J. Math. Soc. Japan Vol. 39, No. 1, 1987

Stability of foliations of 3-manifolds by circles

Dedicated to Professor Itiro Tamura on his 60th birthday

By Kazuhiko FUKUI

(Received March 29, 1985) (Revised July 5, 1985)

Introduction.

Let $\operatorname{Fol}_q(M)$ denote the set of codimension $q \ C^{\infty}$ -foliations of a closed *m*manifold *M*. $\operatorname{Fol}_q(M)$ carries a natural weak C^r -topology $(0 \le r \le \infty)$, which is described in [5]. We denote this space by $\operatorname{Fol}_q^r(M)$. We say a foliation *F* is C^r -stable if there exists a neighborhood *V* of *F* in $\operatorname{Fol}_q^r(M)$ such that every foliation in *V* has a compact leaf. We say *F* is C^r -unstable if not. We simply say *F* is (un-)stable if *F* is C^1 -(un-)stable. It seems to be of interest to determine if *F* is C^r -stable or not.

Let L be a compact leaf of F. Thurston [13] and Langevin-Rosenberg [6] showed, generalizing the Reeb stability theorem [9] that if $H^1(L; \mathbf{R})=0$, then F is stable. Let $\pi_1(L) \rightarrow GL(q, \mathbf{R})$ be the action determined by the linear holonomy of L, where q is the codimension of F. Then generalizing the results of Hirsch [5] and Thurston [13], Stowe [12] showed that if the cohomology group $H^1(\pi_1(L); \mathbf{R}^q)$ is trivial, then F is stable.

Let F be a foliation of an orientable S^1 -bundle over a closed surface B by fibres. Seifert [11] showed that F is C^0 -stable if $\chi(B) \neq 0$, where $\chi(B)$ is the euler characteristic of B. The result was generalized by Fuller [4] to orientable circle bundles over arbitrary closed manifolds B with $\chi(B) \neq 0$. Let $\pi: M \rightarrow B$ be a fibration with fibre L. Langevin-Rosenberg [7] showed that the foliation of M by fibres is C^0 -stable provided that 1) $\pi_1(L) \cong \mathbb{Z}$, 2) B is a closed surface with $\chi(B) \neq 0$ and 3) $\pi_1(B)$ acts trivially on $\pi_1(L)$. The author [3] generalized the above result to compact codimension two foliations. Furthermore Plante [8] gave a necessary and sufficient condition for a transversely orientable foliation of a closed 3-manifold by closed orientable surfaces to be C^0 -stable.

We study here the stability of all foliations of closed 3-manifolds by circles and give a necessary and sufficient condition for such a foliation to be stable. Indeed, we have the following theorem.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 60540071), Ministry of Education, Science and Culture.

K. Fukui

THEOREM. Let F be a foliation of a closed 3-manifold M by circles. Then F is stable if and only if one of the followings holds;

- (i) $\chi(M/F)^2 + \chi_V(M/F)^2 \neq 0$,
- (ii) the union of all reflection leaves of F contains a subset homeomorphic to a Klein bottle,

where $\chi_{v}(M/F)$ is the V-euler characteristic of the leaf space M/F (for definitions, see § 1).

We prove the sufficient part (Theorems 2 and 4) of Theorem in §1, and the necessary part (Theorems 9 and 15) of Theorem in §§ 2 and 3. All foliations we consider here are smooth of class C^{∞} and of codimension two.

1. Sufficient condition for F to be stable.

Let D^2 be the unit disk and G a finite cyclic subgroup of O(2). We foliate $S^1 \times D^2$ with leaves of the form $S^1 \times \{\text{pt}\}$. This foliation is preserved by the diagonal action of G, defined by $g(x, y) = (x \cdot g^{-1}, g \cdot y)$ for $g \in G$, $x \in S^1$ and $y \in D^2$, where G acts linearly on D^2 and freely on S^1 on the right. So we have a foliation induced on $S^1 \times_G D^2$. Note that the central leaf in this foliation corresponding to y=0 has the holonomy group G.

PROPOSITION 1 (Epstein [1]). Let F be a foliation of a closed 3-manifold M by circles. Then each leaf in F has a neighborhood diffeomorphic to such a foliation of $S^1 \times_G D^2$.

Proposition 1 implies that all leaves in F have the holonomy groups isomorphic to finite cyclic groups. Hence, G is either a subgroup of SO(2) which consists of k rotations and is denoted by Z_k or a subgroup of O(2) which consists of a reflection and the identity and is denoted by D. We say a leaf with non-trivial holonomy is a rotation leaf or a reflection leaf if the holonomy group is Z_k (k>1) or D. Notice that F has only a finite number of rotation leaves because of the compactness of M. Furthermore the leaf space M/F is homeomorphic to a compact 2-dimensional V-manifold (which is equivalently called an orbifold) and we can define the V-euler characteristic of M/F, $\chi_V(M/F) \in Q$ (see Satake [10] for definitions). In this case, M/F is also a topological manifold and the union R(F) of all reflection leaves corresponds to the boundary of M/F. Let L_1, \dots, L_n be all rotation leaves in F, whose holonomy groups are Z_{k_1}, \dots, Z_{k_n} respectively. Then the V-euler characteristic of M/F is given by

$$\chi_V(M/F) = \chi(M/F) + \sum_{i=1}^n (1/k_i - 1)$$
,

where $\chi(M/F)$ is the euler characteristic of M/F.

Now we give a sufficient condition for F to be stable in the following which

118

is a corollary to the results of Hirsch [5], Seifert [11] and Fukui [3].

THEOREM 2. Let F be a foliation of a closed 3-manifold M by circles. If $\chi(M/F)^2 + \chi_{\nu}(M/F)^2 \neq 0$, then F is stable.

PROOF. Let τM be the tangent bundle of M and τF the subbundle of τM which consists of the vectors tangent to the leaves of F. Suppose that τF is not orientable. Take the unit vector subbundle \tilde{M} of τF . Then \tilde{M} is a double cover of M and for the foliation \tilde{F} induced on \tilde{M} , $\tau \tilde{F}$ is orientable. Moreover we see that $\chi(\tilde{M}/\tilde{F})=2\chi(M/F)$ and $\chi_{V}(\tilde{M}/\tilde{F})=2\chi_{V}(M/F)$. Let F' be a foliation of M which is C^{1} -close to F. The foliation \tilde{F}' on \tilde{M} is also C^{1} -close to \tilde{F} . Then we can see that if \tilde{F}' has a compact leaf, then F' also has a compact leaf. Hence it is sufficient to prove Theorem 2 when τF is orientable. First we prove the case $n \neq 0$. Then F has a rotation leaf. Since 1 is not an eigenvalue of the linear holonomy of every rotation leaf, the proof follows from the result of Hirsch ([5], Theorem 1.1). Next we prove the case n=0. Then Fsatisfies the conditions of Corollary 5 of [3], hence F is stable. This completes the proof.

REMARK 3. We can define another topology on $\operatorname{Fol}_q(M)$ as follows. Given a foliation F, we associate to each point x of M the plane tangent to F at x. This gives a section of the bundle over M whose fibre over x is the Grassmannian of all (m-q)-dimensional planes of the tangent space of M at x, where m is the dimension of M. The C^r -topology $(0 \leq r \leq \infty)$ on the space of all sections of this bundle topologizes $\operatorname{Fol}_q(M)$. We denote this space by $\operatorname{Fol}_q^r(M)$. Note that the identity: $\operatorname{Fol}_q^r(M) \to \operatorname{Fol}_q^{r-1}(M)$ is continuous but in general not homeomorphic (see Epstein [2]). Under this topology Theorem 1.1 of [5] is still true except for uniqueness in our case. For, let $h(F): (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a representation of the holonomy of a rotation leaf of F. Then we can take a neighborhood \overline{V} of F in $\operatorname{Fol}_2^r(M)$ such that for any $F' \in \overline{V}$, $h(F'): \mathbb{R}^2 \to \mathbb{R}^2$ has a (not necessarily unique) fixed point since $h(F') - \operatorname{id}_{\mathbb{R}^2}: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ is diffeomorphic, where h(F')is the perturbed holonomy map associated to F' (see [5]). Hence Theorem 2 is also true under this topology.

THEOREM 4. Let F be a foliation of a closed 3-manifold M by circles. If R(F) contains a subset homeomorphic to a Klein bottle, then F is stable.

PROOF. We may assume that R(F) is connected because the argument is local. The bundle $q: R(F) \rightarrow R(F)/F$ is equivalent to the non-trivial S¹-bundle $p: K^2 \rightarrow S^1$, where K^2 is the Klein bottle. Let N be a saturated tubular neighborhood of R(F) in M. We consider the quotient space N_0 obtained in the product $[0, 1] \times [0, 1] \times (-1, 1)$ with coordinate (s, t, u), $s, t \in [0, 1]$ and $u \in [0, 1] \times (-1, 1)$ with coordinate (s, t, u), $s, t \in [0, 1]$ and $u \in [0, 1] \times (-1, 1)$ with coordinate (s, t, u).

(-1, 1) by making the following identifications; $(0, t, u) \sim (1, t, -u)$ and (s, 0, u) $\sim (1-s, 1, u)$ for all s, t and u. We foliate $[0, 1] \times [0, 1] \times (-1, 1)$ with leaves of form $[0, 1] \times \{t\} \times \{u\}$ to obtain a foliation F_0 induced on N_0 . Then we may assume, taking a double cover of N if necessary, that (N, F) is diffeomorphic to (N_0, F_0) . So they are identified. Note that R(F) corresponds to the subset $\{(s, t, 0); 0 \leq s, t \leq 1\}/\sim$ which is homeomorphic to K^2 . We define a section c of the bundle $p: K^2 \to S^1$ by c(t) = (1/2, t, 0). Let $\alpha(0)$ be a closed curve on $L_{c(0)}$ with base point c(0) and orientation $\partial/\partial s$ and $\alpha(t)$ $(0 \le t \le 1)$ translations of $\alpha(0)$ along c(t), where $L_{c(0)}$ is a leaf of F through c(0). Note that $\alpha(1) = -\alpha(0)$. Let F' be a foliation which is sufficiently C^1 -close to F. We can construct the perturbed holonomy map $H(F', \alpha(t))$ of $\{(1/2, t, u) ; -\delta < u < \delta\}$ into an annulus $A = \{(1/2, t, u); 0 \le t \le 1, -1 < u < 1\}/\sim$ for each t, where δ is a small number (see Hirsch [5] and Langevin-Rosenberg [7]). We take the product $[0, 2] \times$ (-k, k) with coordinate $(t', u), t' \in [0, 2], u \in (-k, k)$ and identify (0, u) and (2, u) to obtain an annulus A_k . The map $\pi: A_1 \rightarrow A$ defined by $\pi(t', u) =$ $(1/2, t' \mod 1, u)$ is a double covering. Then we define a map H: $\{(t', u); -\delta < u < \delta\} \rightarrow A_1$ by

$$H(t', u) = \begin{cases} H(F', \alpha(t'))(t', u) & (0 \le t' \le 1) \\ H(F', -\alpha(t'-1))(t'-1, u) + (1, 0) & (1 \le t' \le 2) \end{cases}$$

Note that H(0, u) = H(2, u) for each u and H is a diffeomorphism of A_{δ} into A_1 . We put $H(F', \alpha(t))(t, u) = (f_1(t, u), f_2(t, u))$ and $H(t', u) = (\bar{f}_1(t', u), \bar{f}_2(t', u))$. There exists a unique u(t') with $u(t') = \bar{f}_2(t', u(t'))$ near u=0 for each t' since the holonomy group of each $L_{c(t)}$ is isomorphic to D. Then $l:[0, 2] \rightarrow A_1$ defined by l(t') = (t', u(t')) is a loop. Therefore we may assume, changing the coordinate t if necessary, that $\pi \circ l \circ i:[0, 1] \rightarrow A$ is a loop, where $i:[0, 1] \rightarrow [0, 2]$ is the inclusion. We define v(l(t')) to be the vector tangent to A_1 joining l(t') and H(l(t')). π_* projects $v(l \circ i(t))$ to a vector $v(\pi \circ l \circ i(t))$ on $\pi \circ l \circ i(t)$, whose $\partial/\partial t$ -component is $f_1(t, u(t)) - t$, where $\pi \circ l \circ i(t) = (t, u(t))$. If $f_1(0, u(0)) > 0$, then $f_1(1, u(1)) - 1 < 0$ since $H(F', \alpha(1)) = H(F', -\alpha(0))$. Hence by the mean value theorem, there exists t_0 $(0 < t_0 < 1)$ such that $v(p(t_0)) = 0$. This means that $H(F', \alpha(t_0))(t_0, u(t_0)) = (t_0, u(t_0))$, hence $L'_{p(t_0)}$ is compact, where $L'_{p(t_0)}$ is a leaf of F' through $p(t_0)$.

REMARK 5. Let F be a foliation of a closed 3-manifold M by circles such that M/F is homeomorphic to a cylinder. Then τF is orientable if and only if $q: R(F) \rightarrow R(F)/F$ is an orientable S¹-bundle.

2. Necessary condition for F to be stable, orientable case.

The equation $\chi(M/F)^2 + \chi_V(M/F)^2 = 0$ implies the equations $\chi(M/F) = 0$ and n=0. Therefore F has not any rotation leaves and M/F is homeomorphic to

one of the following four manifolds: (1) torus T^2 , (2) Klein bottle K^2 , (3) cylinder $S^1 \times [0, 1]$ and (4) Möbius band B. We assume that τF is orientable in this section.

First we consider the case that M/F is homeomorphic to T^2 or K^2 . We regard T^2 (resp. K^2) to be the quotient space obtained in the product $[0,1] \times [0,1]$ with coordinate (s, t), $s, t \in [0, 1]$, by the following identifications; $(0, t) \sim (1, t)$, $(s, 0) \sim (s, 1)$ (resp. $(0, t) \sim (1, 1-t)$, $(s, 0) \sim (s, 1)$). We denote by $\{s\} \times S_t^1$ the quotient subspace obtained in $\{s\} \times [0, 1]$ by identifying (s, 0) and (s, 1). Since the quotient map $q: M \rightarrow M/F$ is an orientable S¹-bundle, $q^{-1}((1/2-3\varepsilon, 1/2+3\varepsilon) \times S_t^1)$ is diffeomorphic to $S^1 \times (1/2 - 3\varepsilon, 1/2 + 3\varepsilon) \times S^1_t$ with coordinate (θ, s, t) , where $0 < \varepsilon < 1/6$. Let $\varphi, \psi : [0, 1] \rightarrow R$ be C^{∞} -functions such that 1) $0 \leq \varphi(s) \leq 1, 0 \leq \psi(s) \leq 1$, 2) $\varphi(1/2)=0$ and $\varphi(s)\neq 0$ for $s\neq 1/2$ and 3) $\psi(s)=0$ for $s\in[0, 1/2-2\varepsilon)\cup(1/2+2\varepsilon, 1]$ and $\psi(s)=1$ for $s \in (1/2-\varepsilon, 1/2+\varepsilon)$. Then we can define a vector field \overline{Y} on T^2 (resp. K^2) by $\overline{Y} = \varphi(s)\partial/\partial s + \psi(s)\partial/\partial t$. We can lift \overline{Y} to a vector field Y on M such that Y on $q^{-1}((1/2-3\varepsilon, 1/2+3\varepsilon) \times S_t^1)$ is given by $\varphi(s)\partial/\partial s + \psi(s)\partial/\partial t$ using the coordinate (θ, s, t) . From the assumption, F gives rise to a non-singular vector field X of M. We may assume that X on $q^{-1}((1/2-3\varepsilon, 1/2+3\varepsilon) \times S_t^1)$ is given by $X = \partial/\partial \theta$ using the same coordinate. Then a vector field $X + \lambda Y$ is non-singular for a small number λ . We define a foliation $F_{\lambda}(Y)$ to be the set of the integral curves of $X + \lambda Y$. It is easy to see that F and $F_{\lambda}(Y)$ are sufficiently C^r-close if λ is sufficiently small. Furthermore $F_{\lambda}(Y)$ has not any compact leaves if λ is irrational. Indeed, the $\partial/\partial s$ -component of $X + \lambda Y$ is not zero on $M-q^{-1}(\{1/2\}\times S_t^1)$, hence all leaves of $F_{\lambda}(Y)$ in $M-q^{-1}(\{1/2\}\times S_t^1)$ are not closed. On the other hand, $X + \lambda Y$ is equal to $\partial/\partial \theta + \lambda \partial/\partial t$ on $q^{-1}(\{1/2\} \times S_t^1)$. Hence the leaves of $F_{\lambda}(Y)$ in $q^{-1}(\{1/2\} \times S_t^1) = S^1 \times \{1/2\} \times S_t^1$ consist of the linear curves of slope λ . Since λ is irrational, these leaves are not compact. So we have the following proposition because we can take a sequence of irrational numbers $\{\lambda_i\}_{i\in\mathbb{N}}$ with $\lambda_i \rightarrow 0$ $(i \rightarrow \infty)$.

PROPOSITION 6. Let F be a foliation of a closed 3-manifold M by circles such that M/F is homeomorphic to T^2 or K^2 . Suppose that τF is orientable. Then F is C^r -unstable $(r \ge 0)$.

Next we consider the case that M/F is homeomorphic to a cylinder. Let (s, t) be a coordinate of the cylinder $S_s^1 \times [0, 1]$, $s \in S_s^1$, $t \in [0, 1]$. The union $R(F) = q^{-1}(S_s^1 \times \{0, 1\})$ of reflection leaves of F is the total space of an orientable S^1 -bundle $q: R(F) \rightarrow S_s^1 \times \{0, 1\}$ by Remark 5, hence it is diffeomorphic to $S^1 \times S_s^1 \times \{0, 1\}$ with coordinate (θ, s) , so we identify R(F) with $S^1 \times S_s^1 \times \{0, 1\}$. Let N be a tubular neighborhood of R(F) in M which is diffeomorphic to $q^{-1}(S_s^1 \times \{[0, \varepsilon]) \cup (1-\varepsilon, 1]\})$ and $\pi: N \rightarrow S^1 \times S_s^1 \times \{0, 1\}$ its projection. Let $\varphi: [0, 1] \rightarrow \mathbf{R}$ be a C^{∞} -function such that $0 \leq \varphi(t) \leq 1$ for $t \in [0, 1]$, $\varphi(t) = 1$ for $t \in (\varepsilon, 1-\varepsilon)$,

 $\varphi(t) \neq 0$ for $t \neq 0$, 1 and φ is infinitely tangent to the zero map at t=0, 1. Let $\varphi(t)\partial/\partial t$ and $\psi(t)\partial/\partial s$ be vector fields on $S_s^1 \times [0, 1]$, where $\psi(t)=1-\varphi(t)$. From the assumption, F gives rise to a non-singular vector field X. We may assume that X on $q^{-1}(S_s^1 \times \{0, 1\})$ is given by $\partial/\partial \theta$ using the coordinate (θ, s) . Since $q: M-R(F) \rightarrow S_s^1 \times (0, 1)$ is an orientable S^1 -bundle, we can lift $\varphi(t)\partial/\partial t$ to a vector field Y on M. Moreover we can lift $\psi(t)\partial/\partial s$ to a vector field Z on M. A vector field $X+\lambda(Y+Z)$ is non-singular for a small number λ . So we define a foliation $F_{\lambda}(Y, Z)$ to be the set of the integral curves of $X+\lambda(Y+Z)$. We see that F and $F_{\lambda}(Y, Z)$ are sufficiently C^r -close if λ is sufficiently small. Furthermore we can see that $F_{\lambda}(Y, Z)$ has not any compact leaves if λ is irrational. Hence we have the following.

PROPOSITION 7. Let F be a foliation of M by circles such that M/F is homeomorphic to a cylinder. Suppose that τF is orientable. Then F is C^r -unstable $(r \ge 0)$.

Finally we consider the case that M/F is homeomorphic to a Möbius band. We regard the Möbius band B to be the quotient space obtained in the product $[0, 1] \times [-1, 1]$ with coordinate (s, t), $s \in [0, 1]$, $t \in [-1, 1]$ by identifying the segments $\{0\}\times[-1, 1]$ and $\{1\}\times[-1, 1]$ by the involution $\tau(t)=-t$. We denote by $S_s^1 \times \{t\}$ the quotient subspace obtained in $[0, 1] \times \{t, -t\}$ by the above identification. Let $\varphi, \psi: [-1, 1] \rightarrow \mathbf{R}$ be C^{∞} -functions such that 1) $\varphi(-t) = -\varphi(t)$, $\psi(-t) = \psi(t), 2$ φ is infinitely tangent to the zero map at t = -1, 0, 1 and is never zero for $t \neq -1$, 0, 1 and 3) $\psi(t) = 0$ for $|t| \in [2\varepsilon, 1-2\varepsilon]$, $\psi(t) = 1$ for $|t| \in$ $[0, \varepsilon] \cup [1-\varepsilon, 1]$, where $0 < \varepsilon < 1/6$. Since $\varphi(t)\partial/\partial t$ is a τ -invariant vector field on $[0, 1] \times [-1, 1]$, we can define a vector field $\varphi(t)\partial/\partial t$ on B. We assume that the union $R(F) = q^{-1}(\partial B)$ of the reflection leaves of F is the total space of an orientable S¹-bundle $q: R(F) \rightarrow \partial B \cong S_s^1 \times \{1\}$, hence it is diffeomorphic to $S^1 \times S_s^1 \times \{1\}$ with coordinate (θ, s) . So we identify R(F) with $S^1 \times S^1 \times \{1\}$. Let N be a tubular neighborhood of R(F) in M which is diffeomorphic to $q^{-1}(\bigcup_{1-2s \le t \le 1} S_s^1 \times \{t\})$ and $\pi: N \rightarrow R(F)$ its projection. From the assumption, F gives rise to a nonsingular vector field X. We may assume that X on R(F) is given by $\partial/\partial\theta$ using the coordinate (θ, s) . Since $q: M - R(F) \rightarrow B - \partial B$ is an orientable S¹bundle, we can lift $\varphi(t)\partial/\partial t$ to a vector field Y on M. Moreover we can lift $\psi(t)\partial/\partial s$ to a vector field Z on M. A vector field $X + \lambda(Y+Z)$ is non-singular for a small number λ . So we define a foliation $F_{\lambda}(Y, Z)$ to be the set of the integral curves of $X + \lambda(Y + Z)$. We see that F and $F_{\lambda}(Y, Z)$ are sufficiently C^r-close if λ is sufficiently small. Furthermore we can see that $F_{\lambda}(Y, Z)$ has not any compact leaves if λ is irrational. Hence we have the following.

PROPOSITION 8. Let F be a foliation of M by circles such that M/F is homeomorphic to a Möbius band. Suppose that τF is orientable. Then F is C^r-unstable $(r \ge 0)$. Combining Propositions 6, 7 and 8, we have the following theorem which gives a necessary condition for F to be stable in case that τF is orientable.

THEOREM 9. Let F be a foliation of a closed 3-manifold M by circles. Suppose that τF is orientable. If $\chi(M/F)^2 + \chi_V(M/F)^2 = 0$, then F is C^r-unstable $(r \ge 0)$.

3. Necessary condition for F to be stable, non-orientable case.

We assume that τF is non-orientable in this section. First we consider the case that M/F is homeomorphic to a torus. We can regard M to be the quotient space obtained in the product $S^1 \times [0, 1] \times [0, 1]$ with coordinate $(\theta, s, t), \theta \in S^1$, s, $t \in [0, 1]$ by making the following identifications; $(\theta, 0, t) \sim (f(t) \cdot \theta, 1, t)$, and $(\theta, s, 0) \sim (g(s) \cdot \theta, s, 1)$ for all θ , s and t, where $f, g: [0, 1] \rightarrow O(2)$ are C^{∞} -maps with f(0)=f(1), g(0)=g(1) and g(1)f(0)=f(1)g(0). Moreover we may assume that $f(t) \notin SO(2)$ and $g(s) \in SO(2)$ for all s, t. Let $\varphi: [0, 1] \rightarrow \mathbb{R}$ be a C^{∞} -function such that $\varphi(0) = \varphi(1) = 0$ and $\varphi(s) > 0$ for $s \in (0, 1)$. Let $q_t : [0, 1] \times [0, 1] \rightarrow [0, 1] \times S^1$ and $q_s: [0, 1] \times S^1 \rightarrow T^2$ be the quotient maps induced from the above identifications. Then the pullback $q: q_s^*(M) \rightarrow [0, 1] \times S^1$ is an orientable S¹-bundle. Hence the foliation q^*F induced on $q_s^*(M)$ gives rise to a non-singular vector field X. We can lift a vector field $\varphi(s)\partial/\partial s$ to a vector field on $q_s^*(M)$ which is denoted by the same letter. A vector field $X + \lambda \varphi(s) \partial/\partial s$ is non-singular and it defines a foliation F_1 on $q_s^*(M)$ to be the set of the integral curves of $X + \lambda \varphi(s) \partial/\partial s$. Since F_1 on $q^{-1}(\{0, 1\} \times S^1)$ has the same compact leaves as F, we can define a foliation of M which is denoted by the same letter. Let N (resp. N') be an ε (resp. $\varepsilon/2$)-neighborhood of $\{0\} \times S^1$ in T^2 . Since $q: q^{-1}(N) \rightarrow N$ is orientable, F_1 on $q^{-1}(N)$ gives rise to a non-singular vector field X_1 . Let $\psi: (-\varepsilon, \varepsilon) \to \mathbf{R}$ be a C^{∞} -function such that $\psi(0) = 1$ and the support of ψ is contained in $(-\varepsilon/2, \varepsilon/2)$. Then we can lift a vector field $\psi(s)\partial/\partial t$ to a vector field on $q^{-1}(N)$ which is denoted by the same letter. A vector field $X_1 + \lambda \phi(s) \partial/\partial t$ on $q^{-1}(N)$ is nonsingular. We can define a foliation F_2 on $q^{-1}(N)$ to be the set of the integral curves of $X_1 + \lambda \psi(s) \partial/\partial t$. Since F_1 is equal to F_2 on $q^{-1}(N-N')$, we can define a foliation F' by $F'=F_1$ outside of $q^{-1}(N')$ and $F'=F_2$ on $q^{-1}(N)$. It is easy to see that F and F' are C'-close if λ is small. We may assume that X_1 on $q^{-1}(\{0\} \times S^1)$ is given by $\partial/\partial \theta$. So we can see that F' has not any compact leaves if λ is irrational. Hence we have the following.

PROPOSITION 10. Let F be a foliation of a closed 3-manifold M by circles such that τF is non-orientable and M/F is homeomorphic to a torus. Then F is C^r -unstable $(r \ge 0)$.

Next we consider the case M/F is homeomorphic to K^2 . Then we can regard M to be the quotient space obtained in the product $S^1 \times [0, 1] \times [0, 1]$

K. Fukui

with coordinate $(\theta, s, t), \theta \in S^1$, $s, t \in [0, 1]$ by making the following identifications; $(\theta, 0, t) \sim (g(t) \cdot \theta, 1, 1-t)$ and $(\theta, s, 0) \sim (f(s) \cdot \theta, s, 1)$ for all θ , s and t, where $f, g: [0, 1] \rightarrow O(2)$ be C^{∞} -maps with f(0) = f(1), g(0) = g(1) and f(1)g(1)f(0) = g(0). Then we have the following three cases. (1) $f(s) \in SO(2), g(t) \notin SO(2),$ (2) $f(s) \notin SO(2), g(t) \in SO(2)$ and (3) $f(s) \notin SO(2), g(t) \notin SO(2).$

LEMMA 11. Let F be a foliation of a closed 3-manifold M by circles such that M/F is homeomorphic to K^2 and F is in (1). Then F is C^r -unstable $(r \ge 0)$.

PROOF. The proof is similar as in the proof of Proposition 9 since the pullback $q: q_s^*(M) \rightarrow [0, 1] \times S^1$ is an orientable S¹-bundle, where $q_s: [0, 1] \times S^1 \rightarrow K^2$ is the quotient map induced from the above identifications.

LEMMA 12. Let F be a foliation of a closed 3-manifold M by circles such that M/F is homeomorphic to K^2 and F is in (2). Then F is C^r -unstable $(r \ge 0)$.

PROOF. We regard K^2 to be the quotient space obtained in the product $[0, 1] \times [0, 1]$ with coordinate (s, t), $s, t \in [0, 1]$ by making the following identifications; $(0, t) \sim (1, 1-t)$, $(s, 0) \sim (s, 1)$ for all s, t. The circles $\{(s, 0); 0 \le s \le 1\} / \sim$ and $\{(s, 1/2); 0 \leq s \leq 1\}/\sim$ are denoted by S_0, S_1 respectively. Note that $K^2 - S_0$ is an open Möbius band and $q:q^{-1}(K^2-S_0)\rightarrow K^2-S_0$ is an orientable S¹-bundle. Let $\varphi: [0, 1] \rightarrow \mathbf{R}$ be a C^{∞} -function such that 1) $\varphi(t) = -\varphi(1-t)$, 2) $\varphi(0) = \varphi(1/2)$ $=\varphi(1)=0, 3$ $\varphi(t)>0$ for $t\in(0, 1/2)$ and 4) φ is infinitely tangent to the zero map at t=0, 1/2, 1. We can lift a vector field $\varphi(t)\partial/\partial t$ on K^2 to a vector field on M which is denoted by the same letter. F on $q^{-1}(K^2-S_0)$ gives rise to a non-singular vector field X since $q: q^{-1}(K^2 - S_0) \rightarrow K^2 - S_0$ is orientable. A vector field $X + \lambda \varphi(t) \partial/\partial t$ is non-singular. We can define a foliation F_1 of M to be the set of the integral curves of $X + \lambda \varphi(t) \partial/\partial t$ on $q^{-1}(K^2 - S_0)$ and the set of $\{q^{-1}(x); x \in S_0\}$ on $q^{-1}(S_0)$. Then F_1 has not any compact leaves on $q^{-1}(K^2 - S_0 \cup S_1)$. Let N_0 , N_1 be disjoint tubular neighborhoods of S_0 , S_1 in K^2 which are induced from $\{(s, t); 0 \leq t < \varepsilon \text{ or } 1 - \varepsilon < t \leq 1\}, \{(s, t); 1/2 - \varepsilon < t < 1/2 + \varepsilon\} \quad (0 < \varepsilon < 1/4) \text{ respec-}$ tively. Let $\psi : [0, 1] \rightarrow \mathbf{R}$ be a C^{∞} -function such that 1) $\psi(t) = \psi(1-t), \psi(0) = \psi(1/2) = 1$, 2) the support of ϕ is contained in $[0, \varepsilon/2] \cup [1/2 - \varepsilon/2, 1/2 + \varepsilon/2] \cup [1 - \varepsilon/2, 1]$ and 3) ϕ is infinitely tangent to the constant 1 map at t=0. Then we can lift a vector field $\psi(t)\partial/\partial s$ on K^2 to a vector field on M which is denoted by the same letter. Since $q: q^{-1}(N_0 \cup N_1) \rightarrow N_0 \cup N_1$ is orientable, $q^{-1}(N_0 \cup N_1)$ is diffeomorphic to $S^1 \times (N_0 \cup N_1)$ with coordinate (θ, s, t) . F_1 on $q^{-1}(N_0 \cup N_1)$ gives rise to a non-singular vector field X_1 . Then we may assume that X_1 on $q^{-1}(S_0 \cup S_1)$ is given by $\partial/\partial\theta$ using the coordinate (θ, s, t) . A vector field $X_1 + \lambda \phi(t) \partial/\partial s$ is non-singular, hence it defines a foliation F' of M by its integral curves. We can see that F and F' are C'-close if λ is small and F' has not any compact leaves if λ is irrational. This completes the proof.

Since each foliation in (3) reduces to a foliation in (2), we have the following proposition from Lemmas 11 and 12.

PROPOSITION 13. Let F be a foliation of a closed 3-manifold M by circles such that τF is non-orientable and M/F is homeomorphic to a Klein bottle. Then F is C^r-unstable $(r \ge 0)$.

Finally we consider the case that M/F is homeomorphic to a Möbius band. Let B be the Möbius band obtained in the product $[0, 1] \times [-1, 1]$ with coordinate $(s, t), s \in [0, 1], t \in [-1, 1]$ by making the following identifications; $(0, t) \sim (1, -t)$. We identify M/F with B. So $q: M \rightarrow B$ is the quotient map and $q^{-1}(\partial B)$ is the union of reflection leaves of F. Let $\varphi: [-1, 1] \rightarrow \mathbf{R}$ and $\psi: [0, 1] \rightarrow \mathbf{R}$ be C^{∞} -functions such that 1) $\varphi(t) > 0$ for $t \in (-1, 1), \varphi(-t) = \varphi(t), \varphi(t) = 1$ for $t \in [-1+\varepsilon, 1-\varepsilon]$ and φ is infinitely tangent to the zero map at t=-1, 1 and 2) $\psi(s)=1$ for $s \in (1/2-\varepsilon, 1/2+\varepsilon)$ and $\psi(s)=0$ for $s \notin (1/2-2\varepsilon, 1/2+2\varepsilon)$ ($0 < \varepsilon < 1/4$). Then we can lift vector fields $\varphi(t)\psi(s)\partial/\partial t$ and $\varphi(t)(1-\psi(s))\partial/\partial s$ on $[0, 1] \times [-1, 1]$ to vector fields on M which are denoted by the same letters.

$$q: q^{-1}([1/2-2\varepsilon, 1/2+2\varepsilon] \times (-1, 1)) \longrightarrow [1/2-2\varepsilon, 1/2+2\varepsilon] \times (-1, 1)$$

and

$$q: q^{-1}(\{[0, 1/2 - \varepsilon] \cup [1/2 + \varepsilon, 1]\} \times (-1, 1)/\sim)$$
$$\longrightarrow \{[0, 1/2 - \varepsilon] \cup [1/2 + \varepsilon, 1]\} \times (-1, 1)/\sim$$

are trivial S¹-bundles. Hence F on $q^{-1}(\lfloor 1/2 - 2\varepsilon, 1/2 + 2\varepsilon \rfloor \times (-1, 1))$ gives rise to a non-singular vector field X. A vector field $X + \lambda \varphi(t) \phi(s) \partial/\partial t$ is non-singular on $q^{-1}([1/2-2\varepsilon, 1/2+2\varepsilon]\times(-1, 1))$. We can define a foliation F_1 of M to be the set of the integral curves of $X + \lambda \varphi(t) \psi(s) \partial/\partial t$ on $q^{-1}([1/2 - 2\varepsilon, 1/2 + 2\varepsilon] \times (-1, 1))$ and the set of the leaves of F otherwise. F_1 on $q^{-1}(\{[0,1/2-\varepsilon]\cup[1/2+\varepsilon,1]\}\times(-1,1)/\sim)$ also gives rise to a non-singular vector field X_1 . A vector field $X_1 + \lambda \varphi(t)(1 - \psi(s))\partial/\partial s$ is non-singular. So we can define a foliation F_2 of M to be the set of the integral curves of $X_1 + \lambda \varphi(t)(1 - \psi(s))\partial/\partial s$ on $q^{-1}(\{[0, 1/2 - \varepsilon] \cup [1/2 + \varepsilon, 1]\} \times (-1, 1)/\sim)$ and the set of the leaves of F_1 otherwise. It is easy to see that F_2 has not any compact leaves on $q^{-1}(B - \partial B)$ and $F_2 = F$ on $q^{-1}(\partial B)$. We assume that $q: R(F) = q^{-1}(\partial B) \rightarrow \partial B$ is an orientable S¹-bundle. So $q^{-1}(\partial B)$ is diffeomorphic to $S^1 \times \partial B$ with coordinate $(\theta, s), \theta \in S^1, s \in \partial B$. Let N be an ε -tubular neighborhood of $q^{-1}(\partial B)$ in M. F_2 on N gives rise to a non-singular vector field X_2 which can be given by $\partial/\partial\theta$ on $q^{-1}(\partial B)$. A vector field $X_2 + \lambda(1-\varphi(t))\partial/\partial s$ on N is non-singular and can be extended to a vector field on M, which is denoted by the same letter. We define a foliation F' of M to be the set of the integral curves of $X_2 + \lambda(1-\varphi(t))\partial/\partial s$ on N and the set of the leaves of F_2 outside of N. We can easily see that F and F' are C^r-close if λ is small and F' has not any compact leaves if λ is irrational. Thus we have the following proposition.

Κ. Γυκυι

PROPOSITION 14. Let F be a foliation of a closed 3-manifold M by circles such that M/F is homeomorphic to a Möbius band. Suppose that τF is non-orientable and $q: R(F) \rightarrow R(F)/F$ is an orientable S¹-bundle. Then F is C^r-unstable $(r \ge 0)$.

Combining Propositions 10, 13, 14 and Remark 5, we have the following theorem which gives a necessary condition for F to be stable in case that τF is non-orientable.

THEOREM 15. Let F be a foliation of a closed 3-manifold M by circles such that τF is non-orientable. Suppose that M/F is not homeomorphic to a cylinder and $q: R(F) \rightarrow R(F)/F$ is an orientable S¹-bundle if M/F is homeomorphic to a Möbius band. If $\chi(M/F)^2 + \chi_V(M/F)^2 = 0$, then F is C^r-unstable ($r \ge 0$).

References

- [1] D. Epstein, Periodic flows on three manifolds, Ann. of Math., 95 (1976), 68-82.
- [2] D. Epstein, A topology for the space of foliations, Geometry and Topology, Lecture Notes in Math., 597, Springer, 1976, pp. 132-150.
- [3] K. Fukui, Perturbations of compact foliations, Proc. Japan Acad. Ser. A, 58 (1982), 341-344.
- [4] F. Fuller, An index of fixed point type for periodic orbits, Amer. J. Math., 89 (1967), 133-148.
- [5] M. Hirsch, Stability of compact leaves of foliations, Dynamical Systems, Academic Press, 1971, pp. 135-155.
- [6] R. Langevin and H. Rosenberg, On stability of compact leaves and fibrations, Topology, 16 (1977), 107-112.
- [7] R. Langevin and H. Rosenberg, Integral perturbations of fibrations and a theorem of Seifert, Differential Topology, Foliations and Gelfand-Fuks Cohomology, Lecture Notes in Math., 652, Springer, 1978, pp. 122-127.
- [8] J. Plante, Stability of codimension one foliations by compact leaves, Topology, 22 (1983), 173-177.
- [9] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., 1183, Hermann, Paris, 1952.
- [10] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, 9 (1957), 464-492.
- [11] H. Seifert, Closed integral curves in 3-spaces and isotopic two dimensional deformations, Proc. Amer. Math. Soc., 1 (1950), 287-302.
- [12] D. Stowe, The stationary set of a group action, Proc. Amer. Math. Soc., 79 (1980), 139-146.
- [13] W. Thurston, A generalization of the Reeb stability theorem, Topology, 13 (1974), 347-352.

Kazuhiko FUKUI Department of Mathematics Kyoto Sangyo University Kyoto 603 Japan

126