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Introduction.

It is the object of this paper to construct the evolution operator associated
with the abstract evolution equation

(1) $\dot{u}+A(t)u=f(t)$ , $0<t\leqq T$ ,

in a Banach space $E$ and to prove some theorems concerning the existence and
uniqueness of solutions to the corresponding Cauchy problem. The given func-
tion $f$ and the unknown $u$ map $[0, T]$ into $E$ , each $-A(t)$ is the infinitesimal
generator of a strongly continuous analytic semigroup on $E$ , and the dot denotes
the derivative with respect to $t$ . Thus we consider evolution equations of para-
bolic type and we are interested in the case where the domain $D(A(t))$ of $A(t)$

varies with $t$ .
This problem has already been studied by several authors. In particular

Kato and Tanabe [11] established the existence of a fundamental solution (an

evolution operator) $U$ for (1) under the assumption that the resolvent of $-A(t)$

has a H\"older continuous derivative and satisfies an estimate of the form

(2) $\Vert([\lambda+A(t)]^{-1})\Vert\leqq N/|\lambda|^{p}$

for some constant $\rho\in(0,1$ ]. More recently Yagi [25] has shown that it suffices
to assume that

(3) $[\lambda+A(\cdot)]^{-1}\in C^{1}([0, T], X(E))$ ,

where $X(E)$ is the Banach algebra of all continuous linear operators on $E$ , pro-
vided condition (2) is somewhat strengthened (cf. also [26]).

Consider now quasilinear parabolic evolution equations of the form

(4) $\dot{u}+A(t, u)u=f(t, u)$ , $0<t\leqq T$ .
A natural way to solve this equation consists in trying to find fixed points of
the map $varrow u(v)$ , where $v$ is a function from $[0, T]$ into $E$ and $u(v)$ is the solu-
tion of the linearized problem
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$\dot{u}+A(t, v(t))u=f(t, v(t))$ , $0<t\leqq T$

In trying to apply this method to problems coming from concrete parabolic dif-
ferential equations, it turns out that assumption (3) is so restrictive that it does
not give a well defined fixed point map $varrow u(v)$ . Hence, if one wants to study

the quasilinear equation (4) by this fixed point method, one has to establish the
existence of an evolution operator under weaker continuity requirements than (3).

This has been achieved by Sobolevskii [20] and Kato [10] under the assump-
tion that $D([A(t)]^{\beta})$ is constant for some $\beta\in(0,1)$ , where Kato assumes that
$1/\beta$ is a positive integer. Due to results of Seeley $[17, 18]$ this condition is
satisfied for parabolic differential equations under rather general conditions.

In this paper we give an alternative proof for the existence of an evolution
operator for (1), provided $D([A(t)]^{\beta})$ is constant for some $\beta\in(0,1),$ $A(\cdot)$ is H\"older

continuous with exponent $\rho\in(1-\beta, 1)$ in an appropriate sense, and certain addi-
tional requirements are satisfied. The precise hypotheses and results are given
in Section 4. In the last section of this paper it is shown that our hypotheses
are satisfied by large classes of parabolic equations and systems.

Our proof is quite different from the methods of Kato and Sobolevskii. The
principal idea is to construct an appropriate extension $\tilde{A}(t)$ of the operator $A(t)$ ,

defined on some Banach space $\tilde{E}\supset E$ , such that $D(\tilde{A}(t))$ is constant. Then, by
using the results of Sobolevskii [19] and Tanabe $[21, 22]$ for evolution equations
with constant domain, we obtain an evolution operator $O$ on $\tilde{E}$ for the extended
evolution equation. It is then shown that $\tilde{U}$ restricts to an evolution operator

on $E$ for (1).

This construction has been motivated by a result of Tanabe [22, Section
5.4], who used such a restriction argument in the case where $A(t)$ is a regularly
accretive operator in a Hilbert space. However in that case the superspace $\tilde{E}$

and the extension $\tilde{A}(t)$ are given quite naturally, whereas in our general setting
we have to employ an abstract construction to find $\tilde{E}$ and $\tilde{A}(t)$ .

In Sections 1 to 3 we present a general abstract method to construct natural
extensions of strongly continuous semigroups. These results are basic for our
construction of the evolution operator, which is achieved in Section 5. The
results of Sections 1-3 are also of independent interest and have further aPplica-
tions which are not discussed in this paper. In Section 6 we give two general
existence theorems for the Cauchy problem corresponding to (1). Although we
indicate in Section 7 the applicability of our abstract results to parabolic initial
boundary value problems, in order to keep this paper in a reasonable length, we
do not discuss specific applications to (nonlinear) parabolic equations, which are
of our primary interest.

As already mentioned above, the general methods of this paper have further
applications. For example, in a forthcoming paper they will be used to study
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semilinear parabolic systems under nonlinear boundary conditions. Moreover,
it is relatively easy to carry out a precise analysis of the dependence of the
evolution operator upon the family $\{A(t)|0\leqq t\leqq T\}$ if these operators have con-
stant domain (cf. [5]). Hence the techniques of this paper allow quite easily to
extend those estimates to the general situation considered in the present paper.
This fact is important for the study of quasilinear parabolic systems under
“moving” boundary conditions (of Neumann type, for example), as will be shown
in another publication.

In a recent preprint Acquistapace and Terreni [1] consider also the $C^{}auchy$

problem for linear time-dependent parabolic evolution equations under the assump-
tion that some (real) interpolation space between $E$ and $D(A(t))$ is independent
of $t$ . They do not construct a fundamental solution but derive existence and
(maximal’) regularity results by means of representation formulas.

Throughout this paper we use standard notation. All abstract Banach
spaces are complex spaces. The real case can be handled by complexification.
If $X$ and $Y$ are Banach spaces, we denote by $X(X, Y)$ the Banach space of all
continuous linear operators from $X$ into $Y$ , and $\mathcal{L}(X):=\mathcal{L}(X, X)$ . Moreover,
Isom(X, Y) is the open set of all isomorphisms in $X(X, Y)$ . Finally we refer
to [8, 9, 16] for the basic facts about semigroups of linear operators which we
use freely throughout.

1. Fractional power spaces.

Let $(E, \Vert\cdot\Vert)$ be a normed vector space. Recall that $E$ is isometrically iso-
morphic (that is, norm isomorphic) to a dense linear subspace of a Banach space
$\tilde{E}$ , which is unique up to norm isomorphisms. More precisely, $\tilde{E}$ can be con-
structed as a Banach space, whose elements are equivalence classes $(x_{j})\sim$ of Cauchy
sequences in $E$ , where two Cauchy sequences $(x_{j})$ and $(y_{j})$ are equivalent if
$\Vert x_{j}-y_{j}\Vertarrow 0$ , and where $\Vert(x_{j})\Vert\sim$

$:= \lim\Vert x_{f}\Vert$ . Then $E$ is norm isomorphic to the
linear subspace consisting of all constant sequences in $E$ (cf. [27] for details).

We identify $E$ with this subspace and call $\tilde{E}$ the compleiion of $E$ , so that $E$ is
dense in $\tilde{E}$ .

Suppose that $\Vert\cdot\Vert_{1}$ is another norm on $E$ such that $\Vert\cdot\Vert$ is weaker than $\Vert\cdot\Vert_{1}$ ,
that is,

$E_{1}=E$ ,

where $E_{1}$ $:=(E, \Vert\cdot\Vert_{1})$ and $c$ means that the natural injection is continuous.
Then it follows from the above that

$E\tilde{E}_{1}\tilde{E}$ ,

where $\tilde{E}_{1}$ is the completion of $E_{1}$ and the letter $d$ indicates dense imbedding.
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Let now $E$ be a Banach space. We write $A\in \mathcal{G}(E, M, \omega)$ if $-A$ is the in-
finitesimal generator of a strongly continuous semigroup $\{e^{-tA}|t\geqq 0\}$ on $E$ (that

is, in $X(E))$ such that
$\Vert e^{-tA}\Vert\leqq Me^{\omega t}$ $\forall t\geqq 0$ .

Let $A\in \mathcal{G}(E, M, \omega)$ with $\omega<0$ be given. Then we define the scale of frac-
tional power spaces $E^{a}$ $:=E^{\alpha}(A),$ $\alpha\in R$ , of $A$ as follows:

$\Vert x\Vert^{(\alpha)}$ $:=\Vert A^{\alpha}x\Vert$ $\forall x\in D(A^{a}),$ $\alpha\in R$ ,

and
$E^{a}$ $:=(D(A^{a}), \Vert\cdot\Vert^{(\alpha)})$ if $\alpha\geqq 0$ ,

whereas
$E^{\alpha}$ is the completion of $(E, \Vert\cdot\Vert^{(\alpha)})$ if $\alpha<0$ .

Observe that $E^{0}=E$ and that $\Vert\cdot\Vert^{(\alpha)}$ is equivalent to the graph norm of $A^{\alpha}$ ,

if $\alpha>0$ , which implies the completeness of $E^{\alpha}$ , if $\alpha>0$ . The following proposi-
tion is an easy consequence of the properties of the fractional powers (for which
we refer to [12, 13, 14, 16]).

PROPOSITION 1.1. (i) If $\alpha>\beta$ , then $E^{\alpha}c_{>}^{d}E^{\beta}$ .
(ii) $A^{\alpha}$ induces naturally (that is, by restriction, if $\alpha>0$ , and by continuous

extenston, if $\alpha<0$) a norm ismorphism from $E^{a+\beta}$ onto $E^{\beta}$ .
(iii) If $\beta>\alpha>0$ , then $E^{\beta}$ is a core for $A^{\alpha}$ (that is, $A^{\alpha}$ is the closure of

$A^{a}|E^{\beta})$ .
Suppose now that $E$ is reflexive. Then

(1) $A’\in \mathcal{G}(E‘, M, \omega)$ and $e^{-\ell A’}=(e^{-tA})’$ ,

where ’ denotes the “duality functor”. Hence the dual scale

$(E’)^{\alpha}$ $;=(E’)^{\alpha}(A’)$ , $\alpha\in R$ ,

is well defined.

LEMMA 1.2. $(A^{\alpha})’=(A’)^{\alpha}$ .
PROOF. Let $\alpha>0$ . Then $(A^{-a})’=(A’)^{-\alpha}$ follows easily from

$A^{-\alpha}= \frac{1}{\Gamma(\alpha)}\int_{0}^{\infty}t^{a-1}e^{-tA}dt$

and (1). Since $A^{\alpha}=(A^{-a})^{-1}$ , we see now that $(A^{a})’=[(A^{-\alpha})^{-1}]’=[(A^{-a})’]^{-1}=$

$[(A’)^{-a}]^{-1}=(A’)^{a}$ . $\square$

In the following we denote by $\langle\cdot, \rangle:E’xEarrow K$ the duality pairing and by
$B_{X}$ the open unit ball in the normed vector space $X$.

Suppose that $a>0$ . Since $(A’)^{-\alpha}$ is a norm isomorphism of $E’$ onto $(E’)^{\alpha}$ ,
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it follows from $(E’)^{\alpha}cE’$ and Lemma 1.2 that

$sup\{|\langle x’, x\rangle||x’\in B_{(E’)^{\alpha}}\}=\sup\{|\langle(A’)^{-\alpha}y’, x\rangle||y’\in B_{E’}\}$

$= \sup\{|\langle y’, A^{-\alpha}x\rangle||y’\in B_{E’}\}=\Vert x\Vert^{(-\alpha)}$

for all $x\in E$ . If $\alpha<0$ , we obtain analogously that

$sup\{|\langle x’, x\rangle||x’\in B_{(E’)^{a}}\cap E’\}=\sup\{|\langle(A’)^{-\alpha}y’, x\rangle||y’\in B_{E’}\cap(E’)^{-\alpha}\}$

$= \sup\{|\langle y’, A^{-\alpha}x\rangle||y’\in B_{E’}\cap(E’)^{-\alpha}\}=\Vert x\Vert^{(-\alpha)}$

for all $x\in E$”, since $(E’)^{-a}$ is dense in $E’$ . This implies that

(2) $|\langle x’, x\rangle|\leqq\Vert x’\Vert_{(E’)^{a}}\Vert x\Vert^{(-\alpha)}$ $\forall x’\in(E’)^{a}\cap E’$ , $x\in E^{-\alpha}\cap E$ .

Since $(E’)^{\alpha}\cap E$ ‘ is dense in $(E’)^{\alpha}$ and $E^{-a}\cap E$ is dense in $E^{-a}$ for each $\alpha\in R$ ,
we see from (2) that the bilinear form $\langle\cdot, \rangle$ extends continuously to a bilinear
form on $(E’)^{\alpha}\cross E^{-\alpha}$ , which we denote again by $\langle\cdot, \rangle$ . Thus

(3) $|\langle x’, x\rangle|\leqq\Vert x’\Vert_{(E’)^{a}}\Vert x\Vert^{(-\alpha)}$ $\forall x’\in(E’)^{\alpha}$ , $x\in E^{-\alpha}$

and

(4) $\Vert x\Vert^{(-a)}=\sup\{\frac{|\langle x’,x,\rangle|}{\Vert x’||_{(E)^{\alpha}}}|x\in(E’)^{a}\backslash \{0\}\}$ $\forall x\in E^{-\alpha}$

for each $\alpha\in R$ . In particular we deduce from (3) that

(5) $(E’)^{a}=(E^{-\alpha})’$ $\forall\alpha\in R$ .
In fact, more is true.

THEOREM 1.3. Let $E$ be reflexive.
for every $\alpha\in R$ .

Then $E^{\alpha}$ is reflexive and $[(E’)^{\alpha}=(E^{-\alpha})’$

PROOF. Since $E^{\alpha}$ is isomorphic to $E$ , the reflexivity of $E^{\alpha}$ is a consequence
of the reflexivity of $E$ .

Similarly as we obtained (4) we deduce from (5) and Lemma 1.2 that

$\Vert x’\Vert_{(E-\alpha)’}=\sup\{|\langle x’, x\rangle||x\in B_{E-\alpha}\}=\sup\{|\langle x’, A^{\alpha}y\rangle||y\in B_{E}\}$

$= \sup\{|\langle(A^{a})’x’, y\rangle||y\in B_{E}\}=\Vert(A^{a})’x’\Vert_{E’}=\Vert x’\Vert_{(E’)^{a}}$

for all $x’\in(E’)^{\alpha}$ . Hence $(E’)^{\alpha}$ is a closed linear subspace of $(E^{-\alpha})’$ .
Suppose now that $z\in((E^{-\alpha})’)’$ vanishes on $(E’)^{\alpha}$ . Then $z\in E^{-\alpha}$ , by the re-

flexivity of $E^{-\alpha}$ , and $\langle y’, z\rangle=0$ for all $y’\in(E’)^{\alpha}$ . Hence $z=0$ by (4), which
shows that $(E’)^{\alpha}$ is dense in $(E^{-a})’$ . $\square$
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2. The induced semigroups.

Let $X$ and $Y$ be Banach spaces such that $Yc_{arrow}X$, and let $A;D(A)\subset Xarrow X$ be
a linear operator in $X$. Then the Y-realization $A_{Y}$ of $A$ (the “part” of $A$ in $Y$ ,
or the “maximal restriction” of $A$ to $Y$) is defined by

$D(A_{Y}):=\{y\in Y\cap D(A)|Ay\in Y\}$ , $A_{Y}y:=Ay$ .
Clearly $A_{Y}$ is closed in $Y$ if $A$ is closed in $X$.

Suppose now that $E$ is a Banach space and $A\in \mathcal{G}(E, M, \omega)$ for some $\omega<0$ .
Then we define $A_{\alpha}$ by:

$A_{a}$ is the $E^{a}$ -realization of $A$ , if $\alpha\geqq 0$ ,
and

$A_{\alpha}$ is the closure of $A$ in $E^{\alpha}$ , if $\alpha<0$ .
The following theorem implies in particular that $A_{a}$ is well defined if $\alpha<0$ .

THEOREM 2.1. $A_{\alpha}\in \mathcal{G}(E^{\alpha}, M, \omega)$ and

$e^{-tA_{\alpha}}=e^{-t.4}|E^{\alpha}$ , if $\alpha>0$ ,
and

$e^{-tA_{\alpha}}$ is the continuous extension of $e^{-tA}$ over $E^{\alpha}$ , if $\alpha<0$ .
PROOF. SinCe

\langle 1) $A^{\alpha}e^{-tA}\supset e^{-tA}A^{\alpha}$

and since $E$ is dense in $E^{\alpha}$ , if $\alpha<0$ , it follows easily that $\{e^{-iA}|t\geqq 0\}$ induces
naturally a strongly continuous semigroup $\{e^{-iB_{\alpha}}|t\geqq 0\}$ on $E^{\alpha}$ . Moreover

$\Vert t^{-1}(e^{-tA}x-x)+Ax\Vert^{(\alpha)}=\Vert t^{-1}(e^{-iA}A^{a}x-A^{\alpha}x)+A(A^{\alpha}x)\Vertarrow 0$

as $tarrow 0$ , for every $x\in E^{\beta}$ , where $\beta:=\max\{1,1+\alpha\}$ . Hence $B_{\alpha}\supset A|E^{\beta}$ . Since
$E^{\beta}$ is dense in $E^{\alpha}$ and invariant under $\{e^{-tB_{a}}|t\geqq 0\}$ , it follows from the core
theorem ( $e$ . $g$ . $[8$ , Theorem 1.9]) that $E^{\beta}$ is a core for $B_{a}$ . If $\alpha>0$ , the fact
that $A$ induces an isomorphism from $E^{1+a}$ onto $E^{\alpha}$ implies easily that $A|E^{1+a}$

ls closed in $E^{\alpha}$ . Hence $B_{\alpha}=A|E^{1+\alpha}$ , if $\alpha>0$ . Since $A|E^{1+\alpha}$ is an isomorphism
from $E^{1+\alpha}$ onto $E^{\alpha}$ , it is clear that $B_{\alpha}$ is the $E^{a}$-realization of $A$ , that is,
$B_{\alpha}=A_{a}$ , if $\alpha>0$ . If $\alpha<0$ , then $B_{\alpha}$ is the closure of $A$ in $E^{\alpha}$ , by the core
theorem. Hence $B_{a}=A_{\alpha}$ for each $\alpha\in R$ . Finally (1) implies trivially that $A_{\alpha}=$

$B_{a}\in \mathcal{G}(E^{\alpha}, M, \omega)$ . $\square$

COROLLARY 2.2. $D(A_{\alpha})=E^{1+\alpha}$ and $A_{\alpha}\in Isom(E^{1+\alpha}, E^{a})$ . Moreover $E^{1+\beta}$ is
a core for $A_{a}$ if $\beta>\alpha$ .

PROOF. The first two assertions follow from the above proof. The last
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one is an easy consequence of $E^{1+\beta_{C_{*}}^{d}}E^{1+\alpha}$ and $A_{\alpha}\in Isom(E^{1+\alpha}, E^{\alpha})$ . $\square$

LEMMA 2.3. Let $\sigma>\omega$ and suppose that

$\Vert(\lambda+A)^{-1}\Vert_{\mathcal{L}(E)}\leqq N/(1+|\lambda-\sigma|)$ for ${\rm Re}\lambda\geqq\sigma$ .
Then

$\Vert(\lambda+A_{\alpha})^{-1}\Vert_{\mathcal{L}(E^{\alpha})}\leqq N/(1+|\lambda-\sigma|)$ for ${\rm Re}\lambda\geqq\sigma$ .

PROOF. Theorem 2.1 and the Hille-Yosida theorem imply that

$\{\lambda\in C|{\rm Re}\lambda\geqq\sigma\}\subset\rho(-A_{a})$ $\forall\alpha\in R$ .
-Moreover we obtain from Theorem 2.1 that

(2) $(\lambda+A_{a})^{-1}=(\lambda+A)^{-1}|E^{a}$ for $\alpha>0$ .
Hence, by using the density of $E$ in $E^{\alpha}$ , if $\alpha<0$ , it follows that

$\Vert(\lambda+A_{\alpha})^{-1}x\Vert^{(\alpha)}=\Vert A^{\alpha}(\lambda+A_{\alpha})^{-1}x\Vert=\Vert(\lambda+A_{\alpha})^{-1}A^{\alpha}x\Vert\leqq|||(\lambda\perp A)^{-1}\Vert_{\mathcal{L}(E)}\Vert x\Vert^{(\alpha)}$

for all $x\in E^{a}$ , which implies the assertion. $\square$

THEOREM 2.4. If $-A$ generates an analytic semigroup on $E$ , then so does
$-A_{\alpha}$ on $E^{a}$ for each $\alpha\in R$ . Moreover, $e^{-tA_{\alpha}}(E^{\alpha})\subset E^{\beta}$ and

$\Vert e^{-tA_{\alpha}}\Vert_{\mathcal{L}(E^{\alpha},E\beta)}\leqq c(\alpha, \beta, \sigma)t^{\alpha-\beta}e^{\sigma t}$

for $t>0,$ $\alpha<\beta$ , and $\sigma>\omega$ .
PROOF. The first part follows from Lemma 2.3 and the well known charac-

terization of strongly continuous analytic semigroups. It is well known that

$\Vert A^{k}e^{-tA}\Vert_{\mathcal{L}(E)}\leqq c(k, \sigma)t^{-k}e^{\sigma t}$

for $k\in N,$ $\sigma>\omega$ , and $t>0$ . Now the second assertion is an easy consequence of
Theorem 2.1 and the moment inequality ( $e$ . $g$ . $[14$ , Theorem I.5.2]). $\square$

Our next theorem, which we include for completeness, implies that the
semigroup $\{e^{-t(A’)_{\alpha}}|t\geqq 0\}$ on $(E’)^{\alpha}$ is the dual semigroup of the semigroup
$\{e^{-tA- a}|t\geqq 0\}$ on $E^{-a}$ , provided $E$ is reflexive.

THEOREM 2.5. Let $E$ be reflexive. Then $(A’)_{\alpha}=(A_{-a})’$ for each $\alpha\in R$ .

PROOF. From Theorem 1.3 we know that $(E^{-\alpha})’=(E’)^{a}$ and that $E^{-\alpha}$ is
reflexive. Consequently $(E’)^{a}$ is also reflexive. Thus, by using repeatedly ( $1.1\rangle$

and Theorem 2.1, it follows that

$\langle)’x\rangle=\langle[e^{-tA-\alpha}]’x’, x\rangle=\langle x’, e^{-tA_{-a}}x\rangle=/x’,$ $e^{-tA}x\rangle$

$=\langle[e^{-tA}]’x’, x\rangle=\langle e^{-tA’}x’, x\rangle=\langle e^{-t(A)_{c_{\lambda}}}x’, x\rangle$
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for all $x\in E^{-a}\cap E$ and all $x’\in(E’)^{\alpha}\cap E’$ . Hence, by a density argument,
$e^{-t(A_{-\alpha})}‘=e^{-t(A’)_{\alpha}}$ for each $t\geqq 0$ , which implies the assertion. $\square$

REMARK 2.6. Suppose that $A\in \mathcal{G}(E, M, \omega)$ with $\omega\in R$ . Then $\lambda+A\in$

$\mathcal{G}(E, M, \omega-\lambda)$ and $e^{-(\lambda+A)t}=e^{-\lambda}{}^{t}e^{-At}$ for $t\geqq 0$ and each $\lambda\in R$ . Hence we can
construct the scale of fractional power spaces $E^{\alpha}(\lambda+A),$ $\alpha\in R$ , for each $\lambda>\omega$ .
Then it can be shown that $E^{\alpha}(\lambda+A)=E^{\alpha}(\mu+A)$ , up to equivalent norms, for
$\lambda,$ $\mu>\omega$ . Thus the assumption that $\omega<0$ is no real restriction. $\square$

It should be noted that Tanabe [23] showed recently in a very particular
concrete situation that $-A_{-1/2}$ generates an analytic semigroup on $E^{-1/2}$ . He
considered second order elliptic operators (in an $L_{p}$-setting) and defined $A_{-1/2}$

directly by means of a Dirichlet form and a duality argument (cf. the considera-
tions in Section 7 below). In particular in [23] there is no general abstract
construction of $A_{\alpha}$ for $\alpha<0$ .

3. Fractional power spaces and complex interpolation.

In this section we characterize the fractional power spaces as complex inter-
polation spaces, provided a certain additional assumption is satisfied.

We suppose throughout that $E$ is a Banach space and that $A\in \mathcal{G}(E, M, \omega)$

for some $\omega<0$ .
Let $\alpha\in R$ be fixed and put $F:=E^{\alpha}$ and $B:=A_{\alpha}$ . Then $B\in \mathcal{G}(F, M, \omega)$ by

Theorem 2.1 and we can define the scale of fractional power spaces

$F^{\beta}$ $:=F^{\beta}(B)$ , $\beta\in R$ .

The following proposition relates the scale $F^{\beta},$ $\beta\in R$ , to the scale $E^{\alpha},$ $\alpha\in R$ .

PROPOSITION 3.1. $F^{\beta}(A_{a})=E^{a+\beta}$ and $(A_{\alpha})_{\beta}=A_{\alpha+\beta}$ for all $\alpha,$ $\beta\in R$ .

PROOF. According to Corollary 2.2 $B=A_{\alpha}\in Isom(E^{\alpha+1}, E^{\alpha})$ . Clearly $B$ is
the isomorphism induced by $A$ according to Proposition 1.1 (ii). This implies
that $F^{k}=E^{a+k}$ and $B^{k}\in Isom(E^{\alpha+k}, E^{\alpha})$ is the isomorphism induced by $A^{k}$ for
every $k\in N$ Let $\gamma:=\max\{k, k+\alpha\}$ , so that $E^{\gamma}=E^{k}\cap E^{k+\alpha}$ , where $k\in N$

satisfies $k>\beta$ . Then $B^{k}x=A^{k}x$ for each $x\in E^{\gamma}$ and

$B^{\beta}x=B^{\beta-k}B^{k}x= \frac{1}{\Gamma(k-\beta)}\int_{0}^{\infty}t^{k-\beta- 1}e^{-tB}B^{k}xdt$

$= \frac{1}{\Gamma(k-\beta)}\int_{0}^{\infty}t^{k-\beta-1}e^{-iA}A^{k}xdt=A^{\beta}x$ ,

due to Theorem 2.1. Hence

$\Vert x\Vert_{F}\beta=\Vert B^{\beta}x\Vert^{(\alpha)}=\Vert A^{\beta}x\Vert^{(\alpha)}=\Vert A^{a+\beta}x\Vert=\Vert x\Vert^{(\alpha+\beta)}$ $\forall x\in E^{\gamma}$ .
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Since $E^{\gamma}$ is dense in $E^{\alpha+\beta}$ and in $F^{\beta}$ by Proposition 1.1 (i), it follows that $F^{\beta}=$

$E^{\alpha+\beta}$ . It is now clear that $(A_{\alpha})_{\beta}=A_{a+\beta}$ . $\square$

Observe that Proposition 3.1 implies in particular that $A$ is the E-realization
of $A_{\alpha}$ for every $\alpha<0$ .

It is well known that $A^{z}$ can be defined for every $z\in C$. In particular,

(1) $A^{it}x= \frac{1}{\Gamma(1+it)\Gamma(1-it)}\int_{0}^{\infty}\lambda^{it}A(\lambda+A)^{-2}xd\lambda$ $\forall x\in E^{1}$ , $t\in R$

$(e. g. [13,24])$ . Similarly we can define $(A_{a})^{it}$ for each $t\in R$ by replacing $A$ in
the above integral by $A_{\alpha}$ and $E^{1}$ by $E^{\alpha+1}$ . Hence it follows from Theorem 2.1
(cf. in particular (2.2)), that

(2) $A^{it}x=(A_{\alpha})^{it}x$ $\forall x\in E^{1}\cap E^{a+1}$ , $t\in R$ .

Using this fact we can prove the following

LEMMA 3.2. SuPpose that there are constants $\epsilon>0$ and $a$ such that $A^{it}\in X(E)$

and $\Vert A^{it}\Vert\leqq a$ for $|t|\leqq\epsilon$ . Then $(A_{a})^{tt}\in X(E^{\alpha})$ and $\Vert(A_{\alpha})^{it}\Vert_{\mathcal{L}(E\alpha)}\leqq a$ for $|i|\leqq\epsilon$

and every $\alpha\in R$ .
PROOF. It follows from (1) that $A^{\alpha}(A^{tt}x)=A^{it}(A^{\alpha}x)$ for each $x\in E^{a}\cap E^{1}$ .

Hence (2) implies

$\Vert(A_{\alpha})^{it}x\Vert^{(\alpha)}=\Vert A^{\alpha}(A_{a})^{it}x\Vert=\Vert A^{it}(A^{a}x)\Vert\leqq a\Vert x\Vert^{(\alpha)}$

for $|t|\leqq\epsilon$ and all $x\in E^{\alpha+1}\cap E^{1}$ . Now the assertion follows from the density of
$E^{\alpha+1}\cap E^{1}$ in $E^{\alpha}$ . $\square$

We denote by $[\cdot, ]_{\theta},$ $0<\theta<1$ , the complex interpolation functor and we
refer to $[6, 24]$ for the basic facts about interpolation theory which we shall
use below.

We can now prove the main result of this section, namely

THEOREM 3.3. SuppOse that there exzst constants $\epsilon>0$ and $a$ such that $A^{it}\in$

$\mathcal{L}(E)$ and $\Vert A^{it}\Vert\leqq a$ for $|t|\leqq\epsilon$ . Then, up to equzvalent norms,

$[E^{a}, E^{\beta}]_{\theta}=E^{\alpha(1-\theta)+\beta\theta}$

for $0<\theta<1$ and $-\infty<\alpha<\beta<\infty$ .
PROOF. Let $F:=E^{\alpha}$ and $B:=A_{a}$ . Then it follows from Lemma 3.2 and

[24, Theorem 1.15.3] that $[F, F^{\beta-\alpha}]_{\theta}=F^{\theta(\beta-a)}$ , up to equivalent norms. Hence
we obtain the assertion from Proposition 3.1. $\square$

REMARK 3.4. Let $A\in \mathcal{G}(E, M, \omega)$ with $\omega<0$ . Then we know that $A_{-1}\in$

$\mathcal{G}(E^{-1}, M, \omega)$ , that $A_{1}\in \mathcal{G}(E^{1}, M, \omega)$ , and that $E^{1}cE_{arrow}E^{-1}d\underline{d}$ SupPose now that
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for each $\theta\in(0,1)$ there is given an interpolation functor $\mathcal{F}_{\theta}$ of exponent $\theta$ (say

the complex interpolation functor $[\cdot, ]_{\theta}$ or a real interpolation functor $(\cdot, )_{\theta.p}$ ,
$1\leqq P\leqq\infty)$ and let $E_{\theta}$ $:=\mathcal{F}_{\theta}(E, E^{1})$ and $E_{\theta-1}$ $:=\mathcal{F}_{\theta}(E^{-1}, E)$ . Suppose that $E^{1}$

is dense in $E_{\theta}$ and $E$ is dense in $E_{\theta-1}$ (which is the case if $\mathcal{F}_{\theta}$ $;=[\cdot, ]_{\theta}$ or
$\mathcal{F}_{\theta}$ $;=(\cdot, )_{\theta.p},$ $1\leqq P<\infty$ ). Then

$E^{1\underline{-}E_{\theta}}dddd=E=E_{\theta-1}\subsetarrow E^{- 1}$

for $0<\theta<1$ . Similarly as in the proof of Theorem 2.1 it is easy to verify that
the maximal restriction $A_{[\zeta]}$ of $A_{-1}$ to $E_{\zeta},$ $\zeta\in\{\theta, \theta-1\}$ belongs to $\mathcal{G}(E_{\zeta}, M, \omega)$ ,

and that $e^{-tA_{[\zeta]}}$ is the restriction of $e^{-tA-1}$ to $E_{\zeta}$ . Moreover $\{e^{-tA_{[\zeta]}}|t\geqq 0\}$ is an
analytic semigroup on $E_{\zeta}$ if $\{e^{-tA}|t\geqq 0\}$ is analytic on $E$ (cf. also [13, Theorem
4.3] and the proof of [3, Lemma 10.1]). However in general $E$ will not be an
interpolation space between $E_{\theta-1}$ and $E_{\theta}$ .

It should be noted that $E^{-1}$ is an “extrapolation space” in the terminology
of Da Prato and Grisvard [7] and that our construction is much simpler than
the one in [7]. $\square$

4. Parabolic fundamental solutions.

In the following $T$ is a fixed positive number, $\dot{T}_{\Delta}$ $:=\{(t, s)\in R^{2}|0\leqq s<i\leqq T\}$ ,

and $T_{\Delta}$ is the closure of $\dot{T}_{\Delta}$ in $R^{2}$ . Moreover $\Sigma_{\theta}$ $;=\{z\in C||\arg z|\leqq\theta+\pi/2\}$

for $0\leqq\theta\leqq\pi/2$ , and $\rho(A)$ denotes the resolvent set of the linear operator $A$ .
We impose the assumption(A):

$\{A(t)|0\leqq i\leqq T\}$ is a family of closed and densely defined
linear operators in the Banach space $E$ such that $\rho(-A(t))$

$\supset\Sigma_{0}$ and that there exists a constant $M$ with

$\Vert(\lambda+A(t))^{-1}\Vert\leqq M/(1+|\lambda|)$ , $\lambda\in\Sigma_{0}$ ,

for all $t\in[0, T]$ .
Thus each $-A(t)$ is the infinitesimal generator of a strongly continuous analytic
semigroup $\{e^{-sA(t)}|s\geqq 0\}$ on $E$ , and there exist constants $M_{0}\geqq 1$ and $\omega<0$ such
that $A(t)\in \mathcal{G}(E, M_{0}, \omega)$ for all $t\in[0, T]$ . Hence the scales of fractional power
spaces

$E^{\alpha}(t):=E^{\alpha}(A(t))$ , $\alpha\in R$ ,

are well defined for each $t\in[0, T]$ .
In the following we write $X=Y$ if $X$ and $Y$ are normed linear spaces which

coincide as vector spaces and carry equivalent norms (that is, $Xc_{arrow}Y$ and Yc.X).

Then we can impose assumption $(C)_{\beta}$ :
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There exists a number $\beta\in(0,1)$ such that

$E^{\beta}(t)=E^{\beta}(0)=:E^{\beta}$

and
$E^{\beta-1}(t)=E^{\beta-1}(0)=:E^{\beta- 1}$

for all $t\in[0, T]$ .

The foIlowing proposition contains a useful sufficient condition for condition
(C) to be satisfied.

PROPOSITION 4.1. Let $E$ be a reflexzve Banach sPace and let assumptjOn(A)

be satisfied. SuppOse thai there exzsts a number $\beta\in(0,1)$ such that

(1) $D(A^{\beta}(t))=D(A^{\beta}(O))$

and

(2) $D((A’)^{1-\beta}(t))=D((A’)^{1-\beta}(0))$

for $0\leqq t\leqq T$. Then assumptjm $(C)_{\beta}$ is satisfied.
PROOF. It follows from (1) and the closed graph theorem that $E^{\beta}(t)=E^{\beta}$ .

Letting
$(E’)^{a}(t):=(E’)^{\alpha}(A’(t))$ , $\alpha\in R$ , $t\in[0, T]$ ,

we deduce from (2) that $(E’)^{1-\beta}(t)=(E’)^{1-\beta}(0)=:(E’)^{1-\beta}$ . Hence, by Theorem 1.3,

$E^{\beta- 1}(t)=[(E’)^{1-\beta}(t)]’=[(E’)^{1-\beta}]’=E^{\beta-1}$ . $\square$

Next we impose the assumptjOn $(CI)_{1-\beta}$ :

$E=[E^{\beta- 1}, E^{\beta}]_{1-\beta}$ .

The following proposition gives an important sufficient condition for $(CI)_{1-\beta}$

to be satisfied.

PROPOSITION 4.2. Let $a\mathfrak{B}umPtjm$ (A) be satisfied. SuppOse that there are
posztive constants $\epsilon$ and $a$ such that $A^{i\tau}(0)\in \mathcal{L}(E)$ and $\Vert A^{i\tau}(0)\Vert\leqq a$ for $-\epsilon\leqq\tau\leqq\epsilon$ .
Then assumptim $(CI)_{1-\beta}$ is satisfied.

PROOF. This follows from Theorem 3.3. $\square$

REMARK 4.3. Given the assumptions of Proposition 4.2 and assumption $(C)_{\beta}$ ,
it follows from Theorem 3.3 that $E^{a}(t)=E^{a}(0)$ for $\beta-1\leqq\alpha\leqq\beta$ and $0\leqq t\leqq T$.
Thus, in particular, $D(A^{\alpha}(t))$ is independent of $t$ for $0\leqq\alpha\leqq\beta$ . If, moreover, $E$

is reflexive, then we deduce from Theorem 1.3 that also $D((A’(t))^{\alpha})$ is inde-
pendent of $t$ for $0\leqq\alpha\leqq 1-\beta$ . $\square$
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Finally we impose a H\"older continuity assumption upon the family
$\{A(t)|0\leqq t\leqq T\}$ , namely assumption $(H)_{\rho}$ ;

$A_{\beta-1}(\cdot)\in C^{\rho}([0, T], X(E^{\beta}, E^{\beta-1}))$ for some $\rho\in(1-\beta, 1)$ .
This implies the existence of a constant $L$ such that

$\Vert A_{\beta-1}(s)-A_{\beta-1}(t)\Vert_{\mathcal{L}(E\beta_{E}\beta-1)}\leqq L|s-t|^{\rho}$ $\forall s,$ $t\in[0, T]$ .
Lemma 2.3 and the smoothness of the inversion $Brightarrow B^{-1}$ from Isom(X, $Y$)

onto Isom$(Y, X)$ , where $X$ and $Y$ are Banach spaces, imply

$[(s, t)\mapsto A_{\beta-1}(s)[A_{\beta-1}(t)]^{-1}]\in C([0, T]^{2}, X(E^{\beta-1}))$ .
Hence there exists a constant $N$ such that

$\Vert A_{\beta-1}(s)[A_{\beta-1}(t)]^{-1}\Vert_{\mathcal{L}(E}\beta-1)\leqq N$ $\forall s,$ $t\in[0, T]$ .
If $X$ and $Y$ are Banach spaces we denote by $X_{s}(X, Y)$ the space of all con-

tinuous linear operators from $X$ to $Y$ , endowed with the strong topology, that
is, the topology of pointwise convergence. Moreover $X_{s}(X):=\mathcal{L}_{s}(X, X)$ .

After these preparations we can formulate the following theorem, which,
together with the theorems of Section 6 below, constitutes the main result of
this paper.

THEOREM 4.4. Let assumptions (A), $(C)_{\beta}$ , $(CI)_{1-\beta}$ and $(H)_{\rho}$ be satisfied.
Then there exists a umque function $U;T_{\Delta}arrow \mathcal{L}(E)posses\alpha ng$ the followzng prop-
erties:

(U1) $U\in C(T_{\Delta}, \mathcal{L}_{s}(E))\cap C(\dot{T}_{\Delta}, \mathcal{L}(E))$ .
(U2) $U(t, t)=id$ and $U(i, s)=U(t, \tau)U(\tau, s)$ for $0\leqq s\leqq\tau\leqq t\leqq T$.
(U3) $R(U(t, s))\subset D(A(t))$ for $(t, s)\in\dot{T}_{\Delta}$ ,

$[(t, s)\mapsto A(t)U(t, s)]\in C(\dot{T}_{\Delta}, X(E))$ and

$\Vert A(t)U(t, s)\Vert\leqq c_{0}/(t-s)$ for $(t, s)\in\dot{T}_{\Delta}$ .
Moreover

$U(\cdot, s)\in C^{1}((s, T],$ $\mathcal{L}(E))$ for $0\leqq s<T$ and

$D_{1}U(t, s)=-A(t)U(t, s)$ for $(t, s)\in\dot{T}_{\Delta}$ .
(U4) $(U|E^{\beta})(t, )\in C^{1}([0, t),$ $X_{s}(E^{\beta}, E))$ for $0<t\leqq T$ and

$D_{2}U(t, s)x=U(t, s)A(s)x$ for $(t, s)\in\dot{T}_{\Delta}$ and $x\in D(A(s))$ .
(U5) $[(t, s)-, A(t)U(t, s)A^{-1}(s)]\in C(T_{\Delta}, \mathcal{L}_{s}(E))$ .
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Finally
$\Vert U(t, s)\Vert\leqq c_{1}$ and $\Vert A(t)U(t, s)A^{-1}(s)\Vert\leqq c_{2}$

for all $(t, s)\in T_{\Delta}$ , and the constants $c_{0},$ $c_{1}$ and $c_{2}$ depend only uPon $L,$ $M,$ $N,$ $T,$ $\beta$

and $\rho$ , but not uPon the individual oPerators $A(t),$ $0\leqq t\leqq T$.
In general a function $U:T_{\Delta}arrow X(E)$ is said to be a parabolic fundamental

solution for $\{A(t)|0\leqq t\leqq T\}$ on $E$ provided it satisfies $(U1)-(U4)$ , where $E^{\beta}$ can
be replaced by any subspace $F$ of $E$ such that $D(A(t))\subset F$ for $0\leqq t\leqq T$. If
$f:[0, T]arrow E$ then by a solution of the linear evolution equation

$\dot{u}+A(t)u=f(t)$ , $0<t\leqq T$ ,

we mean a function $u\in C([0, T], E)\cap C^{1}((0, T],$ $E$ ) such that $u(t)\in D(A(t))$ and
$\dot{u}(t)+A(t)u(t)=f(t)$ for $0<t\leqq T$. If, in addition, $u(O)=x$ , then $u$ is said to be a
solution of the (linear) Cauchy probtem

$(CP)_{x}$ $\dot{u}+A(t)u=f(t)$ , $0<t\leqq T$ , $u(O)=x$ .
If $u$ is a solution of the Cauchy problem $(CP)_{x}$ with $x\in E$ , and if $f\in C([0, T], E)$ ,
then it is easily seen that

(3) $u(t)=U(t, 0)x+ \int_{0}^{t}U(t, \tau)f(\tau)d\tau$ , $0\leqq t\leqq T$ ,

where $U$ is any function satisfying (U1), (U3) and (U4) (with $E^{\beta}$ replaced by $F$,
as above) (cf. [22, Theorem 5.2.2]). Thus (U1), (U3) and (U4) imply already
the uniqueness of $U$ as well as the fact that $(CP)_{x}$ has for each $f\in C([0, T], E)$

and each $x\in E$ at most one solution. Moreover since the homogeneous Cauchy
problem $\dot{u}+A(t)u=0,0<t\leqq T,$ $u(O)=x$ has for every $x\in E$ at most one solution,
we see that (U2) is a consequence of (U1), (U3) and (U4).

5. Proof of Theorem 4.4.

Let $X$ and $Y$ be Banach spaces. Then we denote, for each $\alpha\in R$ , by
Jk (X, $Y,$ $\alpha$ ) the Banach space of all functions $k\in C(\dot{T}_{\Delta}, \mathcal{L}(X, Y))$ satisfying

$\Vert k\Vert_{(\alpha)}$

$:= \sup_{(t.s)\in\dot{T}_{\Delta}}(t-s)^{\alpha}\Vert k(t, s)\Vert<\infty$ ,

endowed with the norm $\Vert\cdot\Vert_{(a)}$ , and $JC(X, \alpha):=JC(X, X, \alpha)$ . It is easily seen that

(1) $f\zeta(X, Y, \beta)\subset_{arrow}$. $X(X, Y, a)$ for $\beta<\alpha$ ,

and that

(2) $x(X, Y, \alpha)=C(T_{\Delta}, X(X, Y))$ if $\alpha<0$ ,

provided each $k\in X(X, Y, \alpha)$ is extended over $T_{\Delta}$ by letting $k(t, t)=0$ for
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$0\leqq t\leqq T$.
For $k\in j\zeta(X, Y, \alpha)$ and $h\in j\zeta(Y, Z, \beta)$ with $\alpha,$ $\beta<1$ we let

$h*k(t, s)$ $:= \int_{s}^{t}h(t, \tau)k(\tau, s)d\tau$ , $(t, s)\in\dot{T}_{\Delta}$ .

Then it is not difficult to see that

(3) $h*k\in JC(X, Z, \alpha+\beta-1)$

and that

(4) $\Vert h*k\Vert_{(a+\beta-1)}\leqq B(1-\alpha, 1-\beta)\Vert h\Vert_{(\beta)}\Vert k\Vert_{(\alpha)}$ ,

where $B(\cdot, )$ is the beta function (cf. [5, Lemma 1.1]).

Throughout this section we use the following simplifying notation: when-
ever $U$ is a function of two real variables and $V$ is a function of one real
variable, we write

VU$(t, s):=V(t)U(t, s)$ and $UV(t, s):=U(t, s)V(s)$ ,

provided the right hand sides are meaningful.
We presuppose now the assumptions (A), $(C)_{\beta},$ $(CI)_{1-\beta}$ and $(H)_{\rho}$ . In the fol-

lowing we denote by $c$ constants, which may be different from formula to
formula, but are always independent of the specific independent variables occur-
ring at a given place. These constants can depend upon the constants $L,$ $M$,
$N,$ $T,$ $\beta$ and $\rho$ , but they do not depend upon the individual operators $A(t)$ ,
$0\leqq t\leqq T$. Usually this fact will be easy to verify so that we do not give details.

For $(t, s)\in\dot{T}_{\Delta}$ we put $B(t):=A_{\beta-1}(t)$ and

$a(t, s)$ $:=e^{-(t-B(s)}$ , $k(t, s)$ $:=-[B(t)-B(s)]a(t, s)$ .
Then

(5) $a\in C(T_{\Delta}, \mathcal{L}_{S}(E^{\beta-1}))\cap J((E^{\beta-1},0)$

and $k\in JC(E^{\beta-1},1-\rho)$ (cf. [5, Lemma 2.1]). Hence, by [5, Theorem 1.2] there
exists a unique solution $U\in JC(E^{\beta-1},0)$ of the “convolution type equation” $U=$

$a+U*k$ , which is given by

(6) $U=a+a*w$ ,

where the “resolvent kernel”

(7) $W\in JC(E^{\beta-1},1-\rho)$

is the unique solution of

(8) $w=k+k*w(=k+w*k)$ .
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The function $U$ is precisely the unique parabolic fundamental solution for
$\{B(t)|0\leqq t\leqq T\}$ on $E^{\beta- 1}$ , constructed by Sobolevskii [19] and Tanabe $[21, 22]$

(cf. [5, Section 3]). Hence

(9) $U\in C(T_{\Delta}, \mathcal{L}_{S}(E^{\beta- 1}))\cap JC(E^{\beta-1},0)\cap JC(E^{\beta}, 0)\cap JC(E^{3-1}, E^{\beta}, 1)$ .
Thus, by interpolation,

(10) $U\in JC(E, 0)\cap JC(E^{\beta-1}, E, 1-\beta)$ .
Assumption $(CI)_{1-\beta}$ implies the “moment inequality”

(11) $\Vert x\Vert_{E}\leqq c\Vert x\Vert_{E}^{\beta}\beta- 1\Vert x\Vert_{E}^{1}\overline{\beta}^{\beta}$
$x\in E^{\beta}$ ,

($e.g$ . $[24$ , Theorem 1.9.3]). Hence we deduce from (9) $-(11)$ and the density of
$E^{\beta}$ in $E$ that

(12) $U\in C(T_{\Delta}, \mathcal{L}_{s}(E))$ .

In the following we let $Z:=\{\beta-1,0, \beta\}$ .

LEMMA 5.1. $\Vert(\lambda+B(t))^{-1}\Vert_{\mathcal{L}(E}\zeta_{E}\eta)\leqq c|\lambda|^{\eta-\zeta- 1}$ for $0\leqq t\leqq T$ and $\eta,$
$\zeta\in Z$ with

$\zeta\leqq\eta$ , and for $\lambda\in\Sigma_{\theta}$ .
PROOF. If $\eta=\zeta$ , the assertion follows from (A) and Lemma 2.3. Since

$B(t)(\lambda+B(t))^{-1}=1-\lambda(\lambda+B(t))^{-1}$ we see that

$\Vert(\lambda+B(t))^{-1}\Vert_{\mathcal{L}(E\beta-1E^{9}}.)\leqq\Vert B(0)(\lambda+B(t))^{-1}\Vert_{\mathcal{L}(E\beta-1)}$

$\leqq N\Vert B(t)(\lambda+B(t))^{-1}\Vert_{\mathcal{L}(E\beta-1)}\leqq c$ ,

due to Lemma 2.3. The remaining cases are obtained by interpolation. $\square$

LEMMA 5.2. $\Vert B^{j}(t)e^{-sB(t)}\Vert_{\mathcal{L}(E}\zeta_{E}\eta)\leqq cs^{\zeta-\eta-j}$ for $s>0,0\leqq t\leqq T,$ $j=0,1$ , and
$\eta,$

$\zeta\in Z$ with $\zeta\leqq\eta$ .
PROOF. SinCe

$B^{j}(t)e^{-sB(t)}= \frac{1}{2\pi i}\int_{\Gamma}(-\lambda)^{j}e^{\lambda s}(\lambda+B(t))^{-1}d\lambda$

for $j=0,1$ , the assertion is an easy consequence of Lemma 5.1. $\square$

Lemma 5.2 implies in particular that

$a\in J\zeta(E^{\beta-1}, E, 1-\beta)\cap JC(E, E^{\beta}, \beta)\cap JC(E, 0)$ .

Hence we deduce from $(H)_{\rho}$ that $k\in JC(E, E^{\beta-1}, \beta-\rho)$ . Now it follows from
(8), (1) and (3) that

(13) $W\in JC(E, E^{\beta-1}, \beta-\rho)$ .
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Since $U$ is the parabolic fundamental solution for $\{B(t)|0\leqq t\leqq T\}$ on $E^{\beta-1}$ ,

we know that $U(\cdot, s)\in C^{1}((s, T$], $\mathcal{L}(E^{\beta-1}))$ , that

(14) $D_{1}U=-BU=D_{1}a+D_{1}(a*w)$ ,

and that

(15) $D_{1}(a*w)(t, s)$

$=e^{-(t-s)B(t)}w(t, s)+ \int_{s}^{t}[B(t)e^{-(t-\tau)B(\tau)}-B(\tau)e^{-(t-\tau)B(\tau)}]w(\tau, s)d\tau$

$+ \int_{s}^{t}B(t)e^{-(t-\tau)B(t)}[w(t, s)-w(\tau, s)]d\tau$

for $(t, s)\in\dot{T}_{\Delta}$ (cf. [22, formula (5.29)]). In order to estimate the last term in
(15) we need the following

LEMMA 5.3. SuPpose that $0<\gamma<\rho$ . Then

$\Vert w(t, s)-w(\tau, s)\Vert_{\mathcal{L}tE.E\beta-1)}$

$\leqq c(\gamma)\{(t-\tau)^{p}(\tau-s)^{-\beta}+\int_{\tau}^{t}(t-\sigma)^{\rho- 1}(\sigma-s)^{p-\beta}d\sigma+(t-\tau)^{\gamma}(\tau-s)^{2\rho-\gamma-\beta}\}$

for $0\leqq s<\tau<t\leqq T$.

PROOF. This follows from the estimates of Lemma 5.2 by obvious modifica-
tions of the proof of [22, Lemma 5.4.2] (where $R$ corresponds to $w$ and $R_{1}$

to $k$ ). $\square$

Observe that, due to (13) and Lemma 5.2, the first summand in (15) belongs
to $JC(E, 1-\rho)$ . Since

$B(t)e^{-(t- S)B(t)}-B(s)e^{-(t-S)B(s)}= \frac{1}{2\pi i}\int_{\Gamma}\lambda e^{\lambda(t- S)}[(\lambda+B(t))^{-1}-(\lambda+B(s))^{-1}]d\lambda$ ,

and since

$\Vert(\lambda+B(t))^{-1}-(\lambda+B(s))^{-1}\Vert_{\mathcal{L}(E\beta-1E)}$

$\leqq\Vert(\lambda+B(t))^{-1}\Vert_{\mathcal{L}(E\beta- 1E)}\Vert B(s)-B(t)\Vert_{\mathcal{L}(E\beta,E\beta-1)}\Vert(\lambda+B(s))^{-1}\Vert_{1(E\beta^{- 1}.E\beta)}$

$\leqq c|t-s|^{p}|\lambda|^{-\beta}$

by Lemma 5.1, we see that the second summand in (15) belongs to $JC(E, 1-\rho)$ .
Finally, by means of Lemma 5.3 it is easily verified that the last summand in
(15) belongs also to $JC(E, 1-\rho)$ . Thus, since $D_{1}a(t, s)=-B(s)e^{-(t- s)B(s)}$ , we
deduce from (14) and Lemma 5.2 that

(16) $D_{1}U\in JC(E, 1)$ ,

and, due to the fact that $A(t)$ is the E-realization of $B(t)$ , that
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(17) $R((U|E)(t, s))\subset D(A(t))$ for $(t, s)\in\dot{T}_{\Delta}$ ,

and that

(18) $D_{1}U=-AU$ .

Consequently

(19) $U(\cdot, s)\in C^{1}((s, T$ ], $\mathcal{L}(E))$ , $0\leqq t<T$ .
We put now

$b(t, s):=e^{-(t-s)B(t)}$ and $h(t, s):=b(t, s)[B(t)-B(s)]$

for $(t, s)\in T_{\Delta}$ . Then it is not difficult to see that

(20) $b\in C(T_{\Delta}, \mathcal{L}_{S}(E^{\beta}))\cap JC(E^{\beta}, 0)$ ,

(21) $h\in JC(E^{\beta}, 1-\rho)$ ,

and $Bh\in JC(E^{\beta}, E, 2-\beta-\rho)$ (cf. [5, Lemmas 2.1 and 3.1] and Lemma 5.2). Con-
sequently,

(22) BhB $\in JC(E^{\beta- 1}, E, 2-\beta-\rho)$ .
Moreover, by integrating the identity

$\frac{\partial}{\partial\tau}[e^{-(t-\tau)B(t)}U(\tau, s)]=h(t, \tau)U(\tau, s)$ , $0\leqq s<\tau<t\leqq T$ ,

it follows that $U$ satisfies the equation

(23) $U=b+h*U$ .

Since BbB $\in JC(E^{\beta-1},0)$ , we deduce from (23) that

(24) BUB $=BbB^{-1}+B(h*U)B^{-1}=BbB^{-1}+(BhB^{-1})*(BUB^{- 1})$ ,

where the last “convolution” is meaningful due to (22) and $\rho>1-\beta$ . But

(25) $BbB^{-1}(fs)=e^{-(t-s)B(s)}+[B(t)e^{-(t-S)B(t)}-B(s)e^{-(t-S)B(s)}]B^{-1}(s)$

and
$[B(t)e^{-(t-S)B(t)}-B(s)e^{-(t-S)B(s)}]B^{-1}(s)$

$= \frac{-1}{2\pi i}\int_{\Gamma}\lambda e^{\lambda(t-s)}(\lambda+B(t))^{-1}[B(s)-B(t)](\lambda+B(s))^{-1}B^{-1}(s)d\lambda$ .

By Lemma 5.1 the norm in $X(E)$ of the last term can be estimated by

$c \int_{\Gamma}|\lambda||e^{\lambda(t-S)}||\lambda|^{-\beta}|s-t|^{p}|\lambda|^{-1}|d\lambda|=c|t-s|^{\rho+\beta-1}$ .

Since $\rho>1-\beta$ , we see that the last term in (25) belongs to $C(T_{\Delta}, \mathcal{L}(E))$ . Hence
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we obtain

(26) BbB $\in C(T_{\Delta}, \mathcal{L}_{s}(E))$

from (25). Now it follows from $EcE^{\beta-1},$ (22)
$,$

(24)
$,$

(26) and [5, Theorem 1.2]

that BUB $\in C(T_{\Delta}, \mathcal{L}_{s}(E))$ , which implies

(27) AUA $\in C(T_{\Delta}, X_{S}(E))\cap JC(E, 0)$ ,

due to the fact that $A(t)$ is the E-realization of $B(t)$ and due to (17).

Since $U$ is the parabolic fundamental solution for $\{B(t)|0\leqq t\leqq T\}$ on $E^{\beta- 1}$

we know that $U(t, )\in C^{1}([0, t),$ $X_{s}(E^{\beta}, E^{\beta- 1}))$ and $D_{2}U=UB$ . Hence we deduce
from (10) that $D_{2}U(t, )\in C([0, t),$ $X_{s}(E^{\beta}, E))$ . Thus

(28) $U(t, )\in C^{1}([0, t),$ $X_{s}(E^{\beta}, E))$ for $0<t\leqq T$ ,

and

(29) $D_{2}U(t, s)x=U(t, s)A(s)x$ , $(t, s)\in\dot{T}_{\Delta}$ ,

provided $x\in D(A(s))$ , where we used again the fact that $A(s)$ is the E-realization
of $B(s)$ .

Now the assertions of Theorem 4.4 follow from (10), (12), (16)$-(19)$ , (27)-

(29), and the remarks following the statement of Theorem 4.4. $\square$

The author is grateful to the referee of this paper for suggesting the use
of the “moment inequality” (11) for simplifying the original proof of (12). More-
over the same referee pointed out that the evolution operators constructed by
Kato [10] and Sobolevskii [20] possess property (U5), although it is not men-
tioned in their papers. Property (U5) is important for the study of semilinear
evolution equations of the form

$\dot{u}+A(t)u=f(i, u)$ , $0<t\leqq T$ ,

since it allows the use of continuation arguments to construct maximal solutions
from local ones (cf. [3]).

6. The linear Cauchy problem.

Throughout this section we presuppose the assumptions (A), $(C)_{\beta},$ $(CI)_{1-\beta}$

and $(H)_{p}$ , and we consider the linear Cauchy problem

$(CP)_{x}$ $\dot{u}+A(t)u=f(t)$ , $0<t\leqq T$ , $u(O)=x$ ,

where $f:[0, T]arrow E$ .
THEOREM 6.1. Supp0se that $f\in C^{\alpha}([0, T], E)$ for some $\alpha\in(0,1)$ . Then $(CP)_{x}$

has for each $x\in E$ a unique solution.
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PROOF. It follows from (U3) and the remarks at the end of Section 4 that
it suffices to show that the function

(1) $v(t)$ $:= \int_{0}^{t}U(t, \tau)f(\tau)d\tau$ , $0\leqq t\leqq T$ ,

is a solution of $(CP)_{0}$ . Since $U$ is a parabolic fundamental solutim for
$\{B(t)|0\leqq t\leqq T\}$ on $E^{\beta- 1}$ , we know from the results of Sobolevskii and Tanabe
($e.g$. $[22$ , Theorem 5.2.3]), that $v$ is a solution of the evolution equation $\dot{v}+B(t)v$

$=f(t),$ $0<t\leqq T$ , in $E^{\beta-1}$ . Hence it suffices to verify that

$[t- arrow B(t)v(t)=B(t)\int_{0}^{t}U(t, \tau)f(\tau)d\tau]\in C((O, T],$ $E$).

Observe that

$B(t)v(t)= \int_{0}^{t}A(t)U(t, \tau)[f(\tau)-f(t)]d\tau+A(t)\int_{0}^{t}U(t, \tau)f(t)d\tau$

for $0<t\leqq T$ , and that the first summand is continuous as a function from $[0, T]$

to $E$ , due to
$\Vert A(t)U(t, \tau)[f(\tau)-f(t)]\Vert\leqq c(t-\tau)^{\alpha-1}$ , $(t, \tau)\in\dot{T}_{\Delta}$ ,

as follows from (U3). Hence it remains to show that

$[t rightarrow w(t):=A(t)\int_{0}^{t}U(t, \tau)f(t)d\tau]\in C((O, T],$ $E$).

Let $t\in(O, T$] be fixed and observe that

$g_{\epsilon}(t)$ $:= \int_{0}^{t-\epsilon}U(i, \tau)f(t)d\tauarrow g(t)$ $:= \int_{0}^{t}U(t, \tau)f(t)d\tau$

in $E^{\beta}$ as $\epsilonarrow 0$ in $(0, t)$ , due to the fact that $U\in J\zeta(E, E^{\beta}, \beta)$ , as follows from
(5.6), Lemma 5.2 and (5.14). Hence, since $B(t)\in X(E^{\beta}, E^{\beta-1})$ ,

$B(t)g_{\epsilon}(t)arrow B(t)g(t)=w(t)$ in $E^{\beta-1}$

as $\epsilonarrow 0$ in $(0, t)$ . But

$B(t)g_{\epsilon}(t)= \int_{0}^{t-\epsilon}B(t)U(t, \tau)f(t)d\tau=U(t, 0)f(t)-U(t, t-\epsilon)f(t)$ ,

which shows that B $(t)g_{\text{\’{e}}}(t)arrow U(t, O)f(t)-f(t)inE^{\beta-1}$ . $Thusw(t)=U(t, O)f(t)-f(t)$

for $0<t\leqq T$ , which implies $w\in C((O, T$ ], $E$ ) by (U1). $\square$

We prove also a second existence theorem for $(CP)_{x}$ , where we impose more
“regularity in space” instead of imposing time regularity as in Theorem 6.1.

THEOREM 6.2. Let $0<\theta<1$ and $E_{\theta}$ $;=(E, E^{\beta})_{\theta}$ , where $(\cdot, )_{\theta}$ denotes either
the complex interp0lati0n functor $[\cdot, ]_{\theta}$ or any me of the real interp0lati0n

functors $(\cdot, )_{\theta.p},$ $1\leqq p\leqq\infty$ , respectively. Moreover suppose that $f\in C([0, T], E_{\theta})$ .
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Then $(CP)_{x}$ has for each $x\in E$ a unique solution.

PROOF. It suffices again to show that the function $v$ defined by (1) is a
solution of $(CP)_{0}$ . Since $U$ is a fundamental solution for $\{B(t)|0\leqq t\leqq T\}$ on
$E^{\beta-1}$ and since $E_{\theta^{C_{arrow}}}E=[E^{\beta-1}, E^{\beta}]_{1-\beta}$ , it follows from [5, Theorem 4.1] that $v$

is a solution of the evolution equation $\dot{v}+B(t)v=f(t),$ $0<t\leqq T$ , in $E^{\beta-1}$ . Hence

$\dot{v}(t)=f(t)-B(t)\int_{0}^{t}U(t, \tau)f(\tau)d\tau$ , $0<t\leqq T$ ,

in $E^{\beta-1}$ , and it remains to show that

$[t rightarrow B(t)\int_{0}^{t}U(t, \tau)f(\tau)d\tau]\in C((O, T],$ $E$).

For this it suffices to prove that $BU\in j\zeta(E_{\theta}, E, \alpha)$ for some $\alpha<1$ .
It follows from the reiteration theorem for the complex interpolation method

[6, Theorem 4.6.1] and the commutativity theorem [24, Theorem 1.10.2] (cf.

also [6, Theorem 4.7.2]) that

$E_{\theta}=([E^{\beta- 1}, E^{\beta}]_{1-\beta}, E^{\beta})_{\theta}=(E^{\beta- 1}, E^{\beta})_{\eta}$ ,

where $\eta$ $:=1-\beta(1-\theta)$ . Hence we obtain from [5, Theorem 3.2 (iii)] that $BU\in$

$JC(E_{\theta}, E, 1-\beta\theta)$ . $\square$

7. Remarks on parabolic differential operators.

Let $\Omega$ be a bounded domain in $R^{n}$ of class $C^{2}$ and suppose that $\partial\Omega=\Gamma_{0}\cup\Gamma_{1}$ ,
where $\Gamma_{0}\cap\Gamma_{1}=\emptyset$ and $\Gamma_{0}$ is open and closed in $\partial\Omega$ .

Let $M$ denote either $\overline{\Omega}$ or $\Gamma_{1}$ . Then we write $a\in C^{r.s}(M\cross[0, T])$ , where
$r\in\{0,1\}$ and $0<s<1$ , provided $a(\cdot, t)\in C^{r}(M, R)$ for $0\leqq t\leqq T$ , and $a(x, )\in$

$C^{s}([0, T], R)$ uniformly with respect to $x\in M$. Moreover we use the summa-
tion convention throughout.

We let
$\mathcal{A}(t)u:=-D_{j}(a_{jk}(\cdot, t)D_{k}u)+a_{j}(\cdot, t)D_{j}u+a_{0}(\cdot, t)u$ ,

where
$a_{fk}=a_{kj}$ , $a_{j}\in C^{1,\rho}(\overline{\Omega}\cross[0, T])$ , $j,$ $k=1,$ $\cdots$ , $n$ ,

and $a_{0}\in C^{0.\rho}(\overline{\Omega}\cross[0, T])$ for some $\rho\in(1/2,1)$ , and where

$a_{jk}(x, t)\xi^{j}\xi^{k}>0$ $\forall(x, t)\in\overline{\Omega}\cross[0, T]$ , $\xi:=(\xi^{1}, \cdots \xi^{n})\in R^{n}\backslash \{0\}$ .
We let

$\mathcal{B}(t)u;=\{\begin{array}{ll}u on \Gamma_{0},\frac{\partial u}{\partial\nu_{a}(t)}+\beta_{0}(\cdot, t)u on \Gamma_{1},\end{array}$
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where $\beta_{0}\in C^{1.p}(\Gamma_{1}\cross[0, T])$ and $\nu_{a}(t)$ is the outer conormal with respect to the
matrix $(a_{jk}(\cdot, t))$ . Finally we assume that $a_{0}\geqq 0,$ $\beta_{0}\geqq 0$ and that either $\Gamma_{0}\neq\emptyset$

or $a_{0}\neq 0$ , if $\beta_{0}=0$ .
Let $1<p<\infty$ be fixed and put $E:=L_{p}(\Omega, R),$ $W_{p}^{s}$ $:=W_{p}^{s}(\Omega, R),$ $0<s\leqq 2$ , and

$W_{p,\mathcal{B}(t)}^{2}$ $:=\{u\in W_{p}^{9}|\mathcal{B}(t)u=0\}$ .
Moreover let

(1) $A(t)u:=\mathcal{A}(t)u$ $\forall u\in W_{p,\mathcal{B}(t)}^{2}$ .
Then it is well known that $\{A(t)|0\leqq t\leqq T\}$ satisfies assumption (A). It follows
from the results of Seeley $[17, 18]$ that $A^{i\tau}(t)\in \mathcal{L}(E)$ , that $\Vert A^{i\tau}(t)\Vert\leqq c(\epsilon)$ for
$\epsilon>0,$ $|\tau|\leqq\epsilon$ and $t\in[0, T]$ , and that

$D(A^{1/2}(t))=W_{p,0}^{1}$ $:=\{u\in W_{p}^{1}|u|\Gamma_{0}=0\}$ .

It is known ( $e$ . $g$ . $[2$ , Theorem 7.1]) that $A’(t)$ is induced by the formally
adjoint elliptic boundary value problem $(\mathcal{A}^{*}(t), \mathcal{B}^{*}(t))$ , which is of the same form
as $(\mathcal{A}(f), \mathcal{B}(t))$ . Hence Seeley’s results imply

$D((A’)^{1/2}(t))=W_{p’.0}^{1}$ , where $p’$ $:=p/(p-1)$ .
Consequently we deduce from Propositions 4.1 and 4.2 the validity of assump-
tions $(C)_{1/2}$ and $(CI)_{1/2}$ .

For $u\in W_{p.0}^{1}$ and $v\in W_{p’.0}^{1}$ let

$a(t, u, v);= \int_{\Omega}[a_{jk}(\cdot, t)D_{j}uD_{k}v+va_{j}(\cdot, t)D_{j}u+a_{0}(\cdot, t)uv]dx+\int_{\Gamma_{1}}\beta_{0}(\cdot, t)uvd\sigma$

and observe that

$[t-\rangle a(t, \cdot, )]\in C^{\rho}([0, T], \mathcal{L}^{2}(W_{p.0}^{1}, W_{p’.0}^{1} ; R))$ ,

where $X^{2}(\cdots)$ is the Banach space of all continuous bilinear forms on $W_{p,0}^{1}\cross W_{p’.0}^{J}$ .
Since

$a(t, u, v)= \int_{\Omega}vA(i)udx$ $\forall u\in W_{p.\ovalbox{\tt\small REJECT}(t)}^{2}$ , $v\in W_{p’.0}^{1}$

by Gauss’ theorem, it follows from Theorem 1.3 that

$a(t, u, v)=\langle v, A_{1/2}(t)u\rangle$

for all $u\in W_{p.0}^{1}=E^{1/2}$ and $v\in W_{p’.0}^{1}=(E^{-1/2})’$ . This implies the validity of assump-
tion $(H)_{p}$ . Hence Theorems 4.4, 6.1 and 6.2 are appljcable to the family
$\{A(i)|0\leqq t\leqq T\}$ defined by (1) in $L_{p}(\Omega, R)$ for $1<p<\infty$ .

Suppose now that $\Omega$ is a bounded domain of class $C^{2m}$ and

$\mathcal{A}(t)u=(-1)^{m}\sum_{|\alpha|\leqq 2m}a_{a}(\cdot, t)D^{\alpha}u$
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is a differential operator of order $2m$ acting on N-vector valued functions
$u:\Omegaarrow C^{N}$ . Moreover suppose that

$\mathcal{B}(t):=\{\mathcal{B}^{\sigma}(t)|1\leqq\sigma\leqq mN\}$

is a system of boundary operators of the form

$\mathcal{B}^{\sigma}(t)u=\sum_{|a|\leqq m_{\sigma}}b_{\alpha}^{\sigma}(\cdot, t)D^{\alpha}u$

such that $(\mathcal{A}(t), \mathcal{B}(t),$
$\Omega$)

$,$

$0\leqq t\leqq T$ , is for each $t$ a strongly O-regular elliptic
boundary value problem of order $2m$ in the sense of [3, Section 13], uniformly
with respect to $t\in[0, T]$ . Then, by adding a sufficiently large constant $\omega_{0}(p)$

to $a_{0}$ , it follows from [3, Theorems 12.2 and 13.1] that we can assume that
$\{A(t)|0\leqq t\leqq T\}$ satisfies assumption (A) in $E:=L_{p}(\Omega, C^{N})$ , $1<p<\infty$ , where
$A(t)u;=\mathcal{A}(t)u$ for all

$u\in W_{p.\mathcal{B}(t)}^{2m}$ $:=\{u\in W_{p}^{2m}(\Omega, C^{N})|\mathcal{B}(t)u=0\}$ .
Moreover, Seeley’s results are again apPlicable to give $A^{i\tau}(t)\in X(E),$ $\Vert A^{i\tau}(t)\Vert$

$\leqq c(\epsilon)$ for $\epsilon>0,$ $|\tau|\leqq\epsilon$ , and $t\in[0, T]$ and

\langle 2) $D(A^{k/2m}(t))=W_{p,\mathcal{B}(t)}^{k}$ , $k=1,2,$ $\cdots$ $2m$ ,

where

(3) $W_{p,\mathcal{B}(t)}^{s}$ $:=$ { $u\in W_{p}^{s}(\Omega,$ $C^{N})|\mathcal{B}^{\sigma}(t)u=0$ for $m_{\sigma}<s-1/p$ }

for $0<s\leqq 2m$ (cf. [3, Theorem 13.3]).

Suppose now that there exists a “formally adjoint” system $(\mathcal{A}^{\#}(t), \mathcal{B}^{\#}(t),$ $\Omega$),
$0\leqq t\leqq T$ , such that the corresponding $L_{p’}$ -realization $A^{\#}(t)$ , given by

$A^{\#}(t)v=\mathcal{A}^{*}(t)v$ $\forall v\in W_{p’.\mathcal{B}(t)}^{2m}\#$ ,

is also a strongly O-regular elliptic boundary value problem of order $2m$ , uni-
formly with respect to $t\in[0, T]$ , and such that $A’(t)=A^{\#}(t)$ . Then it follows
that

(4) $D((A’)^{k/2m}(t))=W_{p’,\mathcal{B}(t)}^{k}\#$ , $k=1,2,$ $\cdots,$
$2m$ .

Observe that this is always the case if $N=1$ (cf. [15, Theorem II.8.4] for the
case $p=2$ . A similar result holds for $p\neq 2.$ ). It is also easily seen that this is
the case if $N>1$ and $m=1$ , provided $(\mathcal{A}(t), \mathcal{B}(t),$

$\Omega$ ) is a second order system of
the form treated in [4, Section 6].

By using (2), (3) and (4) we deduce from Propositions 4.1 and 4.2 the
validity of the assumPtims $(C)_{\beta}$ and $(CI)_{1-\beta},$ provided $\beta=k/2m$ for some $k\in$

$\{1,2, \cdots , 2m-1\}$ and the boundary operatOrs $\mathcal{B}^{\sigma}(t)$ having orders $m_{\sigma}<k$ , and
\langle $\mathcal{B}^{*})^{\tau}(t)$ having orders $m_{\tau}^{*}<2m-k$ , are indePendent of $t\in[0, T]$ .



Parabolic fundamental solutions 115

Finally suppose that there exists a function

$[t-a(t, \cdot, )]\in C^{\rho}([0, T], X^{2}(W_{p,\mathcal{B}(0)}^{k}, l4_{p.B^{g_{(}}0)}^{2m-k}/^{\gamma}, C))$

for some $\rho\in(1-k/2m, 1)$ such that

(5) $a(t, u, v)=\langle v, A(t)u\rangle$ $\forall u\in W_{p.\mathcal{B}(t)}^{2m}$ , $v\in W_{p’,\mathcal{B}(t)}^{2m-k}$ .

Then condition $(H)_{\rho}$ is satisfied. Clearly (5) is deduced in practical cases from
an appropriate “Green’s formula”.
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