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1. Introduction.

Let $W$ be an open set in the complex plane $C$. For a function $f$ on $W$,

denote by $S(f)$ the set of all points at which $f$ fails to admit a complex deri-
vative; as noted in Kaufman [4], $S(f)$ is a Borel subset of $W$ if $f$ is a Borel
measurable function on $W$.

We say that a function $h$ on the interval $[0, \infty$ ) is a measure function if
$h(O)=0,$ $h(r)>0$ for $r>0,$ $h$ is nondecreasing on $[0, \infty$ ) and further

$h(2r)\leqq const$ . $h(r)$ for $r>0$

(cf. Carleson [2]). We denote by $\Lambda_{h}$ the Hausdorff measure associated with the
measure function $h$ , which is defined by

$\Lambda_{h}(E)=\lim_{\delta\downarrow 0}$ inf $\{\sum_{j=1}^{\infty}h(r_{j})$ ; $r_{j} \leqq\delta,\bigcup_{j=1}^{\infty}B(z_{j}, r_{j})\supset E\}$

for a set $E$ , where $B(z, r)$ denotes the open disc with center at $z$ and radius $r$ .
If $h(r)=r^{a},$ $\alpha>0$ , then we shall write $\Lambda_{a}$ for $\Lambda_{h}$ .

Let $1\leqq p\leqq\infty$ and $1/p+1/P’=1$ . For a measure function $h$ and a locally
integrable (Borel) function $f$ on $W$, define

$F(z)= \sup_{B}r^{-1- 2/p}h(r)^{-1/p’}\inf_{g}\int_{B}|f(w)-g(w)|d\Lambda_{2}(w)$ ,

where the supremum is taken over all open discs $B$ with radius $r$ such that
$z\in B\subset W$ and the infimum is taken over all functions $g$ which is holomorphic
in $B$ .

Our first aim is to establish the following result.

THEOREM 1. Suppose $F\in L^{p}(W)$ .
(i) If $p<\infty,$ $\lim_{r\downarrow 0}r^{-2}h(r)=\infty$ and $\Lambda_{h}(S(f))<\infty$ , then $f$ can be corrected on

a set of measure zero to be holomorPhic in $W$.
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(ii) If $P=1$ and $\Lambda_{2}(S(f))=0$ or if $p>1$ and $\Lambda_{h}(S(f))=0$ , then the same con-
clusion as above holds.

This result gives a generalization of Kaufman [4], in which the case $p=\infty$

and $h(r)=r$ was dealt with.
We next extend Theorem 1 to the higher dimensional case. We are con-

cerned with harmonic, or more generally subharmonic, functions in the n-dimen-
sional euclidean space $R^{n}$ . Let $U$ be an open set in $R^{n}$ . For a locally integra-
ble function $f$ on $U$ , we define

$F(x)= \sup_{B}r^{-2-n/p}h(r)^{-1/p}\inf_{v}\int_{B}|f(y)-v(y)|dy$ ,

where the supremum is taken over all open balls $B$ with radius $r$ such that
$x\in B\subset U$ and the infimum is taken over all functions $v$ which is subharmonic
in $B$ . Denote by $S^{*}(f)$ the set of all points $x$ such that

$\lim_{\gamma\downarrow 0}\sup r^{-n- 2}\int_{B(x,r)}|f(y)-v(y)|dy>0$

for any function $v$ which is subharmonic in a neighborhood of $x$ , where $B(x, r)$

denotes the open ball with center at $x$ and radius $r$ . As before, let $\Lambda_{h}$ denote
the Hausdorff measure associated with a measure function $h$ .

THEOREM 2. SuPpose $F\in L^{p}(U)$ .
(i) If $p<\infty$ , lim $r\downarrow 0r^{-n}h(r)=\infty$ and $\Lambda_{h}(S^{*}(f))<\infty$ , then $f$ can be corrected

on a set of measure zero to be subharmmic in $U$.
(ii) If $P=1$ and $\Lambda_{n}(S^{*}(f))=0$ or if $p>1$ and $\Lambda_{h}(S^{*}(f))=0$ , then the same

conclusion as above holds.

The proofs of Theorems 1 and 2 can be carried out along the same lines
as Kaufman [4] and Kaufman-Wu [5]; the proof of Theorem 2 will be omitted,
since it is similar to the proof of Theorem 1.

2. Proof of Theorem 1.

For a proof of Theorem 1, we need the following lemma, which can be
proved in a way similar to the proof of Harvey-Polking [3; Lemma 3.1].

LEMMA. Let $\{B(z_{j}, r_{j})\}$ be a finite collection of &scs such that $\{B(z_{j}, r_{f}/5)\}$

is mutually &sjoint. Then there exists a family $\{\psi_{j}\}\subset C_{0}^{\infty}(C)$ with the following
properties:

(a) $\psi_{f}=0$ outstde $B(z_{j}, 2r_{j})$ ;

(b) $\psi_{j}\geqq 0$ on $C$ ;
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(c) $\sum_{j}\psi_{j}\leqq 1$ on $C$ ;

(d) $\sum_{j}\psi_{f}=1$ on $\bigcup_{j}B(z_{j}, r_{j})$ ;

(e) $| \frac{\partial^{k+l}}{\partial x^{k}\partial y^{l}}\psi_{j}(z)|\leqq A_{k.l}r_{j}^{-k-l}$ on $C$,

where $z=x+\sqrt{-1}y$ and $A_{k.l}$ are posztive constants independent of $j$ and $z$.

PROOF OF THEOREM 1. We shall prove (i) only, because (ii) can be proved
similarly. Suppose $F\in L^{p}(W),$ $p<\infty,$ $\lim_{r\downarrow 0}r^{-2}h(r)=\infty$ and $\Lambda_{h}(S(f))<\infty$ .

Let $\epsilon>0$ and $\Lambda_{h}(S(f))<M<\infty$ . By the definition of $\Lambda_{\hslash}$ , there exists a
countable covering $\{B(z_{i}, r_{i})\}$ of $S(f)$ such that

$\sum_{i}h(r_{i})<M$

and
$\sum_{i}r_{i}^{2}<\epsilon$

because $\lim_{r_{\star}0}r^{-2}h(r)=\infty$ . For each $z\in W-S(f)$ , take $r(z)>0$ such that

$|f(w)-f(z)-(w-z)f’(z)|\leqq\epsilon r(z)$

whenever $w\in B(z, 10r(z))$ .
Let $\phi\in C_{0}^{\infty}(W)$ and denote the support of $\phi$ by $K$. Since $K \subset(\bigcup_{i}B(z_{i}, r_{i}))\cup$

$( \bigcup_{z\in W-S(f)}B(z, r(z)))$ , there exists a finite family $\{B_{i}\}\subset\{B(z_{i}, r_{i})\}\cup\{B(z, r(z))$ ;
$z\in W-S(f)\}$ such that $\bigcup_{i}B_{i}\supset K$. Further we can find a subfamily $\{B_{i_{j}}\}$ of
$\{B_{i}\}$ such that $\{B_{i_{j}}\}$ is mutually disjoint and $K \subset\bigcup_{j}B_{i_{j}}^{*}$ , where $B_{i_{j}}^{*}$ is the open
disc whose center is that of $B_{i_{j}}$ and whose radius is 5 times that of $B_{i_{j}}$ . We
write $\{B_{i_{j}}\}=\{B(z_{j’}, r_{j’})\}\cup\{B(z_{j’}, r(z_{J’}))\}$ and assume that all $B_{i_{j}}^{*}$ are included in
$W$ . Now we take $\{\psi_{j}\}$ in the lemma for the collection of discs $\{B_{i_{j}}^{*}\}$ . Since
$\int g(w)(\partial/\partial\overline{w})(\psi_{j}\phi)(w)d\Lambda_{2}(w)=0$ for $g$ holomorphic in a neighborhood of the sup-

port of $\psi_{j}\phi$ , we have

$| \int f(w)(\partial/\partial\varpi)(\psi_{j}\phi)(w)d\Lambda_{2}(w)|$

$\leqq A_{1}r_{j}^{2/p}h(r_{j’})^{1/p}$
‘ inf $F(w)$

$w\in B(z_{j^{i}},r_{j’)}$

$\leqq A_{2}h(r_{f’})^{1/p’}\{\int_{B(z_{j’}.r_{j’})}F(w)^{p}d\Lambda_{2}(w)\}^{1/p}$

for $\psi_{j}$ vanishing outside $B(z_{j’}, 10r_{j’})$ , where $A_{1}$ and $A_{2}$ are positive constants
which may depend on $\phi$ . For $\psi_{j}$ vanishing outside $B(z_{j’}, 10r(z_{J’}))$ , the left hand
side is dominated by $A_{3}\text{\’{e}} r(z_{J’})^{2}$ with a positive constant $A_{3}$ . Hence it follows
from H\"older’s inequality that
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$| \int f(w)(\partial/\partial\overline{w})\phi(w)d\Lambda_{2}(w)|=|\sum_{j}\int f(w)(\partial/\partial\overline{w})(\psi_{j}\phi)(w)d\Lambda_{2}(w)|$

$\leqq A_{4}\{M^{1/p^{r}}(\int_{\cup B(z_{j’},r_{j’})}F(w)^{p}d\Lambda_{2}(w))^{1/p}+\epsilon\Sigma r(z_{j’})^{2}\}$

for a positive constant $A_{4}$ . This implies that

$\int f(w)(\partial/\partial\overline{w})\phi(w)d\Lambda_{2}(w)=0$ ,

since $\Lambda_{2}(\cup B(z_{j’}, r_{j’}))=\sum r_{j’}^{2}<\epsilon$ . We see from Weyl’s lemma that $f$ is equal $a.e$ .
to a function holomorphic in $W$ . Thus the proof is complete.

3. Remarks.

REMARK 1. The same conclusion as Theorem 1 remains true if we replace
$S(f)$ by the set of all $z$ such that

$\lim_{r\downarrow 0}\sup r^{-\}\int_{B(z.r)}|f(w)-g(w)|d\Lambda_{2}(w)>0$

for any function $g$ which is holomorphic at $z$ .

REMARK 2. Let $\alpha>0,2/p-1<\alpha<1$ and $f$ be equal in $W$ to the potential

$\int|z-\zeta|^{a-9}g(\zeta)d\Lambda_{2}(\zeta)$ , where $g$ is a function in $L^{p}(C)$ such that $\int(1+|\zeta|)^{\alpha-2}$ .
$|g(\zeta)|d\Lambda_{2}(\zeta)<\infty$ . Then

$\sup_{B}r^{-\alpha-2}\int_{B}|f(w)-A_{z,B}|d\Lambda_{2}(w)\leqq const.Mg(z)$ ,

where the supremum is taken over all open discs $B$ with radius $r$ such that
$z\in B\subset W,$ $Mg$ denotes the usual Hardy-Littlewood maximal function of $g$ and

$A_{z,B}= \int_{C-B}.|z-\zeta|^{a-2}g(\zeta)d\Lambda_{2}(\zeta)$ ,

$B^{*}$ denoting the open disc whose center is that of $B$ and whose radius is 2
times that of $B$ . Hence, as a consequence of Theorem 1, if $\Lambda_{p’(a+1-2/p)}(S(f))$

$<\infty$ , then $f$ is equal $a$ . $e$ . to a function holomorphic in $W$ .
REMARK 3. Let $\alpha>0,2-n/p’<\alpha<2$ and $f$ be equal in an open set $U\subset R^{n}$

to the potential $\int|x-y|^{\alpha-n}g(y)dy$ , where $g$ is a function in $L^{p}(R^{n})$ such that

$\int(1+|y|)^{\alpha-n}|g(y)|dy<\infty$ . By Theorem 2, if $\Lambda_{n-(2-\alpha)p’}(S^{*}(f))<\infty$ , then $f$ is

equal $a$ . $e$ . to a function subharmonic in $U$ . On the other hand, it can be proved

that if $B_{2-\alpha.p’}\overline{(S^{*}(f))}=0$, then $f$ is equal $a$ . $e$ . to a function subharmonic in $U$

(cf. Adams-Polking [1]), where $B_{\beta,q}$ denotes the Bessel capacity of index $(\beta, q)$

(see Meyers [6]) and $\overline{E}$ denotes the closure of a set $E\subset R^{n}$ .
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