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1. Introduction.

We consider a stochastic process X;, 0<t< oo, with homogeneous independent
increments of class L, starting at the origin. That is, X, is a process with
homogeneous independent increments with characteristic function

(LD Eexp(izX,) = exp{t(z'rz—-Z“a”z”-}—Soj 2z, x)x—lk(x>dx)] ,
where
1.2) gz, x) = e***—1—izx(1+x*1,

v real, 62=0, k(x) is non-negative, non-increasing on (0, o) and non-positive,
non-increasing on (—oo, 0), and

(1.3) Slzl<1xk(x)dx+g xh(x)dx < o0

11>

Yamazato proves that the distribution of X, is unimodal for each ¢. If a
distribution is unimodal, then either its mode is unique or the set of its modes
is a closed interval. When X, has a unique mode, we denote it by a(f). The
purpose of the present paper is to study behavior of a(f) as a function of ¢, In
Section 2 we treat the case that X, is an increasing process (subordinator).
Results and techniques of the paper are employed. Asymptotic behavior of
a(t) as t—oo is found when k(x) is slowly varying at infinity. When X, is not
an increasing process, behavior of a(?) is hard to obtain except some asymptotic
results. In Section 3 processes attracted to stable distributions are discussed.
Other miscellaneous results are gathered in Section 4.

2. Increasing processes.

Assume that the process X, is increasing. This is equivalent to assuming

@.1) EexplizX,) = exp[z(iroz+S:(eizx—1)x~1k<x)dx)] ,
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where 7,=0, k(x) is non-negative, non-increasing, and
2.2) Slk(x)del—ij“k(x)dx < oo,
0

For simplicity we assume that 7,=0 and that k(x) does not identically vanish.
Let m=EX,=<co. We have ngwk(x)dx, including the case of infinity. Let
0

A=Fk(0-+). The behavior of the mode of X, is different according to the follow-
ing three cases:

Case I: A<oco and k(x)<A for all x>0.

Case II: A<co and there is a >0 such that k(x)=2 for 0<x<f and
k(x)<Z for x>p.

Case IlI: A=co,

THEOREM 2.1. The distribution of X, has a unique mode a(t) for each t
except one epoch in Case II. The only exception is that the set of modes is the
interval [0, B at the epoch t=2A"' in Case II. In Case I, a(t)=0 for t<[0, 2],
and a(t) is continuous, strictly increasing for t€[A7Y, o). In Case II, a(t)=0
for t€[0, 27Y), a(t) is continuous, strictly increasing for t€(A7', o), and a(t)| f
as t{ A7 In Case III, a(0)=0, and a(t) is continuous, strictly increasing for t&
[0, o). We have

(2.3) tla(t) < m
unless t is the exceptional epoch of Case II. In all cases,
(2.4) tla(t) > m as t—oo,

If we define a function b(t) on (A%, o0) by

(2.5) b(t) = sup{x>0: k(x)=t"1},
then
(2.6) at) > b(t)  for t>A71.

Proor. The assertions on the set of modes of X; (whether a singleton or
the interval [0, 8]) and on the position of a(¢) (whether zero or positive) are
consequences of Theorem 1.3 of [6]. We have a(t)=p for t>2"! in Case Il by
using Lemma 6.1 of [6] Consider Case Ill. The distribution of X, has density
fi(x), which is of class C~ in x=(—co, o) for each ¢t>0. It follows from

fuss®) = | Fula=9)f o0y

that
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2.7) Fiastx) = Fitx—9)f )y
for >0, s>0. Since f;>0 on (0, a@®)) by Theorem 1.3 of [6] and f,>0 on
(0, o), we obtain f;.;>0 on (0, a(¥)]. Hence a(t+s)>a(t). Next, let us con-
sider Cases I and II. For each ¢t>4-!, the density f,(x) of the distribution of
X, is continuous on (—oo, co) and of class C' on (0, o). We claim that [2.7)
holds for t>2"%, s>0, x=(0, a(t)]. In fact, since f;=0 on (0, a(t)], we have

[ras| riv—af oz = [z rity—2 £y

= S:f;(x—Z)fs(@dz = fres(x) = S:f£+s(y)dy .

Thus we get almost everywhere on (0, a(t)]. Writing the right-hand side
of as S:fﬁ(y)f,(x—y)dy, we can prove that it is continuous in x>0. Hence

holds everywhere on (0, a(t)]. Now it follows that f;,(a(t))>0 and hence
a(t+s)>a(t). Continuity of a(f) is a consequence of [Lemma 2.1 below. By
Theorem 6.1 (i) of [6], a(t)<EX,=tm, that is [2.3] The limit behavior
can be shown more generally (1 in Section 4 and [Theorem 3.3), but we
give here a proof that uses [6] Theorem 6.1 (iii) or [8]. Truncate k(x) at &,
define X& by

~
s
0

(2.8) EexpizX ®) = exp[ts (e"“’—l)x—lk(x)dx] ,

and use the theorem to obtain

tSjk(x)dx——E < a®()

for the mode a®©(t) of X for t>A"'. Note that ¢ ()<a(t) by Lemma 6.1 of
[6]. Hence

liminf ¢ a(t) 2 S:k<x>dx.

Thus follows. Unlike in [6], we are not assuming right-continuity of &(x).
But the function b(¢) remains the same if we use in the right-continuous
modification of k(x). Hence [2.6) is a direct consequence of Theorem 6.1
(vi). The proof is complete.

LEMMA 2.1. Let {pa} be a sequence of unimodal probability measures. Let
a, be a mode of pn. If pn. weakly converges to a probability measure p, then
the set {a,} is bounded, p is umimodal, and any limit point of {a.} is a mode

of p.
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This lemma is evident from the proof of [3] §32, Theorem 4.

When m is infinity, we are interested in the problem how fast the mode
a(t) grows as f—co. In the following theorem we consider the case where k(x)
is slowly varying at infinity. If &(x) is regularly varying at infinity with ex-
ponent 0<a<1 (that is, k(x)=x"%L(x) with a slowly varying L(x)), then

ry‘lk(y)dy ~a'x"*L(x), x—00,

by VIII, 9, Theorem 1 (and conversely by in the next section).

Asymptotic behavior of a(?) in this case will be described in Section 3.
THEOREM 2.2. (i) If k(x) is slowly varying at infinity, then

(2.9) log a(t) = o(t), -0,

(ii) If k(e®) is regularly varying with exponent —fB (B=1) as x—oo, then
log a(t) is regularly varying with exponent B~' as t—oo, and

(2.10) log a(t) ~ log b(t), f—»00,
where b(t) is given by [2.5).

(iii) Suppose that k(e®)=x-'L(x) where L(x) is monotone for large x and
slowly varying at infinity. Then

(2.11) log a(t) = o(t/logt), t—co,

Proor. (i) We have
a(t)
2.12) tSo E(y)dy > at)  for t>a!
by Theorem 6.1 (ii) of [6]. Since
[ ey ~xk(x),  xco,

by slow variation of k(x) ([1] VIII, 9, Theorem 1), it follows that
(2.13) (14+o(1) tk(a(t) > 1.

Since we have

(2.14) k(x)logx —0, x—00

from (see of [6]), it follows that

log a(?) < (1+o(1)) t k(a(t))log a(t) = o(t),
that is (2.9).

(i) Let I(x)=Fk(e®)"! and c(t)=logb(t). We have
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c(t) =sup{x>—o0: [(x)=<t}

from Since {(x) is regularly varying with exponent §8, the function c(¢)
is the asymptotic inverse function of /(x) (that is, c¢(f)—oo and [(c(t))~t as {—o0)
and c¢(?) is regularly varying with exponent 3! ([7] p.24). As k(e®) is of the
form x-#L(x) with a slowly varying function L(x), we have

(2.15) k(x) = (log x)~#L(log x) .

The function L(log x) is slowly varying ([7] p. 19) and so is k(x). Therefore
we have again and the definition [2.5) of b implies

bt(1+0(1))) = a(®).
For any ¢>0 we have
ct(14+0(1) = c(t(1+4¢)) ~ (1+e)Pc(t), {—oo.
Therefore
log a(t) < (1-+&)#(1+4¢)c(t)

for all large ¢. This, combined with [2.6), shows (2.10).

(iii) We have with B=1. For every ¢>0 the function loga(f) is
bigger than t'-¢ for large ¢, because (ii) says that log a(f) is regularly varying
with exponent 1. The function L(x) decreases to infinity as x—oo by [2.14)
and by its monotonicity. Therefore

(logt)k(a(t))log a(t) = (logt)L(log a(t))

= (logt)L(t*-%) = (1—e)(log log x) L(log x)
where x=exp(t*~¢). Now we claim that
(2.16) (loglog x)L(logx)—0, X—00,

This will prove
(logt)k(a(t)logat) — 0, t—o0 ,

which shows just like the proof of (i). We have, for large x,<x,,

2.17) ijx"lk(x)dx = S:(log log x)’ L(log x)dx

x

= [(log log x) L(log x)]z

using integration by parts, since L(logx) is monotone decreasing. Let 6, and
6, be the lower and upper limits of (loglog x)L(log x), respectively. If 8,<
6,4+0< 8, for some 4, then we would have contradiction, because by [2.2) we can
find x; and x, such that the extreme left member of is smaller than ¢
while the extreme right member of is larger than 6. Hence 0,=6,. If
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01::02:>O, then, for large :t1<:x2,

| kax > 220, "x~(log x)"(log log x)'dx
= 27'6,[log log log x 132,
which contradicts [2.2). Therefore we have [2.16), completing the proof.
Note that we did not use the assumption $=1 in the proof of (ii). But, if
B<1, then we have ij‘lk(x)dx:oo, which violates [2.2).

ExaMPLE 2.1. If k(x) is of class C' in a neighborhood of infinity and
satisfies

k'(x)/ k(x) ~ —B/(xlogx),  x—00,

for some B+0, then k(e®) is regularly varying with exponent —f3. In fact we
have, for K(x)==Fk(e"),

K'(x)/K(x)~—8/x, x—00,
and

log (K(ux)/K(x) = | (K" () K(y))dy — —plog
for every h>1.

ExaMmpLE 2.2. Define iterated logarithmic functions L,(x), n=1, by L.(x)
=logx and L,(x)=logL,-.(x). Let £>0. Let, for large x, ky(x)=L,(x)'"®
and

Balx) = (]r:[1 Li(x) La(x)==  for n=2.

Then the functions £k,(e®) are regularly varying with exponents —1—e (for
n=1) and —1 (for n=2). Let b,() be the function defined by for k,(x).
This is the inverse function of k,(x)~* for large x. We have

log b,(t) = 1/ 1+ for large ¢
and, by the method of asymptotic expansion,
log b,(t) = t(log £)*~*(1+0(1)) ,
n-2 -1
log ba(®) = t(TL L) La-a®=(1+0(1))  for nz3
3=
as t—oo,

We add a result on stable subordinators.

THEOREM 2.3. Let 0<a<] and let
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2.18) Eexp(izX,) = exp[z‘S:(ei”—l)x‘l‘“dx:l .

Denote the mode of X; by a,({). Then
(2.19) a.(t) = tV%a (1),
(2.20) (1—a) V* > a, (1) > max{l, a(l—a)™*}.

PROOF. is obvious because X; and t*/*X, have a common distribution.
The bound (1—a) *>a.(1)>1 is given in p. 307. To see a,(1)>a(l—a)?,
consider the process X{® defined by [2.8). Then we have

aaD) > [ amodx—¢.
Now let &=1.
COROLLARY. As al0, we have
a.(t)—0 for 0<t<1,
(1) >0 for 1<t<co,

3. Processes attracted to stable distributions.

Let X, be a process given in Section 1. Let v be its Lévy measure, that is,
W(B) = SBx-lkmdx for B Borel.

We assume that, for some a and p satisfying 0<a<2 and 0=<p=1 and for
some slowly varying function L(x),

3.1) vlx, 00)4y(—oo, —x]~a 'x"*L(x),

v[x, o)
)J[x, OO)—{—]J(—OO’ _x]

3.2) — P

as x—oo, Note that if 0<a<1 then S|x|>1]xl”(dx):m and hence E|X,|=o0.
If 1<a<2, then | _ |x|u(dv)<co and B|X;|<eo. Choose >0 in such a way
that b;—co and

3.3) by*L(by) ~t™,  t—oco,

Such choice is possible and b, is regularly varying with exponent 1/a. We may
take the function () of as b, ([7] pp. 21-24). We denote the indicator
function of a set B by Xz(x) and use a notation
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(3.4) Xa,o(x) = aX,o(X)FbX(-00,0)(X) .
THEOREM 3.1. If 0<a<], then

(3.5) b7la(t) — a, t—oo0 ,

where a is the unique mode of the stable distribution p with index a with charac-
teristic function

3.6 @)= eXpS:(eizx’Dxp,l-p(x)lxI‘l"“dx.

Proor. The conditions [3.1), [3.2) imply similar conditions on tails of the
distribution of X, by Zolotarev’s result if p#0, 1 (and also in case p=0 or
1 after some consideration). So the distribution of Y,=b;'X, tends to g by a

well-known theorem ([1] XVII, 5, Theorem 3), and follows from
2.1. But our condition on tails of the Lévy measure allows us to give a direct

proof, which we present here. Define v, by
(3.7) v(B) = t{t(bi widr)

We have
Eexp(izY,) = exp(tbi'y,z—2tb; 2%z + 5,4+ S,) ,

Si={ 2@ om0, S=( e tutan,

re=r—| R0+ | (b () )

1zl 1z

Clearly 7, is bounded as t—oco. We have tb;'—=0 from [3.3). Conditions
and imply

(3.8) v[x, 00)/(@*x *L(x)) — p and w(—oo, —x]/(a 'x"*L(x)) — 1—p
as x—oo, Hence it follows from that
3.9) v,[x, ) = pa~ix~* and  y,(—oo, —x] = (1—pla~lx-¢

for any x>0 as t—co. For any >0,

S x%y,(dx) = thZS
|x|sd jz1sb

, x%v(dx)

~ (2—a) 'th; *L(b,0)0* * ~ (2—a)™'0*"*, t—00

b

by VIII, 9, Theorem 2 (although v is not a probability measure, the result
is true). Therefore
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(3.10) lim limsupS x,(dx) =0.
30 {00 1<
Similarly
(3.11) timlimsup{ , |xlvi(dn) =0,
3-0 t->c0 by <iz1sd
since
— -1 !
Sb;1<1x|salx|yt(dx> tbi Si<{zlsbt6!x‘v(dx>

~ (1—a) 'tby*L(b;0)0' * ~ (1—a)~10*, f—oo.

It follows that, as t—co,

oo

S;—0  and Sz—»S_w<ei”—1>xp,l-p(x)|x|-l-adx.

Hence the distribution of Y, tends to g, which completes the proof.

THEOREM 3.2. If 1<a<2, then

(3.12) bii(aty—mt) — a, t—co
where
(3.13) m = EX, = r+§°° 2314 %) -1y(dx)

and a is the unique mode of the stable distribution p with index e« characterized
by

G.14 (&) = exp | (e —1—izx)p1mp(n)| x| 0dr.

ProOF. Let Y,=b7Y(X,—mt). It suffices to prove convergence of the dis-
tribution of Y, to p. We have

EexpizX,) = exp[t(inzz—2‘102z2+S(e"”~l—z'.zx)v(dx))] .
Hence
EexplizY,) = exp[-—Z‘ltb;20222 —}—S(e“”-—l—izx)ut(dx)] ,

where v, is given by [3.7). We get (3.8), [3.9), [3.10], and b72—0. Also we

have
C—o0 t—o0

lim limsupgl _Ixlndn =0,

noting that S y2u(dy) is regularly varying with exponent 2—a and thus ob-
lylsx
serving .
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[ xluan = tb:lg | x| 1(dx)
1z1>¢ 121>bc

~ (a—1)"1tb7*L{b,c)c* * ~ (@—1)"1c-%, t—oo,

in application of [1] VI, 9, Theorem 2, to the measure v. These together
imply Eexp(izY,;)—/(z). The proof is complete.

In the following we use functions Li(x) and L*(x) defined by
Lu) ="y Liddy,  Lx0 =y Lisdy.

By VIII, 9, Theorem 1, the function L.(x) is slowly varying at infinity.

THEOREM 3.3. Suppose that a=1. Define

et = [Tx(@+ b =20 i),

e = | 1xIHbr) =29 Hu(d)
=71+ —c®.
Let p be the stable distribution with index 1 characterized bv
(3.15) a(z) = eXpS:g(z, ) p,1-p(X)x7%dx .
Let a be the unique mode of p. Then,
(i) by (at)—cit) = a, t—o00.

(ii) Suppose that Ly(oo)=c0. Then E|X,|=0o0, and

(3.16) cV/Ly(b) > p,  ¢?/Ly(b) > 1—p  as t—oo,
Moreover,
3.17) co~ 2p—1Li(b)  if p#E27.

(iii) Suppose that Ly(c0)<oo. Then, E|X,| is finite, (3.13) holds, L*(x) is
slowly varying at infinity and

(3.18) (eP—m®)/L*(b.) — —p, (cfP—m®)/L*b) — —(1—p) as t—oo,
where

mo = et udn,  om =" v,
Moreover,

(3.19) co—m ~ —@2p—1)L¥b,)  if p£2-1.
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LEMMA 3.1, Let u(x) be positive, non-increasing, and let

Ulx) = S:umdy < oo
I

U(x)~x-°L(x), X—>00,
where p>0 and L(x) is slowly varying, then
u(x) ~ px'U(x), X—00,
Proof is similar to that of X1, 5, Lemma.

PrROOF OF THEOREM 3.3. Let Y,=b;%(X;,—c;t). Then
Eexp(izY,) = exp[-Z'ldztb2222+§g(z, x)vt(dx)]

with v, defined by [3.7). We get (3.8), [3.9), [3.10), and tb;>—0 again. Hence
Eexp(izY,) tends to a(z). Thus we have (i) by Lemma 2.1
We have L (oco)=o0 if and only ifS l>1lex.u(a.'x)zoo, Hence, Ly(o0)=c0 is
>

equivalent to E|X;|=oco. Now it is clear that holds if L 4(c0)<oo. Sup-
pose that p+#0. Let I(x)=xk(x). Using Lemma 3.1, we get

x~'k(x)~px~2L(x), x—00,

from the first relation in (3.8). Hence /(x) is slowly varying, /(x)~pL(x), as
x—oo, Let

ho) = [ (@)= x)Duids, 530
We have ¢/¥=h(b?) and
W(s) = S:(s-l—xz)‘le(x)dx = S“IS:y(l—l— P5)-2(s123)dy .
We claim that
(3.20) h'(s) ~ 2-1ps1 L(sV%), s—co,
By Theorem 2.6,
~S(:)y(ler’f)'zl(smy)dy ~ l(ﬁ”)fy(l—l—yz)-zdy ~4-1pL(s"?) .

Let {(x)=I(x) for x=1 and {(x)=0 for 0<x<1. We have
[, st endy = | ya+ i ydy
.

~ im0+ %)y ~ 4 L(s)
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by Theorem 2.7. Moreover
-1/2 S—xlz

[ st usenay = sisvemdy = 7| xkods.

Hence obtains.

Now the proof of (ii) is as follows. We have
Sms”L(s”z)ds - 2S°1°x—1L<x>dx = o,
1
Therefore, if p+0, then implies

Sih'(r)dr ~ 2"1’8}'1“7”2)& = pLy(s¥?),  s—o0,

2
eV = h(b}) = Sfth'(r)df’ ~ pLib),  t—oo.

Analogously, if p=#1, then
¢ ~ (1= p)Lulby) .
If p=0, then, letting
k(x) = B(x)+e| k(—2)],
o = S:«l+b:2x2>-1—<1+x2>~l>ka<x>dx

for a fixed ¢>0, we have, as x—oo,

[Ty indy fGL = e,

x~ Rk (x) ~ex i L(x),
and hence
¢ ~eLy(b,),

which, combined with ¢P~L.(b,) and ¢V =c{*® —ec®, shows that ¢{V/L«(b,)

—0. The proof of the second relation in for p=1 is analogous. [3.17)1is
an obvious consequence of [3.16).

In order to prove (iii), we note that, if p+0, then it follows from that
Swh’(r)a’r ~ 2"PSN"1L<r”2>dr =pL¥(s'®),  s—oo,
$ 8

under the condition that
S‘:’s-l.r,(swz)ds - Zij‘lL(x)dx <o,
Hence

i —m® = )= x*(U+2% " k(0)dx = h(bY)—h(0) ~ L)
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if p#0. In an analogous manner, we have
cP—m® ~ —(1—p)L*(b,)

if p#1. Extension of the first relation of (3.18) to p=0 and the second relation
to p=1 is similar to (ii). follows directly from (3.18). The proof of
is complete.

4. Miscellaneous notes.

We gather behaviors of modes other than given in the preceding sections
and the paper [5]. Let X,, 0<{< o, be a process with homogeneous independent
increments and X,=0. Let '

4.1) EexplizX,) = exp[t(irZ—Z‘lozzz—l—S:g(z, x)v(dx))] ,

where 7 real, ¢°20, v({0})=0, S le?»(dx)JrS v(dx)< oo and g(z, x) is given
I

lxizt
by [1.2). Assume that, for every large ¢, the distribution of X, is unimodal
with a mode a(?).

1 If
4.2) Smmv(dx):o(t"), foo,
then
4.3) alt) = t(r—i—SlIIgx%l—l—xz)"v(dx))—l—o(t) , oo,

This is a consequence of an analogue of the generalized weak law of large
numbers for sums of i.id. random variables ([1] VII, 7). The case of finite
mean (a(t)~mt if EX;=m) is a special case (cf. [5]). To see [4.3), let

b,:z(7+5 x3(1+x2)'1v(dx)) and Y, =t"(X,—b,).

lxi1st

Then
Eexp(izY;) = exp(—2"%"1¢?2+S;+S,),

S, = tS (4 —1—itzxw(d),
1z

S, = zS (@155 — ] — it zx(1+ x8) " )u(dx) .
lz1>t

We have S,=o(1) by [4.2), and

S =2tz iy = 0a+0(r|

lzis <irist

xzv(dx)) .
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Let N(t):S[ _ M@, Then
t
t“S x*(dx) = ——t“S x%dN(x)
1<iz|st 1

_S_t'lN(1)+2t‘1§ixN(x)dx — 0

by Thus Eexp(zzY,)—1, that is, Y, converges to 0 in distribution. Hence
we have (4.3) by Lemma 2.1.

2. Assume that F|X,|=co. Let b() be a right-continuous function such
that £-'b(t) is non-decreasing and goes to infinity with f. Let g(x)=sup{t:
bt)<x}, the inverse function of b(t). If

(4.4) [ slxien <o
x>
for some x,>0, then
4.5) a(t) = o(b(t)), t—oo .,
The case g(]x|)=]x|?, 0<p<1, is treated in

In fact, define a measure & on (0, c0) by P(xq, x,]=v(xy, xo]+v[—xs —x,).
Since b(t) is strictly increasing, g(x) is continuous and

S‘” S[b(t), co)dt = §°° S[x, co)dg(x).
g(xg) zo

The right-hand side is finite if and only if holds. Hence implies
b(t)"'X,—0 a.s. as t—oo if X, is an increasing process, by Fristedt’s result [2].
By splitting the Lévy measure v into three parts, we can represent X, as the
sum of three independent processes X, j=1, 2, 3, each with homogeneous
independent increments, such that their Lévy measures are supported on [1, o),
(—o0, —1], and [—1, 1], respectively, and X{¥ and X{® are without Gaussian
components. Since 5#)* X and b)) X{® tend to 0 a.s. and X tends to
a finite constant, we get b(#)"'X,—0 a.s. Thus follows.

3. Suppose that EX,=0, EX%=1, and that there are a<[2,3], p<
[0, 1/2)u1/2, 1], and a slowly varying function L(x) such that

(4.6)  v[x, 00)/(x *L(x))—p, wy(—oo, —x]/(x"*L(x))—>1—p as x—oo.

Let v,. be the absolutely continuous part of v. Suppose that there are ¢>0 and
0>0 such that

@7 — 4 lx, b, —xDZ L ae on (0,9,
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If 2<a<3, then we have
(4.8) at) ~ —C,2p—1)t -2 L(t?), t—oco,

where
C, = —2+vi2g-12"1 —a)['(14+2*a)sin@ tazx) > 0 for 2<a<3,

Co = (2m)'2.
1

If @=3 and S x-'L(x)dx=oco, then

3 iz
(4.9) a(t)fv—-?(Zp—-l)Sl ' L(x)dx,  t—oo.

This is a continuous parameter analogue of Corollary 1 of Hall [4].
Proof is as follows. Let p be the distribution of X;. The condition
implies that the symmetrization of g has a component of class L characterized

')
by exp[cg 5(e"”—1)x“dx]. Hence, for every ¢>0, | 4(2)|*=0(|z|"****) as |z| —c0

by Lemma 2.4. In proving an analogue of Corollary 1, this property
- replaces the condition that, for every large ¢, the distribution of X, has a density
fi(x) such that fi(x) exists and is integrable. Suppose, for some while, that
p+0, 1. By [10], (4.6) implies that

(4.10) plx, ©)/(x=*L(x))—p,  p(—oo, —x]/(x~*L(x)) —>1—p

as x—oo. Now we can follow the proof in to get
a(t) ~ Cu(p~1—=2)t*2pu[t'?, co) if 2=a<3,
a(t>~%(p-1—2)S:1’2x2p[x, co)dx  if @=3 and E|X,|*=co.

Hence [4.8) and [4.9) are obtained. Note that ij‘lL(x)dxzoo and E|X,|*=c0 are

equivalent. If p=1, then the first relation of holds by [10], and the
second relation is also true. In fact, if p=1, we define p. by

2:2) = 2) exp[sgj(e‘i“~l)v(dx)]

for ¢>0, and see that the Lévy measure v, of p. satisfies v.(—oo, —x]/(x~*L(x))
—¢ as x—oo and hence p,(—oo, —x]/(x~*L(x))—¢ by [10], from which follows
p(—oco, —x]/(x~*L(x))—0 since p(—oco, —x]=p.(—o0, —x]. Thus, in the same
way, we get and in case p=1, too. The case p=0 is transformed
to the case p=1 by reflection.

4. If E|X,|®"<co, then we can see from that the j-th order cumulant
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k; of X, is as follows:

b= 7+ #0 )0 = EX,
Ko = 02+Sx2y(dx) = Var X,,

Kj = iju(dx) for 3Z<7<n.

If EX,=0, EX}=1, and E|X,|*<co, then
a(t) > —27%, = —27'EX}, 1—o0,
If, moreover, E|X,|**?<co for some 6=(0, 2], then
a(t) = =27k, +0(t%?),  t—oo.
In case 6=1, ‘the term O(@t%?) can be replaced by o(f"*/?). In case §=2, the

following more precise asymptotic obtains:

o=~ ot H e Gy o)

These are analogues of Corollary 2 and Theorem 3 of Hall [4]

5. For stable processes we get the whole behavior of the mode a(f), 0=t <co.
Let X, be stable with index 0<a<2. Thatis, 6=0 and v(dx)=X,,,c,(x)| x|~ %dx,
¢:=0, ¢,20, ¢;+¢,>0, where X, .,(x) is given in [3.4] Then

Eexp(izX,) = exp[td(idz—|z|*+iB(tan2 'ax)z|z|*"")] for a1,
Eexp(izX,) = exp[tA(ioz— |z| —iB2n~'zlog|z])] for a=1,

where A=—1"(—a)(c;+c)c082 'ra>0 (for a#1) or A=2"x{c,+¢,)>0 (for a=1),
0 real, and B=(c;—cs)/(c;+¢y). By Yamazato [9], the distribution is unimodal
for,each ¢. By [6], its mode is unique for each ¢ and denoted by a(f). Assume
that A=1. Let us denote by a,{) the mode of the process obtained by letting
0=0. Then it is easy to see that

(4.11) a(t) =t"*a,(1)+10 for a#1,
4.12) a(t) = tay(1)+2n-1ptlog -+t for a=1.

Zolotarev shows that
sgnfB  for 0<a<1

sgnay(l) =
gn a.(l) { —sgnp for 1<a<?2.

The expressions (4.11) and show that a(t) is either convex for 0=f<co
or concave for 0=<f<oo. But it should be emphasized that a(t) is not always
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monotone as a function of . In case a#1 and 8+#0, the non-monotonicity of
a(t) comes out by the influence of the drift term J; it happens when and only
when sgna(t)=—sgnd. In case a=1, however, non-monotonicity of a(t) is of
intrinsic character ; it always occurs so long as 8+#0. Some results in case a=1
are given in [5].
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stricted to the case of Example 2.1. The author owes to M. Yamazato its im-
provements to the present form. For that the author is grateful to him.

References

[1] W. Feller, An introduction to probability theory and its applications, Vol. II, Second
edition, Wiley, New York, 1971,

[2] B.E. Fristedt, Sample function behavior of increasing processes with stationary,
independent increments, Pacific J. Math., 21 (1967), 21-33.

[ 3] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent
random variables (English translation), Second edition, Addison-Wesley, Reading,
1968.

[4] P.Hall, On the limiting behaviour of the mode and median of a sum of independent
random variables, Ann. Probab., 8 (1980), 419-430.

5] K. Sato, Bounds of modes and unimodal processes with independent increments,
Nagoya Math. J., 104 (1986), 29-42.

[67] K. Sato and M. Yamazato, On distribution functions of class L, Z. Wahrsch. Verw.
Gebiete, 43 (1978), 273-308.

[77 E.Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer,
1976.

[8]1 S.J. Wolfe, Inequalities for modes of L functions, Ann. Math. Statist., 42 (1971),
2126-2130.

[9] M. Yamazato, Unimodality of infinitely divisible distribution functions of class L,
Ann. Probab., 6 (1978), 523-531.

[10] V.M. Zolotarev, On the asymptotic behaviour of a class of infinitely divisible laws,
Theory Probab. Appl., 8 (1961), 304-307.

[11] V.M. Zolotarev, One-dimensional stable distributions (in Russian), Nauka, Moscow,
1983.

Ken-iti SATO

Department of Mathematics
College of General Education
Nagoya University

Nagoya 464

Japan



	1. Introduction.
	2. Increasing processes.
	THEOREM 2.1. ...
	THEOREM 2.2. ...
	THEOREM 2.3. ...

	3. Processes attracted ...
	THEOREM 3.1. ...
	THEOREM 3.2. ...
	THEOREM 3.3. ...

	4. Miscellaneous notes.
	References

