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1. Introduction.

In his paper of 1892 [3], Hermann Brunn constructed a link with what is
called the Brunnian property, that is, the link itself is nontrivial, yet every
proper sublink is trivial, see [21, p. 67]. His link is the origin of the links in
this paper.

A k-link $L$ in $S^{k+2}$ is splittable if there exists a $(k+2)$-disk $B^{k+2}$ in $S^{k+2}$

satisfying $L\cap B^{k+2}\neq\emptyset$ , $L\cap\partial B^{k+2}=\emptyset$ , and $L\cap(S^{k+2}-B^{k+2})\neq\emptyset$ . Generalizing
the Brunnian property, H. Debrunner considered the splitting problem of a link.
Given a k-link $L=L_{1}\cup L_{2}\cup\cdots\cup L_{n}$ in $S^{k+2}$, let $\mathfrak{A}$ be a family of those subsets
$S$ of $I_{n}=\{1,2, \cdots , n\}$ for which the sublink $L_{s}= \bigcup_{i\in S}L_{i}$ of $L$ does not split.
Then we call $L$ has the Brunman Property of tyPe $\mathfrak{A}$ . For convenience, we
assume that $\emptyset,$ $\{i\}\not\in \mathfrak{A}$ for all $i\in I_{n}$ . For this family of subsets $\mathfrak{A}$ , the follow-
ing condition must be satisfied:

$(*)$ If $S,$ $T\in \mathfrak{U}$ and $S\cap T\neq\emptyset$ , then $S\cup T\in \mathfrak{U}$ .
Conversely, for any family $\mathfrak{A}$ of subsets of $I_{n}$ with $(*)$ , H. Debrunner [4] con-
structed a k-link with $n$ components for each $k\geqq 2$ and $n\geqq 2$ having the Brunnian
property of type $\mathfrak{A}$ . Furthermore, the author [8] constructed such an example
for each $k\geqq 1$ and $n\geqq 2$ , where the link is a satellite link, that is, a link with
nontrivial companions. See [8] for other references of this problem.

In this paper we restrict ourselves to l-links in $S^{3}$ . In \S 4, we show that
for any family $\mathfrak{A}$ of subsets of $I_{n}$ with $(*)$ , there exists a link $L$ with Brunnian
property of type $\mathfrak{A}$ such that the exterior of each sublink $L_{S}$ for $S\in \mathfrak{A}$ is
atoroidal (Theorem 4), that is, irreducible and boundary-irreducible and contains
no non-boundary-parallel incompressible annuli and tori. Such a link is hyper-
bolic by Thurston’s theorem, see [13]. Note that a link is nonsplittable if and
only if its exterior is irreducible.
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The main tools for proving that the exterior of a link is atoroidal are Myers’
results $[14, 15]$ (see \S 2) and Soma’s simple tangle [22]. They may originate in
the tangle theory of Kirby and Lickorish [9]. A link is prime if it is nonsplit-
table and any 2-sphere in $S^{3}$ , which meets the link transversely in two points,
bounds a ball meeting the link in an unknotted spanning arc. In [10] Lickorish
showed that summing together two prime tangles always produces a prime link
with 1 or 2 components. As the analogue for a simple link, that is, a nonsplit-
table link whose exterior contains no non-boundary-parallel incompressible tori,
Soma introduced the notion of a simple tangle. In \S 3, we show that a prime
tangle and a simple tangle have some properties of Myers (Theorems 1-3).

Using this, we see that summing together two simple tangles produces a link
with (atoroidal) hyperbolic exterior (Corollary 3.1), which has been already ob-
served by Y. Nakanishi and A. Kawauchi (unpublished). Compare Nakanishi
$[17, 18]$ and Qu\’ach [19].

Two oriented links $L_{0}$ and $L_{1}$ in a 3-manifold $M$ are concordant if they can
be joined by locally flat disjoint annuli in $M\cross[0,1]$ , where $L_{i}\subset M\cross\{i\}$ . Kirby
and Lickorish [9] and Livingston [11] have shown that any knot $K_{0}$ in $S^{3}$ is
concordant to a prime knot $K_{1}$ , and Bleiler [2] has shown that $K_{1}$ can be chosen
to have the same Alexander polynomial as $K_{0}$ , see also Qu\’ach [20]. Nakanishi
[16] has shown that any link $L_{0}$ in $S^{3}$ is concordant to a prime link $L_{1}$ with
the same Alexander invariant, and Soma [22] has shown that $L_{1}$ can be chosen
to be simple. Here the Alexander invariant of a link $L$ in $S^{3}$ is the homology
of the universal abelian cover of $S^{3}-L$ , which has a natural module structure,

see [21, Section $7I$]. On the other hand, Myers [15] has shown that any link
in a 3-manifold whose boundary contains no 2-spheres is concordant to a link
with hyperbolic exterior, where the definition of hyperbolic structure is extended.
As an application of the construction in \S 4, we show in \S 5 that any link in $S^{3}$

is concordant to a link with the same Alexander invariant whose exterior is
(atoroidal) hyperbolic (Theorem 5).

The author is grateful to Y. Nakanishi and M. Sakuma for their helpful
suggestions and conversations.

2. Preliminaries.

Throughout the paper, we shall work in either the PL or smooth category.
All manifolds are compact and orientable. The boundary of a manifold $M$ is
denoted by $\partial M$, and the closure and the interior of a space $X$ are denoted by
cl $X$ and int $X$, respectively.

A surface $F$ in a 3-manifold $M$ is properly embedded, that is, $F\cap\partial M=\partial F$.
A surface in $\partial M$ is a submanifold of $\partial M$. The reader is referred to [5, 6, 7, 23]

for the definitions of incompressible and boundary-parallel surfaces and of ir-
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reducible, boundary-irreducible, and sufficiently large 3-manifolds.
A 3-manifold pair $(M, F)$ consists of a 3-manifold $M$ and a surface $F$ in $\partial M$.

$(M, F)$ is irreducible if $M$ is irreducible and $F$ is incompressible in $M$.
An irreducible, sufficiently large 3-manifold is called a Haken manifold. An

irreducible, boundary-irreducible 3-manifold $M$ is called atoroidal if each incom-
pressible annulus and torus in $M$ is boundary-parallel.

A compact 3-manifold $M$ is hyperbolic if int $M$ has a complete Riemannian
metric with finite volume and constant negative curvature. A link is hyperbolic
if its exterior is hyperbolic. Since a link exterior is sufficiently large, Thurston’s
main theorem [13, Theorem $B$], together with the torus theorem $[6, 7]$ , yields
that a link is hyperbolic if its exterior is atoroidal.

We make use of the gluing lemmas due to Myers $[14, 15]$ , which give some
sufficient conditions under which the union of two 3-manifolds along incompres-
sible surfaces in their boundaries is simple and Haken.

DEFINITION. For a 3-manifold pair $(M, F)$ , we consider the following condi-
tions:
(1) $(M, F)$ and $(M, c1(\partial M-F))$ are irreducible 3-manifold pairs.
(2) No component of $F$ is a disk or a 2-sphere.
(3) Every disk $D$ in $M$ with $D\cap F$ a single arc is boundary-parallel.
(4) No component of $F$ is an annulus or a torus.
(5) Every incompressible annulus $A$ in $M$ with $\partial A\cap\partial F=\emptyset$ is boundary-parallel.
(6) Every incompressible torus in $M$ is boundary-parallel.
(7) Every disk $D$ in $M$ with $D\cap F$ a pair of disjoint arcs is boundary-parallel.

$(M, F)$ has Property $A$ , if it satisfies (1) $-(3)$ .
$(M, F)$ has Property $B’$ , if it satisfies (1) $-(6)$ .
$(M, F)$ has Property $C’$ , if it satisfies (1) $-(7)$ .

Now suppose that $M=M_{0}\cup M_{1}$ , where $M_{0}$ and $M_{1}$ are 3-manifolds and $F=$

$M_{0}\cap M_{1}=\partial M_{0}\cap\partial M_{1}$ is a 2-manifold.

PROPOSITION 1 ([15, Lemma 2.4]). If $(M_{0}, F)$ and $(M_{1}, F)$ have Property $A$ ,

then $M$ is Haken.

PROPOSITION 2 ([15, Lemma 2.5]). If $(M_{0}, F)$ has Property $B’$ and $(M_{1}, F)$

has Property $C’$ , then $M$ is aforoidal and Haken.

An n-string tangle is a pair $(B, t)$ where $B$ is a 3-ball and $t$ is a set of $n$

disjoint arcs, called strings, embedded in $B$ with $t\cap\partial B=\partial t$ . The boundary of
$(B, t)$ is $(\partial B, \partial t)$ , which we denote by $\partial(B, t)$ . An n-string tangle $(B, t)$ is trivial,
if there is a homeomorphism of pairs from $(B, t)$ to $(D\cross[0,1],$ $\{p_{1}, p_{2}, \cdots , p_{n}\}$

$\cross[0,1])$ , where $D$ is a disk containing points $p_{1},$ $p_{2},$ $\cdots$ , $p_{n}$ in its interior.
Let $t=\tau_{1}\cup\tau_{2}\cup\cdots\cup\tau_{n}$ and $N_{t}$ be the disjoint tubular neighborhoods of $\tau_{i}$ in
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$B$ . A tangle sPace $M$ is $c1(B-N_{1}\cup N_{2}\cup\cdots\cup N_{n})$ . Let $\Delta_{i}$ and $\Delta_{i}’$ be two disks
with $N_{i}\cap\partial B=\Delta_{i}\cup\Delta_{i}’$ . Let $D$ be a disk in $\partial B$ such that int $D\cap(N_{1}\cup N_{2}\cup\cdots\cup N_{n})$

$=\Delta_{1}\cup\Delta_{2}\cup\cdots\cup\Delta_{k},$ $2\leqq k\leqq n$ . We consider the 3-manifold pairs $(M, F)$ and $(M, G)$ ,

where $F=c1(\partial B-N_{1}\cup N_{2}\cup\cdots\cup N_{n})$ and $G=c1(D-\Delta_{1}\cup\Delta_{2}\cup\cdots\cup\Delta_{k})$ .

LEMMA 1. If $M$ is boundary-irreducible, then $(M, F)$ and $(M, G)$ have ProP-
erty A.

PROOF. Clearly $M$ is irreducible. Let $\pi_{1}(\partial M)=\langle x_{1},$ $y_{1},$ $x_{2},$ $y_{2},$ $\cdots$ , $x_{n},$ $y_{n}|$

$[x_{1}, y_{1}][x_{2}, y_{2}]\cdots[x_{n}, y_{n}]=1\rangle$ , where $x_{i}$ is represented by the loop $\partial\Delta_{i}$ and
$[x_{i}, y_{i}]=x_{i}^{-1}y_{i}^{-1}x_{i}y_{i}$ . Since the subgroup of $\pi_{1}(\partial M)$ generated by $x_{1},$ $x_{2},$

$\cdots$
$x_{k}$

$is_{s}^{Y}freely$ generated by them [12, Theorem 4.10], the inclusion homomorphism
$\pi_{1}(G)arrow\pi_{1}(\partial M)$ is injective. In the same way, the inclusion homomorphism
$\pi_{1}(c1(\partial M-G))arrow\pi_{1}(\partial M)$ is injective. Thus $(M, G)$ satisfies (1). For $(M, F)$ , (1)

is proved similarly. Properties (2) and (3) are obvious, and so the proof is
complete.

We call an n-string tangle atoroidal if its tangle space is atoroidal. Then
from this lemma, it is easy to see

PROPOSITION 3. If the n-stnng tangle $(B, t)$ is atoroidal, then $(M, F)$ and
$(M, G)$ have ProPerty $C’$ .

3. 2-string tangles.

In this section, tangles are 2-string.

DEFINITION. A tangle $(B, t)$ is prime if it has the following properties:
(i) Any 2-sphere in $B$ , which meets $t$ transversely in two points, bounds

in $B$ a ball meeting $t$ in an unknotted spanning arc;
(ii) $(B, t)$ is not trivial.
The condition (ii), in the presence of (i), is equivalent to the following

property:
(ii’) There is no disk in $B$ which separates the two arcs of $t$ .

DEFINITION. A prime tangle $(B, t)$ is simple if it has the following prop-
erty:

(iii) There is no incompressible torus embedded in $B-t$ .

An atoroidal tangle is simple, but the converse is not valid. Let $P$ be a
simple tangle [22, \S 2] with its tangle space as in Figure 1. The annulus $A$ is
incompressible, though not boundary-parallel.

Let $T=(B, \tau_{1}\cup\tau_{2})$ be a tangle and $N_{1}$ and $N_{g}$ be the disjoint regular neigh-
borhoods of $\tau_{1}$ and $\tau_{2}$ in $B$ respectively. Let $M=c1(B-N_{1}\cup N_{2})$ . Let $U_{i}$ be an
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Figure 1.

annulus $c1(\partial N_{i}-\partial B_{i}),$ $i=1,2$ , and $a$ and $b$ be the components of $\partial U_{1}$ and $c$ and
$d$ be those of $\partial U_{2}$ . Let $C$ be a disk in $\partial B$ containing $a$ and $c$ in its interior and
$e=\partial C$. Let $G=c1(C-N_{1}\cup N_{2}),$ $H=c1(\partial B-C\cup N_{1}\cup N_{2})$ , and $F=G\cup H$.

The purpose of this section is to prove the following theorems:

THEOREM 1. If $T$ is a pnme tangle, then $(M, F)$ has Property A.

THEOREM 2. If $T$ is a $\alpha mple$ tangle, then $(M, F)$ has Property $C’$ .
THEOREM 3. If $T$ is a simple tangle, then $(M, G)$ has Property $C’$ .
By Proposition 2, we have a sharper version of [22, Theorem 1], which is

already observed by Y. Nakanishi and A. Kawauchi (unpublished).

COROLLARY 3.1. Given two simPle tangles $T_{1}$ and $T_{2}$ , let $f:\partial T_{1}arrow\partial T_{2}$ be a
homeomorphjsm. Let $L$ be the link with one or two components in $S^{3}$ obtained
by identifyng the boundaries of the tangles ma $f$ . Then the extenor of $L$ is
(atoroidal) hyperbolic.

PROOF OF THEOREM 1. Clearly $U_{1}\cup U_{2}$ is incompressible in M. SuPpose
that $D$ is a disk in $M$ such that $\partial D\subset F$ and that $\partial D$ is not contractible in $F$.
Then for homological reasons, $\partial D$ divides $a\cup b$ from $c\cup d$ in $\partial B$ . This means
$D$ separates $\tau_{1}$ and $\tau_{2}$ , a contradiction. Thus $(M, F)$ satisfies (1).

Let $E$ be a disk in $M$ with $\partial E\cap F$ a single arc $\alpha$ . There are two pos-
sibilities.

Case 1. $\alpha$ joins $a$ to itself. $E$ can be isotoped so that $\partial E$ lies in $F$. By the
incompressibility of $F,$ $E$ is boundary-parallel.

Case 2. $\alpha$ joins $a$ to $b$ . Let $V$ be a 3-cell in $B$ consisting of the regular
neighborhood of $E$ and $N_{1}$ . Then the disk $c1(\partial V-\partial B)$ separates the two arcs,
a contradiction.

This establishes (3), completing the proof.

Now we may divide the proof of Theorem 2 into the next two lemmas:
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LEMMA 2. If $T$ is a $\alpha mple$ tangle, then $(M, F)$ satisfies (5).

PROOF. Suppose $A$ is an incompressible annulus in $M$ with $\partial A\cap\partial F=\emptyset$ .
Let $J_{1}$ and $J_{2}$ be the components of $\partial A$ . If either $J_{1}$ or $J_{2}$ is contractible in $\partial M$,

then by (1), $A$ is compressible. If $J_{1}$ is parallel to $a$ and $J_{2}$ to $b$ in $F$, then
isotop $A$ , keeping $J_{1}$ fixed, so that both $J_{1}$ and $J_{2}$ are parallel to $a$ in $F$. Thus
we may assume that $J_{1}$ and $J_{2}$ are parallel in $F$ for homological reasons. Then
$J_{1}$ and $J_{2}$ cobound the annulus $A’$ in $F$. Let $U$ be the result of isotoping the
torus $A\cup A’$ slightly into int $M$. Since $U$ is compressible in $M,$ $U$ bounds either
a solid torus or a knot exterior $Q$ . If $U$ bounds $Q$ , then the boundary of the
compressing disk is a meridian of $Q$ . Since $A’$ lies on $\partial B,$ $J_{1}$ is homotopic to
a meridian of $Q$ . This contradicts the incompressibility of $A$ in $M$, cf. [15,

Proof of Lemma 4.7]. Thus $U$ bounds a solid torus, and so $A\cup A’$ bounds a
solid torus $V$. Regard $B$ as embedded in a 3-sphere $S^{3}$ . Attach a 2-handle $h^{2}$

along $A’$ in $S^{3}$ . If $A$ is not parallel to $A’$ across $V$ , then $V\cup h^{2}$ is a punctured
lens space in $S^{3}$ , contradicting the Sch\"onflies theorem. This completes the
proof.

LEMMA 3. If $T$ is a $\alpha mple$ tangle, then $(M, F)$ satisfies (7).

PROOF. Suppose $D$ is a disk in $M$ which meets $F$ in the disjoint arcs $\alpha_{1}$

and $\alpha_{2}$ and meets $U_{1}\cup U_{2}$ in the disjoint arcs $\beta_{1}$ and $\beta_{2}$ .
Case 1. Both $’\alpha_{1}$ and $\alpha_{2}$ join $a$ to itself. Isotop $D$ so that $\partial D$ lies on $F$ .

The incompressibility of $F$ implies that $D$ is boundary-parallel.
Case 2. $\alpha_{1}$ joins $a$ to itself and $\alpha_{2}$ joins $a$ to $b$ . Isotop $D$ so that $\partial D\cap F$ is

a single arc joining $a$ to $b$ . This is impossible by (3).

Case 3. $\alpha_{1}$ joins $a$ to itself and $\alpha_{2}$ joins $b$ to itself. Let $\gamma_{1}$ (resp. $\gamma_{2}$ ) be an
arc in $a$ (resp. b) joining the points of $\alpha_{1}$ (resp. $\alpha_{2}$ ) such that the simple closed
curve $\alpha_{1}\cup\gamma_{1}$ (resp. $\alpha_{2}\cup\gamma_{2}$ ) bounds a 2-disk $\Delta_{1}$ (resp. $\Delta_{2}$ ) in $\partial B$ with $\Delta_{i}\cap(a\cup b)$

$=\gamma_{i},$ $i=1,2$ . If either $\Delta_{1}$ or $\Delta_{2}$ contains neither $c$ nor $d$ , then isotop $D$ so that
$\partial D$ lies on $F$. So we may assume that $c\subset\Delta_{1}$ and $d\subset\Delta_{2}$ . Let $E_{1}$ and $E_{2}$ be the
disks with $E_{1}\cup E_{2}=U_{1},$ $E_{1}\cap E_{2}=\beta_{1}\cup\beta_{2}$ , and $\partial E_{1}=\beta_{1}\cup\beta_{2}\cup\gamma_{1}\cup\gamma_{2}$ . Let $S$ be the
result of isotoping the sphere $E_{1}\cup D\cup\Delta_{1}\cup\Delta_{2}$ slightly into int $M$. Then $S$ bounds
a ball in $B$ meeting $\tau_{2}$ in an unknotted spanning arc. Thus $\tau_{1}$ and $\tau_{2}$ are parallel.
If they are unknotted, then $T$ is trivial, contradicting (ii); if knotted, then the
result of isotoping the torus $E_{2}\cup D\cup(F-\Delta_{1}\cup\Delta_{2})$ slightly into int $M$ is incom-
pressible, contradicting (iii).

Case 4. Both $\alpha_{1}$ and $\alpha_{2}$ join $a$ to $b$ . If $\beta_{1}$ joins $a$ to itself and $\beta_{2}$ joins $b$ to
itself, then isotop $D$ so that $\partial D$ lies on $F$. If both $\beta_{1}$ and $\beta_{2}$ join $a$ to $b$ , then
$\partial D$ is not homologically trivial in $M\cup N_{2}$ .

Case 5. Both $\alpha_{1}$ and $\alpha_{2}$ join $a$ to $c$ . Isotop $D$ so that $\partial D$ lies on $F$.
Case 6. $\alpha_{1}$ joins $a$ to $c$ and $\alpha_{2}$ joins $b$ to $d$ . Then two arcs are parallel,
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which is impossible as proved in Case 3.
This completes the proof.

PROOF OF THEOREM 3. Since $(M, F)$ satisfies (5), so does $(M, G)$ . Thus the
result follows from the following lemmas:

LEMMA 4. If $T$ is a Pnme tangle, then $(M, G)$ satisfies (1).

PROOF. By the proof of Lemma 1, the inclusion homomorphisms $\pi_{1}(G)arrow$

$\pi_{1}(F)$ and $\pi_{1}(c1(\partial M-G))=\pi_{1}(H\cup U_{1}\cup U_{2})arrow\pi_{1}(F)$ are injective. By the incom-
pressibility of $F$, both $G$ and $c1(\partial M-G)$ are incompressible.

LEMMA 5. If $T$ is a simple tangle, then $(M, G)$ satisfies (3).

PROOF. Let $D$ be a disk in $M$ with $\partial D\cap G$ a single arc $\alpha$ . We have four
cases.

Case 1. $\alpha$ joins $a$ to itself. This is reduced to Case 3 of the proof of
Lemma 3.

Case 2. $\alpha$ joins $a$ to $c$ . This is reduced to Case 6 of the proof of Lemma 3.
Case 3. $\alpha$ joins $a$ to $e$ . This is reduced to Case 2 in the proof of (3) for

$(M, F)$ in Theorem 1.
Case 4. $\alpha$ joins $e$ to itself. This is reduced to the proof of the incom-

pressibility of $F$.
This completes the proof.

LEMMA 6. If $T$ is a simple tangle, then $(M, G)$ satisfies (7).

PROOF. Suppose $D$ is a disk in $M$ which meets $G$ in the disjoint arcs $\alpha_{1}$ and
$\alpha_{2}$ . We have the cases:

Case 1. Both $\alpha_{1}$ and $\alpha_{2}$ join $a$ to itself.
Case 2. $\alpha_{1}$ joins $a$ to itself and $\alpha_{2}$ joins $a$ to $c$ .
Case 3. $\alpha_{1}$ joins $a$ to itself and $a_{2}$ joins $a$ to $e$ .
Case 4. $\alpha_{1}$ joins $a$ to itself and $\alpha_{2}$ joins $c$ to itself.
Case 5. $\alpha_{1}$ joins $a$ to itself and $\alpha_{2}$ joins $c$ to $e$ .
Case 6. $\alpha_{1}$ joins $a$ to itself and $\alpha_{2}$ joins $e$ to itself.
Case 7. Both $\alpha_{1}$ and $\alpha_{2}$ join $a$ to $c$ .
Case 8. $a_{1}$ joins $a$ to $c$ and $\alpha_{2}$ joins $a$ to $e$ .
Case 9. $\alpha_{1}$ joins $a$ to $c$ and $\alpha_{2}$ jolns $e$ to itself.
Case 10. Both $\alpha_{1}$ and $\alpha_{2}$ join $a$ to $e$ .
Case 11. $\alpha_{1}$ joins $a$ to $e$ and $\alpha_{2}$ joins $c$ to $e$ .
Case 12. $\alpha_{1}$ joins $a$ to $e$ and $\alpha_{2}$ jolns $e$ to itself.
Case 13. Both $\alpha_{1}$ and $\alpha_{2}$ join $e$ to itself.
For Cases 4, 5, 6 and 9, we can isotop $D$ so that $\partial D\cap G$ is a single arc,

reducing to (3) for $(M, G)$ . For other cases we suppose that $D$ cannot be iso-
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toped so that neither $\partial D\cap G$ nor $\partial D\cap H$ is a single arc.
For Cases 1 and 8, $\partial D$ is not homologically trivial in $M\cup N_{2}$ , for Cases 2

and 3, $\partial D$ is not homologically trivial in $M\cup N_{1}$ , and for Case 7, $\partial D$ is not
homologically trivial in either $M\cup N_{1}$ or $M\cup N_{2}$ . These are impossible.

For Cases 10 and 11, we can isotop $D$ so that $D$ meets $F$ in a pair of dis-
joint arcs, reducing to (7) for $(M, F)$ .

For Case 12, we can isotop $D$ so that $D$ meets $F$ in a single arc, reducing
to (3) for $(M, F)$ .

For Case 13, we can isotop $D$ so that $\partial D$ lies on $F$, reducing to the incom-
pressibility of $F$.

This completes the proof.

4. Links with Brunnian properties.

For an n-string tangle $T$ as in Figure 2, where two strands $\alpha_{i}$ and $\beta_{i}$

emerge from the same string for each $i$, we define the following: The numer-
ator of $T$ is the link with $n$ components as shown in Figure 3. We call the
n-string tangle as shown in Figure 4 strongly trivial. Given two n-string tangles
$T_{1}$ and $T_{2}$ , an n-string tangle obtained by juxtaposition as shown in Figure 5 is
called the tangle sum of $T_{1}$ and $T_{2}$ , which we denote by $T_{1}+T_{2}$ . We define the
join of $T_{1}$ and $T_{2}$ as the numerator of the tangle sum $T_{1}+T_{2}$ .

Let $S=\{i_{1}, i_{2}, \cdots , i_{k}\}$ with $1\leqq i=i_{1}<i_{2}<\cdots<i_{k}\leqq n$ . We define the trivial n-
string tangle $\Lambda S=(B, \lambda_{1}\cup\lambda_{2}\cup\cdots\cup\lambda_{n})$ , which is an n-braid, in the following

Figure 2. Figure 3.

. $T_{1}$ :. $T_{2}$ :

Figure 4. Figure 5.
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way: We set the subtangle $(B, \lambda_{1}\cup\cdots\cup\lambda_{i-1}\cup\lambda_{t+1}\cup\cdots\cup\lambda_{n})$ to be the strongly
trivial $(n-1)$-tangle. Let $L=L_{1}\cup L_{2}\cup\cdots\cup L_{n}$ be the numerator of $\Lambda S$ , where
$L_{j}$ corresponds to $\lambda_{j}$ . We set the string $\lambda_{i}$ so that $L_{i}$ represents the commutator
$[x_{i_{2}}, x_{i_{\}}, \cdots x_{i_{k}}]$ if $k\geqq 3$ and $x_{i_{2}}$ if $k=2$ in $\pi_{1}(S^{3}-L_{1}\cup\cdots UL_{i-1}\cup L_{i+1}\cup\cdots\cup L_{n})$ ,

which is the free group with basis $\{x_{1}, \cdots , x_{i-1}, x_{i+1}, \cdots , x_{n}\}$ with $x_{j}$ a meridian
of $L_{j}$ . Here $[x_{i_{2}}, \cdots x_{t_{j-1}}, x_{i_{j}}]=[[x_{i_{2}}, \cdots , x_{i_{j-1}}], x_{i_{j}}]$ . For example, Figure 6
is the trivial 6-string tangle $\Lambda\{1,3,4,6\}$ . Note that if $S=I_{n}$ , then $L$ is the
Brunnian link constructed by H. Brunn [3], see $[21, P\cdot 67]$ .

Figure 6.

Let $\Sigma S$ be the n-string tangle illustrated in Figure 7, where $P$ is the 2-
string simple tangle given in Figure 1 and the string $\sigma_{i}$ corresponds to $\lambda_{i}$ for
each $i$ .

Figure 7.
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PROPOSITION 4. If $n\geqq 2$, then the tangle $\Sigma I_{n}$ is atorozdal.

PROOF. We consider the tangle $\Lambda=(A, \mu_{1}\cup\mu_{2}\cup\cdots\cup\mu_{n})$ and the disks $D_{1}$ ,
$D_{2},$ $\cdots$ , $D_{n}$ in $\partial A$ as shown in Figure 8. Let $N_{:}$ be the disjoint tubular neigh-
borhoods of $\mu_{i}$ such that $N_{i}\cap\partial A\subset intD_{i}$ . Let $M=c1(A-N_{1}\cup N_{2}\cup\cdots\cup N_{n}),$ $F_{i}=$

$c1(D_{i}-N_{i})$ , and $F=F_{1}\cup F_{2}\cup\cdots\cup F_{n}$ . Then the tangle space of $\Sigma I_{n}$ is constructed
from $(M, F)$ and $U_{i=1}^{n}(X_{i}, G_{i})$ by identifying $F$ and $G_{i}$ , where $(X_{i}, G_{f})$ is the
copy of the 3-manifold pair (X, $G$ ) given in Figure 1.

:. $\Lambda I_{n}$ :.

Figure 8.

Since the tangle $P$ is simple, $(X_{i}, G_{i})$ has Property $C’$ by Theorem 3. Thus
by Proposition 2, it is sufficient to prove

LEMMA 7. $(M, F)$ has Property $B’$ .

PROOF. Let $U_{i}=c1(\partial N_{i}-D_{i})$ and $a_{i}$ and $b_{i}$ be the components of $\partial U_{i}$ . Let
$c_{i}=\partial D_{i}$ . Let $H=c1(\partial A-F)$ . Add a 2-handle $h_{i}^{2}$ to $M$ along a collar $C_{i}$ on $\partial D_{i}$

in $F_{i}$ for each $i$ . Further add a 3-handle $h^{3}$ to a component of the boundary of
$M\cup h_{1}^{2}\cup h_{2}^{2}\cup\cdots\cup h_{n}^{2}$ . Then $W=M\cup h_{1}^{2}\cup h_{2}^{2}\cup\cdots\cup h_{n}^{2}\cup h^{3}$ is the exterior of the
numerator of $\Lambda I_{n}$ , which is the Brunnian link. We break the proof into steps.

1. $F_{i}\cup U_{i}$ is incompressible. Suppose that $D$ is a disk in $M$ such that $\partial D\subset$

$F_{i}\cup U_{i}$ and that $\partial D$ is not contractible in $F_{i}\cup U_{i}$ . Isotop $D$ so that $\partial D$ misses
the collar $C_{i}$ . For homological reasons, $\partial D$ is a longitude of $L$ . This means
that the link $L$ is splittable, a contradiction.

2. $H$ is incompressible. Suppose that $D$ is a disk in $M$ such that $\partial D\subset H$.
There is a 2-disk $D’$ in $h$ } such that $D\cup D’$ is a 2-sphere in $W$. If $\partial D$ is not
contractible, then the link $L$ is splittable, a contradiction.
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3. $(M, F)$ has Property A. By Steps 1 and 2, $(M, F)$ satisfies (1), and (2)

is obvious.
Let $D$ be a disk in $M$ with $\partial D\cap F_{i}$ is a single arc $a$ . By the incompres-

sibility of $F_{i}\cup U_{i}$ , $\alpha$ joins $c_{i}$ to itself. For homological reasons, $\alpha$ does not
separate $a_{i}$ from $b_{i}$ in $F_{i}$ . So we can isotop $D$ so that $\partial D$ lies on $H$. By the
incompressibility of $H,$ $D$ is boundary-parallel.

4. $(M, F)$ satisfies (5). SupposeA is an incompressible annulus in $M$ with
$\partial A\cap\partial F=\emptyset$ . let $J_{1}$ and $J_{2}$ be the components of $\partial A$ . If either $J_{1}$ or $J_{2}$ is con-
tractible in $\partial M$, then by (1), $A$ is compressible.

Case 1. $J_{1}$ is parallel to $a_{j}$ in $F_{i}\cup U_{i}$ . For homological reasons, $J_{2}$ is parallel
to $a_{i}$ or $b_{i}$ . $A$ can be isotoped so that both $J_{1}$ and $J_{2}$ are parallel to $a_{i}$ in $F_{l}$ .

Case 2. $J_{1}$ lies on $H$. For homological reasons, we may assume that $J_{2}$ lies
on $H$. Let $E_{1}$ and $E_{2}$ be the disjoint disks in $h^{3}$ with $\partial E_{i}=J_{i}$ . If $J_{1}$ and $J_{l}$ are
not parallel, then the link $L$ is splitted by the 2-sphere $A\cup E_{1}\cup E_{2}$ , a contradic-
tion.

Therefore in any case, $J_{1}$ and $j_{2}$ may be assumed to be parallel in the same
component of $\partial M-\partial F$ . Since $M$ contains no incompressible tori, by a similar
proof to that of Lemma 2, $A$ is boundary-parallel. This completes the proof.

THEOREM 4. Let $\mathfrak{A}=\{S_{1}, S_{2}, \cdots , S_{r}\}$ be a famly of subsets of $I_{n}$ satisfying
the con&tion $(*)$ . Let $L=L_{1}\cup L_{2}\cup\cdots\cup L_{n}$ be the join of two coPies of the tangle
sum $\Sigma=\Sigma S_{1}+\Sigma S_{2}+\cdots+\Sigma S_{r}$ . Then $L$ has the Brunnian property of type $\mathfrak{A}$ such
that the extenor of each sublink $L_{S_{i}}$ is $(ator\alpha dal)$ hyperbolic.

PROOF. Let $\Sigma S_{j}=(B_{j}, \sigma_{1}^{j}\cup\sigma_{2}^{j}\cup\cdots\cup\sigma_{n}^{j})$ and $\Sigma=(B, \sigma_{1}\cup\sigma_{2}\cup\cdots\cup\sigma_{n})$ , where
$\sigma_{i}^{j}$ and $\sigma_{i}$ correspond to L. for each $i$ . For a subset $S=\{i_{1}, i_{2}, \cdots , i_{k}\}$ of $I_{n}$ ,
$j_{1}<i_{2}<\cdots<i_{k}$ , we denote the subtangles $(B_{j}, \sigma_{i_{1}}^{j}\cup\sigma_{i_{2}}^{j}\cup\cdots\cup\sigma_{i_{k}}^{j})$ and $(B,$ $\sigma_{i_{1}}\cup\sigma_{i_{2}}$

$\cup\cdots\cup\sigma_{t_{k}})$ by $(\Sigma S_{j})_{S}$ and $\Sigma_{s}$ , respectively. If $S_{j}\supsetneqq S\cap S_{j}$ , then the subtangle
$(\Sigma S_{j})_{S}$ is strongly trivial. So the subtangle $\Sigma_{s}$ is the sum of those subtangles
$(\Sigma S_{j})_{S}$ for which $S\supset S_{j}$ . Thus if $S\not\in \mathfrak{A}$ , then $L_{S}$ splits. Conversely in order to

Figure 9.
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prove that the exterior of the sublink $L_{s_{j}}$ is atoroidal, we have only to prove
that the exterior of $L$ is atoroidal assuming $S_{1}=I_{n}$ .

Since $\Sigma I_{n}$ is atoroidal, by induction, it is sufficient to prove that the tangle
sum $T+\Sigma S_{j}$ is atoroidal, where $T$ is an atoroidal n-string tangle. We may
suppose that $S_{j}=\{1,2, \cdots , k\}=I_{k},$ $2\leqq k\leqq n-1$ . Then $\Sigma S_{j}$ can be illustrated as
in Figure 9, and so $T+\Sigma S_{j}$ is atoroidal by Propositions 2 and 3. Now $\Sigma$ is
atoroidal again by Propositions 2 and 3, the exterior of $L$ , the join of two
copies of $\Sigma$ , is atoroidal. This completes the proof.

REMARK. In the above theorem, each component $L_{i}$ is unknotted, and thus
not hyperbolic. For any subset $S$ of $I_{n}$ , we can construct a link $L$ satisfying
the following property in addition to those of the theorem: A component $L_{i}$ is
hyperbolic if $i\in S$ and is unknotted if $i\not\in S$ .

Now we come upon a question. For what family of subsets $\mathfrak{A}$ of $l_{n}$ with
$\emptyset\not\in \mathfrak{A}$ , does there exist an n-component link $L$ with the property that the sub-
link $L_{S}$ is hyperbolic if and only if $S\in \mathfrak{A}$ ?

5. Alexander invariants of links.

We use the notation of Section 4.

THEOREM 5. Every link in $S^{3}$ is concordant to a link with the same Alexander
invariant whose exterior is (atoroidal) hyperboljc.

PROOF. Let $L_{0}$ be a link in $S^{3}$ . We may suppose that $L_{0}$ has bridge
number $n\geqq 2$ . It is known ([1, Section 5.1] or [21, p. 115]) that $L_{0}$ is con-
structed as follows: Let $T_{1}$ and $T_{2}$ be trivial n-string tangles. Then there is
a homeomorphism $f:\partial T_{1}arrow\partial T_{2}$ such that the link created by identifying the
boundaries of the tangles via $f$ is $L_{0}$ . Let $\Lambda$ and $\Omega$ be the n-string tangles ob-
tained from $\Sigma I_{n}$ by substituting the trivial 2-string tangle and the K-T
grabber of Figure 10 respectively, for each tangle $P$. Let $\Lambda_{1}$ and $\Lambda_{2}$ be the
copies of $\Lambda$ , and $\Omega_{1}$ and $\Omega_{2}$ those of $\Omega$ . Since $\Lambda$ is trivial, we can express
$(S^{3}, L_{0})$ as $\Lambda_{1}\bigcup_{h}\Lambda_{2}$ , where $h$ is a homeomorphism $\partial\Lambda_{1}arrow\partial\Lambda_{2}$ . Then the link $L_{1}$

Figure 10.
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obtained by $\Omega_{1}\bigcup_{h}\Omega_{2}$ is the desired link, where we identify $\partial\Lambda_{i}$ and $\partial\Omega_{i}$ in the
obvious manner. Since the K-T grabber is simple by [22, Lemma 3], we can
show that $\Omega$ is atoroidal in the same way as in the proof of Proposition 4, so $L_{1}$

has an atoroidal exterior by Propositions 2 and 3. On the other hand, $L_{1}$ is
obtained from $L_{0}$ by removing $2n$ trivial 2-string tangles and sewing back $2n$

K-T grabbers. Thus by [17, Lemma 3.3], $L_{1}$ is concordant to $L_{0}$ , and $L_{0}$ and
$L_{1}$ have the same Alexander invariant. This completes the proof.
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