J. Math. Soc. Japan

Vol. 38, No. 2, 1986

Extension of modifications of ample divisors on fourfolds: II

By Maria Lucia Fania

(Received Feb. 28, 1984)
(Revised Nov. 12, 1984)

Introduction.

In [4] I looked at the following problem: Let A be an ample divisor on a connected four dimensional projective manifold X. Assume that the Kodaira dimension of X is non negative. Suppose that A is the blow up of a projective manifold A^{\prime} with center R_{g} where R_{g} is a smooth curve of genus $\geqq 1$ which is contained in A^{\prime}. Does there exist a four dimensional manifold X^{\prime} such that A^{\prime} lies on X^{\prime} as a divisor and such that X is the blow up of X^{\prime} with center R_{g} ? The answer turned out to be positive.

It was hoped that the result would still hold true for the case when $g=0$, i. e., when $R_{g} \simeq \boldsymbol{P}^{1}$. I would like to express my sincere thank to the referee for providing a counterexample in the above case. I have included this counterexample later in this paper. Hence the main theorem has been modified to obtain the following:

Theorem. Let X be a connected four dimensional projective variety which is a local complete intersection with isolated singularities. Assume that the $\omega_{X^{-}}$ dimension of the invertible sheaf ω_{X} is non negative. Let A be a smooth ample divisor on X. Assume that A is the blow up of a smooth projective threefold A^{\prime} with center a smooth projective curve R_{g} of genus $g \geqq 0$ and let Y denote the exceptional divisor on A. Then
(i) if $g \geqq 0$ and $Y \not \not \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ there exists a four dimensional variety X^{\prime} which is a local complete intersection such that A^{\prime} lies in X^{\prime} as a divisor, such that X is the blow up of X^{\prime} along R_{g},
(ii) if $g=0$ and $Y \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ (i) is still true unless $N_{A / X, Y}=\mathcal{O}(a, 1)$ with $a \geqq 2$. In the case when $N_{A / X, Y}=\mathcal{O}(a, 1), a \geqq 2$ there exists a four dimensional CohenMacaulay variety X^{\prime} and a morphism $\phi: X \rightarrow X^{\prime}$ such that:
a) the following diagram commutes

where D is as in (1.1),
b) ϕ maps $X-D$ biholomorphically onto $X^{\prime}-\boldsymbol{P}^{1}$.

I would like to remark that the above result is still true for X with non negative logarithmic Kodaira dimension by a simple modification of the proof given in this paper.

I would also like to thank the referee for his helpful comments.
Last, but not the least, I would like to thank Professor Sommese for his helpful suggestions.

§ 0. Background material and notations.

In this section we will give the notation and as well some of the results that will be needed. Good references are [10] and [11].
(0.1) Given a sheaf \mathcal{S} of abelian groups on a topological space X, we denote the global sections of \mathcal{S} over X by $\Gamma(\mathcal{S})$ or by $H^{0}(\mathcal{S})$.
(0.2) Given a projective variety X we denote the structure sheaf by \mathcal{O}_{X}. Given a coherent sheaf \mathcal{S} on X, we let $h^{i}(\mathcal{S})$ or $h^{i}(X, \mathcal{S})$ denote $\operatorname{dim} H^{i}(X, \mathcal{S})$.
(0.3) Let X be a projective variety. Let D be an effective Cartier divisor on X. We denote by [D] the line bundle associated to D. If L is a line bundle, we denote the linear system of Cartier divisors associated to L by $|L|$. If $D \in|L|$ and C is a curve in $X, L \cdot C=D \cdot C=c_{1}(L)[C]$. We denote by K_{X} the canonical bundle of X if X is a smooth projective variety.
(0.4) Definition. A local complete intersection is a complex analytic space X with the following properties:
i) each irreducible component has the same dimension, say n,
ii) each point x has a neighborhood U with the property that it can be embedded in the ball in \boldsymbol{C}^{N} so that the defining ideal is generated by exactly $N-n$ equations.
(0.5) Let X be a local complete intersection. We denote by ω_{X} the dualizing sheaf of X which is a locally invertible sheaf, see [10] for a proof.
(0.5.1) Let X be as in (0.5). Let L be a line bundle on X. We define $\kappa(L, X)$ as in [13]

$$
\kappa(L, X)= \begin{cases}\max _{m \in N(L, X)}\left(\operatorname{dim} \phi_{\mid m L_{i}}(X)\right) & \text { if } N(L, X) \neq \varnothing \\ -\infty & \text { if } N(L, X)=\varnothing\end{cases}
$$

(0.6) Let X be a local complete intersection. We denote by $\kappa\left(\omega_{X}, X\right)$ the so called ω_{X}-dimension of the invertible sheaf ω_{X}. It is easy to see that $\kappa(X)$ $\leqq \kappa\left(\omega_{X}, X\right)$ where $\kappa(X)$ denotes the Kodaira dimension of X. For a singular variety X the Kodaira dimension of X is defined to be equal to the Kodaira dimension of a non singular model of X.

Let Y be a closed subvariety of X which is a local complete intersection. By $N_{Y / X}$ we denote the normal bundle of Y in X. If no confusion arises we will denote $N_{Y / X}$ by N_{Y}. If $Z \subset Y \subset X$ are closed subvariety of X, by $N_{Y / X, Z}$ we denote the normal bundle of Y in X restricted to Z.
(0.7) Let $p: X \rightarrow Y$ be a morphism and let \mathcal{S} be any locally free sheaf on Y of finite rank. We denote by $p^{*} \mathcal{S}$ the pullback of \mathcal{S}. If \mathcal{S} is a locally free sheaf on X of finite rank we denote by $p_{(i)} \mathcal{S}$ the i-th direct image sheaf of \mathcal{S} and sometimes we denote $p_{(0)} \mathcal{S}$, the zero direct image of \mathcal{S}, by $p_{*} \mathcal{S}$.
(0.8) By F_{r} with $r \geqq 0$ we denote the Hirzebruch surfaces which are the unique \boldsymbol{P}^{1}-bundle over \boldsymbol{P}^{1} with a section E satisfying $E \cdot E=-r$. If $r \geqq 1$ we denote by \tilde{F}_{r} the normal surface obtained from F_{r} by blowing down E. In case $r=1, \tilde{F}_{1}=\boldsymbol{P}^{2}$. If L is a line bundle in F_{r} then L is given by $[E]^{a} \otimes[f]^{b}$ where f is a fibre in F_{r} and $[E]^{a} \otimes[f]^{b}$ is ample if and only if $a>0$ and $b \geqq a r+1$. And $[E]^{a} \otimes[f]^{b}$ is spanned by global sections if and only if $a \geqq 0$ and $b \geqq a r$. Given a line bundle L on \tilde{F}_{r}, the pullback of L to F_{r} is of the form ($[E] \otimes$ $\left.[f]^{r}\right)^{a}$ for some integer a. If we think of F_{r} as the projective space bundle associated to $\mathcal{O}_{P 1} \oplus \mathcal{O}_{P 1}(-r)$ then a base for the group $\operatorname{Pic}\left(F_{r}\right)$ is $\mathcal{O}_{F_{r}}(1)$ and $p^{*} \Theta_{P 1}(1)$ where p is the projection map of F_{r} onto \boldsymbol{P}^{1}. Therefore a line bundle on F_{r} is of the form $\mathcal{O}_{F_{r}}(a) \otimes p^{*} \mathcal{O}_{P_{1}}(b)$ with a, b integers. For $r=0$, i.e., on $F_{0} \simeq$ $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ we denote a line bundle by $q^{*} \mathcal{O}_{\boldsymbol{P}_{1}}(a) \otimes p^{*} \mathcal{O}_{P_{1}}(b)$, where q is the other projection map of F_{0} onto \boldsymbol{P}^{1}. For simplicity we will use the notation $\mathcal{O}(a, b)$ to denote $q^{*} \Theta_{P 1}(a) \otimes p^{*} \Theta_{P_{1}}(b)$. See [10] for further details.
(0.9) Proposition. Let X be a local complete intersection with isolated singularities. Let $\mathcal{O}_{X, x}$ be the local ring at $x \in \operatorname{Sing}(X)$. We denote $\operatorname{Spec}\left(\mathcal{O}_{X, x}\right)$ by U and $\operatorname{Spec}\left(\mathcal{O}_{X, x}\right)-\{x\}$ by U_{x}. Then the group $\operatorname{Pic}\left(U_{x}\right)=0$.

For a proof combine Theorem 3.13 (ii), Exp. XI and Proposition (3.5) Exp. XI in [9].
(0.10) Kodaira Vanishing Theorem. Let X be an irreducible n-dimensional normal projective variety with isolated Cohen-Macaulay singularities. Let L be
an ample line bundle on X. Then

$$
H^{i}\left(X, \omega_{X} \otimes L\right)=0 \quad \text { for } i>0
$$

and if moreover X is Cohen-Macaulay

$$
H^{i}\left(X, L^{-1}\right)=0 \quad \text { for } i<n .
$$

Proof. The proof of this theorem is well known to experts but for the sake of completeness we will sketch the proof. Let $\pi: \tilde{X} \rightarrow X$ be a desingularization of X. Then there exists a spectral sequence with

$$
E_{2}^{p, q}(t)=H^{p}\left(X, \pi_{(q)} \mathcal{O}_{\tilde{X}}(-t A)\right) \Longrightarrow H^{p+q}\left(\tilde{X}, \pi^{*}(-t A)\right)
$$

for every $t \in \boldsymbol{Z}$, where $\pi_{(q)} \mathcal{O}_{\tilde{X}}(-t A)$ is as in (0.7). Note that $\pi_{(q)} \mathcal{O}_{\tilde{X}}$ is supported at $\operatorname{Sing}(X)$ for $q>0$. Thus

$$
\begin{aligned}
& E_{2}^{p, q}=0 \quad \text { for } q>0, p>0, \\
& \operatorname{dim} E_{2}^{p, 0}=h^{p}\left(X, \Theta_{X}(-t A)\right)=h^{n-p}\left(X, \omega_{X} \otimes[t A]\right)=0 \quad \text { for } p<n, t \gg 0 .
\end{aligned}
$$

Hence for $t \gg 0$ and $q<n-1, \operatorname{dim} E_{2}^{0, q}(t)=h^{q}\left(\tilde{X}, \pi^{*}(-t A)\right)=0$ by Ramanujam's vanishing theorem. This implies that

$$
\pi_{(q)} \mathcal{O}_{\tilde{X}}=0 \quad \text { for } q<n-1 .
$$

Then $\operatorname{dim} E_{2}^{p, o}(t) \leqq h^{p}\left(X, \pi^{*}(-t A)\right)=0$ for $p<n$ and for every $t>0$. In particular $H^{p}\left(X,[A]^{-1}\right)=0$ for $p<n$.

For generalizations of Kodaira Vanishing Theorem to singular varieties see also [21] Chapter VII.
§ 1.
(1.0) Throughout this section we assume X is a four dimensional connected projective variety which is a local complete intersection with isolated singularities. Let L be an ample line bundle on X with at least a smooth A in the linear system $|L|$. We also assume that the ω_{X}-dimension of the invertible sheaf ω_{X} is non negative, where ω_{X} denotes the dualizing sheaf of X.
(1.1) Lemma. Let X, A and L be as in (1.0). Assume that A is the blow up of a smooth projective threefold A^{\prime} with center a smooth curve R_{g} of genus $g \geqq 0$. Let Y be the exceptional divisor of such blow up and let f be a fibre of Y. Then there exists a divisor D on X such that:
a) D intersects A transversely in Y, and
b) $Y \subset D_{\text {reg }}$.

Proof. Note that A is a smooth divisor on X therefore there exists a
smooth neighborhood U of A in X. An easy computation shows that $h^{1}\left(\left.N_{f}\right|_{U}\right)$ $=0$ and that $h^{0}\left(\left.N_{f}\right|_{U}\right)>0$. Thus by Kodaira-Spencer deformation theory it follows that there exist deformations of f in U. Now let \mathscr{A} be the irreducible component of the Hilbert scheme of X which contains deformations of f in Y and of f in U. Since X is projective the deformations of f in U give rise to deformations of f in X. Let D be the closure of the union of all the deformations of f in X. The same argument as in [4], (1.1) shows that $\operatorname{dim} D=3$ and that D meets A transversely in Y and $Y \subset D_{\text {reg }}$.
(1.2) Lemma. The divisor D in (1.1) is a normal Cartier divisor.

Proof. Note that $D-\operatorname{Sing}(X)$ is a Cartier divisor on $X-\operatorname{Sing}(X)$. Assume that D goes through $x \in \operatorname{Sing}(X)$. Let $\mathcal{O}_{X, x}$ be the local ring at x. We denote $\operatorname{Spec}\left(\mathcal{O}_{X, x}\right)$ by U and $\operatorname{Spec}\left(\mathcal{O}_{X, x}\right)-\{x\}$ by U_{x}. By (0.9), $\operatorname{Pic}\left(U_{x}\right)=0$, thus $\left[D \cap U_{x}\right]$ $=\mathcal{O}_{U}$. Hence $\left[D \cap U_{x}\right]$ extends trivially to U, i.e., $[D \cap U]=\mathcal{O}_{U}$. Let $s \in$ $\Gamma\left(U, \mathcal{O}_{U}\right)$. Thus s is a germ of a holomorphic function at x, such that the zero locus of s is equal to $D \cap U$. Therefore D is defined, locally, by a single function which means that D is a Cartier divisor. Hence D is a local complete intersection. Moreover by (1.1), D intersects A transversely in Y and Y is smooth. Thus $\operatorname{Sing}(D) \subset D-A$. But A is an ample divisor on a variety of dimension 4 therefore D has isolated singular points. We now use Serre's criterion to conclude that D is normal.
(1.3) Lemma. Let X, A, L, Y and D be as in (1.1) and (1.2). Assume that the genus of R_{g} is zero. Then $\operatorname{Pic}(D) \simeq \operatorname{Pic}(Y)$.

Proof. The map $\operatorname{Pic}(D) \rightarrow \operatorname{Pic}(Y)$ is injective and the cokernel is torsion free. A proof of this was given by H. Hamm; for further details see [8]. Thus $\operatorname{Pic}(D)$ is either isomorphic to \boldsymbol{Z} or to $\boldsymbol{Z} \oplus \boldsymbol{Z}$. If $\operatorname{Pic}(D) \simeq \boldsymbol{Z}$ then using the fact that $Y \simeq F_{r}$ is ample in D and the adjunction formula it is straightforward to see that this case does not occur for $r \geqq 2$. If $r=0$ or 1 , let M be an ample generator of $\operatorname{Pic}(D)$. Thus $[Y]=M^{\alpha}$ for some $\alpha \geqq 1$ and so $\left.[Y]\right|_{Y} \simeq$ $\left.M^{\alpha}\right|_{Y} \simeq\left([E]^{a} \otimes[f]^{b}\right)^{\alpha}$ with $a>0$ and $b>a r$. Let \mathcal{L}^{\prime} be a very ample line bundle on A^{\prime}. Note $p^{*} \mathcal{L}^{\prime}$ extends to a unique line bundle \mathcal{L} on X with $\left.\mathcal{L}_{D}\right|_{Y}=$ $p^{*}\left(\left.\mathcal{L}^{\prime}\right|_{P_{1}}\right)$. Moreover $p^{*}\left(\left.\mathcal{L}^{\prime}\right|_{P 1}\right)=n[f]$ for some integer n and $\mathcal{L}_{D}=M^{\beta}$ for some β. Therefore $\left.\mathcal{L}_{D}\right|_{Y}=\left([E]^{a} \otimes[f]^{b}\right)^{\beta}$ and by the above $n[f] \simeq\left([E]^{a} \otimes[f]^{b}\right)^{\beta}$. Such an isomorphism is impossible. Thus $\operatorname{Pic}(D) \simeq \boldsymbol{Z} \oplus \boldsymbol{Z} \simeq \operatorname{Pic}(Y)$.
(1.4) Lemma. Let X, A, L, Y and D be as in (1.1) and (1.2). Let $p: Y \rightarrow R_{g}$ be the restriction of the blow up map $p: A \rightarrow A^{\prime}$. Then p extends to a holomorphic map \tilde{p} from D to R_{g} but for the case $Y \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and $\left.L\right|_{Y}=\mathcal{O}(a, 1)$ with $a>0$, where $\mathcal{O}(a, 1)$ is as in (0.8). Note that $p^{*} \mathcal{O}(1)$ is denoted by $\mathcal{O}(0,1)$ in the above exceptional case.

Proof. If $g \geqq 1$, then as in [4], (1.2) we see that the map p extends to a holomorphic map $\tilde{p}: D \rightarrow R_{g}$.

If $g=0$ then by (1.3) $\operatorname{Pic}(D) \simeq \operatorname{Pic}(Y)$. Consider in \boldsymbol{P}^{1} the line bundle $\mathcal{O}_{P_{1}}(1)$. Let $\tilde{\mathcal{L}}$ be the unique extension of $p^{*} \Theta_{P_{1}}(1)$ to D. Since the image of the map associated to the linear system $\left|p^{*} \mathcal{O}_{\boldsymbol{P} 1}(1)\right|$ is \boldsymbol{P}^{1} we can consider such a map as the map p without loss of generality. If the sections of $p^{*} \mathcal{O}_{\boldsymbol{P}_{1}}(1)$ extend to D as sections of $\tilde{\mathcal{L}}$ then the map p extends to a map $\tilde{p}: D \rightarrow \boldsymbol{P}^{1}$. To show that the sections extend, it is enough to prove that

$$
\begin{equation*}
H^{1}\left(Y,\left.\left(\tilde{\mathcal{L}} \otimes[Y]^{-t}\right)\right|_{Y}\right)=0 \quad \text { for all } t>0, \tag{*}
\end{equation*}
$$

see [18] or [6]. Since the divisor Y is ample on D we have that $\left.[Y]\right|_{Y}=$ $\mathcal{O}_{Y}(a) \otimes p^{*} \mathcal{O}_{P 1}(b)$ with $a>0$ and $b>a r$. Thus

$$
H^{1}\left(Y,\left.\tilde{\mathcal{I}}_{Y} \otimes[Y]\right|_{Y} ^{-t}\right)=H^{1}\left(Y, \mathcal{O}_{Y}(-t a) \otimes p^{*} P^{1}(1-b t)\right)
$$

It is an easy check to verify that the hypothesis of the Ramanujam's vanishing theorem for the divisor $\mathcal{O}_{Y}(t a) \otimes p^{*} \mathcal{O}_{\boldsymbol{P} 1}(t b-1)$ are satisfied except for the case where $Y=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and $\left.[Y]\right|_{Y}=\mathcal{O}(a, 1)$ and $t=1$. Therefore ($*$) follows from [16]. Thus the map p extends to D except for the case when $Y=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and [Y] $\left.\right|_{Y}$ $=\mathcal{O}(a, 1)$ with $a>0$. In the latter case, as we will see in (1.5), using the adjunction process we will be able to get a holomorphic map defined on D which, although is not an extension along the ruling of Y defined by p, is an extension along the "other" ruling. We denote by $q: Y \rightarrow \boldsymbol{P}^{1}$ the map that defines the "other" ruling, see (0.8).
(1.5) Lemma. Let X, A, L, Y and D be as in (1.1) and (1.2). Assume that $Y \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ and $N_{A / X, Y}=\mathcal{O}(a, 1)$ with $a \geqq 2$. Then the map q above extends to a holomorphic map $\phi: D \rightarrow \boldsymbol{\phi}(D)$ with $\boldsymbol{\phi}(D) \simeq \boldsymbol{P}^{1}$.

Proof. Let us denote by $[Y]_{D}$ the line bundle on D associated to the divisor Y. For convenience we call it M. If we tensor the residue sequence for Y with M^{2} we have

$$
\left.0 \longrightarrow \omega_{D} \otimes M^{2} \longrightarrow \omega_{D} \otimes M^{3} \longrightarrow\left(\omega_{D} \otimes M^{3}\right)\right|_{Y} \longrightarrow 0
$$

Note that

$$
\left.\left(\omega_{D} \otimes M^{3}\right)\right|_{Y}=\left.\left.\left(\omega_{D} \otimes M\right)\right|_{Y} \otimes M^{2}\right|_{Y}=\mathcal{O}(-2,-2) \otimes \mathcal{O}(2 a, 2)=\mathcal{O}(2 a-2,0)
$$

is spanned by global sections. Moreover $H^{1}\left(D, \omega_{D} \otimes M^{2}\right)=0$ by Kodaira vanishing theorem, see (0.10). Therefore

$$
\begin{equation*}
\Gamma\left(D, \omega_{D} \otimes M^{3}\right) \longrightarrow \Gamma\left(Y,\left.\left(\omega_{D} \otimes M^{3}\right)\right|_{Y}\right) \longrightarrow 0 \tag{*}
\end{equation*}
$$

Note that $\left.\left(\omega_{D} \otimes M^{3}\right)\right|_{Y}=\mathcal{O}(2 a-2,0)=q^{*} \mathcal{O}(2 a-2)$, where q is as in (1.4). Thus the rational map $\tilde{\phi}$ defined by $\left|\left(\omega_{D} \otimes M^{3}\right)\right|_{Y} \mid$ is $q: Y \rightarrow \boldsymbol{P}^{1}$ followed by the (2a-2)-
fold Veronese embedding of \boldsymbol{P}^{1}. By $(*)$ it is clear that the above map is the restriction of ϕ, the rational map defined by $\left|\omega_{D} \otimes M^{3}\right|$. Then from [6], (2.7) it follows that the map ϕ is a morphism and that $\phi(D)=\tilde{\phi}(Y)=\boldsymbol{P}^{1}$.

It should be noted that in the case $g=0$ and $Y \simeq F_{r}$ with $r \geqq 2$, Badescu's result [2] for smooth threefolds can be carried over for local complete intersections, but we prefer to give a much easier proof.
(1.6) Lemma. The triples $\left(D, R_{g}, \tilde{p}\right)$, where $g \geqq 0$, and $\left(D, \boldsymbol{P}^{1}, \boldsymbol{\phi}\right)$ are $\boldsymbol{P}^{2}-$ bundles.

Proof. As in [4], (1.3) the fibres F of \tilde{p} are smooth and isomorphic either to F_{r} with $r \geqq 0$ or to \boldsymbol{P}^{2}. Assume that $F \simeq F_{r}$. We will distinguish two cases:

1) Sing (X) is not contained in D. Since deformation theory is a local theory and X is a projective variety we can argue as in [4], (1.4) to show that $F \simeq F_{r}$ does not occur.
2) $\operatorname{Sing}(X)$ is contained in D. If $F \simeq F_{r}$ does not contain any $x \in \operatorname{Sing}(X)$ then as in 1) we see that $F \simeq F_{r}$ cannot occur. Assume that there exists $x \in$ $\operatorname{Sing}(X)$ with $x \in F_{r}$. We consider the deformations of the fibre f of F_{r} which misses the singular point x. Again as in 1), $F \simeq F_{r}$ does not occur.

Thus $F \simeq \boldsymbol{P}^{2}$. Moreover an easy numerical computation shows that the restriction of the line bundle L to \boldsymbol{P}^{2} is isomorphic to $\mathcal{O}_{P^{2}}(1)$. We now note that the map $\tilde{p}: D \rightarrow R_{g}$ is flat and that its fibres are smooth. Moreover the line bundle $\left.L\right|_{D}$ in D is such that its restriction to the fibres of \tilde{p} is isomorphic to $\mathcal{O}_{P 2}(1)$. Hence by Hironaka's theorem $\tilde{p}: D \rightarrow R_{g}$ is a P^{2}-bundle, see [12].

As for the triple ($D, \boldsymbol{P}^{1}, \phi$) we let F be the generic fibre of ϕ. Since F is smooth and $\left.\omega_{D}\right|_{F} \simeq K_{F}$ we get that ($\left.K_{F} \otimes M_{F}{ }^{8}\right) \simeq \mathcal{O}_{F}$. Therefore by KobayashiOchiai theorem it follows that $F \simeq \boldsymbol{P}^{2}$ and $M_{F} \simeq \mathcal{O}_{F}(1)$.

If F is singular then as in [4] (1.3) F is either F_{r} with $r \geqq 0$ or \tilde{F}_{r} with $r \geqq 1$. Assume that $F=\hat{F}_{r}$. We note that Y intersects F transversely in h, where h is a fibre of $\tilde{\phi}: Y \rightarrow \boldsymbol{P}^{1}$. Moreover $h\left(\simeq \boldsymbol{P}^{1}\right)$ is ample in F thus $h=$ $(E+r f)^{\alpha}$ for some integer $\alpha>0$. Since $F \cap Y=h$ we get that $N_{h / F}=N_{Y / D, h}$. Moreover $N_{h / F}=\mathcal{O}_{h}\left(r \alpha^{2}\right)$ and $N_{Y / D}=\left.M\right|_{Y}=\mathcal{O}(a, 1)$. Thus $\mathcal{O}_{h}\left(r \alpha^{2}\right)=\mathcal{O}_{h}(1)$, i.e., $r \alpha^{2}$ $=1$ from which it follows that $r=1$ and $\alpha=1$, i. e., $F=\boldsymbol{P}^{2}$.

Note that the map ϕ is flat and its generic fibre $F \simeq \boldsymbol{P}^{2}$ and there exists a line bundle on D whose restriction to F is the hyperplane bundle. Moreover all the fibres of ϕ are smooth. Hence by Hironaka's theorem $\phi: D \rightarrow \boldsymbol{P}^{1}$ is a $\boldsymbol{P}^{2}-$ bundle, see [12].

The following example that was pointed out to me by the referee shows that the map $p: Y \rightarrow R_{g}$ does not always extend in the case $g=0$ and $Y \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
(1.7) Example. Let M be any projective smooth fourfold and let $x \in M$ be
a point in M. Let M_{1} be the blow up of M with center x and let E_{1} be the exceptional divisor over x. Take a line l in $E_{1} \simeq \boldsymbol{P}^{3}$. Let X be the blow up of M_{1} with center l and let E_{2} be the resulting exceptional divisor. Denote by D the proper transform of E_{1} on X. Let H be a sufficiently ample line bundle on M and consider the linear system $\Lambda=\left|H_{X}-2 E_{1}\right|_{X}-E_{2} \mid$. By $\left.E_{1}\right|_{X}$ we denote the total transform, so $\left.E_{1}\right|_{X}=D+E_{2}$. It can be easily seen that the base locus of Λ is empty and [Λ] is ample. So any general member A of Λ is an ample smooth divisor on X. Set $Y=D \cap A$. Then via the map $D \rightarrow E_{1} \simeq \boldsymbol{P}^{3}, Y$ is mapped isomorphically onto a smooth quadric containing l. So $Y \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, l being a fibre. The normal bundle $N_{Y / A}$ is $[D]_{Y}=\left[E_{1}-E_{2}\right]$, so of bidegree $\mathcal{O}(-1,-2)$. Hence Y can be blown down to P^{1} in such a way that l is mapped to a point. However, D is not blown down smoothly to a curve.
(1.8) Theorem. Let X be a connected four dimensional projective variety which is a local complete intersection with isolated singularities. Assume that the ω_{X}-dimension of the invertible sheaf ω_{X} is non negative. Let A be a smooth ample divisor on X. Assume that A is the blow up of a smooth projective threefold A^{\prime} with center a smooth projective curve R_{g} of genus $g \geqq 0$ and let Y denote the exceptional divisor on A. Then
(i) if $g \geqq 0$ and $Y \not \approx \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ there exists a four dimensional variety X^{\prime} which is a local complete intersection such that A^{\prime} lies in X^{\prime} as a divisor, such that X is the blow up of Y^{\prime} along R_{g},
(ii) if $g=0$ and $Y \simeq \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$, (i) is still true unless $N_{A / X, Y}=\mathcal{O}(a, 1)$ with $a \geqq 2$. In the case when $N_{A / X, Y}=\mathcal{O}(a, 1), a \geqq 2$ there exists a four dimensional CohenMacaulay variety X^{\prime} and a morphism $\phi: X \rightarrow X^{\prime}$ such that:
a) the following diagram commutes

where D is as in (1.1),
b) $\boldsymbol{\phi}$ maps $X-D$ biholomorphically onto $X^{\prime}-\boldsymbol{P}^{1}$.

Proof. (i) The divisor D in (1.1) is smooth since it is a \boldsymbol{P}^{2}-bundle over a smooth curve, R_{g}. Note that a smooth Cartier divisor on a local complete intersection X does not go through the singular set of X. Moreover by (1.6) D is a \boldsymbol{P}^{2}-bundle over R_{g}, and $\left.[D]\right|_{D} \simeq \mathcal{O}_{P 2}(-1)$. Thus we can smoothly blow down D, see [15]. Therefore there exists a four dimensional variety X^{\prime} and a holomorphic map p from X to X^{\prime} such that X is the blow up of X^{\prime} along the curve R_{g}. Thus it is clear that X^{\prime} is a local complete intersection.
(ii) From (1.6) we see that for $g=0$ and $Y \simeq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ the map p extends
unless $N_{A / X, Y} \simeq \mathcal{O}(a, 1)$ with $a \geqq 2$. In this case we can find a morphism $\phi: D \rightarrow \boldsymbol{P}^{1}$ which is a \boldsymbol{P}^{2}-bundle over \boldsymbol{P}^{1}. Thus to prove (ii) it is enough to show that $N_{D / X, F}$ is negative for all fibres F of ϕ, see [3].

Let h denote the fibre of $\tilde{\phi}$. If we show that $N_{D / X, h}$ is negative it will follow that $N_{D / X, F}$ is negative. In fact since $F \simeq \boldsymbol{P}^{2}$ then $N_{D \mid X, P_{2}} \simeq \mathcal{O}_{P^{2}}(\beta)$ for some integer β. Thus $N_{D / X, h} \simeq \Theta_{h}(\alpha \beta)$ since $h \in\left|\mathcal{O}_{P 2}(\alpha)\right|$ with α being a positive integer. By assumption $N_{D / X, h}=\mathcal{O}_{h}(-n)$ with $n \in \boldsymbol{Z}, n>0$. Thus $\alpha \beta=-n$ which implies that β is negative, i.e., $N_{D / X, F}$ is negative.

We claim that $N_{D / X, h}$ is not spanned by global sections. Assume otherwise, i. e., $N_{D / X} \cdot h \geqq 0$. Since $F \cap Y=h$ and such intersection is transverse in D it follows that $N_{h / F}=N_{Y / D, h}=\left.\mathcal{O}(a, 1)\right|_{h}=\mathcal{O}_{h}(1)$. From $h \subset F \subset D$ we get

$$
0 \longrightarrow N_{h / F} \longrightarrow N_{h / D} \longrightarrow N_{F / D, h} \longrightarrow 0 .
$$

From the long exact cohomology sequence associated to it, it follows that $h^{1}\left(h, N_{h / D}\right)=0$. From $h \subset D \subset X$ we get the following sequence

$$
0 \longrightarrow N_{h / D} \longrightarrow N_{h / X} \longrightarrow N_{D / X, h} \longrightarrow 0 .
$$

Using the long exact cohomology sequence associated to the above sequence, the fact that $N_{D / X, h}$ is spanned by global sections and $h^{1}\left(N_{h / D}\right)=0$ we get that $N_{h / X}$ is spanned by global sections and that $h^{1}\left(N_{h / X}\right)=0$. Since $N_{h / X}$ is spanned by global sections, using Kodaira-Spencer theory, the deformations of h in X fill out a dense subset. An easy computation shows that this is impossible since $\kappa(X)$ $\neq-\infty$.

Clearly $\phi_{(\oplus)} \mathcal{O}_{X}=\mathcal{O}_{X^{\prime}}$ and $\phi_{(i)} \mathcal{O}_{X}=0$ for $i>0$. From this it follows that X^{\prime} is Cohen-Macaulay, for a proof see [5], (0.9).

References

[1] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., 146, Springer-Verlag, 1970.
[2] L. Badescu, On ample divisors: II, Proc. of the "Week of Algebraic Geometry" Bucharest 1980, Teubner, Leipzig, 1981.
[3] M. Cornalba, Two theorems on modifications of analytic spaces, Invent. Math., 20 (1973), 227-247.
[4] M. L. Fania, Extension of modifications of ample divisors on fourfolds, J. Math. Soc. Japan, 36 (1984), 107-120.
[5] M. L. Fania and A. J. Sommese, On the minimal models of hyperplane sections of Gorenstein threefolds, preprint.
[6] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan, 32 (1980), 153-169.
[7] A. Fujiki and S. Nakano, Supplement to "On the inverse of monoidal transformations", Publ. R.I. M. S. Kyoto Univ., 7 (1971/72), 637-644.
[8] W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic Geometry, Lecture Notes in Math., 862, Springer-Verlag, 1981.
[9] A. Grothendieck, Cohomologie locale des faisceaux coherentes et theoremes de Lefschetz locaux et globaux (SGA2), North-Holland.
[10] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[11] R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Math., 156, Springer-Verlag, 1970.
[12] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 1-54.
[13] S. Iitaka, On D-dimension of algebraic varieties, J. Math. Soc. Japan, 23 (1971), 356-373.
[14] D. Mumford, Pathologies III, Amer. J. Math., 89 (1967), 974-1025.
[15] S. Nakano, On the inverse of monoidal transformations, Publ. R.I. M. S. Kyoto Uuiv., 6 (1971), 483-501.
[16] C. P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc., 36 (1972), 41-51.
[17] A. J. Sommese, On the minimality of hyperplane sections of projective threefolds, J. Reine Angew. Math., 329 (1981), 16-41.
[18] A. J. Sommese, On manifolds that cannot be ample divisors, Math. Ann., 221 (1976), 55-72.
[19] A. J. Sommese, Hyperplane sections of projective surfaces: I - the adjunction mapping, Duke Math. J., 46 (1979), 377-401.
[20] A. J. Sommese, The birational theory of hyperplane sections of projective threefolds, manuscript (1985).
[21] B. Shiffman and A. J. Sommese, Vanishing theorems on complex manifolds, Progress in Mathematics, 56, Birkhäuser, Boston, 1985.
[22] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., 439, Springer-Verlag, 1975.

Maria Lucia Fania
Dipartimento di Matematica
Università degli Studi dell'Aquila
Via Roma, 33
67100 L'Aquila
Italy

