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Introduction.

Let $X$ be a complete non-singular curve over an algebraically closed field $k$ .
Assume that $G$ is a finite group of automorphisms of $X$. Let $\chi_{q}(q=1,2, \cdots)$

denote the character $Tr(G|H^{0}(X, \Omega_{X}^{\otimes q}))$ of the natural representation of $G$ on
the space of q-differentials on X. $G$ or $x_{q}’ s$ have recently been studied with a
new importance from their relation with the problems of moduli or Teichm\"uller

space (cf. $e.g.,$ $[5],$ $[6],$ $[11]$ ).

In the present paper, we confine ourselves to the study of the characters $\chi_{q}$

in the case where $G$ is cyclic and $k$ is of characteristic zero or $k=C$. We
attempt to follow up some part of [5] and [8]. In fact, our aims are (i) to
correct a “theorem” in [5] concerning the interrelation between the charac-
ters, (ii) to reveal a nature of the sequence $(\chi_{q})_{q\geq 1}$ , and (iii) to characterize $(\chi_{q})_{q_{\infty}^{\sim}1}$

as a sequence of class functions of $G$ by a special type of mapping $\lambda:Garrow$

$\backslash _{A}4ap(Z, Q)$ .
We shall give a brief survey of this paper. In \S 1, we shall introduce for

$G$ a surjective group homomorphism $\phi_{G}$ : $\Gammaarrow G$ , where $\Gamma$ is a group characterized
by the Riemann-Hurwitz relation for the covering: $Xarrow X/G$ . Then we shall
give an existence theorem of a cyclic automorphism group in a formulation
including $\phi_{G}$ (Theorem 1.6). Our basic tool to investigate the characters is the
trace formula which says that each $\chi_{q}$ (considered as an unknown) is determined
by the information of the homomorphism $\phi_{G}$ (cf. (2.1)). In \S 2, as for (i) we
shall show that $\phi_{G}$ and hence all of $\chi_{q}$ are determined by the first finite number
of the $x_{q}’ s$ (Theorem 2.2). In spite of the importance of $\chi_{1}$ or $\chi_{2}$ (for example,

$\chi_{2}$ determines the moduli space near the corresponding point of $X$ ), it will be
shown (cf. (2.5)) that $\chi_{1}$ and $\chi_{2}$ do not necessarily determine other $x_{q}’ s$ (cf. $[\check{o}$ ,
p. 219 Corollary]). In \S 3, as for (ii) we shall prove:

THEOREM. Let $G$ (resp. $G’$ ) be a cyclic group of $auto’ norphisms$ of a com-
pact Riemann surface $X$ (resp. $X’$ ) of genus $\tilde{g}\geqq 2$ . $Assu?ne$ that ’: $Garrow G’(\sigmaarrow\sigma")$

is an isomorphism. Then the following conditions are equivalent.
(a) There exists an orientation-preservjng homeomorphism $h:Xarrow X’$ such that
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$h\circ\sigma=\sigma’\circ h$ for each $\sigma\in G$ .
(b) $Tr(G|H^{0}(X, \Omega_{X}^{\otimes q}))(\sigma)=Tr(G’|H^{0}(X’, \Omega_{X’}^{\otimes q}))(\sigma’)$ for each $\sigma\in G$ and $q=1,2,$ $\cdots$

In \S 4, we shall settle (iii) as an interpretation of the existence theorem.

NOTATION. We denote by $k$ our algebraically closed ground field of charac-
teristic $P\geqq 0$ . A curve will always mean a complete non-singular curve defined
over $k$ . Throughout this paper $n,$ $G$ and $\zeta_{n}$ denote an integer $(\geqq 1)$ such that
$p\nmid n$ , a cyclic group of order $n$ and a primitive n-th root of unity (in $k$ ),

respectively. We set $\zeta_{m}=\zeta_{n}^{n/m}$ for $m|n$ .
We write $\# X$ for the cardinality of a finite set $X$. However when $\sigma$ is an

element of a group, $\#\sigma$ means its order.

1. Existence theorem.

The purpose of this section is to give an elementary algebraic proof of the
“existence theorem” (Theorem 1.6) of a cyclic covering having a given branch
structure. In the case where $k=C$, the theorem is classically obtained by using

the theory of uniformization or covering spaces (cf. [7], [14, p. 116]).

(1.1) Statements. One of our motivation to introduce the homomorphism
$\phi_{G}$ (defined below) is explained in Remark 1.1 which shall be used in \S 3, (cf.

also (2.1)).

REMARK 1.1. Let $X$ be a curve of genus $\tilde{g}$ . Assume that our $G$ is con-
tained in Aut(X), the automorphism group of $X,$ $i$ . $e.$ , assume that we have an
injective homomorphism $\iota;Garrow Aut(X)$ and identify $G$ with its image via $\iota$ .
(a) Definition. (Cf. [14, p. 101].) Let $P$ be a point on $X$. For $\sigma\in G$ we define
$\zeta_{P}(\sigma)\in k$ as follows:

$\zeta_{P}(\sigma)=\zeta$ (resp. $=0$) if $\sigma(P)=P$ (resp. $\neq P$ ) ,

where $\zeta$ is a $\#\sigma$ -th root of unity satisfying the relation:

$\sigma^{*}(t)=\zeta\cdot t$ mod $t^{2}\cdot O_{P}$

for some local parameter $t$ of the valuation ring $O_{P}$ at $P$ (in the function field
$JC(X)$ of $X$ ). It is noted that

(1) $\sigma karrow\zeta_{P}(\sigma)$ defines an injective homomorphism of $G(P)=\{\sigma\in G|\sigma(P)=P\}$

into $k^{\cross}$ , the group of the units in $k$ .
(b) Notation. Let $Q_{1},$ $\cdots$ , $Q_{l}(\in X/G)$ be the branch points of the projection
$\pi:Xarrow X/G$ . For $P_{j}\in\pi^{-1}(Q_{j})$ denote by $m_{j}$ the ramification index $e_{P_{j}}$ at $P_{j}$ .
We may assume that $m_{1}\leqq\cdots\leqq m_{l}$ . By a theorem of Hurwitz we have the Rie-
mann-Hurwitz relation:
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(2) 2 $\cdot$ $\tilde{g}-2=n(2\cdot g-2)+n\sum_{j=1}^{l}(1-1/m_{j})$ ,

where $g$ denotes the genus of $X/G$ . The datum $(g, 1;7?_{1}, \cdots m_{l})$ is called (in

this paper) the signature of $G$ .
(c) Construction. (Cf. [8, \S 4].) Here we confine ourselves to the case where
$k=C$ and $\tilde{g}\geqq 2$ . Let $K$ be a Fuchsian group (acting on the unit disk $U$) uni-
formizing $X$, and let $\Gamma$ denote the Fuchsian group generated by the elements
of $K$ and the liftings to $U$ of the elements of $G$ . Then $\pi:Xarrow X/G$ may be
identified with the natural mapping: $U/Karrow U/\Gamma$, and so the signature of $\Gamma$ (cf.

[10]) is $(g, l;m_{1}, \cdots , m_{l})$ . $Arightarrow$ ($the$ induced mapping of $A$ on $U/K$) defines a
surjective homomorphism $\phi:\Gammaarrow G$ of which kernel $(=K)$ is torsion-free.

To inquire the nature of $\phi$ we consider a standard fundamental region $R$

for $\Gamma$ (cf. [9]). It is a fundamental region satisfying the following conditions:
1) $R$ is bounded by $4g+2l$ Jordan arcs in $U$ :

$\overline{z_{0}z}_{1}$ , $\overline{z_{1}z}_{2}$ , $\cdot$ .. , $z_{4g-1}z_{4g}\wedge$ , $z_{4g}e_{1}\wedge$ , $\overline{e_{1}z}_{4g+1}$ , $\cdot$ .. , $\overline{e_{l}z}_{0}$ ;

forming a Jordan curve oriented so that the interior of $R$ is on the left, where
$z_{0}$ (resp. $z_{1}$ ) of $\overline{z_{0}z}_{1}$ denotes the initial (resp. end) point of the arc, and so force.

2) There exist hyperbolic elements $A_{i},$ $B_{i}$ in $\Gamma$ ($i=1,$ $\cdots$ , g) such that
$A_{i}(zz_{4i-1})=z_{4i-3}z_{4i-4} \bigwedge_{4i-2}\wedge,$

$B_{i}(z_{4i-3}z_{4i-2})=z_{4i}z_{4i-\underline{1}}\wedge\wedge$, and elliptic elements $C_{j}$ of order
$m_{j}$ in $\Gamma$ ($j=1,$ $\cdots$ , l) such that $C_{j}(\overline{e_{j}z}_{4g+j})=e_{j}z_{4g+j-1}$ , where $z_{4g+l}=z_{0}$ . It is well-
known ( $e$ . $g.$ , cf. [10, p. 227, p. 234]) that the elements $A_{i},$ $B_{i},$ $C_{j}$ generate the
group $\Gamma$ and have

(3) $C_{1}^{m_{1}}=\ldots=C_{l}^{m_{l}}=1$ , $C_{1}\cdots C_{l}[A_{1}, B_{1}]\cdots[A_{g}, B_{g}]=1$

as a basis for the relations in $\Gamma$ . The point is that

(4) if $e_{j}$ projects onto the points $P_{ktj)},$ $Q_{k(j)}$ on $U/K=X,$ $U/\Gamma=X/G$ ,

respectively, then $\phi(C_{j})=\sigma_{k(j)}$ , where $\sigma_{j}$ denotes the element of $G$

such that $\zeta_{P_{j}}(\sigma_{j})=\zeta_{m_{j}}$ ($j=1,$ $\cdots$ , l) (cf. [8, Theorem 7]).

Before the definition of our $\phi_{G}$ we set:

NOTATION 1.2. For a given datum $(g, 1;m_{1}, \cdots , 77?_{l})$ , where $g,$ $l,$ $m_{1},$ $\cdots m_{l}$

$\in Z,$ $g,$ $1\geqq 0$ and $2\leqq m_{1}\leqq\cdots\leqq m_{l}$ , let $\Gamma$ denote the group generated by $A_{i},$ $B_{i}$

and $C_{j}$ ($i=1,$ $\cdots$ , $g;j=1,$ $\cdots$ , l) having (3) as a basis for the relations in $\Gamma$.

DEFINITION 1.3. Let $X$ be a curve and assume that $G\subseteqq Aut(X)$ . Let $\Gamma$,
$\wedge 4_{i},$ $B_{i}$ and $C_{j}$ be as in Notation 1.2 for the signature $(g, l;m_{1}, \cdots , m_{l})$ of $G$ ,
and $P_{1},$ $\cdots$ , $P_{t}$ be as in Remark 1.1 (b). We define a group homomorphism
$\phi_{G}$ : $\Gammaarrow G$ as follows:
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$\phi_{0^{r}}A_{i}=\phi_{G}(B_{i})=\tau$ and $\phi_{G}(C_{j})=\sigma_{j}$ ,

where $\tau$ is a generator of $G$ and $\sigma_{j}$ denotes the element of $G$ such that $\zeta_{P_{j}}(\sigma_{j}^{\backslash }$

$=\zeta_{m_{j}}$ .
Well-definedness of $\phi_{C:}$ is non-trivial and shall be shown in the proof of

Lemma 1.8.

To state our main result in this section, which (including a remark) shalE
be proved in (1.4), here we make:

DEFINITION 1.4. Let $\Gamma$ and $C_{j}(j=1, \cdots l)$ be as in Notation 1.2. Then
we say that two homomorphisms $\phi_{1},$ $\phi_{2}$ of $\Gamma$ into $G$ are equivalent if there
exists a permutation $k$ of $\{$ 1, $\cdots$ , $l\}$ such that $\phi_{1}(C_{j})=\phi_{2}(C_{k(j)})(j=1, \cdots , 1)$ .

REMARK 1.5. Assume that $G$ is an automorphism group of a curve. Then
we have the followings:
(a) $\phi_{G}$ is uniquely defined up to the equivalence;
(b) $\phi_{G}$ is surjective and $Ker(\phi_{G})$ , the kernel of $\phi_{G}$ , is torsion-free.

THEOREM 1.6. Let $\Gamma$ (resp. $k$ and $G$ ) be as in Notation 1.2 (resp. Notation).

Assume that $\phi:\Gammaarrow G$ is a surjective homomorphism having the torsion-free kernel.
Then there exists a curve $X$ such that $G\subseteqq Aut(X)$ and $\phi_{G}$ is equivalent to $\phi$ .

(1.2) A function-group theoretic lemma. To prove Theorem 1.6, first we
prepare a preliminary result.

LEMMA 1.7. Let $\Gamma,$ $C_{j}$ and $(g, 1;m_{1}, \cdots , m_{l})$ be as in Notation 1.2. Assume
that $\phi:\Gammaarrow G$ is a surjective homomorphism. Then $Ker(\phi)$ is torsion-free if and
only if $\phi(C_{j})$ has order $f\uparrow j(j=1, \cdots , l)$ .

PROOF. The “only-if” part is obvious. To prove the converse we assume
that $\phi(C_{j})hasorderm_{j}$ . $Weshallexaminethreecaseswhere2\cdot g-2+\sum(1-1/m_{j}$ ,
is (i) $>0$ , (ii) $=0,$ $(iii)<0$ .

Case (i). By [10, p. 239 Theorem] $\Gamma$ is realizable as a Fuchsian group, so
we obtain Lemma 1.7 using Theorem 3 in [7].

Case (ii). It is easy to see that the possibilities of $(g, l;’?\iota_{1}, \cdots , m_{l})$ are as
follows:

$($1, $0$ ; – $)$ , $(0,4;2,2,2,2)$ , $(0,3 ; 2, 3, 6)$ ,
$(0,3;2,4,4)$ , $(0,3;3,3,3)$ .

In each case $\Gamma$ is realizable as an eiementary group acting on the plane $C$ (cf.

[3, VI. 9.5]). So we obtain Lemma 1.7 as in the case (i).

Case (iii). The possibilities are as follows:
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$(0,0; --)$ , $(0,1 ; m_{1})$ , $(0,2;m_{1}, m_{2})$ , $(0,3;2,2, m_{3})$ ,

$(0,3;2,3,3)$ , $(0,3;2,3,4)$ , $(0,3;2,3,5)$ .
Then the group $\Gamma$ is cyclic, cyclic, cyclic, dihedral, tetrahedral, octahedral,
icosahedral, respectively. So it is easy to see Lemma 1.7. Q. E. D.

(1.3) Construction of cyclic coverings. The following lemma, which is
Theorem 4 in [7] in case $k=C$, is essentially equivalent to our existence
theorem.

LEMMA 1.8. Let $\Gamma$ and $(g, 1;m_{1}, \cdots , m_{l})$ (resp. $k$ and $G$ ) be as in Notation
1.2 (resp. Notation). Let $Y$ be a curve of genus $g$ and $Q_{1},$ $\cdots$ , $Q_{l}$ be 1 distinct
Points on Y. Put $m=1$ .c.m. $\{m_{1}, \cdots , m_{l}\}$ . Then the following conditions $(a)\sim(c\rangle$

are equivalent:
(a) $G=Aut(X/Y)(=\{\sigma\in Aut(X)|\pi\circ\sigma=\pi\})$ for a Galois covering $\pi:Xarrow Y$ of
curves such that $e_{P}=m_{j}$ (resp. $=1$ ) whenever $\pi(P)=Q_{j}$ (resp. $\neq Q_{j},$ $j=1,$ $\cdots$ , $l$).

(b) There exists a surjective homomorphism $\phi:\Gammaarrow G$ such that $Ker(\phi)$ is $torsionarrow$

free.
(c) (i) 1.c.m. $\{m_{1}, \cdots , \hat{m}_{i}, \cdots , m_{l}\}=m$ for all $i$ , where $\hat{m}_{i}$ denotes the omission

of $m_{i}$ ;
(ii) $m$ divides $n$ , and if $g=0,$ $m=n$ ;
(iii) If 2e $|m(e\geqq 1)$ and $2^{e+1} \int m,$ $\#\{j|2^{e}|m_{j}\}$ is even.

PROOF. We shall establish the following chain of implications: $(c)\Rightarrow(b)\Rightarrow$

$(a)\Rightarrow(b)\Rightarrow(c)$ .
$(c)\Rightarrow(b)$ . This can be proved in the same way with some slight modification as
the latter part of the proof of Theorem 4 in [7], so we omit the details.
$(b)\Rightarrow(a)$ . Let $\tau$ denote a generator of $G$ and $Q$ be a point on Y. Assume that
$\phi(C_{j})=(T^{n/m_{j)^{S}J}}$ $(j=1, \cdots , l)$ . We denote by $E$ the divisor $\sum_{j}(s_{j}n/m_{j})\cdot Q_{j}$ on Y.
Then by the assumption the degree of $E$ is equal to $n\cdot c$ for some integer $c$ .
Using the fact that the group of n-division points on the Jacobian variety of $Y$

is isomorphic to $(Z/nZ)^{2g}$ , we shall see

(5) there exists a divisor $D$ on $Y$ with $E\sim n\cdot D$ such that
$(1/s)\cdot E’\star(n/s)\cdot D$ for any $s|(n/m)$ with $s\neq 1$ ,

where $\sim$ means the relation of linear equivalence. In fact, in the case where
$g=0$ , we may choose $c\cdot Q$ as $D$ , since we have $n=m$ by the surjectivity of $\phi$ .
Now assume that $g>0$. First take a divisor $D_{1}$ on $Y$ such that $E-nc\cdot Q\sim n\cdot D_{1}$ .
Next let $\{p_{i}\}$ be the set consisting of the prime divisors of $n/m$ . Then we can
choose a divisor $D_{a}$ on $Y$ with $n\cdot D_{g}\sim O$ such that

$(n/p_{i})\cdot D_{2}\sim O$ if and only if $(1/p_{i})(E-nc\cdot Q)_{7^{\zeta}}(n/p_{i})\cdot D_{1}$ .
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Then it is obvious that $D=D_{1}+D_{2}+c\cdot Q$ serves our need.
Take an element $z$ of $K=JC(Y)$ such that

\langle 6) $div_{Y}(z)=E-n\cdot D$ ,

and let $\pi:Xarrow Y$ denote the covering (of curves) defined by the inclusion of
function fields: Il(X) $=K(y)\supseteqq K$, where $y=z^{1/n}$ . Here, using the theory of Kum-
mer extensions, we note that

\langle 7) $[K(y):K]=n$ .
In fact, if we put $s=n/[K(y):K]$ , then, observing that $y^{n/s}$ belongs to $K$, we
have that $div_{Y}(z)=s\cdot div_{Y}(y^{n/s})$ . Hence it follows from (6) that $s|(n/m)$ . By (5)

this means that $s=1$ , as desired.
By (7) we may assume that $G=Aut(X/Y)$ and $\tau^{*}(y)=\zeta_{n}\cdot y$ . Here we show

that

(8) if $\pi(P)\neq Q_{j},$ $j=1,$ $\cdots$ , $l$ (resp. $\pi(P)=Q_{j}$), then
$e_{P}=1$ (resp. $e_{P}=m_{j}$ and $\zeta_{P}(\tau^{n/m_{j}})^{s_{j}}=\zeta_{m_{j}}$).

To observe (8), let $(g, l’ ; m_{1}’, \cdots , m_{l}’’)$ denote the signature of $Aut(X/Y)$ and let
$Q_{1}’,$ $\cdots$ , $Q_{l}’$ , (resp. $P_{1}’,$ $\cdots$ , $P_{l’}’$ ) be the points on $Y$ (resp. $X$ ) as in Remark 1.1 (b).

Since $\tau^{n/m_{\acute{i}*}}(y)=\zeta_{m_{i}’}\cdot y$ , if $\zeta_{P_{i}’}(\tau^{n/m_{i}^{i}})^{s_{i}’}=\zeta_{m_{i}’}$ then we have that

(9) (order of $y$ at $P_{i}’$ ) $\equiv s\text{\’{i}}$ mod $m_{i}$ .
Moreover since

$\pi^{*}(Q_{i}’)=m_{i}’\{\tau(P_{i}’)+\tau^{2}(P_{i}’)+\cdots+\tau^{n/m’}{}^{t}(P_{i}’)\}$

(as divisors), and since $div_{X}(y)$ is $\tau$-invariant, it follows from (9) that

$div_{X}(y)=\sum_{i}(s_{i}’/m_{i}’)\cdot\pi^{*}(Q_{i}’)+\pi^{*}(D’)$ , $i$ . $e.$ ,

(10) $div_{Y}(y^{n})=\sum_{i}(s_{i}’n/m_{i}’)\cdot Q_{\ell}’+n\cdot D’$

for some divisor $D’$ on Y. Comparing the order of $z=y^{n}$ at $Q_{j}$ in (6) and (10),

we obtain that

$s_{j}n/m_{j}\equiv\{0s_{i}’n/m_{i}$

$mod n$ if $Q_{j}=Q_{i}$ ,
$1’$).$mod n$ if $Q_{j}\neq Q_{i}$ $(i=1,$ $\cdots$

Since $(s_{j}n/m_{j}, n)=n/m_{j}$ and $(s_{i}’n/m_{i}’, n)=n/m_{i}’$ , it follows that for each $j$ there
exists a unique integer $k(j)(1\leqq k(j)\leqq l’)$ such that $Q_{j}=Q_{k(j)}’$ . Then we have
that

(11) $m_{j}=m_{k(j)}’$ and $s_{j}\equiv s_{k(j)}’$ . mod $m_{j}$ .
Comparing the order of $z$ at $Q_{i}’$ in the same way, we see m.oreover that $1=1’$
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and $k$ is a permutation. Therefore by (11) we obtain (8) and hence (a).
$(a)\Rightarrow(b)$ . Let $\tau$ be a generator of $G$ and $P_{j}$ be a point in $\pi^{-1}(Q_{j})(j=1, \cdots , l)$ .
Assume that $\zeta_{P_{j}}(\tau^{n/m_{j}})^{s_{j}}=\zeta_{m_{j}},$ $j=1,$ $\cdots$ , $l$ . By the theory of Kummer extensions
we can find an element $y$ of $JC(X)$ such that $\tau^{*}(y)=\zeta_{n}\cdot y$ . Then it follows as
in the proof of $(b)\Rightarrow(a)$ that

$div_{Y}(y^{n})=\sum_{j}(s_{j}n/m_{j})\cdot Q_{j}-n\cdot D$

for some divisor $D$ on $Y$ . Considering the degree, we obtain

$\sum_{j}s_{j}n/m_{j}\equiv 0$ mod $n$ .
This implies the well-definedness of $\phi_{G}$ as a group homomorphism.

To obtain (b) it suffices by Lemma 1.7 to verify the surjectivity of $\phi_{G}$ . The
case where $g>0$ is trivial, so we assume $g=0$ . Since then the image of $\phi_{G}$ is
the subgroup generated by $\tau^{n/m_{j}}$ $(j=1, \cdots , 1)$ , which is of order $m$ , it suffices
to show that $m=n$ . In fact, to see this we note that the group $G/G’$ is naturally

identified with $Aut((X/G’)/(X/G))$ , where $G’=\langle\tau^{n/m}\rangle$ . Then it follows from the
choice of $m$ that the covering: $X/G’arrow X/G$ is unramified. Hence the Riemann-
Hurwitz relation for this covering reads: 2 $\cdot$ $g’-2=(n/m)(2\cdot g-2),$ $i$ . $e.,$ $g’+(n/m)$

$=1$ , where $g’$ denotes the genus of $X/G’$ . Since $g’\geqq 0$ , this implies that $n/m$

$=1$ , as desired.
$(b)\Rightarrow(c)$ . Using the implication: $(b)\Rightarrow(a)$ , we can prove in the same way as the
former part of the proof of Theorem 4 in [7], so we omit the details. Q.E.D.

(1.4) Proofs. PROOF OF REMARK 1.5. The statement (a) is obvious and
(b) has been already proved in the proof of Lemma 1.8. Q. E. D.

PROOF OF THEOREM 1.6. This can be proved easily by using $(a)\Rightarrow(b)$ , in
particular (8), in the proof of Lemma 1.8. Q. E. D.

2. Determinability.

Throughout this section we suppose that

(1) The characteristic of our $k$ is zero, and our $G$ is contained
in Aut(X) with $X$ being a curve of genus $\tilde{g}$ ,

and for $q=1,2,$ $\cdots$ , we put

(2) $\chi_{q}=Tr(G|H^{0}(X, \Omega_{X}^{\otimes q}))$ ,

the character of the natural representation of $G$ on the space of q-differentials
on $X$.
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In this section we shall see another nature of the homomorphism $\phi_{G}$ , the
close relation to our characters. Using it we shall obtain an interrelation be-
tween the characters.

(2.1) Statements. Our basic tool is the following “Trace formula“ :

LEMMA 2.1. Let $G,\tilde{g}$ and $\chi_{q}$ be as in (1) and (2). Then:
(a) If $\sigma\in G$ with $\sigma\neq 1$ , then

$\sum_{P\in X}\zeta_{P}(\sigma)^{q}/(1-\zeta_{P}(\sigma))=x_{q}(\sigma)$
$(resP\cdot=x_{1}(\sigma)-1)$

for $q\geqq 2$ and $\tilde{g}\geqq 2$ (resp. for $q=1$ ).

(b) $(2\cdot q-1)(\tilde{g}-1)=\chi_{q}(1)$ (resp. $=\chi_{1}(1)-1$ )

for $q\geqq 2$ and $\tilde{g}\geqq 2$ (resp. for $q=1$ ).

This has been proved in several ways, cf. $e.g.,$ [ $3$ , V. 2.9].

We note the summation in Lemma 2.1 (a) may be rewritten as follows;

$(r. \#\sigma)=1\sum_{r=1}^{*\sigma}\#\{P|\zeta_{P}(\sigma)=\zeta_{*\sigma}^{r}\}\cdot\zeta_{*\sigma}^{qr}/(1-\zeta_{*\sigma}^{r})$ .

Since these $\#\{\cdots\}$ and $\tilde{g}$ are recovered from the information of $\phi_{G}$ (cf. Remark
2.8 below), Lemma 2.1 implies that

(i) we have a (explicit) relation between $\chi_{q}$ and $\phi_{G}$ , and
(ii) considering $\chi_{q}$ as an unknown and $\phi_{G}$ as a variable, we can solve the

relation (uniquely).

In such a meaning we say that $\chi_{q}$ is “determined” by $\phi_{G}$ .
As for the converse, we have the followings, which shall be proved in (2.4).

THEOREM 2.2. Let $G,$ $X,$ $g$ and $\chi_{q}$ be as in (1) and (2). If $\tilde{g}\geqq 2$ then the
characters $\chi_{1}\chi_{2}\ldots$ , $\chi_{n’+1}$ “determine” the homomorphism $\phi_{G}$ up to the equivalence,
where $n’=n/\Pi p_{i}$ with $\{p_{i}\}$ being the set of prime factors of $n$ .

COROLLARY 2.3. Let $G,$ $X,\tilde{g}$ and $\chi_{q}$ be as in (1) and (2). Assume moreover
that our $G$ is also contained in Aut(X) with $X’$ being a curve (cf. Remark 1.1).

Let $\phi$ (resp. $\phi’$ ) denote a $\phi_{G}$ defined for $G$ considered as a subgroup of Aut(X)
(resp. Aut(X’)). Put $x_{q}’=Tr(G|H^{0}(X’, \Omega_{X}^{\otimes q},))$ . If $\tilde{g}\geqq 2$ then the following three
conditions are equivalent:
(a) $\phi=\phi’$ up to the equivalence.
(b) $x_{q}=x_{q}’$ for $q=1,2,$ $\cdots$

(c) $x_{q}=x_{q}’$ for $q=1,$ $\cdots$ , $n’+1$ , where $n’=n/\Pi p_{i}$ with $\{p_{i}\}$ as above.

COROLLARY 2.4. Let $X,\tilde{g}$ and $\chi_{q}$ be as in (1) and (2). Then the characters
$\chi_{1},$ $\cdots$ , $\chi_{4\dot{g}+2}$ “determine” the other $x_{\mathfrak{g}}’ s$ .
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(2.2) Basics on the rotation datum. In this numero we introduce an object
which describe the essential part of the homomorphism $\phi_{G}$ .

NOTATION 2.5. (a) Let $m$ be a given integer $(m\geqq 1)$ .
(i) For $r\in Z$ we define a mapping $\lambda_{mr}$ : $(Z/mZ)^{\cross}arrow Q$ by $(imod mZ)\mapsto 1$

(resp. $0$) if $i\equiv r$ mod $m$ (resp. otherwise).

(ii) We view Map $((Z/mZ)^{\cross}, Q)$ and Map$(Z, Q)$ as Q-vector spaces in a
natural manner and consider as Map$((Z/mZ)^{\cross}, Q)\subseteqq Map(Z, Q)$ via $\lambda_{mr^{-\succ\dot{A}_{mr}}}^{\sim}$ ,

where $\overline{\lambda}_{mr}$ is the mapping defined by $iarrow 1$ (resp. $\mapsto 0$) if $i\equiv r$ mod $m$ (resp. other-
wise).

(iii) We denote by deg : Map$((Z/mZ)^{\cross}, Q)arrow Q$ the Q-homomorphism:
$\Sigma_{r}a_{r}\lambda_{mr}-\Sigma_{r}a_{r}$ .
(b) In case $m’|m$ , we denote by $\pi_{m’}$ : Map$((Z/mZ)^{\cross}, Q)arrow Map((Z/m’Z)^{\cross}, Q)$ the
Q-homomorphism given by $\lambda_{mr}rightarrow\lambda_{m’r}$ .

DEFINITION 2.6. Let $G,$ $X,\tilde{g}$ (resp. $\phi_{G}$ : $\Gammaarrow G$ , ( $g,$ $1;m_{1},$ $\cdots$ , $m_{l}$ ) and $C_{j}$ ) be
as in (1) (resp. in Definition 1.3).
(a) We define the rotation datum $\lambda_{G}$ : $Garrow Map(Z, Q)$ of $G$ by

$\sigma-\{\begin{array}{ll}(2-- 2\cdot \tilde{g})\cdot\lambda_{11} if \sigma=1,\sum_{(r.*\sigma)=1r=1}^{*\sigma} \#\{P|\zeta_{P}(\sigma)=\zeta_{*\sigma}^{r}\}\cdot\lambda,\sigma \mathcal{T} otherwise.\end{array}$

(b) $\backslash \backslash e$ also define a mapping Red $\lambda_{G}$ : $G\backslash \{1\}arrow Map(Z, Q)$ by using $\phi_{G}$ as follows:

(3) $\sigma-$
$\sum_{j,\#\sigma=m_{j}}(n/n\iota_{j})\cdot\lambda_{m_{j}u_{f}}$

,

where $u_{j}\in Z$ such that $\phi_{G}(C_{j}^{u_{j}})=\sigma$ .

The followings are basic for later use:

LEMyIA 2.7. Let $G$ be as in (1).

(a) Assume that $u\in Z,$ $(u, n)=1$ and $\sigma\in G,$ $\sigma\neq 1$ . The $Q$-automorPhism of
Map $((Z/\#\sigma\cdot Z)^{x}, Q)$ defined by $\lambda_{\#\sigma r}\mapsto\lambda_{t\sigma ru}$ sends $\lambda_{G}(\sigma)$ (resp. Red $\lambda_{G}(\sigma)$ ) to $\lambda_{G}(\sigma^{u})$

(resp. Red $\lambda_{G}(\sigma^{u})$).

(b) Assume that $G=\langle\tau\rangle$ and $d|n,$ $d\neq n$ . Then

(i) $\lambda_{G}(\tau^{d})=\sum_{e|d}\pi_{n\prime d}(Red\lambda_{G}(\tau^{e}))$ ,

where the symbol $\sum_{e|d}$ is meant a summation over all $e$ with $e_{1}^{I}d$ .

(ii) Red $\lambda_{G}(\tau^{d})=\sum_{\epsilon\{d}\mu(d/e)\cdot\pi_{n/d}(\lambda_{G}(\tau^{e}))$ ,

uhere $\mu$ denotes the Mobius function.



60 I. KURIBAYASHI

PROOF. (a) This follows from (1) of \S 1 and the fact that $\phi_{G}$ is a homo-
morphism.
(b) To prove (b) we use the notation in Definition 1.3. For $\sigma\in G$ , $\sigma\neq 1$ we
have that

(4) $\phi_{G}(C_{j}^{u})=\sigma$ if and only if $\zeta_{P_{j}}(\sigma)=\zeta_{m_{j}}^{u}$ ,

and hence that

(5) Red $\lambda_{G}(\sigma)=\sum_{\tau=1}^{sigma}\#\{P|G(P)=\langle\sigma\rangle, \zeta_{P}(\sigma)=\zeta_{*\sigma}^{r}\}\cdot\lambda_{*\sigma r}$ .

This implies (i), in fact, we have that

$\lambda_{G}(\tau^{d})=\sum_{e|d}\sum_{\tau=1}^{n/d}\#\{P|G(P)=\langle\tau^{e}\rangle, \zeta_{P}(\tau^{d})=\zeta_{n/d}^{r}\}\cdot\lambda_{n/dr}$

$= \sum_{e1d}\sum_{r=1}^{n/e}\#\{P|G(P)=\langle\tau^{e}\rangle, \zeta_{P}(\tau^{e})=\zeta_{n/e}^{r}\}\cdot\pi_{n/d}(\lambda_{n/er})$

$= \sum_{e_{1}d}\pi_{n/d}(Red\lambda_{G}(\tau^{e}))$ .

To prove (ii) we recall the well-known fact:

(6) $\sum_{eId}\mu(d/e)=0$ (resp. $=1$ ) if $d\neq 1$ (resp. $=1$ ).

Using (i) and (6) we have that

$\sum_{e|d}\mu(d/e)\cdot\pi_{n/d}(\lambda_{G}(\tau^{e}))=\sum_{eId}\mu(d/e)\cdot\pi_{n1d}$ $\{ \sum_{f|e}\pi_{n/e}(Red\lambda_{G}(\tau^{f}))\}$

$= \sum_{f1d}\{\sum_{m|(d/f)}\mu(m)\}\cdot\pi_{nfd}$
(Red $\lambda_{G}(\tau^{f})$ ) $=$ Red $\lambda_{G}(\tau^{d})$ ,

as desired. Q. E. D.

REMARK 2.8. Let $G$ and $X$ be as in (1). Then together with the Riemann-
Hurwitz relation (cf. (2) in \S 1), Lemma 2.7 with (4) and (5) implies the fol-
lowing:

(i) $\lambda_{G}$ is “determined” by $\phi_{G}$ ; and
(ii) $\lambda_{G}$ “determines” $\phi_{G}$ up to the equivalence.

LEMMA 2.9. Let $G=\langle\tau\rangle$ and $X$ be as in (1). Let $G’=\langle\tau^{\overline{n}}\rangle$ where $\overline{n}|n$ , and
put $\tau’=\tau^{\pi}$ with $n’=n/\overline{n}$ . Assume that $(g, l;m_{1}, m_{l})$ (resp. ($g’,$ $l’$ ; $m_{1}’,$ $m_{l’}’$ ))

denotes the signature of $G$ (resp. $G’$). For $s|n’,$ $s\neq n’$ we have that

(i) Red $\lambda_{G’}(\tau^{\prime s})=\sum_{d}\pi_{n’/s}(Red\lambda_{G}(\tau^{d}))$ ; and

(ii) $\#\{j’|m_{j}’, =n’/s\}=\sum_{d}(d,\overline{n})\cdot\#\{j|m_{j}=n/d\}$ ,

where $d$ runs over the set $\{d|d|n, d=(d,\overline{n})s\}$ .
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PROOF. Red $\lambda_{G’}(\tau^{\prime s})=\sum_{f1\delta}\mu(s/f)\cdot\pi_{n’/s}(\lambda_{G’}(\tau^{\prime f}))$

$= \sum_{f|S}\sum_{d1\overline{n}f}\mu(s/f)\cdot\pi_{n’/s}(Red\lambda_{G}(\tau^{d}))$

$= \sum_{d|\overline{n}s}(\mu(s/f))\cdot\pi_{n’1s}(Red\lambda_{G}(\tau^{d}))a^{fs}I^{\frac{\sum_{1}}{n}}f$

$= \sum_{d\{\overline{n}s}\{\sum_{e|(s/(d/(d.\overline{n})))}\mu(s/(d/(d,\overline{n}))e)\}\cdot\pi_{n’ fs}(Red\lambda_{G}(\tau^{d}))$

$= \sum_{d}\pi_{n’/s}(Red\lambda_{G}(\tau^{d}))$ ,

where $d$ runs as above. The rest part follows from a modification of the above
relation. Q. E. D.

LEMMA 2.10. Let $G=\langle\tau\rangle$ and $X$ be as in (1). Let $G’=\langle\tau^{\hslash}\rangle$ where $\overline{n}|n$ .
Put $\overline{G}=G/G’$ and $\overline{\tau}=$ ( $\tau$ mod $G’$ ) $\in\overline{G}$ . In this case Cii is naturally identified with
$Aut((X/G’)/(X/G))$ . Let $(g, l;m_{1}, m_{l})$ (resp. $(g,\overline{l};\overline{m}_{1},$ $\cdots$ $\overline{m}_{\overline{l}})$ ) be the signa-
ture of $G$ (resp. $\overline{G}$ ). For $t|\overline{n},$ $t\neq\overline{n}$ we have:

(i) Red $\lambda_{\overline{G}}(\overline{\tau}^{t})=f\cdot$

$\sum_{d1n,(d.\hslash)=t}\pi_{\overline{n}/t}((1/d)\cdot Red\lambda_{G}(\tau^{du_{d}}))$

,

where $u_{d}\in Z$ such that $(u_{d}, n)=1$ and $d\cdot u_{d}\equiv(d,\overline{n})$ mod $\overline{n}$ ;

(ii) $\#\{\overline{j}|\overline{m}_{\overline{j}}=\overline{n}/t\}=$

$\sum_{d\perp n}$
$\#\{j|m_{j}=n/d\}$ .

$(a.n)=t$

PROOF. Using the fact that

$\langle\tau^{d}\rangle\cap G’=\langle’\tau^{\overline{n}d/(d,\overline{n})}\rangle$ for $d|n$ ,

first we note that

(7) for $t|\overline{n},$ $\{\langle\tau^{d}\rangle|d|n, (d,\overline{n})=t\}$ is the set of cyclic subgroups $H$

of $G$ such that ($H$ mod $G’$ ) $=\langle\overline{\tau}^{t}\rangle$ .

Next let $\overline{P}\in X/G’$ with $\overline{G}(\overline{P})=\langle\overline{\tau}^{t}\rangle,$
$t|\overline{n}$ , and let $P\in\pi^{\prime-1}(\overline{P})$ , where $\pi’$ denotes

the projection: $Xarrow X/G’$ . Since ( $G(P)$ mod $G’$) $=\overline{G}(\overline{P})$ , it follows from (7) that
$G(P)=\langle\tau^{d}\rangle$ for some $d|n$ with $(d,\overline{n})=t$ . Let $\overline{r}(\overline{P})$ and $r(P)$ be such that

$\zeta_{\overline{P}}(\overline{\tau}^{t})=\zeta_{\hslash’ t}^{r(\overline{P})}$ and $\zeta_{P}(\tau^{du_{d}})=\zeta_{n/d}^{r(P)}$ .
Then it is easy to see that

(8) $r(P)\equiv\overline{r}(\overline{P})$ mod $\overline{n}/t$ .
Since $\#\pi^{f-1}(\overline{P})=[G’ : G’(P)]=d/t$ , from (8) it follows that

(9)
$\lambda_{\overline{n}/tt(\overline{P})}=\sum_{P\in\pi^{\prime-1}(\overline{P})}(t/d)\cdot\pi_{\overline{n}/t}(\lambda_{n/d\gamma(P)})$ .

Finally for $t|\overline{n},$ $t\neq\overline{n}$ , since
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$\overline{\prime}-1(\{\overline{P}|G(\overline{P})=\langle\overline{\tau}^{t}\rangle\})=_{dn ,(d|^{\frac{\bigcup_{1}}{n}})=l}\{P|G(P)=\langle\tau^{d}\rangle\}$
.

we have by (9) that
Red $\lambda_{\overline{G}}(\overline{\tau}^{t})=$

$\sum_{\overline{P},\overline{G}(\overline{P})=\langle\overline{\tau}^{t}\rangle}\lambda_{\overline{n}ft’(\overline{P})}$

$=$ $\sum_{d1n}$ $\sum_{P}$
$(t/d)\cdot\pi_{\hslash/t}(\lambda_{n/dr(P)})$

$(d. \hslash)=tG(P)=\langle\tau^{d})$

$=t\cdot$
$\sum_{dIn,(d,\hslash)\approx t}\pi_{7t/t}((1/d)\cdot Red\lambda_{G}(\tau^{du_{d}}))$

.

which completes the proof of (i) and hence of (ii). Q. E. D.

(2.3) Basics on class functions. In this numero we shall introduce a
special tyPe of class function and prepare a lemma on it, which is crucial for
later use.

NOTATION 2.11. Let $G$ and $X$ be as in (1). For the rotation datum $\lambda_{G}$ , we
define a class function $\chi(\lambda_{G})_{q}$ : $Garrow k(q\in Z)$ as follows:

$\sigma-\{\begin{array}{ll}(1/2)(1-2q)\cdot a_{11} if \sigma=1,(r.\#\sigma)=1\sum_{r=1}^{\#\sigma}a_{\#\sigma r}\cdot\zeta_{\#\sigma}^{qr}/(1-\zeta_{\#\sigma}^{r}) otherwise,\end{array}$

where $\lambda_{G}(\sigma)=\sum_{r}a_{\#\sigma r}\cdot\lambda_{\#\sigma r}$ .
By using $\chi(\lambda_{G})_{q}$ the trace formula (in (2.1)) is rewritten as follows:

LEMMA 2.1’. Let $G,$ $X,\tilde{g}$ and $\chi_{q}$ be as in (1) and (2). Then:
(i) $x_{1}=1+\chi(\lambda_{G})_{1}$ ;
(ii) $x_{q}=x(\lambda_{G})_{q}(q\geqq 2)$ if $\tilde{g}\geqq 2$ .

We sometimes consider our theory in the following:

SITUATION 2.12. Let $G=\langle\tau\rangle,$ $X$ and $\tilde{g}$ be as in (1).
$(a)$ (i) Let $(g, l;m_{1}, \cdots m_{l})$ denote the signature of $G$ . Assume that

Red $\lambda_{G}(\tau^{d})=d\cdot\sum_{j=1}^{l_{d}}\lambda_{n/dr_{(Jj}}$ $(d|n, d\neq n)$ ,

where $l_{d}=\#\{j|m_{j}=n/d\}$ (we put: $l_{n}=0$), and $r_{dj}\in I_{n/d}$ (in general we put;
$I_{m}=\{r\in Z|0<r\leqq m, (r, m)=1\})$ .

(ii) For $a\in Z$, we denote by $\underline{a\cdot s}_{dj}(d|n, j=1, \cdots l_{d})$ the integer $r’(0<r’$

$\leqq n/d)$ such that $r^{f}\cdot r_{dj}\equiv a$ mod $n/d$ .
(b) Notation. For $a\in Z$ we denote by $\Delta^{a}$ or $\Delta_{\tau}^{a}$ the homomorphism of $G$ into
$k^{\cross}$ defined by: $\taurightarrow\zeta_{n}^{a}$ .

The following lemma is already well-known, however we shall give a proof
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to it as a lemma for the class function of the form $\chi(\lambda_{G})_{q}$ , which shall be used
in \S 4.

LEMMA 2.13. In Situation 2.12, we have for $a,$ $q\in Z$ that

$\langle\chi(\lambda_{G})_{q}, \Delta^{a}\rangle=(1/\# G)\cdot\sum_{\sigma\in G}\chi(\lambda_{G})_{q}(\sigma)\cdot\Delta^{a}(\sigma^{-1})$

$=(2q-1)(g-1)+ \sum_{a_{1}n}\sum_{j=1}^{\iota_{d}}\{[(d/n)(\underline{a\cdot s}_{dj}-q)]-((d/n)\cdot\underline{a\cdot s}_{dj}-q)\}$ ,

where $[]$ means the Gauss symbol.

To prove this lemma we need the following sublemma on the trace mapping
$S_{m}$ ; $Q(\zeta_{m})arrow Q$ .

SUBLEMMA 2.14. For $r\in Z,$ $m|n$ with $0<r\leqq m$ , we have that

$\sum_{d|m}\prime S_{d}(\zeta_{d}^{r}/(1-\zeta_{d}))=r-(1/2)(m+1)$ ,

where the symbol $\sum_{d|m}$

’ means a summation over all $d$ with $d|m,$ $d\neq 1$ .

PROOF. First we note that

(10) $\sum_{d|m}S_{d}(\zeta_{d}^{r})=m$ (resp. $=0$) if $r=m$ (resp. $\neq m$).

Next, from $1/(1-\zeta_{d})+1/(1-\zeta_{d}^{-1})=1$ it follows that

(11) 2 $\cdot$ $S_{d}(1/(1-\zeta_{d}))=S_{d}(1)=\phi(d)$ if $d|m,$ $d\neq 1$ ,

where $\phi$ denotes the Euler phi-function. On the other hand,

$S_{d}(\zeta_{d}^{r}/(1-\zeta_{d}))=S_{d}(1/(1-\zeta_{d}))-\sum_{u=0}^{r-1}S_{d}(\zeta_{d}^{u})$ ,

since $\zeta_{d}^{r}/(\zeta_{d}-1)-1/(\zeta_{d}-1)=\zeta_{d}^{r-1}+\zeta_{d}^{r-2}+\cdots+1$ . Hence it follows from (10) and
(11) that

$\sum_{dIm}\prime S_{d}(\zeta_{d}^{r}/(1-\zeta_{d}))=\sum_{dim}\prime S_{d}(1/(1-\zeta_{d}))-\sum_{dIm}’\sum_{u=0}^{r-1}S_{d}(\zeta_{d}^{u})$

$= \sum_{|dm}’\phi(d)/2-\sum_{u=0}^{r-1}\{ \sum_{dm}S_{d}(\zeta_{d}^{u})-1\}=(m-1)/2-(m-r)$ ,

as asserted. Q. E. D.

PROOF OF LEMMA 2.13. Let $S|n$ . Since

$\chi(\lambda_{G})_{q}(\tau^{s})=\{\begin{array}{ll}(2q-1)(\tilde{g}-1) if s=n; \sum_{d1S}\sum_{j}d\{\zeta_{n’ s}^{qr_{dj/(1-\zeta_{nfs}^{r_{dj}})\}}} otherwise,\end{array}$

it follows from Lemma 2.7 (a) that
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the Q-automorphism of the field $Q(\zeta_{n’ s})$ defined by $\zeta_{n/s}rightarrow\zeta_{n/s}^{u}$ ,

sends $\chi(\lambda_{G})_{q}(\tau^{s})$ to $\chi(\lambda_{G})_{q}(\tau^{su})$ for $u\in Z$ such that $(u, n)=1$ .
This implies that

$n \cdot\langle\chi(\lambda_{G})_{q}, \Delta^{a}\rangle=\sum_{s|n}\sum_{u\in I_{n/S}}\{\chi(\lambda_{G})_{q}(\tau^{su})/\zeta_{n/s}^{au}\}$

$= \sum_{s|n}S_{n/s}(\chi(\lambda_{G})_{q}(\tau^{s})/\zeta_{n/s}^{a})$

and hence that

(12) $n\cdot\langle\chi(\lambda_{G})_{q}, \Delta^{a}\rangle-(2q-1)(\tilde{g}-1)$

$= \epsilon\neq n\sum_{s1n}S_{nfs}(\sum_{d|S}\sum_{j}d\{\zeta_{n/\}^{q\cdot r_{d}}J^{-a}/(1-\zeta_{n/s^{dj}}^{r})\})$

$= \sum_{e|n}’\sum_{d|(n/e)}\sum_{j}d\cdot S_{e}(\zeta_{e}^{q\cdot r_{d}}J^{-a}/(1-\zeta_{e}^{r_{dj}}))$

$= \sum_{d|n}\sum_{j}d$
$\{ \Sigma’S_{e}(\zeta_{e}^{q\cdot r_{dj^{-}}a}/(1-\zeta_{e^{dj}}^{r}))\}$

$= \sum_{d|n}\sum_{j}d\{\sum_{e|(n/d)}\prime S_{e}(\zeta_{e}^{q-\underline{a\cdot s}_{dj}}/(1-\zeta_{e}))\}$ .

On the other hand we note that

$q-\underline{a\cdot s}_{dj}\equiv r$ mod $n/d$ with $0<r\leqq n/d$ ,

where $r$ denotes $(n/d)\{1+[(d/n)(\underline{a\cdot s}_{dj}-q)]-(d/n)(\underline{a\cdot s}_{dj}-q)\}$ . Hence, applying
Sublemma 2.14 to (12), and using the Riemann-Hurwitz relation for the cover-
ing: $Xarrow X/G$ , we obtain that

$n\cdot\langle\chi(\lambda_{G})_{q}, \Delta^{a}\rangle-n(2q-1)(g-1)$

$= \sum_{d1n}\sum_{j}\{(2q-1)(n-d)/2+dr-(n+d)/2\}$

$=n \cdot\sum_{dIn}\sum_{j}\{[(d/n)(\underline{a\cdot s}_{dj}-q)]-((d/n)\cdot\underline{a\cdot s}_{dj}-q)\}$ .

This completes the proof of Lemma 2.13. Q. E. D.

(2.4) Proof of Theorem 2.2. We need two preliminary results:

LEMMA 2.15. Let $G$ and $X$ be as in (1). Then for $\sigma\in G$ ,

(13) deg $(\lambda_{G}(\sigma))=-\{\chi(\lambda_{G})_{1}(\sigma)+\chi(\lambda_{G})_{1}(\sigma^{-1})\}$ .
Hence the signature of $G$ and the genus of $X$ are “determined” by the function
$\chi(\lambda_{G})_{1}$ .

PROOF. (13) follows from $a$ direct calculation. The rest part follows from
Lemma 2.7 (cf. also, Remark 2.8). Q. E. D.

COROLLARY 2.16 (to Lemma 2.13). In Situation 2.12, for $a,$ $q\in Z$ we have:
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$\sum_{d|n}\#$ { $j|\underline{a\cdot s}_{dj}\equiv q$ mod $n/d$ } $=\langle\chi(\lambda_{G})_{q}-\chi(\lambda_{G})_{q+1}, \Delta^{a}\rangle+2g-2+l$ .

PROOF. This follows from the fact that

$[(d/n)(\underline{a\cdot s}_{dj}-q)]-[(d/n)(\underline{a\cdot s}_{dj}-q-1)]=1$ (resp. $=0$)

if $\underline{a\cdot s}_{dj}\equiv q$ mod $n/d$ (resp. otherwise). Q. E. D.

Instead of Theorem 2.2 we shall prove Theorem 2.2’ below by the tech-
nical reason to use an induction. That Theorem 2.2’ implies Theorem 2.2 is
obvious by Lemma 2.1’ and Remark 2.8.

THEOREM 2.2’. Let $G$ be as in (1). Then the functions $\chi(\lambda_{G})_{1},$ $\chi(\lambda_{G})_{n’+1}$

“determine” the rotation datum $\lambda_{G}$ of $G$ , where $n’=n/ \prod p_{i}$ is as in Theorem 2.2.

To prove Theorem 2.2’ we use the induction on $n=\# G$ . It is obvious that
Theorem 2. $2^{f}$ is true when $n=1$ .

Let $\tilde{n}>1$ . Assuming as the induction hypothesis that

(14) Theorem 2.2’ is true when $n<\tilde{n}$ ,

we shall show that

(15) Theorem 2.2’ is true when $n=\tilde{n}$ .

First we notice, applying (14) to the group $\langle\tau^{e}\rangle$ , that

(16) $\lambda_{G}(\tau^{e})(e|n, e\neq 1)$ are “determined”,

and hence, by Lemma 2.7 (b), that

(17) Red $\lambda_{G}(\tau^{e})$ ( $e|n,$ $e\neq 1,$ $n$ with $\mu(e)=0$) are “determined”,

where we suppress the phrase: by $\chi(\lambda_{G})_{1},$ $\cdots$ $\chi(\lambda_{G})_{n’+1}$ .
Next we shall show that

(18) Red $\lambda_{G}(\tau^{e})$ ( $e|n,$ $e\neq n$ with $e\nmid n_{0}$) is “determined”,

where $n_{0}=\Pi_{e_{i}=1}p_{i}$ for the prime decomposition $n= \prod p_{\ell}^{e_{i}}$ . To prove (18) first
we make a reduction. Since $e\nmid n_{0}$ , there exists a prime factor $p$ of $e$ such
that $p^{2}|n$ . Then, put $G’=\langle\tau^{\overline{n}}\rangle$ with $\overline{n}=n/p$ and view $\overline{G}=G/G^{f}$ as
$Aut((X/G’)/(X/G))$ . In our case we note by Lemma 2.10 that

(19) $\lambda_{\overline{G}}(\overline{\tau})=\pi_{\overline{n}}(\lambda_{G}(\tau))$ , where $\overline{\tau}=$ ( $\tau$ mod $G’$),

and have by Lemma 2.7 (b) the relation:
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(20) Red $\lambda_{G}(\tau^{e})=\mu(e)\cdot\pi_{n/e}(\pi_{\overline{n}}(\lambda_{G}(\tau)))+\sum_{f\mathfrak{l}e}\mu(e/f)\cdot\pi_{n/e}(\lambda_{G}(\tau^{f}))$ .
$f\neq 1$

Hence, applying (14) to $\overline{G}$ and using (16), (19) and (20), we see that it suffices
to show:

(21) $\chi(\lambda_{\overline{G}})_{\overline{q}}(\overline{q}=1, \cdots n’/P+1)$ are “determined”.

To verify (21) we use the notation in Situation 2.12 and prove the following:

CLAIM 1. $\chi(\lambda_{\overline{G}})_{1}$ is equal to the induced function of $\chi(\lambda_{G})_{1}$ via the natural
homomorphism: $Garrow\overline{G}$ .

CLAIM 2. For $\overline{q},\overline{a}\in Z$ we have the relation:

(22) $\langle\chi(\lambda_{G})_{p\overline{q}}\chi(\lambda_{G})_{p\overline{q}+1}, \Delta_{\tau}^{p\overline{a}}\rangle-\langle\chi(\lambda_{\overline{G}})_{\overline{q}}\chi(\lambda_{\overline{G}})_{\overline{q}+1}, \Delta\frac{\overline{a}}{\tau}\rangle$

$=$
$\sum_{d1n,d\neq(d\overline{n})}$.

( $\#\{j|\underline{p\overline{a}\cdot s}_{dj}\equiv p\cdot\overline{q}$ mod $n/d\}-\#\{j|\underline{p\overline{a}\cdot s}_{dj}\equiv\overline{q}$ mod $n/d\}$ ).

Before giving the proof, we set the notation. By Lemma 2.10 we have that

Red $\lambda_{\overline{G}}(\overline{\tau}^{t})=t\cdot\sum_{d.j}\lambda_{\overline{n}/t\overline{r}_{ldj}}$

$(t|\overline{n}, t\neq\overline{n})$ ,

where $\overline{r}_{tdj}=u_{d}\cdot r_{dj}$ (with $u_{d}$ being as in Lemma 2.10), and $d,$ $j$ run through
the sets $\{d|d|n, (d,\overline{n})=t\},$ $\{1, \cdots , l_{d}\}$ , respectively. Then it is easy to see
that

(23) $(t/\overline{n})\cdot\underline{\overline{a}\cdot\overline{s}}_{tdj}=(d/n)\cdot\underline{p\overline{a}\cdot s}_{dj}$ ( $t,$ $d$ as above),

where $\underline{\overline{a}\cdot\overline{s}}_{tdj}$ is defined similarly as $\underline{a\cdot s}_{dj}$ .

PROOF OF CLAIM 1. ObSerVing that

\langle 24) $\underline{p\overline{a}\cdot s}_{dj}=n/d$ for $d|n,$ $(d,\overline{n})=\overline{n}$ ,

we have by Lemma 2.13 and (23) that

$\langle\chi(\lambda_{G})_{1}, \Delta_{\tau}^{p\overline{a}}\rangle=\langle\chi(\lambda_{\overline{G}})_{1}, \Delta_{\overline{\tau}}^{\overline{a}}\rangle$ $(\overline{a}\in Z)$ .

This implies our claim by the Frobenius reciprocity.

PROOF OF CLAIM 2. It follows from Corollary 2.16 and Lemma 2.10 that

(LHS) $=the$ left hand side of (22)

$= \sum_{d|n}\#$ { $j|\underline{p\overline{a}\cdot s}_{dj}\equiv p\overline{q}$ mod $n/d$ } $-(2g-2+l)$

$-$
$\sum_{t1\overline{n},t\neq\overline{n}}(a^{d_{\frac{\sum_{1}}{n}}n})=1\#$

{ $j|\underline{\overline{a}\cdot\overline{s}}_{tdj}\equiv\tilde{q}$ mod $\overline{n}/t$ } $+(2\overline{g}-2+\tilde{l})$

where $g=\overline{g}$ and $l=i+l_{\overline{n}}$ . Hence, using (23) and (24), we obtain that
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(25) (LHS) $= \sum_{d|n}\#$ { $j|\underline{p\overline{a}\cdot s}_{dj}\equiv p\cdot\overline{q}$ mod $n/d$ }

$- \sum_{d\mathfrak{l}n}\#$ { $j|\underline{p\overline{a}\cdot s}_{dj}\cdot d/p(d,\overline{n})\equiv\overline{q}$ mod $\overline{n}/(d,\overline{n})$ }.

Here we note that for $d|n$ ,
(i) if $d\neq(d,\overline{n})$ then $d=p(d,\overline{n})$ ; and
(ii) if $d=(d,\overline{n})$ then the two conditions on $j$ in (25) are equivalent.

This implies that (25) yields our relation.

We use an induction to see (21), so we suppose that

(26) $\chi(\lambda_{\overline{G}})_{\overline{q}}$ is “determined”,

and shall prove that

(27) $\chi(\lambda_{\overline{G}})_{\overline{q}+1}$ is “determined” if $1\leqq\overline{q}\leqq n’/p$ .
$ln$ fact, by the choice of $P$ first we notice that

if $d|n$ with $d\neq(d,\overline{n})$ , then $\mu(d)=0$ .

Hence it follows from Claim 2, (26) and (17) that

$\langle\chi(\lambda_{\overline{G}})_{\overline{q}+1}, \Delta\frac{\overline{a}}{\tau}\rangle$ is “determined” for $\overline{a}\in Z,$ $1\leqq\overline{q}\leqq n_{/}’/p$ ,

because we have, in general, that

(28) Red $\lambda_{G}(\tau^{d})=d\cdot\sum_{\tau\in I_{nfd}}\#$ { $j|r_{dj}\equiv r$ mod $n/d$ } $\cdot\lambda_{n/d\tau}$ .

Thus we obtain (27). By Claim 1 this completes our induction and hence the
proof of (18).

Finally we shall prove (essentially after [5]) that

(29) $\lambda_{G}(\tau)$ is “determined”,

which, together with (16), completes the proof of Theorem 2.2’ by Lemma 2.7 (a).

To show (29) we begin by fixing notation:

$J=\{a\in Z|(a, n)|n_{0},0<a\leqq n\}$ .
We note that

(30) $aarrow$ the pair: $(r(a), (a, n))$ defines a bijection of $J$

onto the set {pair $(r,$ $d)|d|n_{0},$ $r\in I_{n/d}$ },

where $r(a)$ $(a\in Z)$ denotes the integer $r(0<r\leqq n/(a, n))$ such that $r\equiv a$

mod $n/(a, n)$ . Elements of $J$ are ordered as follows:

(31) $a’$ is after $a$ if either (a, $n$ ) $<(a, n)$ or
$(a’, n)=(a, n)$ and $r(a’)>r(a)$ .
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For $a,$ $a’\in J$ we put:

(32 $c_{aa’}=1$ (resp. $=0$) if
$(a, n)|(a’, n)$ and $a\equiv a^{f}$ mod $n/(a^{f}, n)$ (resp. otherwise).

Then we notice by (31) that

(33 the matrix $(c_{aa’})$ is lower triangular with $c_{aa}=1(a\in J)$ .

Moreover we set:

$\gamma\prime 7,ad=\#$ { $j|r_{dj}\equiv a$ mod $n/d$ } $(a\in Z, d|n)$ .
Then it is easy to see the followings:

(34, $m_{ad}=m_{a’d}$ if $a\equiv a^{f}$ mod $n/d$ .
(35 ( $a,$ $n/d_{}=1$ and $d\neq n$ if $m_{ad}\neq 0$ .
For $a\in J$ we have bv Corollary 2.16 that

$(36 \sum_{a’\in J}c_{aa}\cdot\cdot’\dagger\iota_{a}(a’, n)=.\sum_{(a^{d1}n^{n})^{0}1d}m_{ad}$
(by (32), (34), (30))

$=$
$\sum_{d1n_{0}}$

$m_{ad}$ (since $(d,$ $n/d)=1$ )

$(a.nfd)=1$

$= \sum_{d|n}m_{ad}-\sum_{d1n}m_{ad}$ (by (35))
$d*n_{0}$

$= \langle\chi(\lambda_{G})_{1}-\chi(\lambda_{G})_{2}, \Delta^{a}\rangle+2g-2+l-\sum_{d1n}m_{ad}$ .
$d\}n_{0}$

Since the right hand side of (36) is “determined” by Lemma 2.15 and (18) (cf.

also, (28)), it follows from (33) that $m_{a(a,n)}$ are “determined” for $a\in J$, and
hence by (30) that

$\lambda_{G}(\tau)=\sum_{r\in I_{n}}?n_{\overline{\uparrow}1}\cdot\lambda_{nr}$ is “determined”,

as asserted. This completes the proof of Theorem 2.2’ and hence of Theorem 2.2.

PROOF OF COROLLARY 2.3. This follows from Remark 2.8 and Lemma 2.1’.
Q. E. D.

PROOF OF COROLLARY 2.4. This follows from a theorem of Wiman (cf.

[7]). Q. E. D.

(2.5) Counter example. In his paper [5, p. 219 Corollary], Guerrero asserts
substantially that

( $37^{\backslash }$ Corollary 2.3 holds even if the condition (c) is replaced
by the condition: $(c’)$ $x_{q}=x_{q}’$ for $q=l,$ $2$ .
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However it seems that the proof given has a gap (cf. [5, p. 222 “the last ...
independent”]). Here we make a counter example to (37).

Let $g$ be a non-negative integer. By the existence theorem there exists an
automorphism $\tau$ of order $n=25$ of some curve $X$ of genus $25g+116$ such that

(i) the signature of $\langle\tau\rangle$ is $(g, 12;5,5,25, \cdots 25)$ ;
(ii) $\phi_{\langle\tau\rangle}(C_{j})=\tau^{15}$ (resp. $\tau^{10}$ , $\tau^{1}$ , $\tau^{21}$ , $\tau^{16}$ , $\tau^{11}$ , $\tau^{6}$ , $\tau^{19}$ , $\tau^{14}$ , $\tau^{9}$ , $\tau^{4}$ , $\tau^{24}$ )

if $j=1$ (resp. 2, $\cdots$ $12$).

Put $G=Z/nZ$ and let $\lambda,$ $\chi_{q}$ (resp. $\lambda’,$ $\chi_{q}’$) denote $\lambda_{G},$ $Tr(G|H^{0}(X, \Omega_{X}^{\otimes q}))$ , respec-
tively, defined for $G$ considered as a subgroup of Aut(X) via the injection:
( $u$ mod $n\cdot Z$ ) $arrow\tau^{u}(resp. \tau^{2u})$ . For $a\in Z$, we denote by $\Delta^{a}$ the homomorphism:
$Garrow k^{x}$ defined by (1 mod $n\cdot Z$ ) $-\rangle$ $\zeta_{n}^{a}$ . Then it is easy to see the following:

$\langle\chi_{1}, \Delta^{a}\rangle=\langle\chi_{1}’, \Delta^{a}\rangle=g$ (resp. $g+5,$ $g+4$)

if $a\equiv 0$ mod 25 ( $resp$ . if $5\nmid a$ , otherwise);

$\langle\chi_{2}, \Delta^{a}\rangle=\langle\chi_{2}^{f}, \Delta^{a}\rangle=3g+9$ (resp. $3g+14$)

if $a\equiv 0$ mod 25 ($resp$ . otherwise).

Hence $x_{q}=x_{q}’$ for $q=1,2$ . On the other hand, since now $\lambda_{-}^{-}\lambda’$ we have by

Remark 2.8 and Corollary 2.3 that

$\chi_{q}\neq\chi_{q}’$ for some $q$ .
In fact this is so for $q=5+1$ .

3. Topological equivalence.

The purpose of this section is to give a proof to Theorem in Introduction.
So throughout this section we suppose that $k=C$.

(3.1) A group-theoretic lemma. Before giving the proof, we prepare a
Iemma which is a modification of Theorem 14 in [8].

LEMMA 3.1. Let $(g, l;m_{1}, \cdots m_{l}),$ $\Gamma,$ $A_{i},$ $B_{i}$ and $C_{J}$ be as in Notation 1.2.
Assume that $\tau$ is a generator of our cyclic group $G$ , and $\phi:\Gammaarrow G$ is a surjective
homomorphjsm. Then for any permutation $k$ of $\{1, \cdots f\}ui$th $7n_{k(j)}=7n_{j}(j=$

$1,$
$\cdots,$

$l$), there exists an automorphism $\theta$ of $\Gamma$ such that

(i) $\phi\circ\theta(A_{i})=\phi^{\circ}\theta(B_{i})=\tau$ $(i=1, g)$ ;

$\backslash ii)$ $\theta(C_{j})=D_{j}\cdot C_{k(j)}\cdot D_{j}^{-1}$ for some $D_{j}\in\Gamma$ $(j=1, l)$ .

PROOF. We list the automorphisms of $\Gamma:\theta_{(1)},$ $\theta_{(2)},$ $\theta_{(3)},$ $\theta_{u},$ $\theta_{v}’$ and $\theta_{w}’’$

( $u=1,$ $g-1;v=1,$ $l;w=1,$ $\cdots$ , 1–1 with $m_{w}=7’t_{w+1}$ ), giving their non-
trivial part of actions on the generators:
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$\theta_{(1)}$ : $A_{1}\mapsto A_{1}B_{1}$ ;
$\theta_{(2)}$ : $A_{1}-A_{1}B_{1}A_{1}^{-1}$ , $B_{1}rightarrow A_{1}^{-1}$ ;
$\theta_{(3)}$ : $C_{j}-,$ $A_{2}C_{j}A_{2}^{-1}$ , $A_{1}-,$ $A_{2}A_{1}$ , $A_{2}\mapsto B_{1}A_{2}B_{1}^{-1}$ , $B_{2}rightarrow A_{2}B_{2}A_{2}^{-1}B_{1}^{-1}$ ,

$A_{i}rightarrow A_{2}A_{i}A_{2}^{-1}$ , $B_{i}-A_{2}B_{i}A_{2}^{-1}(i=3, \cdots g)$ ;
$\theta_{u}$ : $A_{u}rightarrow A_{u+1}$ , $B_{u}rightarrow B_{u+1}$ , $A_{u+1}\mapsto E_{u+1}^{-1}A_{u}E_{u+1}$ , $B_{u+1}rightarrow E_{uarrow 1}^{-1}B_{u}E_{u+1}$ ,

where $E_{u+1}=[A_{u+1}, B_{u+1}]$ ;
$\theta_{v}^{f}$ :

$C_{f}rightarrow A_{1}^{-1}C_{j}A_{1}(j.=v,\cdots,.l)A_{1}-[A_{1}^{-1},(C_{v}\cdot\cdot C_{l})^{-1}]A_{1}$

, $B_{1}->B_{1}A_{1}^{-1}(C_{v}\cdots C_{l})A_{1}$ ;
$\theta_{w}’’$ : $C_{w}rightarrow C_{w+1}$ , $C_{w+1}rightarrow C_{w+1}^{-1}C_{w}C_{w+1}$ (assuming $m_{w}=m_{w+1}$ ).

We begin with a reduction. In fact, replacing $\phi$ by $\phi\circ\theta$ for some $\theta\equiv$

\langle $\theta_{w}’’|w=1,$ $\cdots$ $1-1$ with $m_{w}=m_{w+1}\rangle$ , we may assume that $k=1$ .
Next we list the non-trivial part of the effect on the generators, letting:

(1) $\phi$ be defined by $C_{j}-\Rightarrow x_{j},$ $A_{i}->a_{i},$ $B_{i}rightarrow b_{i}$ ,

$\phi\circ\theta_{(1)}$ : $A_{1}-\Rightarrow a_{1}b_{1}$ ;
$\phi\circ\theta_{(2)}$ : $A_{1}-b_{1}$ , $B_{1}rightarrow a_{1}^{-1}$ ;
$\phi\circ\theta_{(3)}$ : $A_{1}-a_{1}a_{2}$ , $B_{2}rightarrow b_{2}b_{1}^{-1}$ ;
$\phi\circ\theta_{u}$ : $A_{u}rightarrow a_{u+1}$ , $A_{u+1}rightarrow au$

’
$B_{u}rightarrow b_{u+1}$ , $B_{u+1}rightarrow b_{u}$ ;

$\phi\circ\theta_{v}’$ : $B_{1}rightarrow b_{1}\cdot x_{v}\cdots x_{l}$ .

Using the list we reduce $\phi$ systematically. The case where $g=0$ is trivial, so
we assume that $g\geqq 1$ . We denote by $A\Gamma$ the subgroup of $Aut(\Gamma)$ :

$\langle\theta_{(1)}, \theta_{(2)}, \theta_{(3)}, \theta_{uz}\theta_{v}’|u=1, g-1;v=1, \cdots l\rangle$ .
Let $\phi$ be as in (1). We describe the effect in $\phi\circ\theta$ as the above manner.
Step1. There exists $\theta$ in $A\Gamma$ such that

$\phi\circ\theta$ : $A_{1}-1$ , $B_{1}\mapsto$ (an element of $G$).

In fact, this follows from the “Euclidean algorithm” by using $\theta_{(1)}$ and $\theta_{(\underline{9}}$ .
Step2. There exists $\theta$ in $A\Gamma$ such that

$\phi\circ\theta$ : $A_{i}rightarrow 1$ , $B_{i}rightarrow$ (an element of $G$).

In fact, this follows from Step 1 by using $\theta_{u}$ .
Step3. There exists $\theta$ in $A\Gamma$ such that

$\phi\circ\theta$ : $B_{1}->$ (an element of $G$ ), the other $A_{i},$ $B_{i}rightarrow 1$ .

In fact, by Step 2 we may assume that $g\geqq 2$ and $a_{1}=\ldots=a_{g}=1$ . Then there
exists $\theta^{f}$ in $A\Gamma$ such that
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$\phi\circ\theta’$ : $B_{1}-1$ , $B_{2}rightarrow$ (an element of $G$ ) ,

which follows from the “Euclidean algorithm” by using $\theta_{(3)}$ and $\theta_{1}$ . Using $\theta_{u}$

and repeating as above we obtain Step 3.
Step4. There exists $\theta$ in $A\Gamma$ such that

$\phi\circ\theta$ : $B_{1}-\tau$ , the other $A_{i},$ $B_{i}rightarrow 1$ .
In fact, this follows from the surjectivity of $\phi$ by using $\theta_{(1)},$ $\theta_{(2)},$ $\theta_{v}’$ and Step 3.

Finally our lemma follows by using $\theta_{(1)},$ $\theta_{(3)},$ $\theta_{u}$ and Step 4. Q. E. D.

(3.2) Proof of Theorem. The implication: $(a)\Rightarrow(b)$ follows from the trace
formula (Lemma 2.1) by using the following:

REMARK 3.2. Let $\sigma:Carrow C$ be the mapping defined by $z-,\exp(2\pi\sqrt{-1}/m)\cdot z$

$(m\in Z, m\geqq 1)$ . Let $w:Darrow D’$ be a homeomorphism such that $w\circ\sigma\circ w^{-1}=\sigma\circ\cdots\circ\sigma$

(r-times), where $D$ and $D’$ denote open neighbourhoods of the origin of the
plane $C$. If $w$ is orientation-preserving (resp. -reversing) then $r\equiv 1$ (resp. $\equiv-1$ )

mod $m$ .
We shall prove the converse by using the following:

LEMMA 3.3 ([12], [15]). Let $\Gamma$ and $\Gamma’$ be Fuchsian groups (acting on the
unit disk $U$ ) with compact orbit spaces. Then any isomorphjsm $\theta:\Gammaarrow\Gamma’$ can be
geometrically realized, $i$ . $e.$ , there is a homeomorphjsm $w:Uarrow U$ such that for all
$A\in\Gamma$ we have $w\circ A=\theta(A)\circ w$ .

We begin by fixing some notation. In fact, for our $G$ and $X$ let $K,$ $\Gamma$,
$(g, l;m_{1}, \cdots m_{l}),$ $\phi:\Gammaarrow G,$ $R,$ $z_{i},$ $e_{j},$

$A_{i},$ $B_{i},$ $C_{j}$ and the permutation $k$ be as
in Remark 1.1. For $G’$ and $X’$ we put ’ to represent the corresponding object.
Applying Corollary 2.3 to our assumption, we have that

(2) $\lambda_{G}(\sigma)=\lambda_{G’}(\sigma’)$ for $\sigma\in G$

(cf. also, Remark 2.8). This implies in particular that

$(g, 1 ; m_{1}, \cdots m_{l})=(g’, 1’ ; m_{1}’, \cdots m_{l}^{f},)$ .

Here we may assume that $k’$ is the identity and by (2) (cf. also, (4) of \S 1)
moreover that

(3) $\phi(C_{j})’=\phi’(C_{k(j)}’)$ $j=1,$ $\cdots$ $1$ .
Next, applying Lemma 3.1 to $\phi$ and $\phi’$ , we obtain by virtue of (3) that

(4) there exists an isomorphism $\theta$ : $\Gammaarrow\Gamma’$ such that
(i) $\phi’\circ\theta=’\circ\phi$ ; (i1) $\theta(C_{j})=D_{j}’\cdot C_{k(j)}^{f}\cdot D_{J^{-1}}’(D_{j}’\in\Gamma’)$ .
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Let $w:Uarrow U$ be a homeomorphism which induces $\theta$ . If $w$ is orientation-
preserving then we put: $w_{1}=1_{U}$ and $\theta_{1}=1_{\Gamma}$ . Now assume that $w$ is orientation-
reversing. Then, by (ii) of (4) and Remark 3.2 we have that

(5) $m_{1}=$ $=m_{l}=2$ .
Here we claim that

(6) there exists an automorphism $\theta_{1}$ of $\Gamma$ such that (i) $\phi\circ\theta_{1}=\phi$ ; (ii) $\theta_{1}$

is induced by an orientation-reversing homeomorphism $w_{1}$ : $Uarrow U$ .

To see (6), by using Lemma 3.1 it suffices to show that

(7) there exists an orientation-reversing homeomorphism
$w_{1}$ : $Uarrow U$ which induces a permutation of $\{A_{i}, B_{i}, C_{j}\}$ .

By Bers’ version of the “continuity method” via the theory of quasiconformal
mappings (cf. [9, p. 7]), to show (7) we may assume moreover that

$\Gamma$ is a standard group (cf. [1, p. 224]),
$R$ is equal to $K$ in [1, p. 223].

In such a case, by (5) $R$ is a regular non-Euclidean polygon with $4g+l$ sides.
Put: $w_{1}(z)=\exp(-2\pi\sqrt{-1}l/(4g+l))\cdot\overline{z}(z\in R)$ . It is obvious that $w_{1}$ extends to
an orientation-reversing homeomorphism of $U$ by the $action\wedge$of $\Gamma$ . Since
$w_{1^{Q}}A_{i}\circ w_{1}^{-1}\wedge$ is a M\"obius transformation which sends the arc $z_{4i’-8}z_{4i’-}$ , onto the
arc $z_{4i’}z_{4i’-1}$ (with $i’=g+1-i$), we have that $w_{1}\circ A_{i}=B_{g+1-i^{\circ}}w_{1}$ . Similarly we
have that $w_{1}\circ B_{i}=A_{g+1-t}\circ w_{1}$ and $w_{1}\circ C_{j}=C_{l+1-j}\circ w_{1}$ , as desired.

Finally it is obvious by the definition of $\phi,$ $\phi’$ that

(8) the mapping $h:U/Karrow U/K^{f}$ induced from $w\circ w_{1}$ has
the desired property.

This completes the proof of our Theorem.

REMARK. Theorem 1 in [13] implies that we may choose as our $w$ an
orientation-preserving one (cf. Lemma 3.1).

(3.3) Interpretation in terms of the Teichm\"uller theory. First we recall
some definitions after [2]. Let $X_{0}$ be a fixed compact Riemann surface. Two
quasiconformal homeomorphisms, $f$ : $X_{0}arrow X$ and $f’$ : $X_{0}arrow X’$ , are called equivalent
if there is a conformal mapping $h:Xarrow X’$ such that $f^{\prime-1}\circ h\circ f$ is homotopic to
the identity. Let $\{f\}$ denote the equivalence class of $f$ . The set of all $\{f\}$ is
the Teichm\"uller space $T(X_{0})$ of $X_{0}$ . The modular group Mod $(X_{0})$ is defined as
the factor group of all quasiconformal selfmappings $g$ of $X_{0}$ over the normal
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subgroup of those homotopic to the identity. The element of Mod $(X_{0})$ defined
by a selfmapping $g$ will be denoted by $[g]$ . The group Mod $(X_{0})$ acts on $T(X_{0})$

by: $\{f\}rightarrow\{f\circ g^{-1}\}([g]\in Mod(X_{0}))$ . It is well-known that

for $\{f:X_{0}arrow X\}\in T(X_{0})$ , if genus $(X_{0})\geqq 2$ , the homomorphism $\eta_{f}$

defined by $\sigma->[f^{-1}\circ\sigma\circ f]$ is in fact an isomorphism of Aut(X)

onto the isotropy subgroup: $\{[g]\in Mod(X_{0})|\{f\circ g^{-1}\}=\{f\}\}$ .
By Proposition 2 of [2] (cf. also, [5, p. 222]) we have:

THEOREMbis. In the situation of Theorem in Introduction, let $X_{0}$ be a com-
Pact Riemann surface of genus $\tilde{g}$ and take $\{f : X_{0}arrow X\},$ $\{f’ : X_{0}arrow X’\}\in T(X_{0})$ .
Then the conditions (a), (b) are equivalent to the condition:
(c) There exists an element $[g]\in Mod(X_{0})$ such that

$[g]\cdot\eta_{f}(\sigma)=\eta_{f’}(\sigma’)\cdot[g]$ $(\sigma\in G)$ .
In [4], Gilman formulated an invariant (the same as our “rotation datum”)

of $[g]\in Mod(X_{0})$ of prime order with respect to the relation of Mod $(X_{0})$-conjugacy.
We remark here that such a special case of our Theorembis is proved in [5].

4. Realizability and representability.

Throughout this section we suppose that

(1) our $k$ is of characteristic zero, and $H$ denotes a group of order $n$ .

(4.1) Statement. Our motivation to introduce the rotation datum $\lambda$ (defined

below) is the fact in the following:

COROLLARY 4.1 (to Theorem 2.2). Let $X$ be a curve of genus $\tilde{g}\geqq 2$ . Let
$\lambda_{Aut(X)}$ : $Aut(X)arrow Map(Z, Q)$ be defined as in Definition 2.6. Then $\lambda_{Aut(X)}$ is
“determined” by the sequence $($Tr(Aut(X) $|H^{0}(X,$ $\Omega_{X}^{\Theta Q})$ ) $)_{q\geq 1}$ and vice versa.

DEFINITION 4.2. (a) A mapping $\lambda:Harrow Map(Z, Q)$ (resp. $H\backslash \{1\}arrow Map(Z,$ $Q)$ )

such that
$\lambda(\sigma)\in Map((Z/\#\sigma\cdot Z)^{\cross}, Q)$ for $\sigma\in H$ (resp. $H\backslash \{1\}$ )

is called a rotation datum (resp. semi-rotation datum) of $H$ if the following two
conditions are satisfied:

(i) If $\sigma,$
$\sigma’\in H\backslash \{1\}$ are H-conjugate then $\lambda(\sigma)=\lambda(\sigma’)$ ;

(ii) For $\sigma\in H\backslash \{1\}$ and $(u, n)=1$ , the Q-automorphism of Map $((Z/\#\sigma\cdot Z)^{\cross}, Q)$

defined by $\lambda_{*\sigma r}rightarrow\lambda_{*\sigma ru}$ sends $\lambda(\sigma)$ to $\lambda(\sigma^{u})$ .
(b) We say that a rotation datum $\lambda$ is of genus $\tilde{g}(\lambda)=\tilde{g}(\in Q)$ if $\deg(\lambda(1))=$
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$2-2\tilde{g}$ .

We need a fundamental result for later use:

LEMMA 4.3. Let $\lambda$ be a rotation datum of G. Let Red $\lambda$ denote the semi-
rotation datum defined by the relations in Lemma 2.7. Put $1(\sigma)=[N_{G}(\langle\sigma\rangle);\langle\sigma\rangle]^{-1}$

$\deg(Red\lambda(\sigma))$ for $\sigma\in G\backslash \{1\}$ with $1(1)=0$, and $g( \lambda)=(1/\# G)\cdot\sum_{\sigma\in G}$ { $1-(1/2)$ . deg $(\lambda(\sigma))$ }.
Then we have the following relation:

(RH)
$2 \tilde{g}(\lambda)-2=n(2g(\lambda)-2)+n\cdot\sum_{m\neq 1}l(\sigma_{m})\{1-1/77?\}m|n$

where $\sigma_{m}$ denotes an element of $G$ of order $m$ .

PROOF. Let $\tau$ denote a generator of $G$ . From the definition of $g(\lambda)$ , we
have that

(2) $2 \tilde{g}(\lambda)-2=n(2g(\lambda)-2)+\sum_{u=1}^{n- 1}\deg$ $(\lambda(\tau^{u}))$ .
On the other hand, since $l(\sigma_{m})$ is independent of the choice of $\sigma_{m}$ , we have by
Lemma 2.7 that

(3) $\sum_{u=1}^{n- 1}\deg(\lambda(\tau^{u}))=n\cdot\sum_{m|n,m\neq 1}l(\tau^{n/m})\{1-1/m\}$ .

Combining (2) and (3), we obtain our lemma. Q. E. D.

The normality (defined below) is a basic necessary condition for $\lambda=\lambda_{G}$ .

DEFINITION 4.4. Let $\lambda$ be $a$ rotation datum of $G$ .
(a) We say that $\lambda$ is normal if $[N_{G}(\langle\sigma\rangle):\langle\sigma\rangle]^{-1}\cdot Red\lambda(\sigma)$ is of the form:
$\sum_{j\approx 1}^{l(\sigma)}\lambda_{*\sigma u_{j}}$ with $u_{j}\in I_{\#\sigma}$ and $1(\sigma)\in Z(l(\sigma)\geqq 0)$ for each $\sigma\in G\backslash \{1\}$ .
(b) For a normal rotation datum $\lambda$ the datum:

$(g( \lambda), \sum_{t}l(\sigma_{m_{t}});\underline{m_{1},\cdots,m}_{1},$

$\iota^{\frac{n,\cdots,n}{(\sigma_{n})\sim times}}$

)
$l(\sigma_{m_{1}})$ .times

is called the signature of $\lambda$ , where $\sigma_{m}$ denotes an element of order $m$ and
$m_{0}=1,$ $m_{1},$ $m_{2},$

$\cdots$ $n$ are the divisors of $n$ such that $m_{0}<m_{1}<\cdots<n$ .
(c) Remark. In the case where $\lambda=\lambda_{G}$ with $G$ being an automorphism group
of a curve, we have by Lemma 2.7 that $\lambda$ is normal and the signature of $\lambda$ is
equal to the signature of $G$ .

Finally, for a rotation datum $\lambda$ of $H$ we define the class functions $\chi(\lambda)_{q}$ : $Harrow k$

$(q\in Z)$ as in Notation 2.11.
The purpose of this section is to prove the following:

PROPOSITION 4.5. Let $(\chi_{q} ; Garrow k)_{q\geqq 1}$ be a sequence of class functions such that
$\chi_{1}(1)\in Z$ with $\chi_{1}(1)\geqq 2$ . Then the following two conditions are equivalent:
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(a) $(\chi_{q})_{q\geqq 1}$ is realizable (over $k$), $i$ . $e.,$ $x_{q}=Tr(G|H^{0}(X, \Omega_{X}^{\otimes q}))(q\geqq 1)$ with $G\subseteqq Aut(X)$

for some curve $X$.
(b) (i) $\chi_{1}$ is a character of some representatjon of $G$ ;

(ii) there exists a normal rotation datum $\lambda$ of $G$ such that $x_{1}=1+\chi(\lambda)_{1}$ and
$x_{q}=x(\lambda)_{q}(q\geqq 2)$ .

If these conditions are satisfied, then $\lambda$ in (b) is unique and in fact $\lambda=\lambda_{G}$ for $G$

in (a).

(4.2) Proof of ProPosition 4.5. The imPlication: $(a)\Rightarrow(b)$ is already seen.
To prove the converse, we suppose (b). First we note by (i) that

(4) $g(\lambda|_{G’})$ is a non-negative integer for any subgroup $G^{f}\subseteqq G$ ,

because we have $g(\lambda|_{G’})=\langle\chi_{1}|_{G’}, 1\rangle$ (cf. Lemma 2.15).

Next we set some notation: assume $G=\langle\tau\rangle$ and let $(g(\lambda), l;m_{1}, \cdots , m_{l})$

denote the signature of $\lambda$ . Assume that for $d|n,$ $d\neq n$

(5) Red $\lambda(\tau^{d})=d$
$\sum_{j}$

$\lambda_{m_{j}r_{j}}$ $(r_{j}\in I_{m_{j}})$ ,
$n/d=m_{j}$

and that $s_{j}\in I_{m_{j}}$ such that $s_{j}r_{j}\equiv 1$ mod $m_{j}$ . Then from the proof of Lemma 2.13
we have that

$\langle\chi(\lambda)_{1}, \Delta_{\tau}^{1}\rangle\equiv g(\lambda)-\sum_{j}s_{j}/m_{j}$ mod 1.

Hence it follows from (4) and (i) that

$\sum_{j}s_{j}n/m_{j}\equiv 0$ mod $n$ .
This implies that we have a well-defined group homomorphism $\phi:\Gammaarrow G$ such
that

(6) $A_{i},$ $B_{i}\mapsto\tau$ and $C_{j}->(\tau^{n/m_{j}})^{s_{j}}$ ,

where $\Gamma,$ $A_{i},$ $B_{i}$ and $C_{j}$ are as in Notation 1.2. We shall show that

(7) $\phi$ is surjective and $Ker(\phi)$ is torsion-free.

To see (7) it suffices to show that

(8) 1. $c$ . $m.\{m_{1}, \cdots m_{l}\}=n$ if $g(\lambda)=0$ ,

by virtue of Lemma 1.7. To verify (8), we put

1. $c$ . $m.\{m_{j}\}=m$ , $\overline{n}=n/m$ , $G’=\langle\tau^{\overline{n}}\rangle$ and $\tau’=\tau^{\overline{n}}$

Then by the proof of Lemma 2.9 we have that

$l’(\tau^{\prime s})=$

$\sum_{d1n,d=(d,\overline{n})S}(d,\overline{n})\cdot l(\tau^{d})$

$(s|m, s\neq m)$ ,
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where $l’(\tau^{\prime s})$ is dePned for $\lambda|_{G’}$ similarly as $l(\tau^{d})$ for $\lambda$ . Using this and the rela-
tions (RH) for $\lambda,$ $\lambda|_{G’}$ , we obtain that

(9) $2g(\lambda|_{G’})-2-\overline{n}(2g(\lambda)-2)$

$= \overline{n}\cdot\sum_{d|n}l(\tau^{d})\{1-(d/n)\}-\sum_{sm}l’(\tau^{\prime s})\{1-(s/m)\}$

$= \sum_{d_{1}n}l(\tau^{d})\{\overline{n}-(d,\overline{n})\}$ .

The right hand side of (9) is equal to $0$ by the choice of $\overline{n}$ . This yields that
$g(\lambda|_{G’})+\overline{n}=1$ and hence that $\overline{n}=1,$ $i$ . $e.,$ $n=m$ by (4), as desired.

Applying Theorem 1.6 to our $\phi$ , we conclude that $G$ is an automorphism
group of some curve $X$ and

(10) $\phi=\phi_{G}$ up to the equivalence.

This means $x_{q}=Tr(G|H^{0}(X, \Omega_{X}^{\otimes q}))$ , because by comparing (3) in \S 2 with (5), (6),

it follows from (10) that Red $\lambda=Red\lambda_{G}$ and hence that $\lambda=\lambda_{G},$ $\chi(\lambda)_{q}=x(\lambda_{G})_{q}$ .
The rest part follows from Corollary 2.3 (cf. also, Remark 2.8). Q. E. D.
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