ( $\cdots$ , a $i$ a $i+1,$ ) $+(-1)^{k+1}F$ ( $a_{1},$ $\cdots$ , a $k$).

By integrating the above in $a_{k+1}$ with the normalized Haar measure of $G$ , we
have

$0=a_{1}\cdot f$ ($a_{2}=’\ldots$ a $k$ ) $+ \sum_{i\Rightarrow 1}^{k-1}(-1)^{i}f( a_{i}a_{i+1}, )$

$+(-1)^{k}f$ ( $a_{1},$ $\cdots$ , a $k-1$) $+(-1)^{k+1}F$ ( $a_{1},$
$\cdots$ , a $k$ ),

where $f(a_{2}, \cdots , a_{k})=\int_{G}F(a_{2}, \cdots , a_{k}, a_{k+1})dG(a_{k+1})$ . Therefore, we have $F=$

$(-1)^{k}\partial_{k-1}(f)$ , and $H^{k}(G, Z\otimes \mathfrak{g}^{*})=\{0\}(k=1, 2, )$ .

REMARKS. (i) In the case of symplectic actions, if $M$ is connected, then
the center $Z=R,$ $H^{1}(G, Z\otimes \mathfrak{g}^{*})$ is the usual cohomology group of $G$ relative to
the G-module $\mathfrak{g}^{*}$ , and $[\Theta]$ is just the symplectic cohomology of a symplectic
action of $G$ in the sense of Souriau [6].

(ii) Let $J$ be a momentum mapping of a symplectic action of $G$ on a con-
nected symplectic manifold $M$, and $\Theta$ be the corresponding l-cocycle of $J$. Then
$(a, \mu)\mapsto a\cdot\mu+\Theta(a^{-1})$ is an affine action on $\mathfrak{g}^{*}$ and $J$ is equivariant with respect
to the action of $G$ on $M$ and this affine action of $G$ on $\mathfrak{g}^{*}$ (cf. [6]). $[\Theta]=0$
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holds in $H^{1}(G, \mathfrak{g}^{*})$ if and only if the above affine action of $G$ on $\mathfrak{g}^{*}$ has a fixed
point. Even in the case of Poisson actions, we do not have similar properties
as above in general (cf. [3]).

When the local Lie algebra structure is defined from a symplectic structure,
$(\zeta, \eta)’arrow\{\hat{J}(\zeta),\hat{J}(\eta)\}-\hat{J}([\zeta, \eta])$ is a 2-cocycle of $\mathfrak{g}$ with the coefficient of the
trivial g-module $R$ and we have some results of coadjoint equivariancy of
momentum mappings of symplectic actions stated by the cohomology groups of
the Lie algebra $\mathfrak{g}$ of $G$ with the coefficient of the trivial g-module $R$. Lemma 1
admits us to generalize some of these results of symplectic actions in our case.

Let $\Gamma’$ be a subspace of $C^{\infty}(M)=\wedge^{0}(M)$ . $\mathfrak{g}$ acts on $\Gamma’$ naturally as follows:
$\zeta\cdot f:=\rho(\zeta)f=[\rho(\zeta), f]$ . Then $\Gamma’$ is a representation of $\mathfrak{g}$ . Define the k-th
cochain complex $C^{k}(\mathfrak{g}, \Gamma’)(k=0, 1, )$ as the space of skew-symmetric multi-
linear maps of $\mathfrak{g}\cross \mathfrak{g}\cross\cdots\cross \mathfrak{g}$ (k-times) into $\Gamma’$ . Define additive maps $\partial_{k}$ : $C^{k}(\mathfrak{g}, \Gamma^{J})$

$arrow C^{k+1}(\mathfrak{g}, \Gamma^{J})(k=0, 1, )$ by

$( \partial_{k}F)(\zeta_{1}, \cdots \zeta_{k}, \zeta_{k+1})=\sum_{i=1}^{k+1}(-1)^{i+1}\zeta_{i}\cdot F(\zeta_{1}, \cdots \hat{\zeta}_{i}, \cdots \zeta_{k+1})$

$+ \sum_{i<j}(-1)^{i+j}F([\zeta_{i}, \zeta_{j}], \zeta_{1}, \cdots \hat{\zeta}_{i}, \cdots \hat{\zeta}_{j}, \cdots \zeta_{k+1})$ ,

where A means omitting the element at that position. By a direct calculation
$\partial_{k+1^{Q}}\partial_{k}=0$ holds for $k=0,1,$ $\cdots$ and so we have the cohomology groups $H^{k}(\mathfrak{g}, \Gamma’)$

of $\mathfrak{g}$ with the coefficient $\mathfrak{g}$-module $\Gamma’(k=0,1, 2, )$ .
Let $J$ be a momentum mapping of the action of $G$ preserving the local Lie

algebra structure. $J$ is coadjoint equivariant if and only if $\underline{a}\cdot\hat{J}(\zeta)=\hat{J}(a\cdot\zeta)$ for
each $a\in G$ and $\zeta\in \mathfrak{g}$ . This is equivalent to $[\rho(\eta),\hat{J}(\zeta)]=\hat{J}([\eta, \zeta])$ for each
$\zeta,$

$\eta\in \mathfrak{g}$ if $G$ is connected. From Proposition 3.2, $\hat{J}(\eta)\in\bigwedge_{\xi}^{0}(M)$ holds, and $\rho(\eta)$

$=\beta_{0^{\circ}}\hat{J}(\eta)$ from the definition of momentum mapping. Therefore, we have
$\rho(\eta)=-[\hat{J}(\eta), P]$ and so $[\rho(\eta),\hat{J}(\zeta)]=\{\hat{J}(\eta),\hat{J}(\zeta)\}$ . This means that $J$ is a
coadjoint equivariant momentum mapping if and only if the co-momentum
mapping $\hat{J}:\mathfrak{g}arrow\bigwedge_{\text{\’{e}}}^{0}(M)$ of $J$ is Lie algebra homomorphic. So, for each momentum
mapping $J$, we shall study the mapping

$(\eta, \zeta)-\{\hat{J}(\eta),\hat{J}(\zeta)\}-\hat{J}([\eta, \zeta])$ ,

which measures the difference from Lie algebra homomorphism. We see that
this mapping is a 2-cocycle of $\mathfrak{g}$ with the coefficient $Z:=the$ center of $\wedge^{0}(M)$ ,
$i$ . $e.$ , the space of Casimir functions on $M$, and it defines a cohomology class in
$H^{2}(\mathfrak{g}, Z)$ , which is a generalization of the infinitesimal symplectic cohomology
in [6]. We have

PROPOSITION 3.6. Assume that the action of $G$ on Mpreserves the local Lie
algebra structure and has a momentum mapping. If $H^{2}(g, Z)=0$ , then the action
of $G$ admits a coadjoint equivariant momentum mapping, where $Z$ is the center
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of $C^{\infty}(M)$ .
PROOF. Let $J$ be a momentum mapping. Then

$c(\eta, \zeta):=\{\hat{J}(\eta),\hat{J}(\zeta)\}-\hat{J}([\eta, \zeta])$

is a 2-cocycle of $\mathfrak{g}$ and we have a l-cocycle $c_{1}\in C^{1}(\mathfrak{g}, Z)$ satisfying $c=\partial_{1}c_{1}$

because of $H^{2}(\mathfrak{g}, Z)=0$ . From Lemma 1, we have

$c(\eta, \zeta)=(\partial_{1}c_{1})(\eta, \zeta)$

$=[\rho(\eta), c_{1}(\zeta)]-[\rho(\zeta), c_{1}(\eta)]-c_{1}([\eta, \zeta])$

$=-c_{1}([\eta, \zeta])$ .
Since

$\beta_{0}(\hat{J}(\zeta)-c_{1}(\zeta))=\beta_{0}\circ\rho(\zeta)$

and
$\{\hat{J}(\eta)-c_{1}(\eta),\hat{J}(\zeta)-c_{1}(\zeta)\}=\{J(\eta),\hat{J}(\zeta)\}$

$=\hat{J}([\eta, \zeta])-c_{1}([\eta, \zeta])$

hold good, $\zeta\mapsto\hat{J}(\zeta)-c_{1}(\zeta)$ is a Lie algebra homomorphic co-momentum mapping
of the action of $G$ .

REMARK. The second cohomology group $H^{2}(g, Z)$ of $\mathfrak{g}$ is not equal to the
first cohomology group $H^{1}(G, Z\otimes \mathfrak{g}^{*})$ of $G$ (cf. [6]).

By using the Jacobi identity of the local Lie algebra structure, the co-
momentum mappings being Lie algebra homomorphic and Lemma 1, we also
have a generalization of the theorem in [4].

PROPOSITION 3.7. Let $G_{1}\aleph G_{2}$ be a connected semidirect pr0duct Lie group
acting on $M$ and preserving the local Lie algebra structure. Assume that the
actions of $G_{1}$ and $G_{2}$ have coadjoint equivariant momentum mappings respectively.

If $H^{1}(\mathfrak{g}_{1}, R)=0$, then $G_{1}xG_{2}$ has a coadjoint equivariant momentum mapffing.

\S 4. Examples.

First we recall

PROPOSITION 4.1 (cf. [2]). Let $\{$ , $\}$ be a local Lie algebra structure in $C^{\infty}(M)$

defined by the pajr $(\xi, P)$ . Then the distribution spanned by $\xi$ and $[f, P]$

$(f\in\wedge^{0}(M))$ is involutive.

REMARK. If there exists an integral submanifold of the distribution in
Proposition 4.1, then the restricted local Lie algebra structure is transitive, and
so the manifold must be a contact manifold or a symplectic manifold locally by
Proposition 2.1 or 2.2. In the case of Poisson manifolds, we refer to [10] for
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more details.

If we have a momentum mapping for the action of $G$ preserving the local Lie
algebra structure defined by the pair $(\xi, P)$ , then ${\rm Im}(\rho)\subset{\rm Im}(\beta_{0})$ holds. Since
dim ${\rm Im}(\beta_{0})$ is equal to the rank of the local Lie algebra structure, we get an
elementary necessary condition of the existence of a momentum mapping:

PROPOSITION 4.2. Let $G$ be a group acting on $M$, presenjng the local Lie
algebra structure in $C^{\infty}(M)$ defined by $(\xi, P)$ . If the action of $G$ has a momentum
maplnng, then the dimension of each G-orbit $G\cdot x$ is no more than the rank of the
local Lie algebra structure at $x$ .

REMARK. If the local Lie algebra structure is transitive, for example, if it
is induced from a symplectic structure, then the above Proposition 4.2 is trivial
and does not work effectively.

Taking the above propositions into consideration, we will construct some
examples of local Lie algebra structures of $R^{4}$ and group actions with or
without momentum mappings.

EXAMPLE 1. Let $(x^{1}, x^{2}, y^{1}, y^{2})$ be the canonical coordinate system of $R^{4}$,
$\xi$ be $\Sigma_{j=1}^{2}(x^{j}\partial/\partial y^{j}-y^{j}\partial/\partial x^{j})$ , and

$P= \frac{1}{4}\sum_{l.j}(x^{i}y^{j}-x^{j}y^{i})(\frac{\partial}{\partial x^{i}}\Lambda\frac{\partial}{\partial x^{j}}+\frac{\partial}{\partial y^{i}}\wedge\frac{\partial}{\partial y^{j}})$

$+ \frac{1}{2}\sum_{i,j}(-x^{i}x^{j}-y^{i}y^{j})\frac{\partial}{\partial x^{i}}\wedge\frac{\partial}{\partial y^{j}}$

$+ \frac{c}{2}\sum_{i}\frac{\partial}{\partial x^{i}}\Lambda\frac{\partial}{\partial y^{i}}$ ,

where $c$ is a constant. Then the pair of $(\xi, P)$ defines a local Lie algebra
structure in $R^{4}$ . (If $c=1$ and restrict $\xi$ and $P$ to $S^{3}(1)$ , then the local Lie algebra
structure $(\xi, P)$ is the one of the standard contact structure of $S^{3}(1).)$

Let $G$ be the connected Lie subgroup of $GL(4, R)$ whose Lie algebra is
generated by

$\zeta_{1}=\{\begin{array}{lll}0 01 0-1 0 0 00 0 0 10 0-1 0\end{array}\}$ , $\zeta_{2}=\{\begin{array}{llll}0 0 0 10 0 1 00-1 0 00-1 0 0\end{array}\}$ ,

$\zeta_{3}=\{\begin{array}{llll}0 0 1 00 0 0 0-1 0 0 00 0 0 0\end{array}\}$ , $\zeta_{4}=\{\begin{array}{lll}0 0 0 00 0 0 10 0 0 00-1 0 0\end{array}\}$ .
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$\zeta_{j}’ s$ satisfy $[\zeta_{1}, \zeta_{2}]=2(\zeta_{3}-\zeta_{4})$ , $[\zeta_{1}, \zeta_{s}]=-\zeta_{2}$ , $[\zeta_{1}, \zeta_{4}]=\zeta_{2}$ , $[\zeta_{2}, \zeta_{8}]=\zeta_{1}$ , $[\zeta_{f}, \zeta_{4}]$

$=-\zeta_{1},$ $[\zeta,, \zeta_{4}]=0$ , and $\xi=-\rho(\zeta_{3}+\zeta_{4})$ . Then $G$ preserves the local Lie algebra
structure. If $c=0$ , then the action of $G$ does not have any momentum mappings.
If $c\neq 0$, then the action of $G$ has a coadjoint equivariant momentum mapping $J$

defined by $\hat{J}(\zeta_{k})=f_{k}$ , where

$f_{1}= \frac{2}{c}(-x^{1}y^{2}+x^{2}y^{1})$ , $f_{2}= \frac{2}{c}(x^{1}x^{2}+y^{1}y^{2})$ ,

$f_{3}= \frac{1}{c}(x^{1}x^{2}+y^{1}y^{2})$ , and $f_{4}= \frac{1}{c}(x^{2}x^{2}+y^{2}y^{2})$ .

EXAMPLE 2. Now we consider Poisson structures in $R^{4}$ . Let $(x^{1}, x^{2}, x^{3}, x^{4})$

be the natural coordinates of $R^{4}$ and $D_{i}=\partial/\partial x^{i}(i=1,2,3,4)$ .
(2.1) The natural linear action of $GL(2, R)$ on $R^{4}$ is a Poisson action for a

Poisson tensor $P=(x^{1}D_{1}+x^{2}D_{2})\wedge(x^{3}D_{3}-x^{4}D_{4})+u(x^{3}x^{4})D_{3}\wedge D_{4}$ , where $u$ is a
function of one variable, but it has no momentum mapping.

(2.2) The natural linear action of $SL(2, R)$ on $R^{4}$ is a Poisson action for a
Poisson tensor

$P=x^{3}x^{4}D_{1}\wedge D_{2}+(x^{1}D_{1}+x^{2}D_{2})\wedge(-x^{8}D_{3}+x^{4}D_{4})+2x^{3}x^{4}D_{8}$ A $D_{4}$

without momentum mappings. The action of $SL(2, R)$ is also a Poisson action
for $P=D_{1}\wedge D_{2}+v(x^{3}, x^{4})D_{3}\wedge D_{4}$ for any function $v$ , and it has a coadjoint
equivariant momentum mapping

$\langle J(x), \zeta\rangle=\det[x^{1}x^{2}$ $\zeta\{\begin{array}{l}x^{1}x^{2}\end{array}\}]/2$ .

(2.3) The natural $S^{1}\cross S^{1}$-action on $R^{4}$ is a Poisson action for

$P=(x^{3}x^{3}+x^{4}x^{4})D_{1}\wedge D_{2}-x^{2}x^{3}D_{1}\wedge D_{3}-x^{2}x^{4}D_{1}\wedge D_{4}$

$+x^{1}x^{3}D_{2}\wedge D_{3}+x^{1}x^{4}D_{2}\wedge D_{4}$ ,

but has no momentum mapping.
(2.4) The natural linear action of $SO(3)$ on $R^{4}$ is a Poisson action for

$P=u(x^{1}x^{1}+x^{2}x^{2}+x^{3}x^{3})(x^{1}D_{2}\wedge D_{3}+x^{2}D_{3}\wedge D_{1}+x^{3}D_{1}\wedge D_{2})$

$+v(x^{1}x^{1}+x^{2}x^{2}+x^{3}x^{3}, x^{4})(x^{1}D_{1}+x^{2}D_{2}+x^{3}D_{3})\wedge D_{4}$ ,

where $u$ and $v$ are functions satisfying the following: For some positive $\epsilon$ ,
$v(r, s)=0$ for $|r|\leqq\epsilon$ and $u(r)$ is a non-zero function which is equal to $|r|^{1/2}$ for
$|r|\geqq\epsilon/2$ . Then the Poisson action of SO(3) has a coadjoint equivariant momentum
mapping

$\langle J(x), (\zeta_{1}, \zeta_{2}, \zeta_{3})\rangle=-(\sum_{i=1}^{3}x^{i}\zeta_{i})/u(\sum_{i=1}^{8}x^{i}x^{i})$ ,
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where the dual space of the Lie algebra of $SO(3)$ is identified with $R^{3}$ in the
standard way.
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