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A function $\phi:Marrow R$ on a Riemannian manifold $M$ is by definition convex
if, for every geodesic segment $\gamma:[a, b]arrow M$, the function $\phi\circ\gamma:[a, b]arrow R$ is
convex in the usual sense, $i$ . $e$ . $(\phi\circ\gamma)(\lambda t+(1-\lambda)s)\leqq\lambda[(\phi\circ\gamma)(t)]+(1-\lambda)[(\phi\circ\gamma)(s)]$ for
all $t,$ $s\in[a, b]$ and $\lambda\in[0,1]$ . Convex functions on Riemannian manifolds arise
naturally in a number of geometric contexts, and the existence of convex func-
tions of certain types can often be used to produce information about the struc-
ture of the manifold itself. Specifically, if $M$ is a complete Riemannian mani-
fold and if $\phi:Marrow R$ is a convex function, then there is a $C^{\infty}$ manifold $N$ such
that $M- \{x\in M|\phi(x)=\inf_{M}\phi\}$ is diffeomorphic to the product manifold $N\cross R$

([4], [5]). In particular, if the minimum set $\{x\in M|\phi(x)=\inf_{M}\phi\}$ is empty,
then $M$ itself is diffeomorphic to such a product $N\cross R$ . It is this case of empty
minimum set and with, moreover, the manifold $N$ compact that will be con-
sidered now and throughout this paper. The $C^{\infty}$ product structure $N\cross R$ on
such a manifold $M$ is obtained as a smoothing of a topological product structure
that corresponds to the level sets of $\phi$ ; specifically, there is a homeomorphism
$H:Marrow N\cross R$ such that $\phi$ is constant on $H^{-1}(N\cross\{\alpha\})$ for each $\alpha\in R$ and
$H^{-1}(N\cross\{\alpha\})=$ { $x\in M|\phi(x)=the$ value of $\phi$ on $H^{-1}(N\cross\{\alpha\})$ }.

It is not necessarily the case that such an $M$ has a product metric structure;

for instance, the function $e^{x}$ is convex with empty minimum set on the surface
of revolution $\{(x, y, z)\in R^{3}|x^{2}+y^{2}=e^{x}\}$ which is not metrically a product.
This surface of revolution has as cross sections the level sets of the convex
function, and these increase in size as the function increases. The standard
(mean curvature) formula for first variation of hypersurface area combined with
the observation that the mean curvature of a convex hypersurface is nonnega-
tive shows that this size increase phenomenon extends to the general situation,
at least in the case of smooth $\phi$ ; more precisely, if $\phi$ is $C^{\infty}$ , then the $(n-1)-$

volume, $n=\dim M$, of the smooth submanifold $\{x\in M|\phi(x)=\alpha\}$ is a nondecreas-
ing function of $\alpha,$ $\alpha\in\phi(M)$ . This result holds even when $\phi$ is not smooth, if
$(n-1)$-volume is interpreted as $(n-1)$-Hausdorff measure ([2]). The volumes of
the level sets can be far from constant, as shown in the example given. But
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intuition suggests that, if these volumes are nonconstant (as a function of $\alpha$ )

then the isometry group of $M$ would be compact because the part of the topo-
logical cylinder $N\cross R$ with smaller cross section could not be isometric to a
part with larger cross section. The main result of this paper is that this latter
intuition is true in precise form, and that in case of noncompact isometry group
$M$ is in fact a metric product.

THEOREM. If $M$ is a complete Riemanman mamfold with noncompact isometry
group, and if there is a convex function $\phi:Marrow R$ uith $\{x\in M|\phi(x)=\inf_{M}\phi\}=\emptyset$

and $\{x\in M|\phi(x)=\alpha\}$ compact for all $\alpha\in R$ , then $M$ is isometnc to the Product
$N\cross R$ of a compact $C^{\infty}$ Riemanman mamfold $N$ and the real line $R$ .

If a Riemannian manifold $M$ is isometric to a product $N\cross R$ via an isometry
$H:Marrow N\cross R$ , then each $H^{-1}(N\cross\{\alpha\}),$ $\alpha\in R$ , is a totally geodesic submanifold.
And if $\phi:Marrow R$ is convex, then the function $\phi_{a}$ : $Narrow R$ defined by $\phi_{\alpha}(x)=$

$\phi(H^{-1}(x, \alpha))$ is a convex function on $N$. If $N$ is compact, then each $\phi_{\alpha}$ is con-
stant. If $n=\dim M\geqq 2$ , then dimension $N$ is at least one, and thus the con-
stancy of a $\phi_{\alpha}$ implies the constancy of $\phi$ on a (non-constant) geodesic segment

in $M$. A convex function $\phi:Marrow R$ on (an arbitrary Riemannian manifold) $M$

is strictly convex by definition if for every nonconstant geodesic segment

7: $[a, b]arrow M$, the strict inequality $(\phi\circ\gamma)(\lambda a+(1-\lambda)b)<\lambda[(\phi\circ\gamma)(a)]+(1-\lambda)[(\phi\circ\gamma)(b)]$

holds for every $\lambda\in(0,1)$ . Note that a strictly convex function cannot be con-
stant on a nonconstant geodesic segment. Combining these observations yields
the following corollary of the theorem:

COROLLARY. If $M$ is a complete Riemanman manifold, and if there exists
on $M$ a stnctly convex function $\phi:Marrow R$ such that $\{x\in M|\phi(x)=\inf_{M}\phi\}=\emptyset$ and
such that $\{x\in M|\phi(x)=\alpha\}$ is compact for all $\alpha\in R$ , then the isometry group of
$M$ is compact.

This special case of the theorem was previously established by Yamaguchi
([8]).

The general idea of the proof of the theorem is to make use of the defor-
mation retraction of $\{x\in M|\phi(x)\geqq\alpha\}$ onto $\{x\in M|\phi(x)=\alpha\},$ $\alpha\in\phi(M)$ , developed
in [4]; from a refined version of the arguments there, a retraction will be ob-
tained that is distance nonincreasing (this is closely related to constructions in
[2], also). It follows then that an $(n-1)$-dimensional manifold in $\{x\in M|\phi(x)$

$\geqq\alpha\},$ $\alpha\in\phi(M)$ , that is in the $Z_{2}$ homology class of $\{x\in M|\phi(x)=\alpha\}$ has $(n-1)-$

dimensional volume at least as great as the volume of $\{x\in M|\phi(x)=\alpha\}$ . Here
$(n-1)$-dimensional volume is in the sense of Hausdorff measure. This fact will
be seen to imply that all the level sets $\{X\in M|\phi(x)=\alpha\}$ has equal $(n-1)-$

volume if the isometry group of $M$ is noncompact. Moreover, it will follow in
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this latter case that each level set is absolutely area minimizing in its homology
class. Then it will be shown that consequently each level set must be a $C^{\infty}$

totally geodesic submanifold. The establishment of this fact uses the result of
[3] on the Hausdorff dimension of the singular set of mod 2 absolutely minimiz-
ing current. In the case of the convex function $\phi$ being smooth (even just $C^{2}$),

it is only a matter of calculation to see that $M$ must have a metric product
structure if the level sets of $\phi$ are totally geodesic (cf., the first result and
remarks following it in [1]). In the general case wherein $\phi$ need not be $C^{2}$ ,

the desired result on metric product structure is established by consideration of
suitable smooth approximations of $\phi$ .

The carrying out in detail of this program for the proof of the theorem
will depend on the establishment of two lemmas, which will be established
independently of the main line of the argument and which seem to be of inde-
pendent interest, also:

LEMMA 1. If $\phi:Marrow R$ is a convex function on a complete Riemanman mani-
fold, and if $\{x\in M|\phi(x)=\alpha\}$ is compact for all $\alpha\in\phi(M)$ , then, for each $\alpha\subseteq$

$\phi(M)$ there exists a distance nomncreasing retraction of $\{x\in_{-}lI|\phi(x)\geqq\alpha\}$ onto
$\{x\in M|\phi(x)=a\}$ .

LEMMA 2. If $\phi:Marrow R$ is a convex function of a complete Riemannian mam-
fold, if $\{x\in M|\phi(x)=\inf_{M}\phi\}$ is empty, and if for each $\alpha\in\phi(M)\{x\in M|\phi(x)$

$=\alpha\}$ is a compact totally geodestc hypersurface, then $M$ is isometnc to a Rie’nan-
man pr0duct $N\cross R$ , where $N$ is a compact connected $C^{\infty}$ Riemanman mamfold, via
an isometry $I:Marrow N\cross R$ such that for each $\beta\in RI^{-1}(N\cross\{\beta\})$ is a level set
$\{x\in M|\phi(x)=\alpha\}$ for some umque $\alpha\in\phi(M)$ .

Lemma 1 is a global statement by nature. Lemma 2, on the other hand,
will be obtained by applying globally an argument that is essentially local in
character, and consequently various local versions of it also hold. The details
of this point will become clear as the proof of Lemma 2 is presented.

Section 1 presents the proof of the main theorem, Lemmas 1 and 2 being
assumed. Lemma 1 is proved in Section 2, and Lemma 2 in Section 3.

Throughout, the following notations will be used for brevity: with $\phi;Marrow R$

fixed by the context, $M_{\beta}^{\alpha}=\{x\in M|\beta\leqq\phi(x)\leqq\alpha\},$ $M_{\alpha}=\{x\in M|\phi(x)\geqq\alpha\}$ and
$M^{\alpha}=\{x\in M|\phi(x)\leqq\alpha\}$ .

The completion of this paper was greatly facilitated by a fellowship of the
Japanese Society for the Promotion of Science to one of the authors (Greene)

for a scientific visit to Japan; it is a pleasure to acknowledge indebtedness to this
organization. This research was also supported in part by a National Science
Foundation Grant (U. S. A.) to one of the authors (Greene).
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1. Proof of the main theorem.

Throughout this section, $\phi$ and $M$ will be as in the hypothesis of the theo-
rem: $M$ is to be a complete Riemannian manifold, $\phi:Marrow R$ a convex function
without minimum and with compact level sets.

In [4], it was shown that such an $M$ is the product $N\cross R$ of a compact
Riemannian manifold $N$ and the real line $R$ . It is actually enough to prove the
theorem for the case that $M$, and hence $N$, are orientable. To see that it is
enough to treat this case, suppose $M$ is not orientable. The orientable two-fold
$\prime_{\vee}\backslash overC:\tilde{M}arrow M$ trivially satisfies the hypothesis of the theorem (with $\phi\circ C$ as
the convex function). If the isometry group of $\tilde{M}$ is compact then the isometry
group of $M$ must also be compact because every isometry of $M$ “lifts” to be
one of $\tilde{M}$ . On the other hand, if $\tilde{M}$ is isometric to a product $N_{1}\cross R$ , then $M$

must also be isometric to a product. Indeed, in this case, the nontrivial cover-
ing transformation of $\tilde{M}$ leaves the convex function invariant and can be con-
sidered as an isometry of the Riemannian product $N_{1}\cross R$ . Recall that the con-
vex function on $\tilde{M}=N_{1}\cross R$ is constant on $N_{1}\cross\{\alpha\}$ for every $\alpha\in R$ . The non-
trivial covering transformation is identity on $R$ because otherwise the function
has a non-connected level set and from Theorem A of [4], this implies the
existence of minimum set of the convex function, a contradiction. It then fol-
lows that $M$ is isometric to $N\cross R$ , where $N$ is $N_{1}$ modulo the action of the
covering transformation. Thus from now on, only the case of $M$ and $N$ orient-
able need be and will be considered.

A diffeomorphism of a product $N\cross R,$ $N$ compact, to itself necessarily takes
$N\cross\{\alpha\},$ $a\in R$ , to a compact submanifold of $N\cross R$ that separates $N\cross R$ into
two components that both have noncompact closures in $N\cross R$ . Each of these
components determines an end of $N\cross R$ , and thus there is an obvious sense in
which the diffeomorphism either preserves the two ends of $N\cross R$ or interchanges
the two ends. The product of two end-preserving diffeomorphisms is end-
preserving, of an end-preserving and an end-interchanging is end-interchanging,
and of two end-interchanging is end-preserving. In particular, the isometry
group $I(M)$ of the manifold $M$, diffeomorphic but not necessarily isometric to
$N\cross R$ , can be decomposed into two disjoint subsets $I_{0}(M)$ and $I_{1}(M)$ , consisting
respectively of the end-preserving and end-interchanging elements of $I(M)$ . The
set $I_{0}(M)$ is in fact a subgroup of $I(M)$ . Moreover, if $I_{0}(M)$ is compact, then
so is $I(M)$ because $I_{1}(M)$ is then either empty or equals $\{\alpha\beta|\alpha\in I_{0}(M)\}$ , where
$\beta$ is a fixed element of $I_{1}(M)$ . To prove the theorem it is thus necessary only
to Prove that if $I_{0}(M)$ is noncomPact, then $M$ is a metric product (with $R$).

From now on, $I_{0}(M)$ will be supposed noncompact. The proof that the metric
on $M$ is a product in this case will be given as a sequence of numbered steps.
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(1) If $\alpha\in\phi(M),$ $p\in M$ and $\phi(p)=\alpha$ , then

lim $sup\{d(\eta(p), M_{a}^{a}(\phi))|\eta\in I_{0}(M), \phi(\eta(P))>a\}=\infty$ ,

uhere $d$ is the Riemanman distance $/nM$.
PROOF OF (1). Let $D_{\alpha}=the$ Riemannian diameter of $M_{\alpha}^{\alpha}(\phi)$ ; then $D_{\alpha}<0\supset$

because $M_{\alpha}^{\alpha}(\phi)$ is compact. If $\eta\in I_{0}(M)$ satisfies $\phi(\eta(p))<\alpha$ , and if $d(\eta(p), M_{\alpha}^{a}(\phi))$

$>D_{\alpha}$ , then $\phi(\eta^{-1}(p))>\alpha$ . To see this, rote first that $P$ is in the component of
$M-\eta(M_{a}^{a}(\phi))$ on which $\phi$ is unbounded above, because $M_{\alpha}(\phi)\cap\eta(M_{a}^{\alpha}(\phi))=\emptyset$ by
the condition $d(\eta(p), M_{\alpha}^{\alpha}(\phi))>D_{\alpha}$ . Thus $\eta^{-1}(p)$ is in the component of
$\eta^{-1}(M-\eta(M_{a}^{\alpha}(\phi)))=M-M_{a}^{\alpha}(\phi)$ on which $\phi$ is unbounded above, because $\eta^{-1}$ is
end-preserving. Hence $\phi(\eta^{-1}(p))>\alpha$ . Also $d(\eta^{-1}(p), M_{\alpha}^{\alpha}(\phi))=d(p, \eta(M_{a}^{\alpha}(\phi)))\geqq$

$d(p, \eta(P))-D_{\alpha}\geqq d(\eta(p), M_{\alpha}^{\alpha}(\phi))-D_{\alpha}$ .
Because $I_{0}(M)$ is noncompact, there is a sequence $\{\gamma_{i}\},$ $\gamma_{i}\in I_{0}(M)$ such that

a subsequence of $\{\gamma_{i}(p)\}$ is unbounded. In particular, $d(\gamma_{i}(p), M_{\alpha}^{a}(\phi))>D_{\alpha}$ for $i$

large. Then the sequence { $\eta_{i}|\eta_{i}=\gamma_{i}$ if $\phi(\gamma_{i}(p))>\alpha,$ $\eta_{i}=\gamma_{i}^{-1}$ if $\phi(\gamma_{i}(p))<\alpha$ } has
the properties;
(a) $\phi(\eta_{t}(p))>\alpha$ , by the previous argument,
(b) lim $d(\eta_{t}(p), M_{a}^{a}(\phi))=+\infty$ , by the earlier observation that $d(\eta_{i}(p), M_{\alpha}^{\alpha}(\phi))$

$\geqq d(\gamma_{i}(p), M_{\alpha}^{\alpha}(\phi))-D_{\alpha}$ if $\eta_{i}=\gamma_{i}^{-1}$ (and $i$ is large enough) and of course also if
$\eta_{i}=\gamma_{i}$ .

(2) If $\alpha,$ $\beta\in\phi(M)$ , then the $(n-1)$-volume $Vol(M_{a}^{a}(\phi))$ of $M_{a}^{\alpha}(\phi)$ equals $t/\iota e$

$(n-1)$-volume $Vol(M\not\in(\phi))$ of $M_{\beta}^{\beta}(\phi)$ .

PROOF OF (2). Suppose without loss of generality that $\beta<\alpha$ . Then, by
Lemma 1 there is a distance nonincreasing map of $M_{\alpha}^{\alpha}(\phi)$ onto $M_{\beta}^{\beta}(\phi)$ that is
the restriction to $M_{\alpha}^{\alpha}(\phi)$ of a retraction of $M_{\beta}(\phi)$ onto $M_{\beta}^{\beta}(\phi)$ . In particular,
since both $M_{\beta}^{\beta}(\phi)$ and $M_{\alpha}^{\alpha}(\phi)$ represent the same generator of the $(n-1)$-homology
of $M_{\beta}(\phi)$ , it follows that the image of $M_{\alpha}^{a}(\phi)$ under the retraction must be (all

of) $M_{\beta}^{\beta}(\phi)$ . Thus
$Vol(M_{\beta}^{\beta}(\phi))\leqq Vol(M_{a}^{\alpha}(\phi))$ .

To establish the reverse inequality, choose a point $P\in M_{\beta}^{\beta}(\phi)$ and, by step

(1), an $\eta\in I_{0}(M)$ such that $\phi(\eta(p))>\alpha$ and $d(\eta(p), M_{a}^{a}(\phi))>D_{\beta}$ , where $D_{\beta}=the$

diameter of $M_{\beta}^{\beta}(\phi)$ . Then every point $q\in\eta(M_{\beta}^{\beta}(\phi))$ can be connected to $\eta(p)$

by a curve in $M$ of length $\leqq D_{\beta}$ and this curve cannot intersect $M_{a}^{a}(\phi)$ because
$d(\eta(p), M_{a}^{\alpha}(\phi))>D_{\beta}$ . Hence $\eta(M_{\beta}^{\beta}(\phi))$ must be contained in $M_{a}(\phi)$ . Because
$\eta(M_{\beta}^{\beta}(\phi))$ is not homologous to zero in $M_{\alpha}(\phi)$ , the image of $\eta(M_{\beta}^{\beta}(\phi))$ under a
retraction of $M_{\alpha}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi)$ must be all of $M_{a}^{a}(\phi)$ . In particular, this holds
for the distance-nonincreasing retraction obtained from Lemma 1. Thus

$Vol(M_{\beta}^{\beta}(\phi))=Vol(\eta(M_{\beta}^{\beta}(\phi)))\geqq Vol(M_{\alpha}^{\alpha}(\phi))$ .
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Hence $Vol(M_{\beta}^{\beta}(\phi)=l^{-}o1(M_{\alpha}^{\alpha}(\phi))$ .
(3) For each $\alpha\equiv\phi(M)$ , the LiPschitz submanifold $M_{\alpha}^{\alpha}(\phi)$ is absolutely $(n-1)-$

$\iota$ olume mimmizing among all homologically nontnvial rectifiable $(n-1)$-currents.

PROOF OF (3). Suppose $C\subset M$ is homologically nontrivial. Then there is a
compact subset $K$ in $M$ such that $C\cap K$ also represents a nontrivial $(n-1)-$

homology class in $Jf$. (This is so by the observation that the homology class
of a cycle $C_{1}$ in $\perp\backslash ^{-}\cross R$ is the limit of the classes $(i_{a})_{*}(C_{1}\cap N\cross[-a, a])$ , as
$aarrow\infty$ , where $i_{a}$ is the injection $N\cross[-a, a]arrow N\cross R.$ ) In particular, $C\cap M_{\beta}(\phi)$ is
homologically nontrivial for some $\beta\in\phi(M)$ . By Lemma 1, there is a distance
nonincreasing retraction of $M_{\beta}(\phi)$ onto $M_{\beta}^{\beta}(\phi)$ ; the image of $C$ under this retrac-
tion is an $(n-1)$-current $C_{1}$ in $M_{\beta}^{\beta}(\phi)$ that is homologically nontrivial. In par-
ticular, the $(n-1)$ -mass, or $(n-1)$ -volume, of $C_{1}$ is at least $Vol(M_{\beta}^{\beta}(\phi)),$ $i$ . $e.$ ,
$Vol(C_{1})\geqq Vol(M_{\beta}^{\beta}(\phi))$ . Because the retraction is distance nonincreasing, $Vol(C)\geqq$

$Vol(C_{1})$ . But, by Step (2), $Vol(M_{\beta}^{\beta}(\phi))=Vol(M_{\alpha}^{\alpha}(\phi))$ , so $Vol(C)\geqq Vol(C_{1})\geqq$

$Vol(M_{\beta}^{\beta}(\phi))=Vol(M_{\alpha}^{\alpha}(\phi))$ .

(4) For each $\alpha\in\phi(M)$ , the set $M_{\alpha}^{\alpha}(\phi)$ is a comPact $C^{\infty}$ totally geodestc sub-
mamfold of $M$.

PROOF OF (4). The property of being $C^{\infty}$ totally geodesic is local so it is
enough to establish the property in a neighborhood of each point $P\in M_{\alpha}^{\alpha}(\phi)$ . If
$M_{a}^{a}(\phi)$ is $C^{\infty}$ in a neighborhood of $p$ , then it is totally geodesic in that neigh-
borhood: To see this, note that, because $M_{\alpha}^{\alpha}(\phi)$ is absolutely $(n-1)$-volume
minimizing in its homology class (Step (3)), its second fundamental form has
trace zero at each point in a neighborhood of which $M_{a}^{\alpha}(\phi)$ is $C^{\infty}$ . On the other
hand, because $M_{a}^{a}(\phi)$ is the boundary of a convex set, its second fundamental
form (at $C^{\infty}$ points of $M_{\alpha}^{a}(\phi)$ ) is nonnegative definite. Hence the second funda-
mental form vanishes, and the submanifold is totally geodesic. Thus it is
enough to show $M_{\alpha}^{\alpha}(\phi)$ is $C^{\infty}$ in a neighborhood of each $p\in M_{a}^{\alpha}(\phi)$ .

In [6], it is shown that there is a local coordinate system $(x_{1}, \cdots , x_{n})$ cen-
tered at $P\in M_{\alpha}^{\alpha}(\phi)$ such that $M_{a}^{\alpha}(\phi)\cap$ ($the$ domain of the coordinate system) is
the graph of a necessarily smooth function $f$ over $\{(x_{1}, \cdots , x_{n})|x_{n}=0\}$ . Thus
coordinate system can be chosen so that its range is $R^{n}$ . Then

$M_{a}^{\alpha}(\phi)rightarrow$ (domain of the coordinates)

$=\{(x_{1}, \cdots, x_{n- 1}, f(x_{1}, \cdots x_{n- 1}))|(x_{1}, \cdots, x_{n-1})\in R^{n- 1}\}$ .

For convenience, suppose it is so chosen. Because $\phi$ is a locally Lipschitz con-
tinuous function, there is, for each fixed compact subset of $R^{n- 1}$ , a constant $C$

such that the function $f$ is Lipschitz continuous with the Lipschitz constant $C$

on the compact subset.
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Now set $Q=$ { $(x_{1},$
$\cdots,$ $x_{n-1})\in R^{n- 1}|f$ is $C^{\infty}$ in a neighborhood of $(x_{1},$

$\cdots,$
$x_{n-1})$ }.

By the fundamental minimal hypersurface regularity result of [3], the set
$\{(x_{1}, \cdots , x_{n-1}, f(x_{1}, \cdots , x_{n-1}))|(x_{1}, \cdots , x_{n-1})\in R^{n-1}-Q\}$ has Hausdorff dimension
at most $n-7$ . Hence the Hausdorff dimension of $R^{n-1}-Q$ is at most $n-7$ . In
particular, $Q$ is dense in $R^{n-1}$ .

Choose a point $q_{0}\in Q,$ $q_{0}=(a_{1}, \cdots , a_{n-1})$ such that the point $q_{1}=(a_{1},$ $\cdots$ , $a_{n-1}$ ,
$f(a_{1}, \cdots , a_{n-1}))\in M_{\alpha}^{a}(\phi)$ has the properties: (a) $d(q_{1}, p)<(1/10)(injectivity$ radius
at $q_{1}$ for the M-metric); (b) $\{x\in M|d(q_{1}, x)\leqq 2d(q_{1}, p)\}$ is contained in the
domain of the $(x_{1}, \cdots , x_{n})$ local coordinate system and (c) the projection of
$\{(x_{1}, \cdots , x_{n})|(x_{1}, \cdots , x_{n})=\exp_{q_{1}}v, v\in T_{q_{1}}M_{\alpha}^{\alpha}(\phi), \Vert v\Vert<3d(q_{1}, p)\}$ onto $R^{n- 1}$ is a
diffeomorphism. This choice of $q_{0}$ is possible because of the density of $Q$ in
$R^{n-1}$ ; because of the continuity of the map $Qarrow M_{\alpha}^{\alpha}(\phi)$ given by $(x_{1}, \cdots , x_{n-1})arrow$

$(x_{1}, \cdots , x_{n-1}, f(x_{1}, \cdots , x_{n-1}))$ ; and finally because of the Lipschitz continuity of
$f$ which implies that the tangent spaces of $M_{a}^{\alpha}(\phi)$ are bounded away from con-
taining the $x_{n}$ direction. This last property is used to ensure property (c).

With $q_{0}$ so chosen, each geodesic segment of length $2d(q_{1}, p)$ emanating from
$q_{1}$ projects by suppression of the $x_{n}$-coordinate onto a curve segment in $R^{n-1}$

emanating from $q_{0}$ . These projections are pairwise disjoint except for their
common initial point $q_{0}$ . The set of such geodesic segments each with the
property that the projection lies entirely in $Q$ is open and dense in the set of
all such geodesic segments; here the set of geodesic segments is topologized by
identifying it with the set of unit vectors in $T_{q_{1}}M_{\alpha}^{a}(\phi)$ and so with $S^{n-2},$ $n=$

dim $M$. The openness is clear. To see the density, let $T=the$ set of geodesic
segments that have a projection that intersects $R^{n-1}-Q$ . Then, because $R^{n}-Q$

has Hausdorff $(n-6)$-measure zero, so does $T$ . In particular, $T$ , which is a sub-
set of $S^{n-2}$ , cannot be open in $S^{n-2}$ .

Suppose $\gamma$ is a geodesic segment of length $2d(q_{1}, p)$ from $q_{1}$ tangent to
$M_{\alpha}^{\alpha}(\phi)$ and that $\gamma\not\in T$ . Let

$\gamma_{0}=$ { $(x_{1},$ $\cdots$ , $x_{n-1})\in R^{n-1}|(x_{1},$ $\cdots$ , $x_{n-1},$ $x_{n})\in\gamma$ for some unique $x_{n}$ }.

If $(x_{1}, \cdots , x_{n-1})\in\gamma_{0}$ , then $M_{a}^{\alpha}(\phi)$ is $C^{\infty}$ totally geodesic in a neighborhood of
$(x_{1}, \cdots , x_{n-1}, f(x_{1}, \cdots , x_{n-1}))$ . It follows that for all $(x_{1}, \cdots , x_{n-1})$ in some
neighborhood $V$ of $\gamma_{0}$ , the subset $\{(x_{1}, \cdots , x_{n-1}, f(x_{1}, \cdots , x_{n-1}))|(x_{1}, \cdots , x_{n-1})$

$\in V\}$ of $M_{a}^{\alpha}(\phi)$ coincides with a subset of $\{\exp_{q_{1}}w|w\in T_{q_{1}}M_{a}^{\alpha}(\phi), \Vert w\Vert<3d(P, q_{1})\}$ .
In particular, this subset of $M_{\alpha}^{\alpha}(\phi)$ contains $\gamma$ . The density of the complement
of $T$ implies (by taking closures) that $M_{\alpha}^{\alpha}(\phi)$ contains $\{\exp_{q_{1}}w|w\in T_{q_{1}}M_{\alpha}^{\alpha}(\phi)$ ,
$\Vert w\Vert<2d(P, q_{1})\}$ . It follows that $M_{\alpha}^{\alpha}(\phi)$ is $C^{\infty}$ totally geodesic in that neighbor-
hood.
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2. Proof of Lemma 1.

To prove Lemma 1, it is enough to construct, for each $a\in\phi(M)$ , a distance-
nonincreasing retraction of $M_{\alpha}^{\alpha+1}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi)$ , for then a distance-nonincreas-
ing retraction of $M_{\alpha}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi)$ can be found by iteration. Specifically, if
a distance-nonincreasing retraction $\eta_{\alpha}$ : $M_{\alpha}^{\alpha+1}(\phi)arrow M_{\alpha}^{\alpha}(\phi)$ is given for each $\alpha\in$

$\phi(M)$ , then a distance-nonincreasing retraction $\psi_{\alpha}$ : $M_{\alpha}(\phi)arrow M_{a}^{\alpha}(\phi)$ can be con-
structed as follows: For each $P\in M.(\phi)$ , let $k(p)$ be the largest integer such
that $\phi(p)\geqq a+k(p)$ . Define

$\psi_{\alpha}(p)=(\eta_{\alpha}\circ\cdots\circ\eta_{\alpha+k(p)-1^{\circ}}\eta_{\alpha+k(p)})(p)$ .

It is easily checked that $\psi_{a}$ : $M_{\alpha}(\phi)arrow M_{\alpha}^{\alpha}(\phi)$ is a distance-nonincreasing retraction.
It is also enough to find the distance-nonincreasing retractions $\eta_{\alpha}$ , and hence

the $\psi_{\alpha}$ , for the case $\alpha=\inf_{M}\phi$ . (Of course in the present paper’s applications,
the case $\alpha\in\phi(M),$ $\alpha=\inf_{M}\phi$ does not occur: that $\inf_{M}\phi\not\in\phi(M)$ is a hypothesis
of the theorem. But Lemma 1 holds also in the case $\alpha=\inf_{M}\phi\in\phi(M).)$ To
check that the $\alpha\neq\inf_{M}\phi$ case implies that $\alpha=\inf_{M}\phi$ case, suppose $\inf_{M}\phi\in\phi(M)$

and suppose given, for each $\alpha\in\phi(M)-\{\inf_{M}\phi\}$ , a distance-nonincreasing retrac-
tion $\psi_{\alpha}$ : $M_{\alpha}(\phi)arrow M_{\alpha}^{\alpha}(\phi)$ . The Arzela-Ascoli Theorem implies that there is a
sequence $\{\alpha_{j}\in\phi(M)|j=1, 2, \}$ such that lim $\alpha_{j}=\inf_{M}\phi$ and such that
$\{\psi_{a_{j}}|j=1, 2, \}$ converges uniformly on compact subsets of $\{x\in M|\phi(x)>\inf_{M}\phi\}$

to $\{x\in M|\phi(x)=\inf_{M}\phi\}$ , and this map extends uniquely to be a continuous map
on all of $M$ ; and this extension is a distance-nonincreasing retraction of $M=$

$M_{\alpha}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi),$ $a= \inf_{M}\phi$ .
Thus there remains only to construct a distance-nonincreasing retraction of

$M_{\alpha}^{\alpha+1}(\phi)$ onto $M_{a}^{\alpha}(\phi)$ for each $\alpha\in\phi(M)-\{\inf_{M}\phi\}$ . For this construction, note
first that there is a (large) positive integer $N_{0}$ such that, if $n\geqq N_{0}$ , then the
subdivision $\alpha,$ $\alpha+(1/n),$ $\alpha+(2/n),$ $\cdots$ , $\alpha+1$ of $[\alpha, \alpha+1]$ has the following prop-
erty; If $p\in M$ is such that $\phi(P)\in[\alpha+(k/n), \alpha+((k+1)/n)]$ , $k\in\{0, -- , n-1\}$ ,
then there is a unique point $q$ with $\phi(q)=\alpha+(k/n)$ and $d(P, q)=d(P, M_{\alpha}^{\alpha}\ddagger((kk|_{n)}^{n)}(\phi))$ .
The existence of such an $N_{0}$ is proved in detail in [4]. The idea of the proof
is as follows: By local strict convexity of the function $qarrow d(p, q)^{2}$ , one sees
that if $P\in M_{\beta}(\phi)$ is close enough to the compact convex set $M_{\beta}^{\beta}(\phi),$ $\beta\in\phi(M)$ ,

then there is a unique point $q\in M_{\beta}^{\beta}(\phi)$ with $d(p, q)=d(P, M_{\beta}^{\beta}(\phi))$ . The closeness
required can be taken uniformly in $\beta$ for $\beta$ varying over $[\alpha, \alpha+1]$ . To see that
$p\in M_{\alpha}^{\alpha}\ddagger_{k’ n}(k+1)/n(\phi)$ implies that $p$ is sufficiently close to $M_{a}^{\alpha}\ddagger^{k}k|_{n}^{n}(\phi)$ requires an
estimate from below on the rate of change of $\phi$ along shortest geodesic connec-
tions from higher $\phi$-levels to lower $\phi$-levels. Specifically, one can show (and it
is shown in [4]) that the following estimate holds: Let $\alpha>\inf_{M}\phi$ and let $\epsilon\in$

$(0, \alpha-\inf_{M}\phi)$ . Set $\delta=\max\{d(x, y)|x, y\in M, \phi(x)=\alpha-\epsilon, \phi(y)=\alpha\}$ . Then $\delta>0$ ;
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and if $\beta_{1}>\beta_{2}=\alpha$ , and if $\phi(z)=\beta_{1}$ then, with $\Delta=\epsilon/\delta$ ,

$d(z, M_{\beta_{2}}^{\beta_{2}}(\phi))\leqq(\beta_{1}-\beta_{2})/\Delta$ .
From this estimate, it follows that if $N_{0}$ is sufficiently large and if $n\geqq N_{0}$ , then
the distance from $p\in M_{\alpha+k/n}^{\alpha+(k+1)/n}(\phi)$ to $M_{\alpha}^{\alpha}\ddagger_{k}^{k}|_{n}^{n}(\phi)$ is small, in particular so small
that a unique point $q$ with the indicated properties exists. It is easy to see
that under these circumstances, $q$ depends continuously on $P$ (cf. [4]).

With $N_{0}$ as in the previous paragraph, define, for each $n>N_{0}$ , a map
$\eta_{n}$ : $M_{a}^{\alpha+1}(\phi)arrow M_{a}^{\alpha}(\phi)$ as follows: If $p\in M_{\alpha}^{\alpha+1}(\phi)$ and $\phi(P)\in[\alpha+k/n, \alpha+(k+1)/n]$ ,
then let $q_{k}(p)=the$ unique point of $M_{\alpha}^{\alpha}\ddagger^{k}k|_{n}^{n}(\phi)$ closest to $p$ , $q_{k-1}(p)=the$ unique
point of $M_{a}^{\alpha}\ddagger(k-1)(k-1)/nn(\phi)$ closest to $q_{k}(p)$ , , $q_{0}(p)=the$ unique point of $M_{\alpha}^{\alpha}(\phi)$ closest
to $q_{1}(p)$ . Then set $\eta_{n}(p)=q_{0}(p)$ .

The maps $\eta_{n}$ are (continuous) retractions of $M_{\alpha}^{\alpha+1}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi)$ . In eucli-
dean space, the maps $\eta_{n}$ would each be distance-nonincreasing by the convexity
of the function $\phi$ and hence of all the sets $M^{\beta}(\phi),$ $\beta\in\phi(M)$ . However the
possible curvature of $M$ makes it further possible that the $\eta_{n}$ are not distance-
nonincreasing. However, the maps $\eta_{n}$ are, for all $n$ sufficiently large, Lipschitz
continuous; and, moreover, they have Lipschitz constants $C_{n}$ such that
$\lim\sup_{narrow+\infty}C_{n}\leqq 1$ : These facts will be established momentarily. Assuming
these facts for the moment, one can find a distance-nonincreasing retraction
$M_{\alpha}^{\alpha+1}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi)$ by applying the Arzela-Ascoli Theorem to the sequence
$\{\eta_{n}\}$ : There is a uniformly convergent subsequence, and the limit of this sub-
sequence is a retraction of $M_{\alpha}^{a+1}(\phi)$ onto $M_{\alpha}^{\alpha}(\phi)$ that is necessarily distance-
nonincreasing by virtue of the fact that lim sup $narrow+\infty C_{n}\leqq 1$ .

Thus, to complete the proof of Lemma 1, there remains only to establish
the already stated facts about the Lipschitz continuity of the $\eta_{n}$ . These facts
will be established by an argument closely related to the argument used in [4]
to establish that the diameter of the sets $M_{\alpha}^{a}(\phi)$ is a nondecreasing function of
$\alpha$ . The presently required argument depends on two observations from Rie-
mannian geometry:

OBSERVATION (1): SuPpose $\gamma:[a, b]arrow M$ is a geodesic segment without self-
intersections (in a complete Riemanman mamfold) and that $p\in M-\gamma([a, b])$ . Sup-
Pose also that $q\in\gamma([a, b])$ has the Property that $d(P, q)=d(p, \gamma([a, b]))>0$ . Then
one of the three $pos\alpha hlities$ occurs: (a) $q\in\gamma((a, b))$ and every mimmal geodesic
from $p$ to $q$ meets $\gamma$ at a right angle; (b) $q=\gamma(a)$ and, for each mimmal geodestc
from $p$ to $q$ , the tangent $T$ at $q$ of the geodestc satisfies $\langle T,\dot{\gamma}(a)\rangle\geqq 0;(c)q=\gamma(b)$

and, for each mimmal geodestc from $p$ to $q$ , the tangent $T$ of the geodestc at $q$

satisfies $\langle T,\dot{\gamma}(b)\rangle\leqq 0$.
The observation (1) is an immediate consequence of the standard formula
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for first variation of arc length; the situation is illustrated in Figure 1.

OBSERVATION (2): Supp0se $q\in M$ and that $\epsilon>0$ is so small that the ball of
radius $5\epsilon$ around $q$ is strongly convex and so small that, for each arc-length-param-
eter geodestc segment $\gamma:(-5\epsilon, 5\epsilon)arrow M$ with $\gamma(0)=q$ , the exp0nential map of the
normal bundle of $\gamma$ is a diffeomorphism of the $5\epsilon$ neighborhood of the O-section
onto an open subset of M. Supp0se also that $0<\epsilon_{1}<\epsilon,$ $0<\epsilon_{2}<\epsilon,$ $0< \delta<\min\{\epsilon_{1}, \epsilon_{2}\}$

and that $\gamma_{1}$ : $[-\delta, \delta]arrow M,$ $\gamma_{2}$ : $[0, \epsilon_{1}]arrow M$ and $\gamma_{3}$ : $[0, \epsilon_{2}]arrow M$ are arc-length-param-
eter geodesic segments with $\gamma_{1}(O)=q,$ $\gamma_{2}(O)=\gamma_{1}(-\delta),$ $\gamma_{3}(O)=\gamma_{1}(\delta),$ $\langle\dot{\gamma}_{2}(0),\dot{\gamma}_{1}(-\delta)\rangle$

$=0$ and $\langle\dot{\gamma}_{3}(0),\dot{\gamma}_{1}(\delta)\rangle\geqq 0$ . (Figure 2.) Then there is a constant $C$ that depends
only on the supremum of the absolute values of the sectional curvature of $M$ on
the $10\epsilon$ -ball around $q$ such that

$d( \gamma_{2}(\epsilon_{1}), \gamma_{3}(\epsilon_{2}))\geqq 2\delta-C\delta(\max\{\epsilon_{1}, \epsilon_{2}\})^{2}$ .

Figure 1. Figure 2.

This observation (2) can be thought of in the following terms; in euclidean
space, the inequality would hold with $C=0$ because of the hypothesis about the
angles between $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{1},$ $\gamma_{3}$ . In the case of general Riemannian manifolds,

the smallness restrictions on $\epsilon$ mean that one is dealing with local geometry
only, so the only change from euclidean space is an error term estimatable by
curvature bounds. For the actual proof, one proceeds as follows:

Let $\gamma_{4}$ be a minimal geodesic segment from $\gamma_{2}(\epsilon_{1})$ to $\gamma_{3}(\epsilon_{2})$ . By the assump-
tions on angles between $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{1},$ $\gamma_{3}$ and the choice of $\epsilon$ , there are points
$a_{1}$ and $a_{2}$ of $\gamma_{4}$ such that the portion of $\gamma_{4}$ between $a_{1}$ and $a_{2}$ is (up to para-
metrization) the exponentiation of a $C^{\infty}$ normal vector field along $\gamma_{1}$ with the
normal vector field of length everywhere less than $5\epsilon$ . Call this vector field
$V(t)\in TM_{\gamma_{1}(t)}$ , where $t$ runs over $[-\delta, \delta]$ . The length of the curve $tarrow\exp_{\gamma_{1}(t)}V(t)$

is less than or equal to the length of $\gamma_{4}$ , which latter equals $d(\gamma_{2}(\epsilon_{1}), \gamma_{3}(\epsilon_{2}))$ .
To estimate the length of $tarrow\exp_{\gamma_{1^{(t)}}}V(t)$ , define, for each $t$ , a Jacobi field $J_{t}(s)$
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along the geodesic $sarrow\exp_{\gamma_{1}(t)}sV(t),$ $s\in[0,1]$ , by

$J_{t}(s)= \frac{\partial}{\partial t}\exp_{\gamma_{1}(t)}sV(t)$ .

Then $J_{t}(0)=\dot{\gamma}_{1}(t)$ and $J_{t}(1)$ is the tangent vector of $tarrow\exp_{\gamma_{1^{(t)}}}V(t)=the$ tangent

vector of $\gamma_{4}$ at $\exp_{\gamma_{1}(t)}V(t)$ . Then the length of $t arrow\exp_{\gamma_{1^{(t)}}}V(t)=\int_{-\delta}^{\delta}\Vert J_{t}(1)\Vert dt$ .
By the estimating from the Jacobi equation, one sees that

$\Vert J_{t}(1)\Vert\geqq\Vert J_{t}(0)\Vert-C_{1}\Vert V(t)\Vert^{2}$

where $C_{1}$ is a constant depending on the supremum of the absolute values of
sectional curvatures along $sarrow\exp_{\gamma_{1}(t)}sV(t)$ , this curve being contained in the
$10\epsilon$ -ball around $q$ by the triangle inequality. Note that, also by the triangle
inequality, $\Vert V(t)\Vert\leqq 4\max(\epsilon_{1}, \epsilon_{2})$ . Thus

length of $\gamma_{4}\geqq length$ of $(tarrow\exp_{\gamma_{1}}V(i))$

$\geqq\int_{-\delta}^{\delta}\Vert J_{t}(0)\Vert dt-C_{1}\int_{-\delta}^{\delta}\Vert V(t)\Vert^{2}dt$

$\geqq 2\delta-C\delta(\max(\epsilon_{1}, \epsilon_{2}))^{2}$ ,

where $C$ depends only on sectional curvature absolute value supremum on the
ball of radius $10\epsilon$ around $q$ .

Note that in observation (2) the value of $C$ and the smallness of $\epsilon$ can both
be chosen uniformly relative to variation of $q$ over compact subset of $M$.

The observations just given apply in particular to the following situation:
Suppose $\beta\in\phi(M)$ and $p_{1}$ and $p_{2}$ are points of $M_{\beta}(\phi)$ that are close to $M_{\beta}^{\beta}(\phi)$

and close to each other. Let $p_{1}’=the$ unique point of $M_{\beta}^{\beta}(\phi)$ closest to $p_{1}$ , and
$p_{2}’=the$ unique point of $M_{\beta}^{\beta}(\phi)$ closest to $p_{2}$ . Set $\omega=\max(d(p_{1}, p_{1}^{r}),$ $d(P_{2}, p_{2}’))$ .
Then

$d(p_{1}, p_{2})\geqq d(p_{1}’, p_{2}’)-C\omega^{2}d(p_{1}’, p_{2}’)$ ,

where $C$ depends only on sectional curvature bounds. This inequality follows
from observations (1) and (2). Observation (1) is to be applied with the geodesic
segment $\gamma$ there being the minimal one between $p_{1}’$ and $P_{2}’$ here, and this same
minimal segment is to play the role of $\gamma_{1}$ in observation (2). The convexity of
$M^{\beta}(\phi)$ implies that the whole segment from $p_{1}’$ to $p_{2}’$ lies in $M^{\beta}(\phi)$ and hence
that (for instance) $p_{1}’$ is the closest point of the segment to $P_{1}$ ; thus observation
(1) does indeed apply and sets up the hypotheses for observation (2). The in-
equality for $d(p_{1}, p_{2})$ just given implies immediately that closest point projection
on $M_{\beta}^{\beta}(\phi)$ takes an arc of length $\zeta$ that is within $\epsilon$ ( $\epsilon$ small) of $M_{\beta}(\phi)$ to an
arc of length $\leqq\zeta(1+C\epsilon^{2})$ , where $C$ depends only on sectional curvature bounds
in a neighborhood of $M_{\beta}^{\beta}(\phi)$ .
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Now consider the previously discussed situation: $n\geqq N_{0}$ , $[\alpha, \alpha+1]$ parti-
tioned into $[\alpha, \alpha+1/n],$ $[\alpha+1/n, \alpha+2/n],$ $\cdots$ , $[\alpha+(n-1)/n, \alpha+1]$ . If $p_{1},$ $p_{2}\in$

$M_{\alpha}^{\alpha+1}(\phi)$ and $\phi(p_{1})\geqq\phi(p_{2})$ and if $\gamma$ is a minimal geodesic segment joining $p_{1}$ to
$p_{2}$ , then $\gamma\subset M^{\phi(p_{1})}(\phi)$ . Also, for each $n\geqq N_{0}$ , the arc obtained by applying $\eta_{n}$

to those portions of 7 lying in $M_{\alpha}^{\alpha+1}(\phi)$ and fixing the remainder of $\gamma$ (the re-
mainder lies in $M^{\alpha}(\phi))$ joins $\eta_{n}(p_{1})$ and $\eta_{n}(p_{2})$ . Thus $d(p_{1}, p_{2})\geqq the$ length of
$(\eta_{n}\circ\gamma)$ , where $\eta_{n}\circ\gamma$ is interpreted as indicated. The map $\eta_{n}$ is obtained as
the composition of $n$ closest-point projections $M^{\alpha+1}(\phi)arrow M^{\alpha+1-(1/n)}(\phi),$ $M^{\alpha+1-(1/n)}(\phi)$

$arrow M^{\alpha+1-(2/n)}(\phi),$ $\cdots$ , $M^{\alpha+(}1/n$ )
$(\phi)arrow M^{\alpha}(\phi)$ . Moreover, as noted earlier,

max $\{d(z, M^{\alpha+(k/n)}(\phi))|z\in M^{\alpha+(k+1)/n}(\phi)\}\leqq 1/(n\Delta)$ ,

where $\Delta$ is as defined previously. Applying $n$ times the previously obtained
inequality on the arc-length of closest point projections of arcs yields that

(length of $\eta_{n}\circ\gamma$) $\leqq length(\gamma)\cdot(1+(C/n\Delta)^{2})^{n}$

where $C$ is a constant independent of $n$ ( $C$ depends only on the curvature of
$M$ in a neighborhood of $M_{a}^{\alpha+1}(\phi))$ .

Now $\lim_{narrow+\infty}(1+(C/n\Delta)^{2})^{n}=1$ . Thus the required estimate on the Lipschitz
constants of the $\eta_{n}$ holds, and the proof of Lemma 1 is complete.

3. Proof of Lemma 2.

An n-dimensional Riemannian manifold $M$ is locally a metric product of an
interval and an $(n-1)$-manifold if and only if there is locally a $C^{\infty}$ unit parallel
vector field. The existence of such a vector field if $M$ is such a local product
is clear; that $M$ is a local metric product whenever such a vector field exists
is a special case of the (local) de Rham Decomposition Theorem ([6]; this special
case is alternatively easily established directly). For the implication that $M$ is
a local metric product, it is not actually necessary to assume that a $C^{\infty}$ parallel
vector field exists. In fact, if a local unit vector field exists that is locally
Lipschitz continuous and that has zero covariant derivative wherever its covariant
derivative exists, then it follows that the vector field is actually $C^{\infty}$ and parallel,
and hence that $M$ is locally a metric product as before. To see this, suppose
$V$ is such a vector field defined in an $\epsilon$ -ball around $p\in M$ with $\epsilon<$ the injectivity
radius of $M$ at $p$ . Because $V$ is Lipschitz continuous, $V$ is covariant differ-
entiable almost everywhere $(a. e.)$ relative to the measure on $M$ determined by
the (or, equivalently, any other) Riemannian metric of $M$. By Fubini’s Theorem,
the covariant derivative of $V$ exists $a.e$ . along almost all of the arc-length-
parameter geodesic segments $\gamma:(-\epsilon, \epsilon)arrow M,$ $\gamma(0)=p$ , where “almost all” is in
the sense of $(n-1)$-Lebesgue measure on the unit sphere in $TM_{p}$ , which contains
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the tangent vectors at $p$ of such geodesic segments. Suppose $\gamma:(-\epsilon, \epsilon)arrow M$ is
one of the segments along which $DV$ exists (and equals $0$) $a$ . $e$ . so that in
particular $D_{j}V|_{r^{(t)}}$ exists and is $0$ for almost all $t\in(-\epsilon, \epsilon)$ . Let $P_{1},$ $\cdots$ , $P_{n}$ be
a parallel orthonormal frame along $\gamma$ , and write $V( \gamma(t))=\sum_{j=1}^{n}a_{j}(t)P_{j}(t)$ . Then
each $a_{j}(t)$ is differentiable $a$ . $e$ . on $(-\epsilon, \epsilon)$ ; and, because $V$ and hence the $a_{j}$

are Lipschitz continuous, $a_{j}(t)=a_{j}(O)+ \int_{0}^{t}(\frac{d}{du}a_{j}(u))du$ . Then, because $D_{j}V|_{\gamma^{(t)}}$

exists and is $0a$ . $e$ . on $(-\epsilon, \epsilon)$ , it follows that $(d/dt)a_{j}=0a$ . $e$ . on $(-\epsilon, \epsilon)$ so
that $a_{j}(t)=a_{j}(O),$ $t\in(-\epsilon, \epsilon)$ . Hence $V$ is $C^{\infty}$ (and parallel) along $\gamma$ . Because the
set of such $\gamma$ is dense in the set of all $(-\epsilon, \epsilon)$ geodesic segments at $p$ , it fol-
lows by continuity that $V$ is $C^{\infty}$ and parallel along every $(-\epsilon, \epsilon)$ geodesic seg-
ment centered at $p$ and bence that $V$ is $C^{\infty}$ on the $\epsilon$ -ball round $p$ except pos-
sibly at $p$ . Repeating the argument with $p$ replaced by another point near $p$

yields that $V$ is $C^{\infty}$ across $P$ as well. Thus $V$ is $C^{\infty}$ and parallel.

The remarks of the previous paragraph are motivation for the proof tech-
nique for Lemma 2: It will be shown that the unit normals to the sublevels
(in the direction of increase of $\phi$ ) form a locally Lipschitz continuous vector
field, and it will then be shown that this vector field has zero covariant deriva-
tive $a$ . $e$ . along every geodesic segment. Then, as in the previous paragraph,
it follows that the vector field is $C^{\infty}$ parallel. The passage from local product
to global product structure is trivial here, because the normals have a globally
consistent orientation (direction of increase of $\phi$ ). Henceforth this (oriented)

unit normal vector field will be denoted by $N$.
The local Lipschitz continuity of $N$ is easily seen; in fact, the (locally

oriented) unit normal field of an arbitrary totally geodesic codimension one folia-
tion is locally Lipschitz continuous. To see this, suppose it false. Then there
are two sequences $\{p_{t}\},$ $\{q_{i}\},$ $i=1,2,$ $\cdots$ $P_{t}\neq q_{i}$ , having the properties that lim $p_{t}$

exists, lim $q_{i}$ exists, lim $p_{i}= \lim q_{i}$ , and lim $Dis(N(p_{i}), N(q_{i}))/d(p_{i}, q_{i})=+\infty$ , where
Dis is Riemannian metric distance in the tangent bundle $TM$ of $M$. Then,

since the leaves of the foliation are locally uniformly $C^{\infty}$ , it must be that, for
all $i$ sufficiently large, $p_{i}$ and $q_{i}$ are in different and hence disjoint local leaves.
By the $C^{\infty}$ character of the exponential map, it follows that the exponentiation
of the orthogonal complement of $N(p_{i})$ and $N(q_{i})$ must intersect in a neighbor-
hood of lim $p_{i}$ , for each $i$ sufficiently large. This contradicts the total geodesic-
ness of the foliation.

Now let $\gamma$ be an arc-length-parameter geodesic in $M$. The function $tarrow$

$N(\gamma(t))$ is locally Lipschitz continuous, $t\in domain\gamma$ . Here (and henceforth) $N$ is
the oriented unit normal vector field to the level surfaces of $\phi$ . Hence $tarrow N(\gamma(t))$

is differentiable $a$ . $e$ . along $\gamma$ . The goal now is to show that $D_{\dot{\gamma}(t)}N(\gamma(t))=0a$ . $e$ .
in the sense that there is a full measure set ( $i$ . $e.$ , a set with complement of
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measure $0$) such that for every $t_{0}$ in the set, $tarrow N(\gamma(t))$ is differentiable at $t_{0}$ and
$D_{\dot{\gamma}(t)}N(\gamma(t))|_{t_{0}}=0$ . If $\phi$ were $C^{2}$ , then that $D_{t^{(t)}}N(\gamma(t))=0$ could be established
by the following computational procedure (this procedure was previously known:
see [1]).

For every vector $T\in TM_{\gamma(t)}$ normal to $N(\gamma(t)),$ $D_{T}N=0$ because the levels
of $\phi$ are totally geodesic. Thus $D_{\dot{\gamma}}N(\gamma(t))=\alpha(t)D_{N(\gamma(t))}N|_{\gamma^{(t)}}$ , where $\alpha(t)=$

$\langle N(\gamma(t)),\dot{\gamma}(t)\rangle$ so that $\langle\dot{\gamma}(t)-\alpha(t)N(\gamma(t)), N(\gamma(t))\rangle=0$ . Thus to show $D_{\dot{\gamma}(t)}N(\gamma(t))=0$

one need only show $D_{N}N=0$ at $\gamma(t)$ . To see this, note that the second covariant
differential $D_{\phi}^{2}(aT+bN, aT+bN),$ $T,$ $N\in TM_{\gamma^{(t)}},$ $\langle T, N\rangle=0$ is nonnegative for
all $a,$ $b\in R$ . So

$0\leqq a^{2}D_{\phi}^{2}(T, T)+2abD_{\phi}^{9}(T, N)+b^{2}D_{\phi}^{2}(N, N)$ .
Now $D_{\phi}^{2}(T, T)=0$ because the levels of $\phi$ are totally geodesic. Hence $D_{\phi}^{2}(T, N)$

$=0$ (and $D_{\phi}^{2}(N,$ $N)\geqq 0$). But

$D_{\hat{\phi}}^{o}(T, N)=N(T\phi)-(D_{N}T)\phi=-(D_{N}T)\phi$

because $T\phi\equiv 0$ . So \langle $D_{N}T$ , grad $\phi\rangle$ $=0$ for every local vector field $T$ perpen-
dicular to $N$ or equivalently tangent to the levels of $\phi$ . Hence $\langle D_{N}T, N\rangle=0$

since grad $\phi$ is a nonzero multiple of $N$ (for the fact that the multiple is non-
zero, note that $\phi$ without minimum implies that $\phi$ has no critical points; see,
for instance, the more general remarks in [1]). SuPpose $T_{1},$ $\cdots$ $T_{n-1}$ are a
local orthonormal frame for the tangent spaces of the levels of $\phi$ along a (local)

geodesic tangent to $N(\gamma(t))$ : such a choice of $T_{1},$ $\cdots$ $T_{n-1}$ is always possible.

Then

$D_{N}N=D_{N}((T_{1} \Lambda\cdots\wedge T_{n-1}))=\sum_{i=1}^{n-1}(T_{1}\wedge\cdots\Lambda D_{N}T_{i}\wedge\cdots\wedge T_{n-1})$ .

Since $\langle D_{N}T_{i}, N\rangle=0,$ $D_{N}T_{t}= \sum\alpha_{i}^{j}T_{j}$ . But $\Vert T_{i}\Vert\equiv 1$ implies $\alpha_{i}^{i}=0$ . Thus

$T_{1}\Lambda\cdots\Lambda D_{N}T_{i}\wedge\cdots\wedge T_{n-1}=0$

and $D_{N}N=0$ , as required to show that $D_{\dot{\gamma}}N(\gamma(t))=0$ .
The argument just given applies of course only when $D_{\phi}^{2}$ exists. To treat

the general case, $\phi$ nonsmooth, note first that along each geodesic $\gamma$ the func-
tion $\phi\circ\gamma$ is either constant or, after a change of orientation of $\gamma$ if necessary,
monotone strictly increasing (this is clear because if $\phi\circ\gamma$ has a local minimum
at $t=t_{0}$ , then $\dot{\gamma}(t_{0})$ must be tangent to the $\phi\circ\gamma(t_{0})$-level set of $\phi$ and, by total
geodesicness, \gamma is then contained in this level set). If $\phi\circ\gamma$ is constant, then
$D_{\dot{\gamma}}N=0$ again because the level sets of $\phi$ are totally geodesic. So it suffices
now to consider the case of $\gamma$ such that $\phi 0\gamma$ is monotone (strictly) increasing.

Because $tarrow(\phi\circ\gamma)(t)$ is convex, the right hand derivative $R(t)=$

$limharrow 0+((\phi\circ\gamma)(t)-(\phi\circ\gamma)(t-h))/h$ exists everywhere. Moreover, $tarrow R(t)$ is a non-



Isometry groups 15

decreasing function of $t$ . By a standard theorem of analysis (see, $e$ . $g.$ , [7,
p. 177]), the (two-sided) derivative of $farrow R(t)$ exists for almost all $t$ . Also $tarrow N(\gamma(t))$

is Lipschitz continuous $a$ . $e$ . Thus there is a full measure set $\mathcal{R}$ such that, if
$t_{0}\in \mathcal{R}$ , then $tarrow R(t)$ is differentiable at $t_{0}$ and $tarrow N(\gamma(t))$ is differentiable at $t_{0}$ .
It will now be shown that $D_{\dot{\gamma}(t)}N(\gamma(t))=0$ at such a $t_{0}$ .

For this purpose, let $\tilde{N}(t)\in TM_{\gamma^{(t)}}$ be a $C^{\infty}$ unit vector field along $\gamma$ such
that

$\tilde{N}(t_{0})=N(\gamma(t_{0}))$ and $\lim_{tarrow t_{0}}(t-t_{0})^{-1}\{\hat{N}(t)-N(\gamma(t))\}=0$ .

Such an $\tilde{N}$ exists because $farrow N(\gamma(t))$ is differentiable at $t_{0}$ . Set

$\phi(t)=\phi(\gamma(t_{0}))+(r-t_{0})R(t_{0})+\frac{1}{2}(t-t_{0})^{2}\frac{dR}{dt}|_{t_{0}}$

Then
$\lim_{tarrow t_{0}}(t-t_{0})^{-2}\{\tilde{\phi}(t)-\phi(\gamma(t))\}=0$

because $\phi(\gamma(t))-\phi(\gamma(t_{0}))=\int_{\iota_{0}}^{t}R(t)dt$ and $R(t)$ is differentiable at $t_{0}$ . For $\epsilon>0$ suf-

ficiently small, the exponential map (of the $\epsilon$-neighborhood of $0$) of the orthogonal
complement bundle of $\tilde{N}$ along $\gamma$ near $\gamma(t_{0})$ is a $C^{\infty}$ diffeomorphism onto a neigh-
borhood of $\gamma(t_{0})$ ; this holds by the inverse function theorem. Specifically, the
exponential map of $\{v\in TM_{\gamma^{(t)}}|t\in(t_{0}-\epsilon, t_{0}+\epsilon), \Vert v\Vert<\epsilon, \langle\tilde{N}(t), v\rangle=0\}$ given by
$varrow\exp_{\gamma(t)}v$ is a $C^{\infty}$ diffeomorphism, to be defined by $\mathcal{D}_{\epsilon}$ , onto a neighborhood of
$\gamma(t_{0})$ if $\epsilon>0$ is sufficiently small. Choose such an $\epsilon$ and let $V$ be the (open)

image of the diffeomorphism $\mathcal{D}_{\epsilon}$ , so that $\gamma(t_{0})\in V$ . On $V$ , the map defined by
$parrow r\in(t_{0}-\epsilon, t_{0}+\epsilon)$ such that $\mathcal{D}_{\epsilon}^{-1}(p)\in TM_{\gamma(t)}$ is a well-defined $C^{\infty}$ function.
Hence the function $Varrow R$ defined by $parrow\phi(t),$ $t$ as in the previous sentence, is
also a well-defined $C^{\infty}$ functior- on $V$ . Denote this function $parrow\tilde{\phi}(t)$ by $\psi:Varrow R$ .

Now $\psi(P)=\psi(\gamma(t_{0}))$ for each $p\in V$ with $\phi(\gamma(t_{0}))=\phi(p)$ , by the definition of
$\psi$ . Moreover if $\eta$ is a geodesic with $\eta(0)=\gamma(t_{0})$ but with $\langle\eta’(0), N(\gamma(t_{0}))\rangle\neq 0$–

or, equivalently, but with $\eta\not\leqq the\phi(\gamma(t_{0}))$-level of $\phi$ –then, from the order of
agreement of $\phi(\gamma(t)),\tilde{\phi}$ and of $N(\gamma(t))$ and $\tilde{N}(t)$ , it follows that

$\lim_{tarrow 0}t^{-2}\{\phi(\eta(r))-\psi(\eta(t))\}=0$ .

The convexity of $tarrow\phi(\eta(t))$ and consequent nonnegativity of its second difference
quotients then implies that $(d^{2}\psi(\eta(t))/dt^{2})|_{t=t_{0}}\geqq 0$ . In detail,

$\frac{d^{2}\psi(\eta(t))}{dt^{2}}|_{t=t_{0}}=\lim_{harrow 0}\frac{\psi(\eta(t_{0}+h))+\psi(\eta(t_{0}-h))-2\psi(\eta(t_{0}))}{h^{2}}$

$= \lim_{harrow 0}\frac{\phi(\eta(t_{0}+h))+\phi(\eta(t_{0}-h))-2\phi(\eta(t_{0}))}{h^{2}}\geqq 0$ ,

where the two limits are equal by the order of agreement of $\psi(\eta(t))$ and $\phi(\eta(t))$
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and the second limit is nonnegative by convexity of $\phi$ .
Because $\psi$ is $C^{\infty}$ and $D^{2}\psi|_{\gamma^{(t_{0})}}\geqq 0$ , as was just shown, the calculations carried

out earlier apply to show that $D_{t}\tilde{N}(t)|_{t=t_{0}}=0$ . But, by the order of agreement
of $\tilde{N}(t)$ and $N(\gamma(t))$ at $t=t_{0}$ , it then follows that $D_{\dot{\gamma}}N|_{\gamma(t_{0})}=0$ . This holds for
all $t_{0}\in the$ full measure set $\mathcal{R}$ . Thus that $N(\gamma(t))$ is given along $\gamma$ by integrating
its derivative implies that $N(\gamma(t))$ is a $C^{\infty}$ parallel vector field along $\gamma$ . Hence
$N$ is a $C^{\infty}$ parallel vector field on $M$, and the metric product structure result,
Lemma 2, is proved.
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