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Introduction.

G. Gentzen introduced the notion of sequent, which consists of the antece-
dent and of the succedent, each of which in turn is a sequence of finite formulas,
and utilizing that notion he formulated the formal system $LK$ for the classical
logic. Then by restricting sequents to ones whose succedents are sequences of
at most one formula, he obtained from $LK$ the formal system $LJ$ for the in-
tuitionistic logic. Later, Takahashi in [3], and Rousseau in [1] independently,
extended the notion of sequent to that of matrix, which consists of the 1st row,
the 2nd row, $\cdots$ , and of the M-th row, each of which in turn is a sequence of
finite formulas, where $M$ is a natural number greater than 1, and then utilizing
that notion they formulated the formal system M-LK for each M-valued logic.

What is obtained from the system M-LK, when we restrict matrices to
ones whose M-th rows or more rows are sequences of at most one formula?
This paper is one answer to this problem.

Let $U$ be a subset of the non-empty finite set $T$ of truth-values. We take
a formal system for a many-valued logic having $T$ as the set of truth-values,
and then restrict every inference rule by which a connective is introduced in
some $\mu$-th row where $\mu\not\in U$ so that the v-th rows where $\nu\not\in U$ of the conclusion
consist of one formula in all. We call by an intuitionistic many-valued logic what
is represented by the above-obtained system. If $U=T$ , then the intuitionistic
many-valued logic is of course identical with the usual many-valued logic (cf. 3.43);
if $T=\{t, f\}$ and $U=\{f\}$ , then the logic is identical with the intuitionistic logic as
is expected (cf. 3.11). Though somewhat artificial, the intuitionistic many-valued
logic can also be characterized semantically (cf. Theorem 1). If either $U=T$ or
$U$ contains at most one element, then the system enjoys the cut-elimination prop-
erty (cf. Theorem 4). Moreover, if $U$ contains one and only one element, then
the logic enjoys the disjunction property (cf. Theorem 5). On the contrary, if
$U$ contains at least two elements (and if sufficiently many connectives are in-
volved), then surprisingly the intuitionistic many-valued logic coincides with the
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usual many-valued logic (cf. 4.12).

In view of the above facts, the authors propose the intuitionistic many-
valued logics with $U$ containing one and only one element as a candidate for a
many-valued analogue of the intuitionistic logic.

In this paper only propositional logics are studied. The intuitionistic many-
valued logics studied in this paper differ from ones studied in Rousseau [2],
each of which is determined by the help of a linear order on the set of truth-
values instead of a subset.

\S 1. Preliminaries.

1.1. An intuitionistic many-valued logic is determined by choices of a non-
empty finite set $T$ , a set $\mathcal{F}$ of functions on $T$ , and a subset $U$ of $T$ . Elements
of $T$ are denoted by $\lambda,$

$\mu,$ $\nu,$
$\cdots$

For $\mu$ in $T$ , we put $\mu=\wedge\{\lambda|\lambda\neq\mu\}$ following Takahashi [3].

1.2. Primitive symbols are countably many $propo\alpha tional$ variables, a con-
nective $C_{f}$ (abbreviated by ‘

$f’$ ) for each $f$ in $q$ parentheses and a comma.
The connective $f$ is k-ary iff $f$ is a k-ary function on $T$.
1.3. Formulas are defined by the following recursion: a propositional variable

standing alone is a formula; if $f$ is a k-ary connective and $A_{1},$ $\cdots$ , $A_{k}$ are for-
mulas, then $f(A_{1}, \cdots , A_{k})$ is also a formula. Formulas are denoted by $A,$ $B,$ $\cdots$

1.4. A signed formula is an ordered pair $\langle\mu, A\rangle$ of $\mu$ in $T$ and of a formula
$A$ . A matrix is a finite set of signed formulas. Matrices are denoted by $K$,
$L,$ $\cdots$

The empty set $\emptyset$ is also called the emPty matrix. For a subset $S$ of $T$ and
a formula $A$ , the direct product $S\cross\{A\}$ denotes the matrix $\{\langle\mu, A\rangle|\mu\in S\}$ by
one of set-theoretical conventions. For a matrix $K$, we put $K^{U}=\{\langle\mu, A\rangle\in$

$K|\mu\in U\}$ .
Expression of a matrix by a set is due to Takahashi [4].

1.41. $K^{U}\subseteq K;(K^{U})^{U}=K^{U}$ ; $(K\cup L)^{U}=K^{U}\cup L^{U}$ ; $K^{U}\subseteq L^{U}$ whenever $K\subseteq L$ . $\square$

\S 2. A formal system for the intuitionistic many-valued logic.

2.1. A Proof-figure is a finite tree $\mathfrak{P}$ of matrices such that every matrix in
$\mathfrak{P}$ is either basic, where a matrix Kis basic iff $T\cross\{A\}\subseteq K$ for some $A$ , or the
conclusion of one of the following inference rules every premise of which is
also in $\mathfrak{P}$ .

Cut inference:
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$\frac{K\cup\{\langle\mu,A\rangle\}K\cup\{\langle\nu,A\rangle\}}{K}$

where $\mu\neq\nu$ .
Left inference $(f, \mu)$ , where $f$ is a k-ary connective and $\mu\in U$ :

$K\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$

for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$

$\overline{K}$
where $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle\in K$. The pair $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle$ is called the PrinciPal
signed formula of this inference.

Right inference $(f, \mu)$ , where $f$ is a k-ary connective and $\mu\not\in U$ :

$K^{U}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$

for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$

$\overline{K}$
where $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle\in K$. The pair $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle$ is called the Principal
signed formula of this inference.

The end-matrix of a proof-figure is the lowest matrix in it.
The form of left and right inferences has come from Rousseau [1].

2.2. A matrix $K$ is provable $(\vdash K)$ iff it is the end-matrix of some proof-
figure. A matrix $K$ is cut-free provable $(\mapsto K)$ iff it is the end-matrix of some
proof-figure in which the cut inference is not applied.

More precisely, a matrix $K$ is provable with rank $n(\vdash nK)$ , where $n$ is a
natural number, iff it is the end-matrix of some proof-figure which is constructed
from $n$ matrices; the notion of $K$ being cut-free Provable with rank $n(\vdash nK)$ is
defined similarly.

The notation $‘\vdash_{<n}K$ ( $\vdash<nK$, resp.)’ is an abbreviation for $‘\vdash_{m}K(\mapsto_{m}K$,

resp.) for some $\prime n$ less than $n’$ .

2.21. $\vdash_{n}K$ ( $\vdash K$, resp.) $whenever\mapsto_{n}K$ ( $\mapsto K$, resp.); $\vdash_{n}L(\vdash nL,$ $\vdash L$ or
$\vdash L$ , resp.) whenever $\vdash_{n}K$ ( $\vdash nK,$ $\vdash Kor\mapsto K$, resp.) and $K\subseteq L$ . $\square$

\S 3. A semantical characterization of the intuitionistic $man_{J^{\vee}}$-valued logic.

3.1. A model is a triplet (X, $R,$ $v$ ) of a non-empty set $X$, a reflexive,
transitive relation $R$ on $X$, and a function $v$ which maps each pair of an ele-
ment of $X$ and of a formula into an element of $T$ , satisfying the following
conditions Ml, M2 and M3:

Ml. $\Gamma R\Delta$ &v$($ \Delta , $A)\in U$ $\supset$ $v(\Gamma, A)=v(\Delta, A)$ .
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M2. $\mu\in U$ &f(v(\Gamma , $A_{1}$ ), $\cdots$ , $v(\Gamma,$ $A_{k})$ ) $=\mu$

$\Rightarrow$ $v(\Gamma, f(A_{1}, \cdots A_{k}))=\mu$ .
M3. $\mu\not\in U$ &\forall \Delta $[\Gamma R\Delta\Rightarrow f(v(\Delta, A_{1}), \cdots , v(\Delta, A_{k}))=\mu]$

$\supset$ $v(\Gamma, f(A_{1}, \cdots A_{k}))=\mu$ .
3.11. In this paragraph, we assume that $T=\{t, f\},$ $\mathcal{F}=\{\wedge, \vee, \supset, \neg\}$ and

$U=\{f\}$ , where $\wedge,$ $\vee$ and $\supset$ are binary functions while $\neg$ unary on $T$ defined
as follows: $\mu\wedge\nu=t$ iff $\mu=t$ and $\nu=t;\mu\vee\nu=t$ iff either $\mu=t$ or $\nu=t;\mu\supset\nu=t$

iff either $\mu=f$ or $\nu=t;\neg\mu=t$ iff $\mu=f$.
Then the notion of model agrees with that of Kripke model for the intui-

tionistic logic, so that, in view of Theorem 1 stated in 3.3 below, the intui-
tionistic many-valued logic coincides with the intuitionistic logic.

3.2. Let (X, $R,$ $v$) be a model and $\Gamma\in X$. A matrix $K$ is $\Gamma$-true ( $\Gamma$-false,
resp.) in (X, $R,$ $v$) iff $\langle v(\Gamma, A), A\rangle\in K$ for some $A$ (for no $A$ , resp.).

3.21. If $\Gamma R\Delta$ and $K$ is $\Gamma$-false, then $K^{U}$ is $\Delta$-false. PROOF. Suppose that
$\Gamma R\Delta$ and $K^{U}$ is $\Delta$-true. Then $\langle v(\Delta, A), A\rangle\in K^{U}$ for some $A$ . Hence $v(\Delta, A)\in U$,
so $\langle v(\Gamma, A), A\rangle=\langle v(\Delta, A), A\rangle\in K$ by Ml, so $K$ is $\Gamma$-true. $\square$

3.3. A matrix is valid iff it is $\Gamma$-true in (X, $R,$ $v$ ) for every model (X, $R,$ $v$ )

and every $\Gamma$ in $X$.
Then the intuitionistic many-valued logic is characterized semantically as

follows.

THEOREM 1. A matrix is pr0vable if and only if it is valid.

We shall prove the ’only if’ part and the ‘if’ part in 3.5 and in 3.6-3.8,
respectively.

3.4. A valuation is a function $w$ which maps each formula into an element
of $T$ satisfying $w(f(A_{1}, \cdots , A_{k}))=f(w(A_{1}), \cdots , w(A_{k}))$ for every k-ary connective
$f$ and every formulas $A_{1},$ $\cdots$ , $A_{k}$ .

3.41. Let $w$ be a valuation. If we put $X=\{1\},R=\{\langle 1,1\rangle\}$ and $v(1, A)=w(A)$

for every $A$ , then the triplet(X, $R,$ $v$ ) forms a model. $\square$

3.42. The empty matrix is not valid. PROOF. Since valuations exist, so do
models. $\square$

3.43. In view of Theorem 2 below and of Theorem 1, when $U=T$ , the
intuitionistic many-valued logic coincides with the usual many-valued logic as
is expected.

THEOREM 2. Assume $U=T$ . Then a matrix $K$ is valid if and only if for
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every valuation $w$ we obtain $\langle w(A), A\rangle\in K$ for some $A$ .

PROOF. To prove the ‘only if’ part, suppose that $K$ is valid and $w$ is a
valuation. Since $K$ is l-true in (X, $R,$ $v$), which is the model constructed by
the method stated in 3.41, $\langle v(1, A), A\rangle\in K$ and so $\langle w(A), A\rangle\in K$ for some $A$ .

Next, to prove the contraposition of the ‘if’ part, suppose that $K$ is not
valid. Then $K$ is $\Gamma$-false in (X, $R,$ $v$ ) for some model (X, $R,$ $v$) and some $\Gamma$ in
X. We put $w(A)=v(\Gamma, A)$ for every $A$ . Then $w$ forms a valuation and
$\langle w(A), A\rangle\in K$ for no A. $\square$

3.5. PROOF of the ‘only if’ part of Theorem 1. It suffices to prove that
$K$ is valid whenever $\vdash_{n}K$, which we shall demonstrate by induction on $n$ .

Suppose that $\vdash_{n}K,$ $(X, R, v)$ is a model and that $\Gamma\in X$. We must show
that $K$ is $\Gamma$-true.

Case 1. $K$ is basic. Then $T\cross\{A\}\subseteq Kfor$ some $A$ . Hence $\langle v(\Gamma, A), A\rangle\in K$,

so $K$ is $\Gamma$-true.
Case 2. $K$ is the conclusion of the cut inference. Suppose that $\vdash<nK\cup$

$\{\langle\mu, A\rangle\},$ $\vdash<nK\cup\{\langle\nu, A\rangle\}$ and $\mu\neq\nu$ . Suppose, on the contrary to the con-
clusion, that $K$ is $\Gamma$-false. By the induction hypothesis both $K\cup\{\langle\mu, A\rangle\}$ and
$K\cup\{\langle\nu, A\rangle\}$ are $\Gamma$-true, while either $v(\Gamma, A)\neq\mu$ or $v(\Gamma, A)\neq\nu$ , which is a
contradiction in either case. So $K$ is $\Gamma$-true.

Case 3. $K$ is the conclusion of a left inference. Suppose that $\vdash<nK\cup$

$(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$ ,

and that $\mu\in U$ and $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle\in K$. Suppose, on the contrary to the
conclusion, that $K$ is $\Gamma$-false. Then $v(\Gamma, f(A_{1}, \cdots , A_{k}))\neq\mu$ , so $f(v(\Gamma, A_{1}),$ $\cdots$ ,
$v(\Gamma, A_{k}))\neq\mu$ by M2. Putting $\mu_{j}=v(\Gamma, A_{j})$ for $j=1,$ $\cdots$ , $k$ , we obtain $f(\mu_{1},$ $\cdots$ ,
$\mu_{k})\neq\mu$ , so $K\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ is $\Gamma$-true by the induction hypo-
thesis, which is a contradiction. Hence $K$ is $\Gamma$-true.

Case 4. $K$ is the conclusion of a right inference. Suppose that $\vdash<nK^{U}\cup$

$(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$ ,

and that $\mu\not\in U$ and $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle\in K$. Suppose, on the contrary to the
conclusion, that $K$ is $\Gamma$-false. Then $v(\Gamma, f(A_{1}, \cdots , A_{k}))\neq\mu$ , so $f(v(\Delta, A_{1}),$ $\cdots$ ,
$v(\Delta, A_{k}))\neq\mu$ for some $\Delta$ such that $\Gamma R\Delta$ by M3. Putting $\mu_{j}=v(\Delta, A_{j})$ for $j=$

$1,$ $\cdots$ , $k$ , we obtain $f(\mu_{1}, \cdots , \mu_{k})\neq\mu$, so $K^{U}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ is
$\Delta$-true by the induction hypothesis, which contradicts 3.21. Hence $K$ is $\Gamma$-true.

$\square$

3.6. We shall devote the rest of this section to the proof of the ’if’ part
of Theorem 1.

A generalized matrix (abbreviated by ’g-matrix’) is a finite or infinite set of
signed formulas. A g-matrix is provable iff it contains a provable matrix. A
g-matrix is maximal unprovable iff it is unprovable and any proper extension of
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it is provable.

3.61. Any matrix is a g-matrix. A matnx is $pro\iota$)$able$ iff it is Provable as
a g-matrix. $\square$

3.62. Any unprOvable g-matrix can be extended to a maximal unprOvable one.
PROOF. Suppose that $\Pi$ is an unprovable g-matrix, and let $\langle\mu_{0}, A_{0}\rangle,$ $\langle\mu_{1}, A_{1}\rangle$ ,
$\langle\mu_{2}, A_{2}\rangle,$ $\cdots$ be an enumeration of all the signed formulas. We define the g-
matrix $\Pi_{n}$ by the following recursion: $\Pi_{0}=\Pi;\Pi_{n+1}=\Pi_{n}$ or $=\Pi_{n}\cup\{\langle\mu_{n}, A_{n}\rangle\}$

according as $\Pi_{n}\cup\{\langle\mu_{n}, A_{n}\rangle\}$ is provable or not. Then the g-matrix $U_{n=0}^{\infty}\Pi_{n}$

is the required one. $\square$

3.63. If $\Gamma$ is a maximal unprOvable g-matrix, then for every $A$ there exists
one and only one $\mu$ falsifying $\langle\mu, A\rangle\in\Gamma$. PROOF. If $T\cross\{A\}\subseteq\Gamma$, then $\Gamma$ is
provable, which is a contradiction. Hence $\langle\mu, A\rangle\not\in\Gamma$ for some $\mu$ . Next, sup-
pose that $\langle\mu_{1}, A\rangle\not\in\Gamma,$ $\langle\mu_{2}, A\rangle\not\in\Gamma$ and $\mu_{1}\neq\mu_{2}$ . Then both $\Gamma\cup\{\langle\mu_{1}, A\rangle\}$ and
$\Gamma\cup\{\langle\mu_{2}, A\rangle\}$ are provable since they are proper extensions of $\Gamma$. So in view
of the cut inference, $\Gamma$ is provable, which is a contradiction, too. Hence there
is one and only one $\mu$ falsifying $\langle\mu, A\rangle\in\Gamma$. $\square$

3.7. We introduce the model (X, $R,$ $v$ ) as follows: $X$ is the set of maximal
unprovable g-matrices; $R=\{\langle\Gamma, \Delta\rangle\in X^{2}|\langle\mu, A\rangle\in\Delta$ whenever $\langle\mu, A\rangle\in\Gamma$ and
$\mu\in U\}$ ; for every $\Gamma$ in $X$ and every formula $A,$ $v(\Gamma, A)$ is the unique $\mu$ fal-
sifying $\langle\mu, A\rangle\in\Gamma$.

LEMMA. The triplet (X, $R,$ $v$ ) defined above certainly forms a model.

PROOF. The empty matrix is unprovable by 3.5, so $X$ is not empty; $R$ is
clearly reflexive and transitive.

To verify Ml, suppose $\Gamma R\Delta$ and $v(\Delta, A)\in U$ . Then $\langle v(\Delta, A), A\rangle\not\in\Gamma$ since
$\langle v(\Delta, A), A\rangle\not\in\Delta$ , so $v(\Gamma, A)=v(\Delta, A)$ .

To verify M2, suppose $\mu\in U$ and $v(\Gamma, f(A_{1}, \cdots , A_{k}))\neq\mu$ . Since $\langle\mu,$ $f(A_{1},$ $\cdots$ ,
$A_{k})\rangle\in\Gamma$, in view of the left inference $(f, \mu)$ , the g-matrix $\Gamma\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots$

$\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ is unprovable for some $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$ .

Then $\langle\mu_{1}, A_{1}\rangle\not\in\Gamma,$ $\cdots$ , $\langle\mu_{k}, A_{k}\rangle\not\in\Gamma$, so $v(\Gamma, A_{1})=\mu_{1},$ $\cdots$ , $v(\Gamma, A_{k})=\mu_{k}$ , so
$f(v(\Gamma, A_{1}),$ $\cdots$ $v(\Gamma, A_{k}))\neq\mu$ .

To verify M3, suppose $\mu\not\in U$ and $v(\Gamma, f(A_{1}, \cdots , A_{k}))\neq\mu$ . Since $\langle\mu,$ $f(A_{1},$ $\cdots$

$A_{k})\rangle\in\Gamma$, in view of the right inference $(f, \mu)$ , the g-matrix $\Gamma^{U}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})$

$\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ is unprovable for some $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$ ,

where $\Gamma^{U}=\{\langle\nu, B\rangle\in\Gamma|\nu\in U\}$ . Then $\Gamma^{U}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})\subseteq\Delta$

for some $\Delta$ in $X$. It follows $\Gamma R\Delta$ from $\Gamma^{U}\subseteq\Delta$ . On the other hand, $\langle\mu_{1}, A_{1}\rangle$

$\not\in\Delta,$ $\cdots$ , $\langle\mu_{k}, A_{k}\rangle\not\in\Delta$ , so $v(\Delta, A_{1})=\mu_{1},$ $\cdots$ , $v(\Delta, A_{k})=\mu_{k}$ , so $f(v(\Delta, A_{1}),$ $\cdots$ , $v(\Delta, A_{k}))$

$\neq\mu$ . Hence it is not the case that $\forall\Delta[\Gamma R\Delta\Rightarrow f(v(\Delta, A_{1}), \cdots , v(\Delta, A_{k}))=\mu]$ .
$\square$
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3.8. PROOF of the ’if’ part of Theorem 1. To prove the contraposition,
suppose that $K$ is unprovable. Then $K$ is extended to a maximal unprovable
g-matrix $\Gamma$. We claim that $K$ is $\Gamma$-false in the model (X, $R,$ $v$) introduced
above. Suppose, on the contrary to the conclusion, that $K$ is $\Gamma$-true. Then
$\langle v(\Gamma, A), A\rangle\in K$ for some $A$ . So $\langle v(\Gamma, A), A\rangle\in\Gamma$, which is a contradiction.
Hence $K$ is $\Gamma$-false, so it is not valid. $\square$

\S 4. Syntactical properties of the formal system.

4.1. In this paragraph we wish to display the choice of $U$ , so we denote
$\vdash K$ and $\vdash_{n}K$ by $\vdash^{U}K$ and $\vdash_{n}^{U}K$, respectively.

4.11. SuPpose $U\subseteq V\subseteq T$ . Then $K^{U}\subseteq K^{V}$ ; $\vdash_{n}^{V}K(\vdash VK, resP\cdot)$ whenever $\vdash_{n}^{U}K$

$(\vdash UK, resP\cdot)$ . $\square$

4.12. According to Theorem 3 below and to 3.43, if Card $(U)\geqq 2$ , where
Card $(U)$ denotes the cardinality of $U$, then the intuitionistic many-valued logic
has no sense as an intuitionistic one.

THEOREM 3. Assume that Card $(U)\geqq 2$ and every unary function on $T$ is con-
tained in 9. Then, $\vdash^{T}K$ if and only $if\vdash^{U}K$.

PROOF. The ‘if’ part is a special case of 4.11. To show the ’only if’ part,
it suffices to prove, on the assumption of the theorem, that if $\vdash^{U}K\cup(\mu_{1^{\wedge}}\cross$

$\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$ , and if

$\mu\not\in U$ and $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle\in K$, then $\vdash^{U}K$.
Take $\lambda$ and $\lambda’$ such that $\lambda,$ $\lambda’\in Uand\lambda\neq\lambda’$ . Let $K=\{\langle\nu_{1}, B_{1}\rangle, \cdots , \langle v_{n}, B_{n}\rangle\}$

and let $g_{i}$ be the unary function on $T$ such that $g_{i}(\nu)=\lambda$ or $=\lambda’$ according as
$\nu=\nu_{i}$ or not, for $i=1,$ $\cdots$ , $n$ .

First we remark the fact that for every matrix $L$ and every formula $B$ ,

(1) $\vdash UL\cup\{\langle\nu_{i}, B\rangle\}$ iff $\vdash UL\cup\{\langle\lambda, g_{i}(B)\rangle\}$ .

Suppose, first, that $\vdash UL\cup\{\langle\nu_{i}, B\rangle\}$ . If $g_{i}(\nu)\neq\lambda$ , that is, if $\nu\neq\nu_{i}$ , then
$L\cup\{\langle\nu_{i}, B\rangle\}\subseteq L\cup\{\langle\lambda, g_{i}(B)\rangle\}\cup(\nu^{\wedge}\cross\{B\})$ , so $\vdash UL\cup\{\langle\lambda, g_{i}(B)\rangle\}\cup(\nu^{s}\cross\{B\})$ .
Hence by the left inference $(g_{i}, \lambda)$ we obtain $\vdash UL\cup\{\langle\lambda, g_{i}(B)\rangle\}$ . To show the
converse, suppose $\vdash UL\cup\{\langle\lambda, g_{i}(B)\rangle\}$ . If $g_{i}(\nu)\neq\lambda’$ , that is, if $\nu=\nu_{i}$ , then $L\cup$

$\{\langle\nu_{i}, B\rangle, \langle\lambda’, g_{i}(B)\rangle\}\cup(\nu^{\wedge}\cross\{B\})$ contains $\tau\cross\{B\}$ , so it is basic and so prova-
ble. Hence by the left inference $(g_{i}, \lambda’)$ we obtain $\vdash UL\cup\{\langle\nu_{i}, B\rangle, \langle\lambda’, g_{i}(B)\rangle\}$ ,
from which together with $\vdash UL\cup\{\langle\nu_{i}, B\rangle, \langle\lambda, g_{i}(B)\rangle\}$ by the cut inference we
obtain $\vdash UL\cup\{\langle\nu_{i}, B\rangle\}$ . This completes the proof of (1).

Now suppose that $\vdash UK\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$
$\cdots$ ,

$\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\mu$ , and that $\mu\not\in U$ and $\langle\mu, f(A_{1}, \cdots , A_{k})\rangle\in K$. We
must show $\vdash^{U}K$. If $f(\mu_{1}, \cdots , \mu_{k})\neq\mu$ , then
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$\vdash^{U}\{\langle\nu_{1}, B_{1}\rangle, \cdots \langle\nu_{n}, B_{n}\rangle\}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ ,

so by the repeated use of the ’only if’ part of (1),

$\vdash^{U}\{\langle\lambda, g_{1}(B_{1})\rangle, \cdots \langle\lambda, g_{n}(B_{n})\rangle\}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ ,

that is,

$\vdash^{U}(\{\langle\mu, f(A_{1}, \cdots A_{k})\rangle, \langle\lambda, g_{1}(B_{1})\rangle, \cdots \langle\lambda, g_{n}(B_{n})\rangle\})^{U}$

$\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ .

Hence by the right inference $(f, \mu)$ ,

$\vdash^{U}\{\langle\mu, f(A_{1}, \cdots A_{k})\rangle, \langle\lambda, g_{1}(B_{1})\rangle, \cdots \langle\lambda, g_{n}(B_{n})\rangle\}$ ,

so by the repeated use of the ’if’ part of (1),

$\vdash^{U}\{\langle\mu, f(A_{1}, \cdots A_{k})\rangle, \langle\nu_{1}, B_{1}\rangle, \cdots \langle\nu_{n}, B_{n}\rangle\}$ ,

that is, $\vdash^{U}K$. $\square$

4.2. Concerning the cut-elimination property the following theorem holds.
Since the proof is rather long, we shall give it in 4.4.

THEOREM 4. Assume that either $U=T$ or Card $(U)\leqq 1$ . Then every prOvable
matrix is cut-free Provable.

4.3. With respect to the disjunction property, Theorem 5 below holds.

THEOREM 5. Assume Card$(U)=1$ . $If\vdash\{\langle\mu_{1}, A_{1}\rangle, \cdots , \langle\mu_{n}, A_{n}\rangle\}$ and $\mu_{1},$
$\cdots$

$\mu_{n}\not\in U$ , then $\vdash\{\langle\mu_{i}, A_{i}\rangle\}$ for some $i$ $(i=1, \cdots , n)$ .
PROOF. We put $K=\{\langle\mu_{1}, A_{1}\rangle, \cdots , \langle\mu_{n}, A_{n}\rangle\}$ , and suppose $\vdash K$ and $\mu_{1},$

$\cdots$ ,
$\mu_{n}\not\in U$ . Then $\mapsto K$ by Theorem 4 which is assumed to have been proved.
Since $U\neq\emptyset$ the matrix $K$ is not basic, so it is the conclusion of a left or right
inference. $Let\langle\nu, f(B_{1}, \cdots , B_{k})\rangle$ be the principal signed formula. Then
$\langle\nu, f(B_{1}, \cdots , B_{k})\rangle\in K$, so $\langle\nu, f(B_{1}, \cdots B_{k})\rangle=\langle\mu_{i}, A_{i}\rangle$ for some $i(i=1, \cdots , n)$ .
Hence $\nu=\mu_{i}\not\in U$, so $K$ is the conclusion of the right inference $(f, \nu)$ , so $\vdash K^{U}$

$\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{k}^{A}\cross\{B_{k}\})$ for every $\nu_{1},$
$\cdots$ , $\nu_{k}$ falsifying $f(\nu_{1}, \cdots , \nu_{k})=v$ .

But $K^{U}=\emptyset=\{\langle\nu, f(B_{1}, \cdots , B_{k})\rangle\}^{U}$, so
$\mapsto\{\langle\nu, f(B_{1}, \cdots B_{k})\rangle\}^{U}\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{k^{\wedge}}\cross\{B_{k}\})$

for every $\nu_{1},$
$\cdots$ , $v_{k}$ falsifying $f(\nu_{1}, \cdots , \nu_{k})=\nu$ . Hence by the right inference

$(f, \nu)$ we $obtain\mapsto\{\langle\nu, f(B_{1}, \cdots , B_{k})\rangle\}$ , so $\vdash\{\langle\mu_{i}, A_{t}\rangle\}$ . $\square$

4.4. PROOF of Theorem 4. It suffices to prove, on the assumption of the
theorem, that
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(2) if $\vdash n_{1}K\cup\{\langle\lambda_{1}, A\rangle\},$ $\vdash n_{2}K\cup\{\langle\lambda_{2}, A\rangle\}$ and $\lambda_{1}\neq\lambda_{2}$ , then $\vdash K$ .

We shall prove (2) by induction on $\omega\cdot d(A)+n_{1}+n_{2}$ , where $d(A)$ denotes the
number of occurrences of connectives in $A$ .

First, we remark the fact that for every matrix $L$ and every formula $B$ ,

(3) $if\mapsto L\cup(\mu^{\wedge}\cross\{B\})$ for every $\mu$ in $T$ and if $d(B)<d(A)$ ,

then $\vdash L\cup(S\cross\{B\})$ for every subset $S$ of $T$ , in particular $\vdash L$ .

Suppose $that\mapsto L\cup(\mu\wedge\cross\{B\})$ for every $\mu$ in $T$ and that $d(B)<d(A)$ and
$S\subseteq T$ . We shall prove $\mapsto L\cup(S\cross\{B\})$ by induction on Card$(T-S)$ . Case 1.
Card$(T-S)=0$ . The matrix $L\cup(S\cross\{B\})$ is basic since it contains $T\cross\{B\}$ , so
$\vdash L\cup(S\cross\{B\})$ . Case 2. Card$(T-S)=1$ . Since $S=\mu^{s}$ for some $\mu$ in $T$ , by

the assumption $\vdash L\cup(S\cross\{B\})$ . Case 3. Otherwise. Take $\lambda_{1}$ and $\lambda_{2}$ such that
$\lambda_{1},$ $\lambda_{2}\in T-S$ and $\lambda_{1}\neq\lambda_{2}$ , then by the hypothesis of induction on Card$(T-S)$ we
have $\vdash L\cup(S\cross\{B\})\cup\{\langle\lambda_{1}, B\rangle\}and\mapsto L\cup(S\cross\{B\})\cup\{\langle\lambda_{2}, B\rangle\}$ , so by the hypo-
thesis of induction on $\omega\cdot d(A)+n_{1}+n_{2}$ we obtain $\vdash L\cup(S\cross\{B\})$ . This com-
pletes the proof of (3).

Now, to prove (2) suppose that $\vdash n_{1}K\cup\{\langle\lambda_{1}, A\rangle\},$ $\mapsto_{n_{2}}K\cup\{\langle\lambda_{2}, A\rangle\}$ and $\lambda_{1}$

$\neq\lambda_{2}$ . We put $K_{i}=K\cup\{\langle\lambda_{i}, A\rangle\}$ for $i=1,2$ .
For the cut-free provable matrix $K_{i}(i=1,2)$ , one of the following five cases

occurs:
I. $K_{i}$ is basic.
11. $K_{i}$ is the conclusion of a left inference, and the principal signed formula

belongs to $K$.
$m$ . $K_{i}$ is the conclusion of a right inference, and the principal signed for-

mula belongs to $K$.
IV. $K_{i}$ is the conclusion of a left inference, and the principal signed for-

mula is $\langle\lambda_{i}, A\rangle$ .
V. $K_{i}$ is the conclusion of a right inference, and the principal signed for-

mula is $\langle\lambda_{i}, A\rangle$ .
Remark that neither the case $m$ nor the case V occurs when $U=T$ .
We shall show $\vdash K$ by cases.
$Ca$se 1. Either $K_{1}$ or $K_{2}$ is of case I. We suppose, without loss of

generality, that $K_{1}$ is the case. Then $T\cross\{B\}\subseteq K_{1}$ for some $B$ . If $B$ is distinct
from $A$ , then $T\cross\{B\}\subseteq K$, so $K$ is basic, $so\mapsto K$ ; if $B$ is identical with $A$ , then
$\langle\lambda_{2}, A\rangle\in K$, so $K_{2}=K,$ $so\mapsto K$.

Case 2. Either $K_{1}$ or $K_{2}$ is of case II. We suppose that $K_{1}$ is the case.
Suppose that $\mapsto K\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$ for every $\nu_{1},$

$\cdots$ , $\nu_{h}$ falsi-
fying $g(\nu_{1}, \cdots , \nu_{h})=\nu$ , and that $\nu\in U$ and $\langle v, g(B_{1}, \cdots , B_{h})\rangle\in K$. If $g(v_{1}, \cdots , \nu_{h})$

$\neq\nu$, then
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$\vdash_{<n_{1}}K\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h}\cross\{B_{h}\})\cup\{\langle\lambda_{1}, A\rangle\}$

and
$\mapsto n_{2}K\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})\cup\{\langle\lambda_{2}, A\rangle\}$ ,

so by the induction hypothesis $\vdash K\cup(\nu_{1}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$ . Hence
$\mapsto K$ by the left inference $(g, \nu)$ .

Case 3. Both $K_{1}$ and $K_{2}$ are of case $m$ . $ln$ this case, $U\neq T$ and so Card$(U)$

$\leqq 1$ by the assumption of the theorem, hence either $\lambda_{1}\not\in U$ or $\lambda_{2}\not\in U$ . We $\suprightarrow$

pose, without loss of generality, that $\lambda_{1}\not\in U$. Suppose that $\vdash_{<n_{1}}(K_{1})^{U}\cup(\nu_{1}\cross$

$\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$ for every $\nu_{1},$
$\cdots$ , $\nu_{h}$ falsifying $g(\nu_{1}, \cdots , \nu_{h})=\nu$, and that

$v\not\in U$ and $\langle\nu, g(B_{1}, \cdots , B_{h})\rangle\in K$. Then $\mapsto K^{U}\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$

for every $\nu_{1},$
$\cdots$ , $\nu_{h}$ falsifying $g(\nu_{1}, \cdots , \nu_{h})=\nu$ , since $(K_{1})^{U}=K^{U}$ . Hence $\vdash K$ by

the right inference $(g, \nu)$ .
Case 4. One of $K_{1}$ and $K_{2}$ is of case $1\Pi$ , while another of case IV. We

suppose that $K_{1}$ is of case $m$ , while $K_{2}$ of case IV. In this case also, $U\neq T$

and so either $\lambda_{1}\not\in U$ or $\lambda_{2}\not\in U$. Since $K_{2}$ is of case IV we have $\lambda_{2}\in U$, so $\lambda_{1}\not\in U$.
So $-K$ by the similar proof as Case 3.

Case 5. One of $K_{1}$ and $K_{2}$ is of case $m$ , while another of case V. We
suppose that $K_{1}$ is of case $m$ , while $K_{2}$ of case V. Suppose that $\vdash_{<n_{1}}(K_{1})^{U}U$

$(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$ for every $\nu_{1},$
$\cdots$ , $\nu_{h}$ falsifying $g(\nu_{1}, \cdots , \nu_{h})=\nu$ ,

and that $\nu\not\in U$ and $\langle\nu, g(B_{1}, \cdots , B_{h})\rangle\in K$. Suppose further that $\vdash<n_{2}(K_{2})^{U}U$

$(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\lambda_{2}$,

and that $\lambda_{2}\not\in U$ and $f(A_{1}, \cdots , A_{k})$ is identical with $A$ . To show $\vdash K$, it suffices
to prove

(4) $\mapsto K^{u}\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$

for every $\nu_{1},$
$\cdots$ , $\nu_{h}$ falsifying $g(\nu_{1}, \cdots , \nu_{h})=\nu$,

since from (4) it $follows\mapsto K$ by the right inference $(g, \nu)$ . With a view to
proving (4), suppose $g(\nu_{1}, \cdots , \nu_{h})\neq\nu$. Then

$\vdash_{<n_{1}}K^{U}\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})\cup\{\langle\lambda_{1}, A\rangle\}$ ;
while

$\mapsto<n_{2}(K^{U}U(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})\cup\{\langle\lambda_{2}, A\rangle\})^{U}$

$\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$

for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots , \mu_{k})=\lambda_{2}$ , so by the right inference $(f, \lambda_{2})$

we obtain

$\vdash_{n_{2}}K^{U}\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})\cup\{\langle\lambda_{2}, A\rangle\}$ .

Hence $\mapsto K^{U}\cup(\nu_{1^{\wedge}}\cross\{B_{1}\})\cup\cdots\cup(\nu_{h^{\wedge}}\cross\{B_{h}\})$ by the induction hypothesis. So
(4) has been proved.
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Case 6. Both $K_{1}$ and $K_{2}$ are either of case IV or of case V. Suppose that
$\mapsto<n_{1}(K_{1})^{*}\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$

$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}$ ,
, $\mu_{k}$ ) $=\lambda_{1}$ , and that $f(A_{1}, \cdots , A_{k})$ is identical with $A$ , where $(K_{1})^{*}=K_{1}$ or $=(K_{1})^{U}$

according as $K_{1}$ is of case IV or of case V. Suppose further that $\mapsto<n_{2}(K_{2})^{**}$

$\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ for every $\mu_{1},$
$\cdots$ , $\mu_{k}$ falsifying $f(\mu_{1}, \cdots, \mu_{k})=\lambda_{2}$ ,

where $(K_{2})^{**}=K_{2}$ or $=(K_{2})^{U}$ according as $K_{2}$ is of case $N$ or of case V. Since
$\lambda_{1}\neq\lambda_{2}$ , either $f(\mu_{1}, \cdots , \mu_{k})\neq\lambda_{1}$ or $f(\mu_{1}, \cdots , \mu_{k})\neq\lambda_{2}$ for every $\mu_{1},$

$\cdots$ , $\mu_{k}$ . If
$f(\mu_{1}, \cdots , \mu_{k})\neq\lambda_{1}$ , then

$\mapsto<n_{1}K\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k}\cross\{A_{k}\})\cup\{\langle\lambda_{1}, A\rangle\}$

and
$\mapsto n_{2}K\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})\cup\{\langle\lambda_{2}, A\rangle\}$ ,

so $\vdash K\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ by the induction hypothesis; if $f(\mu_{1},$ $\cdots$ ,
$\mu_{k})\neq\lambda_{2}$ , we obtain the same result similarly. Hence for every $\mu_{1},$

$\cdots$ , $\mu_{k}$ we
have $\vdash K\cup(\mu_{1^{\wedge}}\cross\{A_{1}\})\cup\cdots\cup(\mu_{k^{\wedge}}\cross\{A_{k}\})$ . So $\vdash K$ by the repeated use of (3)

in view of the fact that $d(A_{1}),$ $\cdots$ , $d(A_{k})<d(A)$ . $\square$
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