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Introduction.

A quaternionic K\"ahler manifold $(M, g, H)$ is a Riemannian manifold $(M, g)$

together with a coefficient bundle $H$ of quaternions. The twistor space $Z$ of
$(M, g, H)$ , which is a complex manifold fibring over $M$, has a natural complex
contact structure 7 and a natural Einstein pseudo-K\"ahler metric $\overline{g}$ , provided
that $(M, g)$ has non-zero scalar curvature (Salamon [8]). In this note we shall
study the automorphism groups of these structures.

Let $Aut(M, g, H)$ and $Aut(Z, \gamma,\overline{g})$ denote the group of automorphisms of
$(M, g, H)$ and the one of isometric contact automorphisms of $(Z, \gamma,\overline{g})$ respec-
tively. Then each element in $Aut(M, g, H)$ can be lifted to an element in
$Aut(Z, \gamma,\overline{g})$ in a natural way. We show first that the lifting homomorPhism
$Aut(M, g, H)arrow Aut(Z, \gamma,\overline{g})$ is an isomorphjsm (Theorem 3.1).

Let $\mathfrak{a}(Z, \gamma)$ and $\mathfrak{a}(Z, \gamma,\overline{g})$ be the Lie algebra of infinitesimal contact auto-
morphisms of $(Z, \gamma)$ and the one of infinitesimal isometric contact automorphisms
of $(Z, \gamma,\overline{g})$ respectively. We prove next that $\mathfrak{a}(Z, \gamma)$ is the complexification of
$\mathfrak{a}(Z, \gamma,\overline{g})$ (Corollary 2 to Theorem 3.2). This may be viewed as an analogue
to the theorem of Matsushima to the effect that the Lie algebra of holomorphic
vector fields on a compact Einstein K\"ahler manifold is the complexification of
the Lie algebra of Killing vector fields.

Lastly we study a certain uniqueness of quaternionic K\"ahler structures. We
prove: SuPpose that a compact complex contact manifold $M$ admits a Kahler
metric and has the vamshing first integral homology. Then a complex contact
structure on $M$ is unique up to automorphisms of $M$ (Theorem 1.7). Making use
of this and previous results we show the following uniqueness: Let compact
quaternionic Kahler manifolds $(M, g, H)$ and $(M’, g’, H’)$ with positive scalar
curvatures have the same twistor sPace Z. SuppOse that $Z$ is a kahlerian $C$-sPace
of Boothby type (see \S 1 for the definition). Then $(M, g, H)$ and $(M’, g’, H’)$

are equivalent to each other (Theorem 4.2). Note that all the known examples
of twistor spaces of compact quaternionic K\"ahler manifolds with positive scalar
curvature are k\"ahlerian C-spaces of Boothby type.
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\S 1. Complex contact structures.

In this section we recall the basic results on complex contact structures
and prove a uniqueness theorem for complex contact structures on certain
k\"ahlerian manifolds.

Let $M$ be a (connected) complex manifold of odd dimension $2n+1$ . By a
system of contact forms on $M$ we mean an open cover $\{U_{i}\}$ of $M$ together with
a system of holomorphic l-forms $\{\gamma_{i}\}$ such that

(1.1) each $\gamma_{i}$ is defined on $U_{i}$ and $7i^{\wedge(dr_{i})^{n}\neq 0}$ everywhere on $U_{i}$ ; and

(1.2) we have $\gamma_{i}=f_{ij}\gamma_{j}$ on $U_{i}\cap U_{j}$ , where $f_{ij}$ is a holomorphic function on
$U_{i}\cap U_{j}$ .

Two systems of contact forms $\{U_{i}, \gamma_{i}\}$ and $\{V_{\lambda}, \delta_{\lambda}\}$ are said to define the same
complex contact structure if $\gamma_{i}=h_{i\lambda}\delta_{\lambda}$ on $U_{i}\cap V_{\lambda}$ , where $h_{i\lambda}$ is a holomorphic
function on $U_{i}\cap V_{\lambda}$ . A pair $(M, \gamma)$ of a complex manifold $M$ and a complex
contact structure $\gamma$ on $M$ is called a complex contact manifold. Given a complex
contact structure $\gamma$ on $M$ defined by contact forms $\{U_{i}, \gamma_{i}\}$ , we define a holo-
morphic subbundle $E_{\gamma}$ of the (holomorphic) tangent bundle $TM$ by

$(E_{\gamma})_{x}=\{X\in T_{x}M ; \gamma_{i}(X)=0\}$ if $x\in U_{i}$ .

Let $L_{\gamma}=TM/E_{\gamma}$ be the quotient line bundle and $\varpi_{\gamma}$ : $TMarrow L_{\gamma}$ the natural pro-
jection, so that we have an exact sequence

(1.3) $0arrow E_{\gamma}arrow TMarrow L_{\gamma}\varpi_{\gamma}arrow 0$

of holomorphic vector bundles over $M$.
Let $(M, \gamma)$ and $(M’, \gamma’)$ be complex contact manifolds. By a contact iso-

morphism $\phi:(M, \gamma)arrow(M’, \gamma’)$ we mean a holomorphic diffeomorphism $\phi:Marrow M’$

such that the differential $\phi_{*}:$ $TMarrow TM’$ induces an isomorphism $E_{\gamma}arrow E_{\gamma’}$ . For
a complex contact manifold $(M, \gamma)$ a contact isomorphism of $(M, \gamma)$ onto itself is
called a contact automorphism. Denote by $Aut(M, \gamma)$ the group of all contact
automorphisms of $(M, \gamma)$ . It is a complex Lie group if $M$ is compact (Boothby
[4]). A holomorphic vector field on $M$ is called an infinitesimal contact auto-
morphism of $(M, \gamma)$ if it generates a local flow of (local) contact automorphisms
of $(M, \gamma)$ . Let $\alpha(M, \gamma)$ denote the complex Lie algebra of all infinitesimal
contact automorphisms of $(M, \gamma)$ . If $M$ is compact, $\mathfrak{a}(M, \gamma)$ is identified with
Lie $Aut(M, \gamma)$ , the Lie algebra of $Aut(M, \gamma)$ .
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In what follows we recall some basic results on complex contact structures
(cf. Kobayashi [6], [7], Boothby [4]). Let $(M, \gamma)$ be a complex contact manifold
of dimension $2n+1$ with $\gamma$ defined by contact forms $\{U_{i}, \gamma_{i}\}$ .

THEOREM 1.1. The system $\{U_{i}, d\gamma_{i}\}$ induces a non-degenerate alternating
holomorphic pairing:

$E_{\gamma}\cross E_{\gamma}arrow L_{\gamma}$ .

THEOREM 1.2. The canonical line bundle $K_{M}=\wedge^{2n+1}T^{*}M$ of $M$ is holo-
morphically isomorphic to $L_{\overline{\gamma}}^{(n+1)}$ . In particular, first Cherrt classes $c_{1}$ satisfy

$c_{1}(M)=(n+1)c_{1}(L_{\gamma})$ .

Let $\hat{\pi}$ : $P_{\gamma}arrow M$ be the holomorphic $c*$ -bundle associated to $L_{\gamma},$
$i$ . $e.$ , the

bundle of frames of $L_{\gamma}$ , and denote by $R_{a}$ the right action of $a\in C^{*}$ on $P_{\gamma}$ . We
define a holomorphic l-form $\theta_{\gamma}$ on $P_{\gamma}$ by

$\theta_{\gamma}(X)=u^{-1}\varpi_{\gamma}(\hat{\pi}_{*}X)$ for $X\in T{}_{u}P_{\gamma},$ $u\in P_{\gamma}$ ,

and call it the canonical l-form on $P_{\gamma}$ . We put $\Theta_{\gamma}=d\theta_{\gamma}$ .

THEOREM 1.3. We write $P,$ $\theta$ for $P_{\gamma},$ $\theta_{\gamma}$ . We have then

(1.4) $\theta$ is semi-basic, $i$ . $e.,$
$\theta$ is annihilated by the contraction of any vertical

vector of $P$ ;

(1.5) $R_{a}^{*}\theta=a^{-1}\theta$ for each $a\in C^{*};$ and

(1.6) $\Theta=d\theta$ is a symplectic 2-form on $P$.

Now we fix a complex manifold $M$ of odd dimension and denote by $C(M)$ the
set of all complex contact structures on $M$. Note that the group $Aut(M)$ of all
holomorphic automorphisms of $M$ acts on $C(M)$ in a natural way. Next let us
consider a pair $(P, \theta)$ of holomorphic $c*$-bundle $P$ over $M$ and a holomorphic
l-form $\theta$ on $P$ satisfying (1.4), (1.5) and (1.6). Two such pairs $(P, \theta)$ and
$(P’, \theta’)$ are said to be equivalent if there exists a holomorphic $c*$-bundle iso-
morphism $\Phi:Parrow P’$ inducing the identity on $M$ such that $\Phi^{*}\theta’=\theta$ . The set
of all equivalence classes of such pairs is denoted by $\mathcal{P}(M)$ .

THEOREM 1.4. The correspondence $\gamma->(P_{\gamma}, \theta_{\gamma})$ induces a bijection $C(M)arrow \mathcal{P}(M)$ .

Let $(M, \gamma)$ be a complex contact manifold. For each $\phi\in Aut(M, \gamma)$ there
exists uniquely a holomorphic bundle automorphism $\phi_{*}$ of $L_{\gamma}$ such that $\varpi_{\gamma}\circ\phi*$

$=\tilde{\phi}_{*}\circ\varpi_{\gamma}$ on $TM$. We define a map $\phi:P_{\gamma}arrow P_{\gamma}$ by

$\hat{\phi}(u)=\phi_{*}\circ u$ for $u\in P_{\gamma}$ ,
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which is a holomorphic $c*$ -bundle automorphism of $P_{\gamma}$ such that $\hat{\pi}\circ\hat{\phi}=\phi\circ_{l\vee}^{\wedge}\sim$

This is called the prolongation of $\phi$ . We denote by $Aut(P_{\gamma}, \theta_{\gamma})$ the group of all
holomorphic $c*$ -bundle automorphisms $\Phi$ of $P_{\gamma}$ (not necessarily inducing the
identity on $M$) with $\Phi^{*}\theta_{\gamma}=\theta_{\gamma}$ . Moreover let $\mathfrak{a}(P_{\gamma}, \theta_{\gamma})$ be the complex Lie
algebra of all holomorphic vector fields $X$ on $P_{\gamma}$ such that the local flow
generated by $X$ is contained (locally) in $Aut(P_{\gamma}, \theta_{\gamma})$ , which is the same as that
$R_{a*}X=X$ for each $a\in C^{*}$ and $\mathcal{L}_{X}\theta_{\gamma}=0$ , where $X$ denotes the Lie derivation.
If $M$ is compact, $Aut(P_{\gamma}, \theta_{\gamma})$ is a complex Lie group with Lie $Aut(P_{\gamma}, \theta_{\gamma})=$

$\mathfrak{a}(P_{\gamma}, \theta_{\gamma})$ . For each $\phi\in Aut(M, \gamma)$ the prolongation $\phi$ belongs to $Aut(P_{\gamma}, \theta_{\gamma})$ , and
hence we have a homomorphism $Aut(M, \gamma)arrow^{\wedge}Aut(P_{\gamma}, \theta_{\gamma})$ , which is called the
prolongation. This gives rise to a homomorphism $\mathfrak{a}(M, \gamma)arrow^{\wedge}\mathfrak{a}(P_{\gamma}, \theta_{\gamma})$ , which is
called the infinitesimal prolongation.

THEOREM 1.5. The pr0l0ngati0n $Aut(M, \gamma)arrow^{\wedge}Aut(P_{\gamma}, \theta_{\gamma})$ is an isomorphjsm,
which is a complex Lie isomorphism if $M$ is compact. Therefore the infinitesimal
pr0l0ngati0n $\mathfrak{a}(M, \gamma)arrow \mathfrak{a}(P_{\gamma}, \theta_{\gamma})$ is also an isomorphism.

THEOREM 1.6. Let $\Gamma(L_{\gamma})$ be the space of all holomorphic sections of $L_{\gamma}$ , and
define a linear map $\varpi_{\gamma}$ : $\mathfrak{a}(M, \gamma)arrow\Gamma(L_{\gamma})$ by

$\varpi_{\gamma}(X)(x)=\varpi_{\gamma}(X_{x})$ for $X\in \mathfrak{a}(M, \gamma),$ $x\in M$.

Then $\varpi_{\gamma}$ is an isomorphism.

COROLLARY. Let $F(P_{\gamma})$ be the space of all holomorphjc functions $\sigma$ on $P_{\gamma}$

such that
$\sigma(u\cdot a)=a^{-1}\sigma(u)$ for each $u\in P_{\gamma},$ $a\in C^{*}$ .

For each $\sigma\in F(P_{\gamma})$ a holomorphjc vector field $X$ on $P_{\gamma}$ is uniquely determined by

$\iota(X)\Theta_{\gamma}+d\sigma=0$ ,

where $\iota(X)$ denotes the contraction by X. Then the corresp0ndence $\sigma-,X$ gives a
linear isomorphism $F(P_{\gamma})arrow \mathfrak{a}(P_{\gamma}, \theta_{\gamma})$ .

PROOF. For each $s\in\Gamma(L_{\gamma})$ the holomorphic function $\sigma$ on $P_{\gamma}$ defined by
$\sigma(u)=u^{-1}s(\hat{\pi}(u))$ is a function in $F(P_{\gamma})$ , and the correspondence $s-,\sigma$ gives a
linear isomorphism $\Gamma(L_{\gamma})arrow F(P_{\gamma})$ . Therefore the corollary follows from Theo-
rems 1.5, 1.6 and the familiar identity $\iota(X)\circ d+d\circ\iota(X)=X_{X}$ . $q$ . $e$ . $d$ .

A complex contact manifold $(M, \gamma)$ is said to be homogeneous if $Aut(M, \gamma)$

acts transitively on $M$. A complex manifold is said to be kahlerian if it
admits a K\"ahIer metric.

EXAMPLE 1.1 (Boothby [4], [5]). Let $\mathfrak{g}$ be a complex simple Lie algebra.
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Take a Cartan subalgebra $\mathfrak{h}$ of $\mathfrak{g}$ and identify the root system of $\mathfrak{g}$ with a
subset of the real part $\mathfrak{h}_{R}$ of $\mathfrak{h}$ by means of the Killing form $(, )$ of $\mathfrak{g}$ . Let
$a_{0}\in \mathfrak{h}_{R}$ be the highest root with respect to a linear order on $\mathfrak{h}_{R}$ and put
$H_{0}=(2/(\alpha_{0}, \alpha_{0}))\alpha_{0}$ . Denoting by $\mathfrak{g}_{\lambda}$ the $\lambda$-eigenspace of $ad(H_{0})$ in $\mathfrak{g}$ , we define a
subalgebra $\mathfrak{u}$ of $\mathfrak{g}$ by

$\mathfrak{u}=\mathfrak{g}_{0}+\mathfrak{g}_{1}+\mathfrak{g}_{2}$ .
Let $G$ be the connected complex Lie group with the trivial center such that
Lie $G=\mathfrak{g}$ , and $U$ the normalizer of 11 in $G$ . Then the quotient complex manifold

$M=G/U$

is compact, simply connected and k\"ahlerian. It is called a kahlerian $C$-space of
Boothby type. It is shown that $M$ has always odd dimension and that $\mathfrak{g}_{2}\neq\{0\}$ .
Choose $E\in \mathfrak{g}_{2}$ with $E\neq 0$ and define a linear form $\theta^{*}$ on $\mathfrak{g}$ by

$\theta^{*}(X)=(E, X)$ for $X\in \mathfrak{g}$ .
Put

$U_{0}=\{a\in G ; Ad(a)E=E\}$ .

Then $U_{0}$ is a normal subgroup of $U$ and the quotient group $U/U_{0}$ is identified
with $c*$ . Thus the quotient complex manifold

$P=G/U_{0}$

has a natural structure of a holomorphic $c*$-bundle over $M$. And there exists
a holomorphic l-form $\theta$ on $P$ whose pull back to $G$ is equal to $\theta^{*},$ $\theta^{*}$ being
regarded as a left G-invariant l-form on $G$ . Furthermore it is verified that $\theta$

satisfies (1.4), (1.5) and (1.6). Thus by Theorem 1.4 $\theta$ determines a complex
contact structure $\gamma$ on $M$. Our correspondence

$\mathfrak{g}-\geq(M, \gamma)$

induces a bijection from the set of all isomorphism classes of complex simple
Lie algebras onto the set of all contact isomorphism classes of compact simply
connected homogeneous complex contact manifolds. Actually we have $\mathfrak{g}=$

Lie $Aut(M, \gamma)$ in the above construction.

A complex contact structure on a k\"ahlerian C-space of Boothby type is
essentially unique, because we have the following theorem.

THEOREM 1.7. Let $(M, \gamma_{0})$ be a compact complex contact manifold. Supp0se
that $M$ is kahlerian and $H_{1}(M, Z)=\{0\}$ . Then $Aut(M)$ acts transitively on $C(M)$ .

PROOF. Let $h^{p.q}=\dim H^{q}(M, \Omega^{p})$ and $b_{r}=the$ r-th Betti number of $M$.
Since $M$ is compact k\"ahlerian, we have
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$b_{r}=$
$\sum_{P+q=r}h^{p,q}$ , $h^{p,q}=h^{q,p}$ .

In particular, by $H_{1}(M, Z)=\{0\}$ we get $b_{1}=0$ and hence

(1.7) $h^{0.1}=0$ .
We put

$L=L_{\gamma_{0}}$ , $P=P_{\gamma_{0}}$ .
Take an arbitrary $\gamma\in C(M)$ . By Theorem 1.2 we have $(n+1)c_{1}(L_{\gamma})=c_{1}(M)$ ,

where dim $M=2n+1$ . Therefore we have

(1.8) $(n+1)c_{1}(L_{\gamma})=(n+1)c_{1}(L)$ .
On the other hand, the exact sequence

$0arrow Zarrow Carrow c*arrow 0$

of abelian groups yields the cohomology exact sequence
$c_{1}$

$H^{1}(M, O)arrow H^{1}(M, O^{*})arrow H^{2}(M, Z)$ ,

where dim $H^{1}(M, O)=h^{0,1}=0$ by (1.7). Thus we get the exact sequence
$c_{1}$

(1.9) $0arrow H^{1}(M, O^{*})arrow H^{2}(M, Z)$ .
Moreover the assumption $H_{1}(M, Z)=\{0\}$ together with the universal coefficient
theorem implies that $H^{2}(M, Z)$ has no torsion. Hence by (1.8) and (1.9) we
have

(1.10) $L_{\gamma}\cong L$ for each $\gamma\in C(M)$ .
Next let $\hat{\mathcal{U}}$ be the set of all holomorphic l-forms $\theta$ on $P$ satisfying (1.4),

(1.5) and (1.6). Then $\hat{\mathcal{U}}$ is invariant under the multiplication by $C^{*}$ , and the
quotient

$\mathcal{U}(M)=\hat{\mathcal{U}}/C^{*}$

is identified with $C(M)$ by Theorem 1.4, (1.10) and the compactness of $M$. We
identify the space of all holomorphic l-forms $\theta$ on $P$ satisfying (1.4) and (1.5)

with the space $\Gamma(M, T^{*}M\otimes L)$ of all holomorphic sections of $T^{*}M\otimes L$ , and
thus $\hat{\mathcal{U}}\subset\Gamma(M, T^{*}M\otimes L)$ . In the same way we identify $\Gamma(M, \wedge^{2n+1}T^{*}M\otimes L^{n+1})$

with the space of all semi-basic holomorphic $(2n+1)$-forms $a$ on $P$ such that
$R_{a}^{*}a=a^{-(n+1)}a$ for each $a\in C^{*}$ . We fix an isomorphism $\kappa$ from the anticanonical
line bundle $K_{M}^{*}$ onto $L^{n+1}$ (cf. Theorem 1.2). We have then
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$\Gamma(M, \wedge^{2n+1}T^{*}M\otimes L^{n+1})=\Gamma(M, K_{M}\otimes L^{n+1})$

$arrow^{\cong}\Gamma(M, K_{M}\otimes K_{M}^{*})=\Gamma(M, 1)=C$ .
$\kappa^{*}$

Here $\kappa^{*}$ is given as follows. Fix a point $x_{0}\in M$ and $v_{0}\in(K_{M}^{*})_{x_{0}}$ with $v_{0}\neq 0$ .
Let $\xi_{0}\in(K_{M})_{x_{0}}$ satisfy $\langle v_{0}, \xi_{0}\rangle=1$ , where $\langle, \rangle$ is the pairing between $K_{M}^{*}$ and
$K_{M}$ . Then for $a\in\Gamma(\Lambda f, K_{M}\otimes L^{n+1})$ , regarded as a homomorphism $a;KMarrow L^{n+1}$ ,
we have

$\kappa^{*}(\alpha)=\langle\kappa^{-1}(a(v_{0})), \xi_{0}\rangle$ .

Now we define a map $F:\Gamma(M, T^{*}M\otimes L)arrow C$ by
$\kappa^{*}$

$F(\theta)=\theta\wedge(d\theta)^{n}\in\Gamma(M, \wedge^{zn+1}T^{*}M\otimes L^{n+1})=C$ ,

explicitly, by

$F(\theta)=\langle\kappa^{-1}[(\theta\Lambda(d\theta)^{n})(v_{0})], \xi_{0}\rangle$ for $\theta\in\Gamma(M, T^{*}M\otimes L)$ .
It is a homogeneous holomorphic function on $\Gamma(M, T^{*}M\otimes L)$ of degree $n+1$

such that $F(\theta)\neq 0$ if and only if $d\theta$ is a symplectic 2-form on $P$. Therefore
$F\neq 0$ (since $F(\theta_{\gamma_{0}})\neq 0$) and $\hat{\mathcal{U}}$ is given by

$\hat{\mathcal{U}}=\{\theta\in\Gamma(M, T^{*}M\otimes L) ; F(\theta)\neq 0\}$ .

Hence $\hat{\mathcal{U}}$ is a $C^{*}$-invariant open connected subset of $\Gamma(M, T^{*}M\otimes L)$ . It follows
that $\mathcal{U}(M)$ is identified with an open connected subset of the projective space
$P(\Gamma(M, T^{*}M\otimes L))$ associated to $\Gamma(M, T^{*}M\otimes L)$ . Let $Aut(L)$ denote the complex
Lie group of all holomorphic bundle automorphisms of $L$ (not necessarily
inducing the identity on $M$ ). Then we have an exact sequence

$1arrow c*arrow Aut(L)arrow^{\rho}Aut(M)arrow 1$

of complex Lie groups, where $\rho$ is the natural homomorphism. Here the sur-
jectivity of $\rho$ follows from (1.10). For each $g\in Aut(M)$ we choose an element
$s_{g}\in Aut(L)$ with $\rho(s_{g})=g$ . Then the tensor product of the natural action of $g$

on $T^{*}M$ with $s_{g}$ induces a linear action of $g$ on $\Gamma(M, T^{*}M\otimes L)$ , and hence it
induces a projective action of $g$ on $P(\Gamma(M, T^{*}M\otimes L))$ , which leaves $\mathcal{U}(M)$

invariant. Under our identification of $\mathcal{U}(M)$ with $C(M)$ , the action of $g$ on
$\mathcal{U}(M)$ defined in the above way corresponds to the natural action of $g$ on
$C(M)$ . Note that our action of $Aut(M)$ on $\mathcal{U}(M)$ is holomorphic, since the
bundle $\rho$ : $Aut(L)arrow Aut(M)$ has a local holomorphic section $g-s_{g}$ around each
point of $Aut(M)$ . Therefore it suffices to show the transitivity of $Aut(M)$ on
$\mathcal{U}(M)$ .

Let $\gamma\in C(M)$ be arbitrary. Dualizing the exact sequence (1.3) and tensoring
$L_{\gamma}$ , we get an exact sequence
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$0arrow 1arrow T^{*}M\otimes L_{\gamma}arrow E_{\gamma}^{*}\otimes L_{\gamma}arrow 0$ .

In the associated cohomology exact sequence

$0arrow\Gamma(M, 1)arrow\Gamma(M, T^{*}M\otimes L_{\gamma})arrow\Gamma(M, E_{\gamma}^{*}\otimes L_{\gamma})-arrow H^{1}(M, O)$ ,

we have $\Gamma(M, 1)=C$ and $H^{1}(M, O)=\{0\}$ by (1.7). Therefore

dim $\Gamma(M, T^{*}M\otimes L_{\gamma})=\dim\Gamma(M, E_{\gamma}^{*}\otimes L_{\gamma})+1$ ,

and hence dim $\mathcal{U}(M)=\dim\Gamma(M, E_{\gamma}^{*}\otimes L_{\gamma})$ . But, by tensoring $L_{\gamma}^{-1}$ to the pairing
$E_{\gamma}\cross E_{\gamma}arrow L_{\gamma}$ in Theorem 1.1, we get a non-degenerate holomorphic pairing
$E_{\gamma}\otimes(E_{\gamma}\otimes L_{\overline{\gamma}^{1}})arrow 1$ . Thus $E_{\gamma}\cong(E_{\gamma}\otimes L_{\overline{\gamma}^{1}})^{*}=E_{\gamma}^{*}\otimes L_{\gamma}$ . Therefore we have

(1.11) dim $\mathcal{U}(M)=\dim\Gamma(M, E_{\gamma})$ .

On the other hand, in the cohomology exact sequence

$0arrow\Gamma(M, E_{\gamma})arrow\Gamma(M, TM)-\Gamma(M\varpi_{\gamma}L_{\gamma})$

associated to (1.3), we have $\Gamma(M, TM)\cong LieAut(M)$ , and by Theorem 1.6
$\Gamma(M, L_{\gamma})\cong LieAut(M, \gamma)$ and $\varpi_{\gamma}$ is surjective. Hence, together with (1.11) we
get

dim $\mathcal{U}(M)=\dim Aut(M)$– $\dim Aut(M, \gamma)$ for each $\gamma\in C(M)$ .

It follows that $Aut(M)$ acts on $\mathcal{U}(M)$ locally transitively at each point of $\mathcal{U}(M)$ .
Since $\mathcal{U}(M)$ is connected, we obtain the transitivity of $Aut(M)$ on $\mathcal{U}(M)$ .

$q$ . $e$ . $d$ .

REMARK. As is seen from the proof, the assumptions in the theorem may
be replaced by “ $H_{1}(M, Z)$ has no torsion and $H^{1}(M, \mathcal{O})=\{0\}$ .

\S 2. Quaternionic K\"ahler manifolds.

In this section we give the definition of quaternionic K\"ahler manifolds and
recall some basic results on them.

We denote by $H$ the algebra of real quaternions and by $\mathcal{I}mH\subset H$ the
subspace of pure imaginary quaternions. Let $(M, g)$ be a Riemannian manifold
of dimension $4n$ . A subalgebra bundle $H$ of the bundle End$(TM)$ of endo-
morphisms of the tangent bundle $TM$ is called a quaternionic Kahler structure
on $(M, g)$ if

(2.1) for each point $x\in M$ there is an open set $U$ of $M$ with $x\in U$ such that
the restriction $H|U$ to $U$ is isomorphic to the product bundle $U\cross H$ as algebra
bundles;
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(2.2) denoting by $\mathcal{I}_{m}H$ the subbundle of $H$ which corresponds to $U\aleph \mathcal{I}mH$ under
isomorphisms in (2.1), we have

$g(zX, Y)+g(X, zY)=0$ for $X,$ $Y\in T_{x}M,$ $z\in(\mathcal{I}mH)_{x}$ ;

and

(2.3) $H$ is a parallel subbundle of End$(TM)$ with respect to the connection
induced by the Riemannian connection $\nabla$ of $(M, g)$ .

Given such a structure $H$, the set $P(H)$ of all orthonormal frames of $(M, g)$ of
the form

$\{e_{1}, Ie_{1}, Je_{1}, Ke_{1}, \cdots , e_{n}, Ie_{n}, Je_{n}, Ke_{n}\}$ ,

where $e_{i}\in T_{x}M$ and $I,$ $J,$ $K\in(\mathcal{I}mH)_{x}$ with $I^{2}=J^{2}=-1,$ $IJ=-JI=K$, is a sub-
bundle of the orthonormal frame bundle $O(M)$ with the structure group
$Sp(n)Sp(1)\subset O(4n)$ . Here $Sp(n)Sp(1)$ is defined as follows. We identify $H^{n}$ with
$R^{4n}$ and denote by $\rho(Sp(1))$ the subgroup of $O(4n)$ of right multiplications by
$Sp(1)=\{h\in H;|h|=1\}$ . Let $Sp(n)\subset O(4n)$ be the centralizer of $\rho(Sp(1))$ in $O(4n)$

and define $Sp(n)Sp(1)$ to be the product $Sp(n)p(Sp(1))$ in $0(4n)$ . Actually
$Sp(n)Sp(1)\subset SO(4n)$ and we have an exact sequence

$1arrow Z_{2}arrow Sp(n)\cross sp(1)arrow Sp(n)Sp(1)arrow 1$ .
By (2.3) the Riemannian connection $\nabla$ on $O(M)$ reduces to the connection $\nabla$ on
$P(H)$ , and $M$ has a natural orientation determined by the reduction $P(H)\subset O(M)$ .

The triple $(M, g, H)$ , where $H$ is a quaternionic K\"ahler structure on $(M, g)$ ,

is called a quaternionic Kahler manifold in case $n\geqq 2$ , and in case $n=1$ provided
that $(M, g)$ is Einstein and anti-selfdual in the sense of Atiyah-Hitchin-Singer
[3] with respect to the natural orientation. It is known (Alekseevskii [1]) that
for a quaternionic K\"ahler manifold $(M, g, H)$ , $(M, g)$ is Einstein also in the
case $n\geqq 2$ and it is irreducible in the case where the (constant) scalar curvature
$t\neq 0$ . Let $(M, g, H)$ and $(M’, g’, H’)$ be quaternionic K\"ahler manifolds. By an
isomorphism (resp. equivalence) $\psi:(M, g, H)arrow(M’, g’, H’)$ we mean an isometry
(resp. homothety) $\psi:(M, g)arrow(M’, g’)$ such that $\psi_{*}H\psi_{*}^{-1}=H’$ . An automorPhism
of $(M, g, H),$ $Aut(M, g, H)$ and $\mathfrak{a}(M, g, H)$ are defined in the analogous way to
contact structures. The group $Aut(M, g, H)$ is a Lie group, since it is a closed
subgroup of the group $K(M, g)$ of all isometries of $(M, g)$ . If $g$ is complete,
we have Lie $Aut(M, g, H)=a(M, g, H)$ . In the following in this section, $(M, g, H)$

will denote a quaternionic K\"ahler manifold of dimension $4n$ .
We recall first another description of quaternionic K\"ahler structures by

Salamon [8]. If a complex $Sp(n)\cross Sp(1)$-module $V$ is given, we get a vector
bundle over $M$ associated to $P(H)$ with the induced connection, which will be
denoted by the corresponding boldface $V$. In general $V$ is locally defined, but
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it is globally defined if, for example, the action of $Sp(n)\cross Sp(1)$ factors through
$Sp(n)Sp(1)$ . If $V$ has an $Sp(n)\cross Sp(1)$-invariant structure, it carries over to the
fibres of $V$. For example, if $V$ has an $sp(n)\cross Sp(1)$ -invariant real structure
$v->\overline{v},$ $V$ has the induced real structure $vrightarrow\overline{v}$ . In this case the set of fixed
points of $vrightarrow\overline{v}$ in $V$ is a real vector bundle over $M$, which will be denoted
by $V_{R}$ .

Let $E$ be the standard complex $Sp(n)$-module of dimension $2n$ . It has an
$Sp(n)$ -invariant antilinear map $vrightarrow\tilde{v}$ with $\approx v=-v$ and an $Sp(n)$-invariant non-
degenerate alternating bilinear form $\omega_{E}\in\wedge^{2}E^{*}$ such that $\omega_{E}(\tilde{u},\tilde{v})=\overline{\omega_{E}(u,v)}$ and
that $\langle\langle u, v\rangle\rangle=\omega_{E}(u,\tilde{v})$ is a hermitian inner product on $E$ . By a standard basis of
$E$ we mean a unitary basis $\{e_{1}, \cdots , e_{2n}\}$ with respect to $\langle$\langle , $\rangle\rangle$ such that $\tilde{e}_{i}=e_{n+i}$

$(1\leqq i\leqq n)$ . We shall often identify $E$ with $E^{*}$ by the map

(2.4) $v-\geq\omega_{E}(\cdot, v)$ .

Under this identification we have

(2.5) $\omega_{E}=\sum_{i=1}^{n}e_{i}\wedge\tilde{e}_{i}$ for a standard basis $\{e_{i}\}$ .

In case $n=1$ we write $F$ for $E$ . We regard $E$ and $F$ as $sp(n)\cross Sp(1)$ -modules.
’rhen $E\otimes F$ has an $sp(n)\cross Sp(1)$ -invariant real structure defined by $\overline{e\otimes h}=\tilde{e}\otimes\tilde{h}$ .
We put

$\tau*=\{v\in E\otimes F ; \overline{v}=v\}$ ,

$g=\omega_{E}\mathfrak{U}_{F}\in S^{2}(E\otimes F)=S^{2}((T^{*})^{C})$ ,

where $S^{2}V$ denotes the symmetric product $V\vee V$ . Then $g$ defines an $Sp(n)\cross Sp(1)-$

invariant inner product on $\tau*$ , and we have a global identification

$T^{*}M=(E\otimes F)_{R}$

including the metrics. Next we put $T^{c}=E^{*}\otimes F^{*}$ and define an action of $S^{2}F$

on $T^{c}$ by the composition

(2.6) $S^{2}F\otimes T^{C}\subsetarrow(F\otimes F)\otimes(E^{*}\otimes F^{*})arrow(F\underline{\otimes F^{*})\otimes(E^{*}\otimes F}^{*})$

$arrow E^{*}\otimes F^{*}=T^{c}$

of the identification (2.4) and the indicated contraction. We denote by $(S^{2}F)_{R}$

and $T$ the real forms of $S^{2}F$ and $T^{c}$ with respect to the real structures defined
by $vrightarrow\tilde{v}$ . Then $(S^{2}F)_{R}$ leaves $T$ invariant and we have a global identification

(2.7) $\mathcal{I}mH=(S^{2}F)_{R}$

as subbundles of End$(TM)$ .
We define the twistor space $Z$ of $(M, g, H)$ by
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$Z=\{z\in H ; z^{2}=-1\}=\iota_{Z\in \mathcal{I}mH}$ ; $|z|^{2}=4n$ },

where . $|$ means the fibre norm of End$(TM)$ defined by $g$ . Denote by $q:Zarrow M$

the projection induced by the one of End$(TM)$ . The twistor space $Z$ is an
$S^{2}$-bundle over $M$ with the induced connection. Also it is described as follows.
Let

$F_{0}=F-$ { $zero$ section},

and denote by $p;F_{0}arrow M$ the projection. We may define a (locally defined) map
$\pi;F_{0}arrow Z$ with $q\circ\pi=p$ by

$\pi(h)=\frac{1}{\omega_{F}(h,\tilde{h})}\sqrt{-1}h\vee\tilde{h}$ for $h\in F_{0}$ ,

under the identification (2.7). We have $\pi(h)=\pi(h’)$ if and only if there exists
$a\in C^{*}$ with $h’=h\cdot a$ , and therefore $Z$ is identified with the projective bundle
$P(F)=F_{0}/c*$ associated to $F$, which is a globally defined manifold. Under
this identification, $Z_{x}=(F_{0})_{x}/C^{*}=P(F_{x})\cong P_{1}(C)$ . Note that $\pi;F_{0}arrow Z$ is a
(locally defined) smooth $c*$-bundle. We define a complex structure on $Z$ in the
following way. Decompose $TF_{0}$ as the sum

$TF_{0}=\hat{\mathcal{H}}\oplus\hat{\mathcal{V}}$

of the horizontal distribution $\hat{\mathcal{H}}$ and the vertical distribution $\hat{\mathcal{V}}$ for the induced
connection. For $h\in F_{0}$ with $x=p(h)$ , $\hat{\mathcal{H}}_{h}$ is isomorphic to $T_{x}M$ through $p_{*}$

and $\hat{\mathcal{V}}_{h}=T_{h}(F_{0})_{x}\cong F_{x}$ . Getting together the complex structure on $\hat{\mathcal{H}}_{h}$ corre-
sponding to $\pi(h)$ through $p_{*}$ and the natural complex structure on $\hat{\mathcal{V}}_{h}$ , we
obtain a complex structure $\hat{J}_{h}$ on $T_{h}F_{0}$ . It is known that the almost complex
structure $\hat{J}$ on $F_{0}$ thus obtained is integrable (Salamon [8]). Since $\hat{J}$ is invariant
under the action of $c*$ , it can be pushed down to a globally defined integrable
almost complex structure $\overline{J}$ on $Z=P(F)$ , in such a way that $\pi:F_{0}arrow Z$ becomes
a (locally defined) holomorphic $c*$ -bundle and that each $Z_{x}$ is a complex sub-
manifold biholomorphic to $P_{1}(C)$ . Note that the space $\wedge^{1.0}(\hat{\mathcal{H}}_{h})$ of type $(1, 0)$

forms on $\hat{\mathcal{H}}_{h}$ is given by

(2.8) $\wedge^{1.0}(\hat{\mathcal{H}}_{h})=p^{*}(E_{x}\otimes Ch)$ .
The antilinear map $harrow\tilde{h}$ of $F_{0}$ satisfies $h\cdot a=\tilde{h}\cdot\overline{a}\sim$ for each $a\in C^{*}$ . Therefore
it induces an antiholomorphic involution $\tau$ of $Z$ with $q\circ\tau=q$ . If $Z$ is regarded
as $Z\subset \mathcal{I}mH,$ $\tau$ is nothing but the antipodal map on each fibre $Z_{x}\cong S^{2}$ . It is
called the canonical involution of $Z$ . Let $Aut(Z)$ denote the group of all holo-
morphic automorphisms of $Z$ , and put

$Aut(Z, \tau)=\{\phi\in Aut(Z) ; \phi\tau=\tau\phi\}$ .
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For $\psi\in Aut(M, g, H)$ we define the lift $\overline{\psi}$ of $\psi$ by

$\overline{\psi}(z)=\psi_{*}z\psi_{*}^{-1}$ for $z\in Z\subset \mathcal{I}mH\subset End(TM)$ .
Then $\overline{\psi}$ belongs to $Aut(Z, \tau)$ and satisfies $q\circ\overline{\psi}=\overline{\psi}^{\circ}q$ , and moreover $\overline{\psi}*$ leaves
invariant the horizontal distribution $\mathcal{H}$ in $TZ$. The homomorphism $Aut(M, g, H)$

$arrow-Aut(Z, \tau)$ is injective and called the lifting.
Let $L^{-1}$ denote the (locally defined) tautological holomorphic line bundle

over $Z=P(F)$ . Then $L^{2}$ is a globally defined holomorphic line bundle over $Z$ .
Let $Z_{2}=\{\pm 1I\subset C^{*}$ and define

$P=F_{0}/Z_{2}$ ,

which is a globally defined complex manifold. Let $\hat{\pi}$ : $Parrow Z$ denote the pro-
jection induced by $\pi$ . Denoting by $\{h\}\in P$ the class of $h\in F_{0}$ , we define a free
holomorphic action of $C^{*}$ on $P$ by

$\{h\}\cdot a=\{h\cdot a^{-1/2}\}$ for $h\in F_{0},$ $a\in C^{*}$ .

Then $\hat{\pi}$ : $Parrow Z$ is identified with the $C^{*}$ -bundle $P(L^{2})$ associated to $L^{2}$ . In fact,

for $h\in F_{0}$ with $z=\pi(h)$ , let $\xi\in(Ch)^{*}=L_{z}$ satisfy $\xi(h)=1$ . Then the correspond-

ence $\{h\}rightarrow\xi\otimes\xi$ gives the required holomorphic $C^{*}$-bundle isomorphism $Parrow P(L^{2})$ .
Next we define a (locally defined) smooth C-valued l-form $\theta$ on $F_{0}$ by

$\theta(X)=\omega_{F}(c_{V}(X), h)$ for $X\in T_{h}F_{0},$ $h\in F_{0}$ ,

where $c_{\nabla}$ : $T_{h}Farrow F_{x},$ $x=p(h)$ , is the connection map for the induced connection
$\nabla$ on $F$. It is invariant under the action of $Z_{2}$ on $F_{0}$ , and hence it is pushed
down to a globally dePned l-form $\theta$ on $P$. Then $\theta$ is holomorphic on $P,$ $i$ . $e.$ ,

it is a type $(1, 0)$ form with $d’’\theta=0$ (Salamon [8], p. 154) and satisfies (1.4),

(1.5). Furthermore, if the scalar curvature $t$ of $(M, g)$ is not zero, $\theta$ satisfies
also (1.6). This follows from the formula (cf. Salamon [8], p. 155)

(2.9) $\Theta=d\theta=-2\nu P^{*}(\omega_{E}\otimes h\otimes h)-2dz^{1}\wedge dz^{Z}$ at $h\in F_{0}$ ,

where $\nu=t/8n(n+2)$ and $(z^{1}, z^{2})$ is the fibre coordinate of $F$ with respect to a
local standard basis $\{h_{1}, h_{2}\}$ of $F$ around $x=P(h)$ with $(Vh_{i})_{x}=0$ . Therefore,

if $t\neq 0$ , by Theorem 1.4 $\theta$ defines a complex contact structure 7 on $Z$ with
$L_{\gamma}\cong L^{2}$ . Note that we have $E_{\gamma}=\mathcal{H}$ by definition of $\theta$ . It is called the canonical
complex contact structure on $Z$ . We put

$Aut(Z, \gamma, \tau)=Aut(Z, \gamma)\cap Aut(Z, \tau)$ .

Then the lifting is an injective homomorphism $Aut(M, g, H)arrow Aut(Z, \gamma, \tau)$ , since
the lift of $\psi\in Aut(M, g, H)$ leaves $\mathcal{H}=E_{\gamma}$ invariant.

Suppose again that $(M, g)$ has non-zero scalar curvature $t$ . The hermitian
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fibre metric on $L^{-1}$ induced by the metric $\omega_{F}(h,\tilde{h})$ on $F$ determines a globally
defined hermitian fibre metric $a$ on $L^{2}$ . We put

$\overline{\omega}_{0}=-\frac{\sqrt{-1}}{2}$ (curvature form of $a$),

which is a real closed 2-form on $Z$ of type $(1, 1)$ , and then define a symmetric
2-tensor $\overline{g}_{0}$ on $Z$ by

$\overline{g}_{0}(X, Y)=\overline{\omega}_{0}(\overline{J}X, Y)$ for $X,$ $Y\in T_{z}Z$ .

Finally we normalize it as

$\overline{g}=\frac{1}{\nu}\overline{g}_{0}$ .

We have then (Salamon [8])

(2.10) $\overline{g}$ is a pseudo-K\"ahler metric on $Z$ of signature $(2n+1,0)$ (resp. $(2n,$ $1)$ )

if $t>0$ (resp. $t<0$);

(2.11) $\overline{g}$ is invariant under the lifting of $Aut(M, g, H)$ ;

(2.12) the horizontal distribution $\mathcal{H}$ and the vertical distribution $\mathcal{V}$ in $TZ$ are
orthogonal to each other with respect to $\overline{g}$ ;

(2.13) $\overline{g}|Z_{x}$ is the multiple by a constant $c_{x}$ of the Fubini-Study metric of
$Z_{x}=P_{1}(C)$ , where $c_{x}$ is positive (resp. negative) if $t>0$ (resp. $t<0$) and inde-
pendent of $x\in M$ ; and

(2.14) $q:(Z,\overline{g})arrow(M, g)$ is a pseudo-Riemannian submersion.

The pseudo-K\"ahler metric $\overline{g}$ is uniquely determined by properties (2.12), (2.13)

and (2.14). We call $\overline{g}$ the canonical pseudo-Kahler metric on $Z$ . Actually $\overline{g}$ is
an Einstein pseudo-K\"ahler metric. In fact, as in the proof of Theorem 1.7 we
regard $\kappa=\theta\wedge(d\theta)^{n}$ as an isomorphism $K_{Z}^{*}arrow L^{2(n+1)}$ . Let $|_{k}^{2}$ be the hermitian
fibre metric on $K_{Z}^{*}$ corresponding to the pseudo-K\"ahler volume element of
$(Z,\overline{g}_{0})$ and . 2 the fibre metric on $L^{2(n+1)}$ determined by $a$ . We have then

$|\kappa(v)|_{t}=2^{n}n!|v|_{k}$ for each $v\in K_{Z}^{*}$ .

Recalling that the Ricci form $\overline{\rho}_{0}$ of $\overline{g}_{0}$ is given by $\sqrt{-1}\overline{\rho}_{0}=curvature$ form of
$|\cdot|_{k}^{2}$, we get $\overline{\rho}_{0}=2(n+1)\overline{\omega}_{0}$ . Therefore $\overline{g}_{0}$ is Einstein, and so $\overline{g}$ is also Einstein.

Finally we recall a linear map $\lambda:\Gamma(L^{2})_{R}arrow f(M, g)$ defined by Salamon, where
$\Gamma(L^{2})_{R}$ is a real form of $\Gamma(L^{2})$ and $f(M, g)$ is the Lie algebra of all Killing
vector fields on $(M, g)$ . Recall that $Z_{x}=P(F_{x})$ and $\Gamma(Z_{x}, L^{2}|Z_{x})\cong S^{2}F_{x}^{*}\cong S^{2}F_{x}$ .
So the restriction to fibres gives an injective linear map $\varphi:\Gamma(L^{2})arrow C^{\infty}(S^{2}F)$ ,

where $C^{\infty}(\cdot)$ designates the space of smooth sections. We define
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$\Gamma(L^{2})_{R}=\varphi^{-1}[\varphi(\Gamma(L^{2}))\cap C^{\infty}((S^{2}F)_{R})]$ .

Next we define a differential operator $\delta:C^{\infty}(S^{2}F)arrow C^{\infty}((T^{*}M)^{C})$ to be the covariant
derivation $\nabla:C^{\infty}(S^{2}F)arrow C^{\infty}(S^{2}F\otimes(T^{*}M)^{C})$ followed by the contraction

$S^{2}F\otimes(T^{*}M)^{C}$ :–. $(F\otimes F^{*})\otimes(E\otimes\sqrt{})\lfloor\infty-E\otimes F=(T^{*_{1}}t\parallel)^{c}$ .

It is proved (Salamon [8]) that then the composition

$\lambda$ : $\Gamma(L^{2})_{R}arrow^{\varphi}C^{\infty}((S^{2}F)_{R})-arrow^{\delta}C^{\infty}(T^{*}\Lambda’l)arrow C^{\infty}(TM)$

,

where the last map is the duality by means of $g$ , sends $\Gamma(\Gamma_{J}^{2})_{R}$ into $f(M, g)$ .

\S 3. Contact automorphisms of twistor spaces.

In this section $(M, g, H)$ will be always a quaternionic K\"ahler manifold of
dimension $4n$ with scalar curvature $t\neq 0$ , and $\tau,$ $7,\overline{g}$ be the canonical involution,

the canonical complex contact structure, the canonical pseudo-K\"ahler metric on
the twistor space $Z$ respectively. We put

$Aut(Z, \gamma,\overline{g})=Aut(Z, \gamma)\cap K(Z,\overline{g})$ ,

where $K(Z,\overline{g})$ denotes the group of all isometries of $(Z,\overline{g})$ . This is a Lie
group, since it is a closed subgroup of $K(Z,\overline{g})$ . In this section we shall study

the relationship between the groups $Aut(M, g, H),$ $Aut(Z, \gamma,\overline{g})$ and $Aut(Z, \gamma, \tau)$ .
Recall the $\mathfrak{a}(Z, \gamma)$ is the complex Lie algebra of all holomorphic vector fields

$X$ on $Z$ such that the local flow generated by $X$ is contained in $Aut(Z, \gamma)$ .
Here by a holomorphic vector field $X$ on $Z$ we mean a smooth vector field $X$

on $Z$ such that $\mathcal{L}_{X}\overline{J}=0$ , and the complex structure of $a(Z, 7)$ is given by
$Xrightarrow\overline{J}X$. Let $\mathfrak{a}(Z, 7,\overline{g})$ (resp. $\mathfrak{a}(Z,$

$\gamma,$
$\tau)$ ) be the Lie algebra of all smooth vector

fields $X$ on $Z$ such tbat the local flow generated by $X$ is contained in
$Aut(Z, 7,\overline{g})$ (resp. in $Aut(Z,$ $\gamma,$

$\tau)$ ). They are real subalgebras of $\mathfrak{a}(Z, \gamma)$ . If
$\overline{g}$ is complete, we have Lie $Aut(Z, \gamma,\overline{g})=\mathfrak{a}(Z, 7,\overline{g})$ . The lifting is an injective
homomorphism $Aut(M, g, H)arrow Aut(Z, 7,\overline{g})$ in virtue of (2.11).

THEOREM 3.1. The lifting $Aut(M, g, H)arrow Aut(Z-, 7\overline{g})$ is an isomorphism.

PROOF. It suffices to show the surjectivity. Take an arbitrary $\phi\in$

$Aut(Z, \gamma,\overline{g})$ . Since $\phi\in Aut(Z, \gamma),$ $\phi*leaves$ invariant the horizontal distribution
$\mathcal{H}=E_{\gamma}$ . Therefore, by (2.12) together with that $\phi\in K(Z,\overline{g}),$ $\phi*leaves$ invariant
also the vertical distribution $\mathcal{V}$ . Hence $\phi$ sends each fibre of $q$ into a fibre of
$q$ . Thus there exists a diffeomorphism $\psi$ of $M$ with $q\circ\phi=\psi Qq$ . By (2.14) $\psi$ is
an isometry of $(M, g)$ . We shall show that $\psi\in Aut(M, g, H)$ and $\overline{\psi}=\phi$ .

Let $\hat{p}=q^{Q}$ it: $Parrow M$ and $\hat{\phi}$ : $Parrow P$ the prolongation of $\phi$ so that $\hat{p}\circ\hat{\phi}=\psi\circ\hat{p}$ .
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Take an arbitrary point of $M$ and choose a sufficiently small neighbourhood $U$

of this point. Then there exists a holomorphic map $\Phi$ : $p^{-1}(U)arrow p^{-1}(\psi(U))$ with
$p\circ\Phi=\psi\circ p$ such that $\Phi$ induces $\phi$ : $p^{-1}(U)arrow p-1(\psi(U))$ . For $x\in U$ we have
$\phi(\{h\}\cdot a^{-2})=\phi(\{h\})\cdot a^{-2}$ for each $h\in(F_{0})_{x}$ and $a\in C^{*}$ . This means $\{\Phi(h\cdot a)\}=$

$\{\Phi(h)\cdot a\},$ $i$ . $e.,$ $\Phi(h\cdot a)=\pm\Phi(h)\cdot a$ . Since $C^{*}$ is connected, we have

$\Phi(h\cdot a)=\Phi(h)\cdot$ $a$ for $h\in(F_{0})_{x},$ $a\in C^{*}$ .
Noting that $\Phi$ : $p^{-1}(x)=(F_{0})_{x}-arrow p^{-1}(\psi(x))=(F_{0})_{\psi^{(x)}}$ is holomorphic, we conclude
that $\Phi$ : $(F_{0})_{x}arrow(F_{0})_{\psi^{(x)}}$ is C-linear at each $x\in U$ . That is, $\Phi$ : $p^{-1}(U)arrow p^{-1}(\psi(U))$

is obtained as the restriction to $p^{-1}(U)$ of a smooth complex vector bundle
homomorphism $\sqrt{}|Uarrow F|\psi(U)$ , which will be denoted again by $\Phi$ . We prove

(3.1) $\omega_{F}(\Phi(h), \Phi(k))’--\omega_{F}(h, k)$ for $h,$ $k\in F.,$ $x\in U$ .

Since $\hat{\phi}\in Aut(P, \theta),\hat{\phi}$ leaves invariant $d\theta$ on $P$. Therefore $\Phi$ leaves invariant
$d\theta$ on $F_{0}$ . We fix $l\in(F_{0})_{x}$ . By (2.9) we have $(d\theta)_{t}(h, k)=-2\omega_{F}(h, k)$ for each
$h,$ $k\in T_{t}(F_{0})_{x}\cong F_{x}$ . But, since $\Phi$ is linear on $F_{x}$ we have the commutative
diagram

$\Phi_{*}$

$\mathcal{T}_{l}(F_{0})_{x}arrow T_{\Phi(t)}(F_{0})_{\psi^{(}x)}$

$tl1$ Zll
$F_{x}$ $arrow$ $F_{\psi^{(x)}}$ .

$\Phi$

Thus the invariance of $d\theta$ reads $-2\omega_{F}(\Phi(h), \Phi(k))=-2\omega_{F}(h, k)$ , which completes

the proof. The linear map $\Phi$ : $(F_{0})_{x}arrow(F_{0})_{\psi(x)}$ with (3.1) induces $\phi:Z_{x}=P(F_{x})$

$arrow Z_{\psi(x)}=P(\Gamma_{\psi(x)})$ , which is a holomorphic isometry of the Fubini-Study metric
by (2.13). Therefore we have

(3.2) $\Phi(\tilde{h})=\overline{\Phi(h)}$ for $h\in(F_{0})_{x},$ $x\in U$ .

Now seeing (2.9) we know that the horizontal distribution $\hat{\mathcal{H}}$ and the vertical
distribution $\hat{\mathcal{V}}$ for $p;F_{0}arrow M$ are orthogonal to each other with respect to $d\theta$

and that $d\theta|\hat{\mathcal{V}}\cross\hat{\mathcal{V}}$ is non-degenerate. Hence the invariance of $\hat{\mathcal{V}}$ under $\Phi_{*}$

implies that of $\hat{\mathcal{H}}$ under $\Phi_{*}$ . Therefore, for a fixed $h\in(F_{0})_{x}$ we have the
commutative diagram

$(\hat{\mathcal{H}}_{\hslash}^{*})^{C}arrow^{(\Phi^{*})^{-1}}(\hat{\mathcal{H}}8_{(h)})^{C}$

$p*\dagger$ $\uparrow p*$

$(T_{x}^{*}M)^{C}(T_{\psi(x)}^{*}M)^{C}\overline{(\psi^{*})^{-1}}$

Since $\Phi$ is holomorphic, by (2.8) we obtain the commutative diagram
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$(\Phi^{*})^{-1}$

$\wedge^{1.0}(\hat{\mathcal{H}}_{h})-\wedge^{1.0}(\hat{\mathcal{H}}_{\Phi(h)})$

(3.3) $p*\dagger$ $\uparrow p*$

$E_{x}\otimes Charrow E_{\psi^{(x)}}\otimes C\Phi(h)(\psi^{*})^{-1}$

Therefore there is a unique linear isomorphism $\Psi:E_{x}arrow E_{\phi^{(x)}}$ such that

(3.4) $(\psi^{*})^{-1}(e\otimes h)=\Psi(e)\otimes\Phi(h)$ for each $e\in E_{x}$ .

We prove

(3.5) $\omega_{E}(\Psi(e), \Psi(f))=\omega_{E}(e, f)$ for $e,$ $f\in E_{x}$ .

By the invariance of $d\theta$ under $\Phi$ and (2.9), we get $(\omega_{E})_{\psi^{(x)}}\otimes\Phi(h)\otimes\Phi(h)=$

$(\psi^{*})^{-1}((\omega_{E})_{x}\otimes h\otimes h)=\Psi((\omega_{E})_{x})\otimes\Phi(h)\otimes\Phi(h)$ . Thus we have $\Psi((\omega_{E})_{x})=(\omega_{E})_{\psi^{(x)}}$ ,

which means (3.5). Next we show

(3.6) $\omega_{E}(\Psi(e),\overline{\Psi(f)})=\omega_{E}(e,\tilde{f})$ for $e,$ $f\in E_{x}$ .
In the same way as (3.3) we have the commutative diagram

$(\phi^{*})^{-1}$

$\wedge^{1,0}(\mathcal{H}_{\pi(h)})-\wedge^{1,0}(\mathcal{H}_{\phi(\pi(\hslash))})$

$q^{*}\uparrow$ $\uparrow q^{*}$

$E_{x}\otimes Ch$
$\overline{(\psi^{*})^{-1}}E_{\psi \mathfrak{c}x)}\otimes C\Phi(h)$

.

Since $\phi$ is a holomorphic isometry of $(Z,\overline{g})$ and $q$ is a pseudo-Riemannian
submersion (2.14), for each $\xi,$ $\eta\in E_{x}\otimes Ch$ we have

$g((\psi^{*})^{-1}(\xi), (\overline{\psi^{*})^{-1}(\eta)})=\overline{g}(q^{*}(\psi^{*})^{-1}(\xi), \overline{q^{*}(\psi^{*})^{-1}(\eta)})$

$=\overline{g}((\phi^{*})^{-1}q^{*}(\xi), \overline{(\phi^{*})^{-1}q^{*}(\eta)})=\overline{g}(q^{*}(\xi), q^{*}(\overline{\eta}))=g(\xi, \eta)$ .

Therefore we have
$g(\Psi(e)\otimes\Phi(h),\overline{\Psi(f)\otimes\Phi(h)})=g(e\otimes h,\overline{f\otimes h})$ .

But, the left hand side equals

$g(\Psi(e)\otimes\Phi(h),\overline{\Psi(f)}\otimes\overline{\Phi(h)})=\omega_{E}(\Psi(e),\overline{\Psi(f)})\omega_{F}(\Phi(h), \overline{\Phi(h)})$

$=\omega_{E}(\Psi(e),\overline{\Psi(f)})\omega_{F}(h,\tilde{h})$

by (3.1), (3.2), and the right hand side equals $\omega_{E}(e, f)\omega_{F}(h,\tilde{h})$ , which implies
(3.6).

Now we have also a linear isomorphism $\Psi_{1}$ : $E_{x}arrow E_{\psi^{(x)}}$ such that $(\psi^{*})^{-1}(e\otimes\tilde{h})$

$=\Psi_{1}(e)\otimes\Phi(\tilde{h})$ for each $e\in E_{x}$ . Since $(\psi^{*})^{-1}$ is R-linear, we have $(\psi^{*})^{-1}\overline{(e\otimes h)}$
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$=\overline{(\psi^{*})^{-1}(e\otimes h)}$, and hence $\Psi_{1}(\tilde{e})\otimes\Phi(\tilde{h})=\underline{\overline{\Psi(e)}}\otimes\overline{\Phi(h)}=\overline{\Psi(e)}\otimes\Phi(\tilde{h})$ by (3.2). On the
other hand, (3.5) and (3.6) imply $\Psi(e\sim)=\Psi(e)$ . Thus we get $\Psi_{1}=\Psi$ . Therefore
we have

(3.7) $(\psi^{*})^{-1}(e\otimes\tilde{h})=\Psi(e)\otimes\Phi(\tilde{h})$ for each $e\in E_{x}$ .

From (3.4) and (3.7) we conclude that

$(\psi^{*})^{-1}=\Psi\otimes\Phi$ on $(T_{x}^{*}M)^{C}=E_{x}\otimes F_{x}$ .

This means that if we identify $(TM)^{C}$ with $E\otimes F$ by the identifications (2.4)

for $E$ and $F$, we have

$\psi_{*}=\Psi\otimes\Phi$ on $(T_{x}M)^{C}=E_{x}\otimes F_{x}$ .

Moreover the action $S^{2}F\otimes T^{C}arrow T^{c}$ in (2.6) is given explicitly by

$(h\vee k)(e\otimes l)=\omega_{F}(h, l)e\otimes k+\omega_{F}(k, l)e\otimes h$

for $h,$ $k,$ $l\in F$ and $e\in E$ . These yield

(3.8) $\psi_{*}(h\vee k)\psi_{*}^{-1}=\Phi(h)\vee\Phi(k)$ on $(T_{x}M)^{C}$ for $h,$ $k\in F_{x}$ .

In fact, for each $e\in E_{x},$ $l\in F_{x}$ we have

$\psi_{*}((h\vee k)(e\otimes l))=\omega_{F}(h, l)\Psi(e)\otimes\Phi(k)+\omega_{F}(k, l)\Psi(e)\otimes\Phi(h)$ ,

$(\Phi(h)\vee\Phi(k))(\psi_{*}(e\otimes l))=\omega_{F}(\Phi(h), \Phi(l))\Psi(e)\otimes\Phi(k)$

$+\omega_{F}(\Phi(k), \Phi(l))\Psi(e)\otimes\Phi(h)$ ,

which are the same by (3.1). Now it follows from (3.8) that $\psi_{*}(S^{2}F)_{R}\psi*1$

$=(S^{2}\sqrt{})_{R}$ , which means $\psi_{*(\mathcal{I}m}H$ ) $\psi_{*}^{-1}=\mathcal{I}mH$ by (2.7). Therefore we have $\psi_{*}H\psi_{*}^{-1}$

$=H$, and hence $\psi\in Aut(M, g, H)$ . That $\overline{\psi}=\phi$ follows also by (3.8). $q$ . $e$ . $d$ .

Recalling that the lifting sends $Aut(M, g, H)$ into $Aut(Z, \gamma, \tau)$ , we obtain
the following corollary.

COROLLARY. $Aut(Z, 7,\overline{g})\subset Aut(Z, \gamma, \tau)$ .

REMARK. In the same way we can prove the following: Let $(M_{1}, g_{1}, H_{1})$

and $(M_{2}, g_{2}, H_{2})$ be quaternionic K\"ahler manifolds with non-zero scalar cur-
vature, and $(Z_{1}, \gamma_{1},\overline{g}_{1})$ and $(Z_{2}, \gamma_{2},\overline{g}_{2})$ their twistor spaces together with
canonical complex contact structure and canonical pseudo-K\"ahler metric. Then
for any isometric contact isomorphism $\phi:(Z_{1}, \gamma_{1},\overline{g}_{1})arrow(Z_{2}, \gamma_{2},\overline{g}_{2})$ there exists a
unique isomorphism $\psi:(M_{1}, g_{1}, H_{1})arrow(M_{2}, g_{2}, H_{2})$ such that $\phi(z)=\psi_{*}z\psi_{*}^{-1}$ for each
$z\in Z_{1}\subset \mathcal{I}mH_{1}$ .

THEOREM 3.2. $\mathfrak{a}(Z, 7, \tau)=\mathfrak{a}(Z, \gamma,\overline{g})$ .
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PROOF. Since by the above Corollary we have $\mathfrak{a}(Z, \gamma,\overline{g})\subset \mathfrak{a}(Z, \gamma, \tau)$ , it
suffices to show $\mathfrak{a}(Z, \gamma, \tau)\subset \mathfrak{a}(Z, \gamma,\overline{g})$ . Note first that $\tau\phi\tau^{-1}\in Aut(Z, \gamma)$ for each
$\phi\in Aut(Z, \gamma)$ . It follows that $X\mapsto\tau_{*}X$ is a real structure of $\mathfrak{a}(Z, \gamma)$ , and
$\mathfrak{a}(Z, \gamma, \tau)$ is a real form of $\mathfrak{a}(Z, \gamma)$ given by

$\mathfrak{a}(Z, \gamma, \tau)=\{X\in \mathfrak{a}(Z, \gamma) ; \tau_{*}X=X\}$ .

Let $\hat{\tau}$ denote the antiholomorphic involution of $P$ induced by the antilinear map
$h-,\tilde{h}$ of $F_{0}$ . We have then

(3.9) $\hat{\tau}(u\cdot a)=\hat{\tau}(u)\cdot\overline{a}$ for $u\in P,$ $a\in C^{*}$ ,

(3.10) $\theta(\hat{\tau}_{*}X)=\overline{\theta(X)}$ for $X\in C^{\infty}(TP)$ .
For a holomorphic function $\sigma$ on $P,$ $i$ . $e.$ , a smooth C-valued function $\sigma$ on $P$

with $d’’\sigma=0$ , we define a holomorphic function $\hat{\tau}(\sigma)$ on $P$ by

$\hat{\tau}(\sigma)(u)=\overline{\sigma(\hat{\tau}(u)})$ for $u\in P$.
Then we have

(3.11) $(\sim\wedge X)\cdot\hat{\tau}(\sigma)=\overline{X\cdot\sigma}$ for $X\in C^{\infty}(TP)$ .

Now let $X\in \mathfrak{a}(Z, \gamma)$ and $\phi_{t}$ the local flow generated by $X$. Then the prolonga-
tions $\phi_{t}$ give the local flow generated by the infinitesimal prolongation $\hat{X}\in \mathfrak{a}(P, \theta)$ .
From (3.9) and (3.10) it follows that $\hat{\tau}\phi_{\iota^{\hat{T}^{-1}}}$ belong to $Aut(P, \theta)$ and $\hat{\tau}\hat{\phi}_{t}\hat{\tau}^{-1}$

$=\tau\phi_{t}\tau^{-1}\wedge$ . This implies that $\hat{\tau}_{*}\hat{X}\in \mathfrak{a}(P, \theta)$ and $\hat{\tau}_{*}\hat{X}=\tau_{*}X\wedge$. Under the notation in
Corollary to Theorem 1.6, suppose that $\sigma\in F(P)$ corresponds to $\hat{X},$ $i$ . $e.$ ,

(3.12) $\iota(\hat{X})\Theta+d\sigma=0$ .
Then by (3.9) $\hat{\tau}(\sigma)$ also belongs to $F(P)$ and satisfies $\iota(\hat{\tau}_{*}\hat{X})\Theta+d_{\hat{T}}(\sigma)=0$ by
(3.10), (3.11). Thus $\hat{\tau}(\sigma)$ corresponds to $\hat{\tau}_{*}\hat{X}$.

Now suppose that $X\in \mathfrak{a}(Z, \gamma, \tau)$ . By the above arguments, this is equiva-
lent to

(3.13) $\sim\iota\wedge(\sigma)=\sigma$ .

Take an arbitrary point of $M$ and choose a neighbourhood $U$ of this point so
small that there exists a local standard basis $\{h_{1}, h_{2}\}$ of $F$ over $U$ . Let $(z^{1}, z^{2})$

be the fibre coordinate of $\sqrt{}$ with respect to this basis $\{h_{1}, h_{2}\}$ . For a fixed
$x\in U,\hat{p}^{-1}(x)=(F_{0})_{x}/Z_{2}\cong(C^{2}-\{0\})/Z_{2}$ , and so we may regard $\sigma|\hat{p}^{-1}(x)$ as a
holomorphic function $\sigma(z^{1}, z^{2})$ on $C^{2}$ with $\sigma(-z^{1}, -z^{2})=\sigma(z^{1}, z^{2})$ . From the
equality $\sigma(u\cdot a)=a^{-1}\sigma(u)(u\in P, a\in C^{*})$ we obtain $\sigma(a^{-1/2}z^{1}, a^{-1/2}z^{2})=a^{-1}\sigma(z^{1}, z^{2})$

for each $a\in C^{*}$ . It follows that $\sigma(z^{1}, z^{2})$ is of the form $\sigma(z^{1}, z^{2})=a(z^{1})^{2}+2bz^{1}z^{2}$

$+c(z^{2})^{2}$ . Therefore $\sigma$ is written as
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$a=a(z^{1})^{2}+2bz^{1}z^{2}+c(z^{2})^{2}$ on $\hat{p}^{-1}(U)$ ,

by C-valued smooth functions $a,$ $b,$ $c$ on $U$ . Since $\hat{\tau}(\sigma)=\overline{a}(z^{2})^{2}-2\overline{b}z^{1}z^{2}+\overline{c}(z^{1})^{2}$ ,

the condition (3.13) is equivalent to

(3.14) $\overline{a}=c$ , $b+\overline{b}=0$ .

Now we fix $x\in U$ and choose $\{h_{1}, h_{2}\}$ in such a way that $(\nabla h_{f})_{x}=0$ . Then the
holomorphy of $\sigma$ implies (Salamon [8]) that there exist $e,$ $e’\in E_{x}$ such that

(3.15) $da=e\otimes h_{1}$ , $2(db)=e^{f}\otimes h_{1}+e\otimes\tilde{h}_{1}$ , $dc=e’\otimes\tilde{h}_{1}$

at $x$ . Furthermore by (3.14) we have

(3.16) $e’=\hat{e}$ .

We want to write down the formula (3.12) explicitly. Regard $\hat{X}$ as a
$Z_{2}$-invariant vector field on $F_{0}$ and decompose it as

$\hat{X}_{\hslash}=\hat{H}_{l\iota}+\hat{V}_{h}$ , $\hat{H}_{h}\in\hat{\mathcal{H}}_{h}$ , $\acute{V}_{h}\in\hat{\mathcal{V}}_{h}$ , $h\in(F_{0})_{x}$ .

Let $W_{h}=p_{*}\hat{H}_{h}\in T_{x}M$, $\hat{V}_{h}=v^{1}h_{1}+v^{2}h_{2}\in\hat{\mathcal{V}}_{h}\cong F_{x}$ and choose a standard basis
$\{e_{i}\}$ of $E_{x}$ . If $h=z^{1}h_{1}+z^{2}h_{2}$ , by (2.5) we have

$\omega_{E}\otimes h\otimes h=(z^{1})^{2}\sum_{i=1}^{n}(e_{i}\otimes h_{1})$ A $(\tilde{e}_{i}\otimes h_{1})$

$+z^{1}z^{2} \sum_{i=1}^{n}$ { $(e_{i}\otimes h_{1})$ A $(e_{i}\otimes h_{1})+(e_{i}\otimes h_{1})$ A $(\hat{e}_{i}\otimes h_{1})$ }

$+(z^{2})^{2} \sum_{t=1}^{n}(e_{i}\otimes\tilde{h}_{1})$ A $(\tilde{e}_{i}\otimes\tilde{h}_{1})$ .

Therefore, by (2.9) the formula (3.12) is written as
$-2\nu(z^{1})^{2}\Sigma(\langle e_{i}\otimes h_{1}, W_{\hslash}\rangle\tilde{e}_{i}\otimes h_{1}-\langle\tilde{e}_{i}\otimes h_{1}, W_{\hslash}\rangle e_{i}\otimes h_{1})$

$-2 \nu z^{1}z^{2}\sum(\langle e_{i}\otimes h_{1}, W_{h}\rangle\tilde{e}_{i}\otimes\tilde{h}_{1}-\langle e_{i}\otimes\tilde{h}_{1}, W_{h}\rangle e_{i}\otimes h_{1}$

$+\langle e_{i}\otimes\tilde{h}_{1}, W_{h}\rangle\tilde{e}_{i}\otimes h_{1}-\langle\hat{e}_{i}\otimes h_{1}, W_{h}\rangle e_{i}\otimes\tilde{h}_{1})$

$-2 \nu(z^{2})^{2}\sum(\langle e_{i}\otimes\tilde{h}_{1}, W_{h}\rangle\tilde{e}_{i}\otimes\hslash_{1}-\langle\tilde{e}_{i}\otimes\tilde{h}_{1}, W_{h}\rangle e_{i}\otimes\tilde{h}_{1})$

$-2(v^{1}dz^{2}-v^{2}dz^{1})$

$+(z^{1})^{2}da+2z^{1}z^{2}db+(z^{2})^{2}dc+2az^{1}dz^{2}+2b(z^{2}dz^{1}+z^{1}dz^{2})+2cz^{2}dz^{2}$

$=0$ ,

where $p*is$ omitted and $\langle, \rangle$ denotes the pairing of $(T_{x}^{*}M)^{C}$ and $(T_{x}M)^{C}$ . By
(3.15) the last line becomes

$((z^{1})^{2}e+z^{1}z^{2}e’)\otimes h_{1}+(z^{1}z^{2}e+(z^{2})^{2}e’)\otimes\tilde{h}_{1}+2(az^{1}+bz^{2})dz^{1}+2(bz^{1}+cz^{2})dz^{2}$ .
Therefore (3.12) is equivalent to the following equations:
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(3.17) $\{\begin{array}{l}2\nu((z^{1})^{Z}A+z^{1}z^{Z}A)=(z^{1})^{2}e+z^{1}z^{2}e’,2\nu(z^{1}z^{2}A+(z^{2})^{2}\tilde{A})=z^{1}z^{2}e+(z^{2})^{2}e’,\end{array}$

and

(3.18) $v^{1}=bz^{1}+cz^{2}$ , $v^{2}=-az^{1}-bz^{2}$ ,

where
$A= \sum(\langle e_{i}\otimes h_{1}, W_{h}\rangle e_{i}\sim-\langle\tilde{e}_{i}\otimes h_{1}, W_{h}\rangle e_{i})$ .

In particular, (3.17) characterizes the horizontal component $H_{\hslash}$ . Now, from the
non-degeneracy of $\omega_{E}$ on $E_{x}$ and $\nu\neq 0$ , there exists uniquely $Y\in T_{x}M$ such that

(3.19) $2 \nu\sum(\langle e_{i}\otimes h_{1}, Y\rangle\tilde{e}_{i}-\langle e_{i}\otimes h_{1}, Y\rangle e_{i})=e$ .

We put
$B= \sum(\langle e_{i}\otimes h_{1}, Y\rangle\tilde{e}_{i}-\langle\hat{e}_{i}\otimes h_{1}, Y\rangle e_{i})$ .

Then, by (3.16) $B$ satisfies (3.17) instead of $A$ . This means that the horizontal
lift of $Y$ along $p^{-1}(x)$ coincides with the horizontal component $\hat{H}$ of $\hat{X}$ along
$p^{-1}(x)$ . Since $x\in U$ is arbitrary, it follows that there exists a unique smooth
vector field $Y$ on $M$ such that the horizontal lift of $Y$ coincides with $\hat{H}$. Then
we have

$\hat{p}_{*}\hat{X}_{u}=Y_{\hat{p}(u)}$ for each $u\in P$ .

Therefore the local flow $\psi_{t}$ on $M$ generated by $Y$ satisfies $\hat{p}\circ\phi_{t}=\psi_{t}\circ\hat{p}$ . Hence
$\hat{\phi}_{t}$ sends each fibre of $\hat{p}$ into a fibre of $p$ . So $\phi_{t}$ sends each fibre of $q$ into a
fibre of $q$ . Since $\phi_{t}\tau=\tau\phi_{t},$ $\phi_{t}$ : $q^{-1}(x)=P(F_{x})arrow q^{-1}(\psi_{t}(x))=P(F_{\psi_{t}(x)})$ is an isometry
of the Fubini-Study metric, and hence it is an isometry of $\overline{g}$ in virtue of (2.13).

We shall show that $\psi_{t}$ is an isometry of $(M, g)$ . Then, since $\phi_{t}\in Aut(Z, \gamma)$

leaves $\mathcal{H}$ invariant and $q$ is a pseudo-Riemannian submersion (2.14), $\phi_{t}$ induces
an isometry of $\mathcal{H}$ . Thus by (2.12) $\phi_{t}$ is an isometry of $(Z,\overline{g})$ , which means
$X\in \mathfrak{a}(Z, 7,\overline{g})$ . This completes the proof of $\mathfrak{a}(Z, 7, \tau)\subset \mathfrak{a}(Z, \gamma,\overline{g})$ .

For this purpose let us consider the isomorphism $\varpi_{\gamma}$ : $\mathfrak{a}(Z, \gamma)arrow\Gamma(L^{2})$ in
Theorem 1.6 and let $s\in\Gamma(L^{2})$ corresponds to $\sigma\in F(P)$ . Then $\varpi_{\gamma}(X)=s$ , and
under the notation in the last part of \S 2 we have

$\varphi(s)=a\tilde{h}_{1}\otimes\tilde{h}_{1}-bh_{1}\vee\tilde{h}_{1}+ch_{1}\otimes h_{1}$ ,

$\overline{\varphi(s)}=\overline{a}h_{1}\otimes h_{1}+\overline{b}h_{1}\vee\tilde{h}_{1}+\overline{c}\tilde{h}_{1}\otimes\tilde{h}_{1}$ .

Thus by (3.14) we know that $\varpi_{\gamma}$ induces an isomorphism $\mathfrak{a}(Z, \gamma, \tau)arrow\Gamma(L^{2})_{R}$ .
We define a linear map $q_{\#}$ : $\mathfrak{a}(Z, \gamma, \tau)arrow f(M, g)$ by $q_{\#}=\lambda\circ\varpi_{\gamma}$ . We shall prove

(3.20) $q_{\#}(X)=3vY$ for our $X$ and $Y$ .
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This will imply $Y\in \mathfrak{k}(M, g)$ since $\nu\neq 0$ , and hence $\psi_{t}$ is an isometry. Under the
previous situation, at $x\in U$ we have

$\nabla\varphi(s)=\tilde{h}_{1}\otimes\tilde{h}_{1}\otimes da-h_{1}\vee\tilde{h}_{1}\otimes db+h_{1}\otimes h_{1}\otimes dc$

$= \tilde{h}_{1}\otimes\tilde{h}_{1}\otimes e\otimes h_{1}-\frac{1}{2}(h_{1}\otimes\tilde{h}_{1}+\tilde{h}_{1}\otimes h_{1})\otimes(\tilde{e}\otimes h_{1}+e\otimes\tilde{h}_{1})$

$+h_{1}\otimes h_{1}\otimes\tilde{e}\otimes\tilde{h}_{1}$ ,

by (3.15), (3.16). Therefore we get

$\delta\varphi(s)=e\otimes\tilde{h}_{1}-\frac{1}{2}\tilde{e}\otimes h_{1}+\frac{1}{2}e\otimes\tilde{h}_{1}-\tilde{e}\otimes h_{1}$

$= \frac{3}{2}(-\tilde{e}\otimes h_{1}+e\otimes\tilde{h}_{1})$

$=3 \nu\sum_{i=1}^{n}(-\langle e_{i}\otimes\tilde{h}_{1}, Y\rangle e_{i}\sim\otimes h_{1}+\langle e_{i}\sim\otimes\tilde{h}_{1}, Y\rangle e_{i}\otimes h_{1}$

$+\langle e_{i}\otimes h_{1}, Y\rangle\tilde{e}_{i}\otimes\tilde{h}_{1}-\langle\tilde{e}_{i}\otimes h_{1}, Y\rangle e_{i}\otimes\tilde{h}_{1})$ ,

by substituting (3.19). If we put $\xi^{i}=e_{i}\otimes h_{1},$ $\xi^{n+i}=\tilde{e}_{i}\otimes h_{1}(1\leqq i\leqq n)$ , then $g(\xi^{i}, \xi^{j})$

$=g(\overline{\xi}^{i},\overline{\xi}^{j})=0,$ $g(\xi^{i},\overline{\xi}^{j})=\delta_{ij}(1\leqq i, j\leqq 2n)$ and

$\delta\varphi(s)=3\nu\sum_{i=1}^{2n}(\langle\xi^{i}Y\rangle\overline{\xi}^{i}+\langle\overline{\xi}^{i}, Y\rangle\xi^{i})$ .

Therefore under the duality $\delta\varphi(s)$ corresponds to $3\nu Y$ , which completes the
proof of (3.20). $q$ . $e$ . $d$ .

COROLLARY 1. If $\overline{g}$ is complete, $Aut(Z, \gamma, \tau)$ has a unique Lie group struc-
ture such that $Aut^{0}(Z, \gamma, \tau)=Aut^{0}(Z, \gamma,\overline{g})$ , where $Aut^{0}(\cdot)$ designates the identity
compment of $Aut(\cdot)$ .

PROOF. Since $\overline{g}$ is complete, we have Lie $Aut(Z, 7,\overline{g})=\mathfrak{a}(Z, \gamma,\overline{g})$ . Thus the
corollary follows from Theorem 3.2. $q$ . $e$ . $d$ .

COROLLARY 2. $\mathfrak{a}(Z, \gamma)=\mathfrak{a}(Z, \gamma,\overline{g})^{C}\cong \mathfrak{a}(M, g, H)^{C}$ .

PROOF. Since $\mathfrak{a}(Z, \gamma, \tau)$ is a real form of $\mathfrak{a}(Z, \gamma)$ , by Theorem 3.2 $\mathfrak{a}(Z, \gamma)$

is the complexification of $\mathfrak{a}(Z, \gamma,\overline{g})$ . The second isomorphism follows from
Theorem 3.1. $q$ . $e$ . $d$ .

COROLLARY 3. If $g$ is complete, we have

$\dim_{R}Aut(M, g, H)=\dim_{C}\Gamma(L^{2})$ .
PROOF. Since $g$ is complete, we have Lie $Aut(M, g, H)=\mathfrak{a}(M, g, H)$ . Thus

by Corollary 2 $\dim_{R}Aut(M, g, H)$ is equal to $\dim_{c}\mathfrak{a}(Z, \gamma)$ , which is the same as
$\dim_{C}\Gamma(L^{2})$ by Theorem 1.6. $q$ . $e$ . $d$ .
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COROLLARY 4. If $(M, g, H)$ is a compact quaternionic Kahler manifold with
posttive scalar curvature, then $Aut^{0}(Z, \gamma,\overline{g})$ and $Aut^{0}(M, g, H)$ are compact, and

(3.21) $Aut^{0}(Z, \gamma)=(Aut^{0}(Z, \gamma,\overline{g}))^{C}\cong(Aut^{0}(M, g, H))^{C}$ .
In particular, $Aut^{0}(Z, \gamma)$ is a reductive complex Lie group.

PROOF. In this case $Z$ is compact and $\overline{g}$ is a K\"ahler metric. Thus both $g$

and $\overline{g}$ are complete, and hence we have Lie $Aut^{0}(Z, \gamma,\overline{g})=\mathfrak{a}(Z, \gamma,\overline{g})$ and
Lie $Aut^{0}(M, g, H)=\mathfrak{a}(M, g, H)$ . Hence (3.21) follows from Corollary 2. The
compactness of $Aut^{0}(Z, \gamma,\overline{g})$ and $Aut^{0}(M, g, H)$ follows from that of $K(Z,\overline{g})$

and $K(M, g)$ . $q$ . $e$ . $d$ .

\S 4. Uniqueness of quaternionic K\"ahler manifolds with certain twistor
spaces.

In this section we prove the uniqueness of a quaternionic K\"ahler manifold
whose twistor space is a k\"ahlerian C-space of Boothby type.

We recall first the following result.

THEOREM 4.1 (Wolf [10]). The set of all equivalence classes of quaternionic
Kahler maniJ olds $(M, g, H)$ such that $(M, g)$ is a compact symmetric space with
positive scalar curvature is in a bijective corresp0ndence with the set of all contact
isomorphism classes of compact simply connected homogeneous complex contact
$7nanifolds$ , by the assignment for $(M, g, H)$ of its twistor space $(Z, \gamma)$ with the
canomcal complex contact structure $\gamma$ .

REMARK. Actually Wolf [10] dealt with compact symmetric quaternionic
K\"ahler manifolds, whose “ holonomy has quaternion scalar part “. But this is
equivalent to “ with positive scalar curvature “ in virtue of Alekseevskii [2].

THEOREM 4.2. Let $(M_{1}, g_{1}, H_{1})$ and $(M_{2}, g_{2}, H_{2})$ be compact quaternionic
Kahler manifolds with positive scalar curvature, and $Z_{1}$ and $Z_{2}$ their twistor
spaces. Supp0se that $Z_{1}$ is a kahlerian C-space of Boothby type. Then, if $Z_{1}$ and
$Z_{2}$ are biholomorphic, $(M_{1}, g_{1}, H_{1})$ and $(M_{2}, g_{2}, H_{2})$ are equivalent.

PROOF. Let $\gamma_{i}$ be the canonical complex contact structure on $Z_{i}$ , $\overline{g}_{i}$ the
canonical Einstein K\"ahler metric on $Z_{i}’$ and $G_{i}=Aut^{0}(Z_{i}, \gamma_{i},\overline{g}_{i})$ for $i=1,2$ .
Since $Z_{i}$ is k\"ahlerian and $H_{1}(Z_{i}, Z)=\{0\}$ in virtue of the simply connectedness,
by Theorem 1.7 there exists a contact isomorphism $\phi_{1}$ : $(Z_{1}, \gamma_{1})arrow(Z_{2}, \gamma_{2})$ . The
same theorem and Example 1.1 also imply the transitivity of $Aut^{0}(Z_{i}, \gamma_{i})$ on $Z_{i}$ .
Put $\overline{g}_{1}’=\phi_{1}^{*}\overline{g}_{2}$ and $G_{1}’=Aut^{0}(Z_{1}, \gamma_{1},\overline{g}_{1}’)$ . We have then

$K(Z_{1},\overline{g}_{1}’)=\phi_{1}^{-1}K(Z_{2},\overline{g}_{2})\phi_{1}$ , $Aut(Z_{1}, \gamma_{1})=\phi_{1}^{-1}Aut(Z_{2}, \gamma_{2})\phi_{1}$ .
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It follows that $G_{1}’=\phi_{1}^{-1}G_{2}\phi_{1}$ . Since $G_{2}$ is a maximal compact subgroup of
$Aut^{0}(Z_{2}, \gamma_{2})$ by Corollary 4 to Theorem 3.2, $G_{1}’$ is a maximal compact subgroup
of $Aut^{0}(Z_{1}, \gamma_{1})$ . By the same reasoning $G_{1}$ is also a maximal compact subgroup
of $Aut^{0}(Z_{1}, \gamma_{1})$ . Therefore there exists $\phi_{2}\in Aut^{0}(Z_{1}, \gamma_{1})$ such that $\phi_{2}G_{1}\phi_{2}^{-1}=G_{1}’$ .
We put $\phi=\phi_{1}\circ\phi_{2}$ . This is a contact isomorphism $\phi:(Z_{1}, \gamma_{1})arrow(Z_{2}, \gamma_{2})$ with
$\phi G_{1}\phi^{-1}=G_{2}$ . Hence both $\overline{g}_{1}$ and $\phi^{*}\overline{g}_{2}$ are $G_{1}$-invariant Einstein K\"ahler metrics
on $Z_{1}$ . Moreover $G_{1}^{c}=Aut^{0}(Z_{1}, \gamma_{1})$ is semi-simple by Example 1.1. It follows
from Takeuchi [9] that there exists $c>0$ such that $c\phi^{*}\overline{g}_{2}=\overline{g}_{1}$ . Therefore
$\phi:(Z_{1}, \gamma_{1},\overline{g}_{1})arrow(Z_{2}, \gamma_{2},\dot{c}\overline{g}_{2})$ is an isometric contact isomorphism. Thus by Remark
in \S 3 there exists an isomorphism $\psi:(M_{1}, g_{1}, H_{1})arrow(M_{2}, cg_{2}, H_{2})$ . Hence
$(M_{1}, g_{1}, H_{1})$ and $(M_{2}, g_{2}, H_{2})$ are equivalent. $q$ . $e$ . $d$ .

COROLLARY. Let $Z$ be a kahlerian $C$-space of Boothby $tyPe$ . Then there exists
a compact quaternionic Kahler manifold $(M, g, H)$ with Positive scalar curvature
such that its twistor space is biholomorphic to $Z$, which is unique up to equivalence.
The underlying Riemannian manifold $(M, g)$ of $(M, g, H)$ is always a symmetric
space.

PROOF. By Example 1.1 $Z$ has a homogeneous complex contact structure.
Thus Theorem 4.1 implies the existence of $(M, g, H)$ as above. The uniqueness
follows from Theorem 4.2. $q$ . $e$ . $d$ .

EXAMPLE 4.1. The complex projective $(2n+1)$ -space $P_{2n+1}(C)$ is a k\"ahlerian
C-space of Boothby type. The corresponding quaternionic K\"ahler manifold is
the quaternionic projective n-space $P_{n}(H)$ with the canonical quaternionic K\"ahler

structure.
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