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Introduction.

Let $Fo1_{q}(M)$ denote the set of codimension $qC^{\infty}$-foliations of a closed 771-

manifold M. $Fo1_{q}(M)$ carries a natural weak $C^{r}$-topology $(0\leqq r\leqq\infty)$ , which is
described in [5]. We denote this space by $Fo1_{Q}^{r}(M)$ . We say a foliation $F$ is
$C^{r}$-stable if there exists a neighborhood $V$ of $F$ in $Fo1_{Q}^{r}(M)$ such that every
foliation in $V$ has a compact leaf. We say $F$ is $C^{r}$-unstable if not. We simply
say $F$ is (un-)stable if $F$ is $C^{1_{-}}(un-)stable$ . It seems to be of interest to deter-
mine if $F$ is $C^{r}$-stable or not.

Let $L$ be a compact leaf of $F$. Thurston [13] and Langevin-Rosenberg [6]

showed, generalizing the Reeb stability theorem [9] that if $H^{1}(L;R)=0$, then
$F$ is stable. Let $\pi_{1}(L)arrow GL(q, R)$ be the action determined by the linear holon-
omy of $L$ , where $q$ is the codimension of $F$. Then generalizing the results of
Hirsch [5] and Thurston [13], Stowe [12] showed that if the cohomology group
$H^{1}(\pi_{1}(L);R^{q})$ is trivial, then $F$ is stable.

Let $F$ be a foliation of an orientable $S^{1}$-bundle over a closed surface $B$ by
fibres. Seifert [11] showed that $F$ is $C^{0}$-stable if $\chi(B)\neq 0$ , where $\chi(B)$ is the
euler characteristic of $B$ . The result was generalized by Fuller [4] to orientable
circle bundles over arbitrary closed manifolds $B$ with $\chi(B)\neq 0$ . Let $\pi:Marrow B$

be a fibration with fibre $L$ . Langevin-Rosenberg [7] showed that the foliation
of $M$ by fibres is $C^{0}$-stable provided that 1) $\pi_{1}(L)\cong Z,$ $2$) $B$ is a closed surface
with $\chi(B)\neq 0$ and 3) $\pi_{1}(B)$ acts trivially on $\pi_{1}(L)$ . The author [3] generalized
the above result to compact codimension two foliations. Furthermore Plante
[8] gave a necessary and sufficient condition for a transversely orientable folia-
tion of a closed 3-manifold by closed orientable surfaces to be $C^{0}$-stable.

We study here the stability of all foliations of closed 3-manifolds by circles
and give a necessary and sufficient condition for such a foliation to be stable.
Indeed, we have the following theorem.
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THEOREM. Let $F$ be a foliation of a closed 3-manifold $M$ by circles. $The7l$

$F$ is stable if and only if one of the followings holds;
(i) $\chi(M/F)^{2}+\chi_{V}(M/F)^{2}\neq 0$ ,

(ii) the umon of all rejlection leaves of $F$ contains a subset homeomorphic to a
Klein bottle,

$u’ here\chi_{V}(M/F)$ is the V-euler characteristic of the leaf space $M/F$ (for definitions,

see \S 1).

We prove the sufficient part (Theorems 2 and 4) of Theorem in \S 1, and the
necessary part (Theorems 9 and 15) of Theorem in \S \S 2 and 3. All foliations
we consider here are smooth of class $C^{\infty}$ and of codimension two.

1. Sufficient condition for $F$ to be stable.

Let $D^{2}$ be the unit disk and $G$ a finite cyclic subgroup of $O(2)$ . We foliate
$S^{1}\cross D^{2}$ with leaves of the form $S^{1}\cross\{pt\}$ . This foliation is preserved by the
diagonal action of $G$ , defined by $g(x, y)=(x\cdot g^{-1}, g\cdot y)$ for $g\in G$ , $x\in S^{1}$ and
$y\in D^{2}$ , where $G$ acts linearly on $D^{2}$ and freely on $S^{1}$ on the right. So we have
a foliation induced on $S^{1}x_{G}D^{2}$ . Note that the central leaf in this foliation
corresponding to $y=0$ has the holonomy group $G$ .

PROPOSITION 1 (Epstein [1]). Let $F$ be a foliation of a closed 3-manifold $M$

by circles. Then each leaf in $F$ has a neighborhood diffeomorphjc to such a
foliation of $S^{1}\cross_{G}D^{2}$ .

Proposition 1 implies that all leaves in $F$ have the holonomy groups iso-
morphic to finite cyclic groups. Hence, $G$ is either a subgroup of $SO(2)$ which
consists of $k$ rotations and is denoted by $Z_{k}$ or a subgroup of $O(2)$ which con-
sists of a reflection and the identity and is denoted by $D$ . We say a leaf with
non-trivial holonomy is a rotation leaf or a reflection leaf if the holonomy group
is $Z_{k}(k>1)$ or $D$ . Notice that $F$ has only a finite number of rotation leaves
because of the compactness of $M$. Furthermore the leaf space $M/F$ is homeo-
morphic to a compact 2-dimensional V-manifold (which is equivalently called an
orbifold) and we can define the V-euler characteristic of $M/F,$ $\chi_{V}(M/F)\in Q$ (see

Satake [10] for definitions). In this case, $M/F$ is also a topological manifold
and the union $R(F)$ of all reflection leaves corresponds to the boundary of $M/F$.
Let $L_{1},$

$\cdots,$
$L_{n}$ be all rotation leaves in $F$, whose holonomy groups are $Z_{k_{1}},$ $Z_{k_{n}}$

respectively. Then the V-euler characteristic of $M/F$ is given by

$\chi_{V}(M/F)=\chi(M/F)+\sum_{i=1}^{n}(1/k_{i}-1)$ ,

where $\chi(M/F)$ is the euler characteristic of $M/F$.
Now we give a sufficient condition for $F$ to be stable in the following which
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is a corollary to the results of Hirsch [5], Seifert [11] and Fukui [3].

THEOREM 2. Let $F$ be a foliation of a closed 3-manifold $M$ by circles. If
$\chi(M/F)^{2}+\chi_{\gamma}(M/F)^{2}\neq 0$ , then $F$ is stable.

PROOF. Let $\tau M$ be the tangent bundle of $M$ and $\tau F$ the subbundle of $\tau M$

which consists of the vectors tangent to the leaves of $F$. Suppose that $\tau F$ is
not orientable. Take the unit vector subbundle $\tilde{M}$ of $\tau F$. Then $\tilde{M}$ is a double
cover of $M$ and for the foliation fl induced on $\tilde{M},$ $\tau fl$ is orientable. Moreover
we see that $\chi(\tilde{M}/fl)=2\chi(M/F)$ and $\chi_{V}(\tilde{M}/\tilde{F})=2\chi_{V}(M/F)$ . Let $F’$ be a foliation
of $M$ which is $C^{1}$-close to $F$. The foliation $F’$ on $\tilde{M}$ is also $C^{1}$-close to $F$ .
Then we can see that if $F’$ has a compact leaf, then $F’$ also has a compact
leaf. Hence it is sufficient to prove Theorem 2 when $\tau F$ is orientable. First
we prove the case $n\neq 0$ . Then $F$ has a rotation leaf. Since 1 is not an eigen-
value of the linear holonomy of every rotation leaf, the proof follows from the
result of Hirsch ([5], Theorem 1.1). Next we prove the case $n=0$ . Then $F$

satisfies the conditions of Corollary 5 of [3], hence $F$ is stable. This completes
the proof.

REMARK 3. We can define another topology on $Fo1_{q}(M)$ as follows. Given
a foliation $F$, we associate to each point $x$ of $M$ the plane tangent to $F$ at $x$ . This
gives a section of the bundle over $M$ whose fibre over $x$ is the Grassmannian
of all $(m-q)$ -dimensional planes of the tangent space of $M$ at $x$ , where $m$ is
the dimension of $M$. The $C^{r}$-topology $(0\leqq r\leqq\infty)$ on the space of all sections of
this bundle topologizes $Fo1_{q}(M)$ . We denote this space by $\overline{Fo}1_{q}^{r}(M)$ . Note that
the identity: $Fo1_{Q}^{r}(M)arrow\overline{Fo}1_{q}^{r-1}(M)$ is continuous but in general not homeomorphic
(see Epstein [2]). Under this topology Theorem 1.1 of [5] is still true except
for uniqueness in our case. For, let $h(F):(R^{2},0)arrow(R^{2},0)$ be a representation
of the holonomy of a rotation leaf of $F$. Then we can take a neighborhood $\overline{V}$

of $F$ in $\overline{Fo}1_{2}^{0}(M)$ such that for any $F’\in\overline{V},$ $h(F’):R^{2}arrow R^{2}$ has a (not necessarily
unique) fixed point since $h(F’)-id_{R^{2}}$ : $(R^{2},0)arrow(R^{2},0)$ is diffeomorphic, where $h(F’)$

is the perturbed holonomy map associated to $F’$ (see [5]). Hence Theorem 2 is
also true under this topology.

THEOREM 4. Let $F$ be a foliation of a closed 3-manifold $M$ by circles. If
$R(F)$ cmtains a subset homeomorphjc to a Klein bottle, then $F$ is stable.

PROOF. We may assume that $R(F)$ is connected because the argument is
local. The bundle $q:R(F)arrow R(F)/F$ is equivalent to the non-trivial $S^{1}$-bundle
$p:K^{2}arrow S^{1}$ , where $K^{2}$ is the Klein bottle. Let $N$ be a saturated tubular neigh-
borhood of $R(F)$ in $M$. We consider the quotient space $N_{0}$ obtained in the
product $[0,1]\cross[0,1]\cross(-1,1)$ with coordinate $(s, t, u)$ , $s,$ $t\in[0,1]$ and $u\in$
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$(-1,1)$ by making the following identifications; $(0, t, u)\sim(1, t, -u)$ and $(s, 0, u)$

$\sim(1-s, 1, u)$ for all $s,$
$t$ and $u$ . We foliate $[0,1]\cross[0,1]\cross(-1,1)$ with leaves

of form $[0,1]\cross\{t\}\cross\{u\}$ to obtain a foliation $F_{0}$ induced on $N_{0}$ . Then we may
assume, taking a double cover of $N$ if necessary, that $(N, F)$ is diffeomorphic
to $(N_{0}, F_{0})$ . So they are identified. Note that $R(F)$ corresponds to the subset
$\{(s, t, 0);0\leqq s, t\leqq 1\}/\sim$ which is homeomorphic to $K^{2}$ . We define a section $c$

of the bundle $p;K^{2}arrow S^{1}$ by $c(t)=(1/2, t, 0)$ . Let $\alpha(0)$ be a closed curve on $L_{c(0)}$

with base point $c(O)$ and orientation $\partial/\partial s$ and $\alpha(t)(0\leqq t\leqq 1)$ translations of $\alpha(0)$

along $c(t)$ , where $L_{c(0)}$ is a leaf of $F$ through $c(O)$ . Note that $\alpha(1)=-\alpha(0)$ .
Let $F’$ be a foliation which is sufficiently $C^{1}$-close to $F$. We can construct the
perturbed holonomy map $H(F’, \alpha(t))$ of $\{(1/2, t, u) ; -\delta<u<\delta\}$ into an annulus
$A=\{(1/2, t, u) ; 0\leqq t\leqq 1, -1<u<1\}/\sim$ for each $t$ , where $\delta$ is a small number
(see Hirsch [5] and Langevin-Rosenberg [7]). We take the product $[0,2]\cross$

$(-k, k)$ with coordinate $(t’, u),$ $t’\in[0,2],$ $u\in(-k, k)$ and identify $(0, u)$ and
(2, u) to obtain an annulus $A_{k}$ . The map $\pi:A_{1}arrow A$ defined by $\pi(t’, u)=$

(1/2, $t’$ mod 1, u) is a double covering. Then we define a map $H$ :
$\{(t’, u);-\delta<u<\delta\}arrow A_{1}$ by

$H(t’, u)=\{\begin{array}{ll}H(F’, \alpha(t’))(t’, u) (0\leqq i’\leqq 1)H(F’, -\alpha(t’-1))(t’-1, u)+(1,0) (1\leqq t’\leqq 2).\end{array}$

Note that $H(O, u)=H(2, u)$ for each $u$ and $H$ is a diffeomorphism of $A_{\delta}$ into $A_{1}$ .
We put $H(F’, \alpha(t))(t, u)=(f_{1}(t, u),$ $f_{2}(i, u))$ and $H(t’, u)=(\overline{f}_{1}(t’, u),\overline{f}_{2}(t’, u))$ . There
exists a unique $u(t’)$ with $u(t’)=\overline{f}_{2}(t’, u(t’))$ near $u=0$ for each $t’$ since the
holonomy group of each $L_{c(t)}$ is isomorphic to $D$ . Then $l:[0,2]arrow A_{1}$ defined
by $l(t’)=(t’, u(t’))$ is a loop. Therefore we may assume, changing the coordinate
$t$ if necessary, that $\pi ol\circ i:[0,1]arrow A$ is a loop, where $i:[0,1]arrow[0,2]$ is the in-
clusion. We define $v(l(t’))$ to be the vector tangent to $A_{1}$ joining $l(t’)$ and $H(l(t’))$ .
$\pi_{*}$ projects $v(lQi(i))$ to a vector $v(\pi 01oi(t))$ on $\pi\circ l\circ i(t)$ , whose $\partial/\partial t$-component is
$f_{1}(t, u(t))-t$ , where $\pi\circ l\circ i(t)=(t, u(t))$ . If $f_{1}(0, u(O))>0$ , then $f_{1}(1, u(1))-1<0$

since $H(F’, \alpha(1))=H(F’, -\alpha(0))$ . Hence by the mean value theorem, there exists
$t_{0}(0<t_{0}<1)$ such that $v(p(t_{0}))=0$ . This means that $H(F’, \alpha(t_{0}))(t_{0}, u(t_{0}))=(t_{0}, u(t_{0}))$ ,
hence $L_{p(t_{0})}’$ is compact, where $L_{p(t_{0})}’$ is a leaf of $F’$ through $p(t_{0})$ .

REMARK 5. Let $F$ be a foliation of a closed 3-manifold $M$ by circles such
that $M/F$ is homeomorphic to a cylinder. Then $\tau F$ is orientable if and only if
$q:R(F)arrow R(F)/F$ is an orientable $S^{1}$-bundle.

2. Necessary condition for $F$ to be stable, orientable case.

The equation $\chi(M/F)^{2}+\chi_{V}(M/F)^{g}=0$ implies the equations $\chi(M/F)=0$ and
$n=0$ . Therefore $F$ has not anv rotation leaves and $M/F$ is homeomorphic to
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one of the following four manifolds: (1) torus $T^{2}$ , (2) Klein bottle $K^{2}$ , ( $3\rangle$

cylinder $S^{1}\cross[0,1]$ and (4) M\"obius band $B$ . We assume that $\tau F$ is orientable
in this section.

First we consider the case that $M/F$ is homeomorphic to $T^{2}$ or $K^{2}$ . We
regard $T^{2}$ (resp. $K^{2}$ ) to be the quotient space obtained in the product $[0,1]\cross[0,1]$

with coordinate $(s, t),$ $s,$ $t\in[0,1]$ , by the following identifications; $(0, t)\sim(1, t)$ ,
$(s, O)\sim(s, 1)$ (resp. $(0,$ $t)\sim(1,1-t),$ $(s,$ $O)\sim(s,$ $1)$). We denote by $\{s\}\cross S_{t}^{1}$ the
quotient subspace obtained in $\{s\}\cross[0,1]$ by identifying $(s, 0)$ and $(s, 1)$ . Since
the quotient map $q:Marrow M/F$ is an orientable $S^{1}$-bundle, $q^{-1}((1/2-3\epsilon, 1/2+3\epsilon)\cross S_{t}^{1})$

is diffeomorphic to $S^{1}\cross(1/2-3\epsilon, 1/2+3\epsilon)\cross S_{t}^{1}$ with coordinate $(\theta, s, t)$ , where
$0<\epsilon<1/6$ . Let $\varphi,$ $\psi:[0,1]arrow R$ be $C^{\infty}$-functions such that 1) $0\leqq\varphi(s)\leqq 1,0\leqq\psi(s)\leqq 1$ ,
2) $\varphi(1/2)=0$ and $\varphi(s)\neq 0$ for $s\neq 1/2$ and 3) $\psi(s)=0$ for $s\in[0,1/2-2\epsilon$ ) $\cup(1/2+2\epsilon, 1$ ]

and $\psi(s)=1$ for $s\in(1/2-\epsilon, 1/2+\epsilon)$ . Then we can define a vector field $\overline{Y}$ on $T^{2}$

(resp. $K^{2}$ ) by $\overline{Y}=\varphi(s)\partial/\partial s+\psi(s)\partial/\partial t$ . We can lift $\overline{Y}$ to a vector field $Y$ on $M$

such that $Y$ on $q^{-1}((1/2-3\epsilon, 1/2+3\epsilon)\cross S_{t}^{1})$ is given by $\varphi(s)\partial/\partial s+\psi(s)\partial/\partial t$ using
the coordinate $(\theta, s, t)$ . From the assumption, $F$ gives rise to a non-singular
vector field $X$ of $M$. We may assume that $X$ on $q^{-1}((1/2-3\epsilon, 1/2+3\epsilon)\cross S_{t}^{1})$ is
given by $X=\partial/\partial\theta$ using the same coordinate. Then a vector field $X+\lambda Y$ is
non-singular for a small number $\lambda$ . We define a foliation $F_{\lambda}(Y)$ to be the set
of the integral curves of $X+\lambda Y$ . It is easy to see that $F$ and $F_{\lambda}(Y)$ are suf-
ficiently $C^{r}$-close if $\lambda$ is sufficiently small. Furthermore $F_{\lambda}(Y)$ has not any com-
pact leaves if $\lambda$ is irrational. Indeed, the $\partial/\partial s$-component of $X+\lambda Y$ is not zero
on $M-q^{-1}(\{1/2\}\cross S_{t}^{1})$ , hence all leaves of $F_{\lambda}(Y)$ in $M-q^{-1}(\{1/2\}\cross S_{t}^{1})$ are not
closed. On the other hand, $X+\lambda Y$ is equal to $\partial/\partial\theta+\lambda\partial/\partial t$ on $q^{-1}(\{1/2\}\cross S_{t}^{1})$ .
Hence the leaves of $F_{\lambda}(Y)$ in $q^{-1}(\{1/2\}\cross S_{t}^{1})=S^{1}\cross\{1/2\}\cross S_{t}^{1}$ consist of the linear
curves of slope $\lambda$ . Since $\lambda$ is irrational, these leaves are not compact. So we
have the following proposition because we can take a sequence of irrational
numbers $\{\lambda_{i}\}_{i\in N}$ with $\lambda_{i}arrow 0(iarrow\infty)$ .

PROPOSITION 6. Let $F$ be a foliation of a closed 3-manifold $M$ by circles
such that $M/F$ is homeomorphic to $T^{2}$ or $K^{2}$ . Supp0se that $\tau F$ is orientable. Then
$F$ is $C^{r}$-unstable $(r\geqq 0)$ .

Next we consider the case that $M/F$ is homeomorphic to a cylinder. Let
$(s, t)$ be a coordinate of the cylinder $S_{\epsilon}^{1}\cross[0,1],$ $s\in S_{s}^{1},$ $r\in[0,1]$ . The union
$R(F)=q^{-1}(S_{s}^{1}\cross\{0,1\})$ of reflection leaves of $F$ is the total space of an orientable
$S^{1}$-bundle $q:R(F)arrow S_{s}^{1}\cross\{0,1\}$ by Remark 5, hence it is diffeomorphic to
$S^{1}\cross S_{s}^{1}\cross\{0,1\}$ with coordinate $(\theta, s)$ , so we identify $R(F)$ with $S^{1}\cross S_{s}^{1}\cross\{0,1\}$ .
Let $N$ be a tubular neighborhood of $R(F)$ in $M$ which is diffeomorphic to
$q^{-1}(S_{l}^{1}\cross\{[0, \epsilon)\cup(1-\epsilon, 1]\})$ and $\pi:Narrow S^{1}\cross S_{s}^{1}\cross\{0,1\}$ its projection. Let $\varphi:[0,1]$

$arrow R$ be a $C^{\infty}$-function such that $0\leqq\varphi(t)\leqq 1$ for $t\in[0,1],$ $\varphi(t)=1$ for $t\in(\epsilon, 1-\epsilon)$ ,
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$\varphi(t)\neq 0$ for $t\neq 0,1$ and $\varphi$ is infinitely tangent to the zero map at $t=0,1$ . Let
$\varphi(r)\partial/\partial t$ and $\psi(t)\partial/\partial s$ be vector fields on $S_{s}^{1}\cross[0,1]$ , where $\psi(t)=1-\varphi(t)$ . From
the assumption, $F$ gives rise to a non-singular vector field $X$. We may assume
that $X$ on $q^{-1}(S_{s}^{1}\cross\{0,1\})$ is given by $\partial/\partial\theta$ using the coordinate $(\theta, s)$ . Since
$q:M-R(F)arrow S_{s}^{1}\cross(0,1)$ is an orientable $S^{1}$-bundle, we can lift $\varphi(t)\partial/\partial t$ to a vector
field $Y$ on $M$. Moreover we can lift $\psi(t)\partial/\partial s$ to a vector field $Z$ on $M$. A
vector field $X+\lambda(Y+Z)$ is non-singular for a small number $\lambda$ . So we dePne a
foliation $F_{\lambda}(Y, Z)$ to be the set of the integral curves of $X+\lambda(Y+Z)$ . We see
that $F$ and $F_{\lambda}(Y, Z)$ are sufficiently $C^{r}$-close if $\lambda$ is sufficiently small. Further-
more we can see that $F_{\lambda}(Y, Z)$ has not any compact leaves if $\lambda$ is irrational.
Hence we have the following.

PROPOSITION 7. Let $F$ be a foliation of $M$ by circles such that $M/F$ is homeo-
morphic to a cylinder. Supp0se that $\tau F$ is orientable. Then $F$ is $C^{r}$-unstable $(r\geqq 0)$ .

Finally we consider the case that $M/F$ is homeomorphic to a M\"obius band.
We regard the Mobius band $B$ to be the quotient space obtained in the product
$[0,1]\cross[-1,1]$ with coordinate $(s, t),$ $s\in[^{}0,1],$ $t\in[-1,1]$ by identifying the
segments $\{0\}\cross[-1,1]$ and $\{1\}\cross[-1,1]$ by the involution $\tau(t)=-t$ . We denote
by $S_{s}^{1}\cross\{t\}$ the quotient subspace obtained in $[0,1]\cross\{t, -t\}$ by the above identi-
fication. Let $\varphi,$ $\psi:[-1,1]arrow R$ be $C^{\infty}$-functions such that 1) $\varphi(-t)=-\varphi(t)$ ,
$\psi(-t)=\psi(t)$ , 2) $\varphi$ is infinitely tangent to the zero map at $t=-1,0,1$ and is
never zero for $t\neq-1,0,1$ and 3) $\psi(t)=0$ for $|t|\in[2\epsilon, 1-2\epsilon],$ $\psi(t)=1$ for $|t|\in$

$[0, \epsilon]\cup[1-\epsilon, 1]$ , where $0<\epsilon<1/6$ . Since $\varphi(t)\partial/\partial r$ is a $\tau$-invariant vector field
on $[0,1]\cross[-1,1]$ , we can define a vector field $\varphi(t)\partial/\partial t$ on $B$ . We assume that
the union $R(F)=q^{-1}(\partial B)$ of the reflection leaves of $F$ is the total space of an
orientable $S^{1}$-bundle $q:R(F)arrow\partial B\cong S_{s}^{1}\cross\{1\}$ , hence it is diffeomorphic to $S^{1}\cross S_{s}^{1}\cross\{1\}$

with coordinate $(\theta, s)$ . So we identify $R(F)$ with $S^{1}\cross S_{s}^{1}\cross\{1\}$ . Let $N$ be a
tubular neighborhood of $R(F)$ in $M$ which is diffeomorphic to $q^{-1}( \bigcup_{1-2\epsilon<t\leq 1}S_{s}^{1}\cross\{t\})$

and $\pi;Narrow R(F)$ its projection. From the assumption, $F$ gives rise to a non-
singular vector field $X$. We may assume that $X$ on $R(F)$ is given by $\partial/\partial\theta$

using the coordinate $(\theta, s)$ . Since $q:M-R(F)arrow B-\partial B$ is an orientable $S^{1}-$

bundle, we can lift $\varphi(t)\partial/\partial t$ to a vector field $Y$ on $M$. Moreover we can lift
$\psi(t)\partial/\partial s$ to a vector field $Z$ on $M$. A vector field $X+\lambda(Y+Z)$ is non-singular
for a small number $\lambda$ . So we define a foliation $F_{\lambda}(Y, Z)$ to be the set of the
integral curves of $X+\lambda(Y+Z)$ . We see that $F$ and $F_{\lambda}(Y, Z)$ are sufficiently
$C^{r}$-close if $\lambda$ is sufficiently small. Furthermore we can see that $F_{\lambda}(Y, Z)$ has
not any compact leaves if $\lambda$ is irrational. Hence we have the following.

PROPOSITION 8. Let $F$ be a foliation of $M$ by circles such that $M/F$ is homeo-
morphic to a Mtibius band. Supp0se that $\tau F$ is orientable. Then $F$ is $C^{r}$-unstable
$(r\geqq 0)$ .
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Combining Propositions 6, 7 and 8, we have the following theorem which
gives a necessary condition for $F$ to be stable in case that $\tau F$ is orientable.

THEOREM 9. Let $F$ be a foliation of a closed 3-manifold $M$ by circles. $s_{u}p-$

pOse that $\tau F$ is orientable. If $\chi(M/F)^{2}+\chi_{V}(M/F)^{2}=0$ , then $F$ is $C^{r}$-unstable $(r\geqq 0)$ .

3. Necessary condition for $F$ to be stable, non-orientable case.

We assume that $\tau F$ is non-orientable in this section. First we consider the
case that $M/F$ is homeomorphic to a torus. We can regard $M$ to be the quotient
space obtained in the product $S^{I}\cross[0,1]\cross[0,1]$ with coordinate $(\theta, s, t),$ $\theta\in S^{I}$ ,
$s,$ $t\in[0,1]$ by making the following identifications; $(\theta, 0, t)\sim(f(t)\cdot\theta, 1, t)$ , and
$(\theta, s, 0)\sim(g(s)\cdot\theta, s, 1)$ for all $\theta,$ $s$ and $t$ , where $f,$ $g:[0,1]arrow O(2)$ are $C^{\infty}$-maps
with $f(O)=f(1),$ $g(O)=g(1)$ and $g(1)f(O)=f(1)g(0)$ . Moreover we may assume
that $f(t)\not\in SO(2)$ and $g(s)\in SO(2)$ for all $s,$

$t$ . Let $\varphi:[0,1]arrow R$ be a $C^{\infty}$-function
such that $\varphi(0)=\varphi(1)=0$ and $\varphi(s)>0$ for $s\in(O, 1)$ . Let $q_{t}$ : $[0,1]\cross[0,1]arrow[0,1]\cross S^{1}$

and $q_{s}$ : $[0,1]\cross S^{1}arrow T^{2}$ be the quotient maps induced from the above identifica-
tions. Then the pullback $q:q_{s}^{*}(M)arrow[0,1]\cross S^{1}$ is an orientable $S^{1}$ -bundle. Hence
the foliation $q^{*}F$ induced on $q_{s}^{*}(M)$ gives rise to a non-singular vector field $X$.
We can lift a vector field $\varphi(s)\partial/\partial s$ to a vector field on $q_{s}^{*}(M)$ which is denoted
by the same letter. A vector field $X+\lambda\varphi(s)\partial/\partial s$ is non-singular and it defines a
foliation $F_{1}$ on $q_{l}^{*}(M)$ to be the set of the integral curves of $X+\lambda\varphi(s)\partial/\partial s$ .
Since $F_{1}$ on $q^{-1}(\{0,1\}\chi S^{1})$ has the same compact leaves as $F$, we can define a
foliation of $M$ which is denoted by the same letter. Let $N$ (resp. $N’$) be an
$\epsilon$ (resp. $\epsilon/2$)-neighborhood of $\{O\}\cross S^{1}$ in $T^{2}$ . Since $q:q^{-1}(N)arrow N$ is orientable,
$F_{1}$ on $q^{-1}(N)$ gives rise to a non-singular vector field $X_{1}$ . Let $\psi:(-\epsilon, \epsilon)arrow R$ be
a $C^{\infty}$-function such that $\psi(0)=1$ and the support of $\psi$ is contained in $(-\epsilon/2, \epsilon/2)$ .
Then we can lift a vector field $\psi(s)\partial/\partial t$ to a vector field on $q^{-1}(N)$ which is
denoted by the same letter. A vector field $X_{1}+\lambda\psi(s)\partial/\partial t$ on $q^{-1}(N)$ is non-
singular. We can define a foliation $F_{2}$ on $q^{-1}(N)$ to be the set of the integral
curves of $X_{1}+\lambda\psi(s)\partial/\partial t$ . Since $F_{1}$ is equal to $F_{2}$ on $q^{-1}(N-N’)$ , we can define
a foliation $F’$ by $F’=F_{1}$ outside of $q^{-1}(N’)$ and $F’=F_{2}$ on $q^{-1}(N)$ . It is easy to
see that $F$ and $F’$ are $C^{r}$-close if $\lambda$ is small. We may assume that $X_{1}$ on
$q^{-1}(\{0\}\cross S^{1})$ is given by $\partial/\partial\theta$ . So we can see that $F’$ has not any compact
leaves if $\lambda$ is irrational. Hence we have the following.

PROPOSITION 10. Let $F$ be a foliation of a closed 3-manifold $M$ by circles
such that $\tau F$ is non-orientable and $M/F$ is homeomorphic to a torus. Then $F$ is
$C^{r}$-unstable $(r\geqq 0)$ .

Next we consider the case $M/F$ is homeomorphic to $K^{2}$ . Then we can
regard $M$ to be the quotient space obtained in the product $S^{1}\cross[0,1]\cross[0,1]$
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with coordinate $(\theta, s, t),$ $\theta\in S^{1},$ $s,$ $t\in[0,1]$ by making the following identifica-
tions; $(\theta, 0, t)\sim(g(t)\cdot\theta, 1,1-t)$ and $(\theta, s, 0)\sim(f(s)\cdot\theta, s, 1)$ for all $\theta,$ $s$ and $t$ ,
where $f,$ $g:[0,1]arrow 0(2)$ be $C^{\infty}$-maps with $f(O)=f(1),$ $g(O)=g(1)$ and $f(1)g(1)f(O)$

$=g(O)$ . Then we have the following three cases. (1) $f(s)\in SO(2),$ $g(t)\not\in SO(2)$ ,

(2) $f(s)\not\in SO(2),$ $g(t)\in SO(2)$ and (3) $f(s)\not\in SO(2),$ $g(t)\not\in SO(2)$ .

LEMMA 11. Let $F$ be a foliation of a closed 3-mamfold $M$ by circles such
that $M/F$ is homeomorphic to $K^{2}$ and $F$ is in (1). Then $F$ is $C^{r}$-unstable $(r\geqq 0)$ .

PROOF. The proof is similar as in the proof of Proposition 9 since the
pullback $q:q_{s}^{*}(M)arrow[0,1]\cross S^{1}$ is an orientable $S^{1}$ -bundle, where $q_{s}$ : $[0,1]\chi S^{1}arrow K^{2}$

is the quotient map induced from the above identifications.

LEMMA 12. Let $F$ be a foliation of a closed 3-manifold $M$ by circles such
that $M/F$ is homeomorphic to $K^{2}$ and $F$ is in (2). Then $F$ is $C^{r}$-unstable $(r\geqq 0)$ .

PROOF. We regard $K^{2}$ to be the quotient space obtained in the product
$[0,1]\cross[0,1]$ with coordinate $(s, t),$ $s,$ $t\in[0,1]$ by making the following identi-
fications; $(0, t)\sim(1,1-t),$ $(s, 0)\sim(s, 1)$ for all $s,$

$t$ . The circles $\{(s, 0);0\leqq s\leqq 1\}/\sim$

and $\{(s, 1/2);0\leqq s\leqq 1\}/\sim$ are denoted by $S_{0},$ $S_{1}$ respectively. Note that $K^{2}-S_{0}$

is an open Mobius band and $q:q^{-1}(K^{2}-S_{0})arrow K^{2}-S_{0}$ is an orientable $S^{1}$ -bundle.
Let $\varphi:[0,1]arrow R$ be a $C^{\infty}$-function such that 1) $\varphi(t)=-\varphi(1-t)$ , 2) $\varphi(0)=\varphi(1/2)$

$=\varphi(1)=0,3)\varphi(t)>0$ for $t\in(O, 1/2)$ and 4) $\varphi$ is infinitely tangent to the zero
map at $t=0,1/2,1$ . We can lift a vector field $\varphi(t)\partial/\partial t$ on $K^{2}$ to a vector field
on $M$ which is denoted by the same letter. $F$ on $q^{-1}(K^{2}-S_{0})$ gives rise to a
non-singular vector field $X$ since $q:q^{-1}(K^{2}-S_{0})arrow K^{2}-S_{0}$ is orientable. A vector
field $X+\lambda\varphi(t)\partial/\partial t$ is non-singular. We can define a foliation $F_{1}$ of $M$ to be the
set of the integral curves of $X+\lambda\varphi(t)\partial/\partial t$ on $q^{-1}(K^{2}-S_{0})$ and the set of
$\{q^{-1}(x);x\in S_{0}\}$ on $q^{-1}(S_{0})$ . Then $F_{1}$ has not any compact leaves on $q^{-1}(K^{2}-S_{0}\cup S_{1})$ .
Let $N_{0},$ $N_{1}$ be disjoint tubular neighborhoods of $S_{0},$ $S_{1}$ in $K^{2}$ which are induced
from { $(s,$ $t);0\leqq t<\epsilon$ or $1-\epsilon<t\leqq 1$ }, $\{(s, t);1/2-\epsilon<t<1/2+\epsilon\}(0<\epsilon<1/4)$ respec-
tively. Let $\psi:[0,1]arrow R$ be a $C^{\infty}$-function such that 1) $\psi(t)=\psi(1-t),$ $\psi(0)=\psi(1/2)=1$ ,
2) the support of $\psi$ is contained in $[0, \epsilon/2]\cup[1/2-\epsilon/2,1/2+\epsilon/2]\cup[1-\epsilon/2,1]$

and 3) $\psi$ is infinitely tangent to the constant 1 map at $t=0$ . Then we can lift
a vector field $\psi(t)\partial/\partial s$ on $K^{2}$ to a vector field on $M$ which is denoted by the
same letter. Since $q:q^{-1}(N_{0}\cup N_{1})arrow N_{0}\cup N_{1}$ is orientable, $q^{-1}(N_{0}\cup N_{1})$ is diffeo-
morphic to $S^{1}\cross(N_{0}\cup N_{1})$ with coordinate $(\theta, s, t)$ . $F_{1}$ on $q^{-1}(N_{0}\cup N_{1})$ gives rise
to a non-singular vector field $X_{1}$ . Then we may assume that $X_{1}$ on $q^{-1}(S_{0}\cup S_{1})$

is given by $\partial/\partial\theta$ using the coordinate $(\theta, s, i)$ . A vector field $X_{1}+\lambda\psi(t)\partial/\partial s$ is
non-singular, hence it defines a foliation $F’$ of $M$ by its integral curves. We
can see that $F$ and $F’$ are $C^{r}$-close if $\lambda$ is small and $F’$ has not any compact
leaves if $\lambda$ is irrational. This completes the proof.
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Since each foliation in (3) reduces to a foliation in (2), we have the following
proposition from Lemmas 11 and 12.

PROPOSITION 13. Let $F$ be a foliation of a closed 3-manifold $M$ by circles
such that $\tau F$ is non-orientable and $M/F$ is homeomorphic to a Klein bottle. Then
$F$ is $C^{r}$-unstable $(r\geqq 0)$ .

Finally we consider the case that $M/F$ is homeomorphic to a M\"obius band.
Let $B$ be the M\"obius band obtained in the product $[0,1]\cross[-1,1]$ with coordi-
nate $(s, t),$ $s\in[0,1],$ $t\in[-1,1]$ by making the following identifications; $(0, t)\sim$

$(1, -t)$ . We identify $M/F$ with $B$ . So $q:Marrow B$ is the quotient map and $q^{-1}(\partial B)$

is the union of reflection leaves of $F$. Let $\varphi:[-1,1]arrow R$ and $\psi:[0,1]arrow R$ be
$C^{\infty}$-functions such that 1) $\varphi(t)>0$ for $t\in(-1,1),$ $\varphi(-t)=\varphi(t),$ $\varphi(t)=1$ for $t\in$

$[-1+\epsilon, 1-\epsilon]$ and $\varphi$ is infinitely tangent to the zero map at $t=-1,1$ and 2)

$\psi(s)=1$ for $s\in(1/2-\epsilon, 1/2+\epsilon)$ and $\psi(s)=0$ for $s\not\in(1/2-2\epsilon, 1/2+2\epsilon)(0<\epsilon<1/4)$ .
Then we can lift vector fields $\varphi(t)\psi(s)\partial/\partial t$ and $\varphi(t)(1-\psi(s))\partial/\partial s$ on $[0,1]\cross[-1,1]$

to vector fields on $M$ which are denoted by the same letters.

$q$ : $q^{-1}([1/2-2\epsilon, 1/2+2\epsilon]\cross(-1,1))arrow[1/2-2\epsilon, 1/2+2\epsilon]\cross(-1,1)$

and
$q$ : $q^{-1}(\{[0,1/2-\epsilon]\cup[1/2+\epsilon, 1]\}\cross(-1,1)/\sim)$

$arrow\{[0,1/2-\epsilon]\cup[1/2+\epsilon, 1]\}\cross(-1,1)/\sim$

are trivial $S^{1}$-bundles. Hence $F$ on $q^{-1}([1/2-2\epsilon, 1/2+2\epsilon]\cross(-1,1))$ gives rise to
a non-singular vector field $X$. A vector field $X+\lambda\varphi(t)\psi(s)\partial/\partial t$ is non-singular on
$q^{-1}([1/2-2\epsilon, 1/2+2\epsilon]\cross(-1,1))$ . We can define a foliation $F_{1}$ of $M$ to be the set
of the integral curves of $X+\lambda\varphi(t)\psi(s)\partial/\partial t$ on $q^{-1}([1/2-2\epsilon, 1/2+2\epsilon]\cross(-1,1))$ and
the set of the leaves of $F$ otherwise. $F_{1}$ on $q^{-1}(\{[0,1/2-\epsilon]\cup[1/2+\epsilon,1]\}\cross(-1,1)/\sim)$

also gives rise to a non-singular vector field $X_{1}$ . A vector field $X_{1}+\lambda\varphi(t)(1-\psi(s))\partial/\partial s$

is non-singular. So we can define a foliation $F_{2}$ of $M$ to be the set of the inte-
gral curves of $X_{1}+\lambda\varphi(t)(1-\psi(s))\partial/\partial s$ on $q^{-1}(\{[0,1/2-\epsilon]\cup[1/2+\epsilon, 1]\}\cross(-1,1)/\sim)$

and the set of the leaves of $F_{1}$ otherwise. It is easy to see that $F_{2}$ has not
any compact leaves on $q^{-1}(B-\partial B)$ and $F_{2}=F$ on $q^{-1}(\partial B)$ . We assume that
$q;R(F)=q^{-1}(\partial B)arrow\partial B$ is an orientable $S^{1}$-bundle. So $q^{-1}(\partial B)$ is diffeomorphic to
$S^{1}\cross\partial B$ with coordinate $(\theta, s),$ $\theta\in S^{1},$ $s\in\partial B$ . Let $N$ be an $\epsilon$-tubular neighbor-
hood of $q^{-1}(\partial B)$ in M. $F_{2}$ on $N$ gives rise to a non-singular vector field $X_{2}$

which can be given by $\partial/\partial\theta$ on $q^{-I}(\partial B)$ . A vector field $X_{2}+\lambda(1-\varphi(t))\partial/\partial s$ on $N$

is non-singular and can be extended to a vector field on $M$, which is denoted
by the same letter. We define a foliation $F’$ of $M$ to be the set of the integral
curves of $X_{2}+\lambda(1-\varphi(t))\partial/\partial s$ on $N$ and the set of the leaves of $F_{2}$ outside of $N$.
We can easily see that $F$ and $F’$ are $C^{r}$-close if $\lambda$ is small and $F’$ has not any
compact leaves if $\lambda$ is irrational. Thus we have the following proposition.
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PROPOSITION 14. Let $F$ be a foliation of a closed 3-mamfold $M$ by circles
such that $M/F$ is homeomorphic to a Mbbius band. Suppose that $\tau F$ is non-
orientable and $q:R(F)arrow R(F)/F$ is an orientable $S^{1}$-bundle. Then $F$ is $C^{r}$-unstable
$(r\geqq 0)$ .

Combining Propositions 10, 13, 14 and Remark 5, we have the following
theorem which gives a necessary condition for $F$ to be stable in case that $\tau F$ is
non-orientable.

THEOREM 15. Let $F$ be a foliation of a closed 3-manifold $M$ by circles such
that $\tau F$ is non-orientable. Supp0se that $M/F$ is not homeomorphjc to a cylinder
and $q:R(F)arrow R(F)/F$ is an orientable $S^{1}$ -bundle if $M/F$ is homeomorphic to a
Mobius band. If $\chi(M/F)^{2}+\chi_{V}(M/F)^{2}=0$ , then $F$ is $\sigma$-unstable $(r\geqq 0)$ .
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