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lntroduction.

In [4] I looked at the following problem: Let $A$ be an ample divisor on a
connected four dimensional projective manifold $X$. Assume that the Kodaira
dimension of $X$ is non negative. Suppose that $A$ is the blow up of a projective
manifold $A’$ with center $R_{g}$ where $R_{g}$ is a smooth curve of genus $\geqq 1$ which is
contained in $A’$ . Does there exist a four dimensional manifold $X’$ such that $A’$

lies on $X’$ as a divisor and such that $X$ is the blow up of $X’$ with center $R_{g}$ ?
The answer turned out to be positive.

It was hoped that the result would still hold true for the case when $g=0$ ,
$i.e.$ , when $R_{g}\simeq P^{1}$ . I would like to express my sincere thank to the referee
for providing a counterexample in the above case. I have included this counter-
example later in this paper. Hence the main theorem has been modified to ob-
tain the following:

THEOREM. Let $X$ be a connected four dimensional projective vanety wluch
is a local complete intersection with isolated singulanties. Assume that the $\omega_{X^{-}}$

&mension of the invertible sheaf $\omega_{X}$ is non negative. Let $A$ be a smooth ample
ckmsor on X. Assume that $A$ is the blow up of a smooth projective threefold $A’$

with center a smooth projective curve $R_{g}$ of genus $g\geqq 0$ and let $Y$ denote the ex-
ceptional ckmsor on A. Then

(i) if $g\geqq 0$ and $Y\not\simeq P^{1}\cross P^{1}$ there exists a four dimenstonal vamety $X’$ which
is a local complete intersection such that $A’$ lies in $X$ ‘ as a dimsor, such that $X$

is the blow up of $X’$ along $R_{g}$ ,
(ii) if $g=0$ and $Y\simeq P^{1}\cross P^{1}(i)$ is still true unless $N_{A/X.Y}=0(a, 1)$ with $a\geqq 2$ .

In the case when $N_{A/X.Y}=O(a, 1),$ $a\geqq 2$ there exists a four dimensional Cohen-
Macaulay vanety $X’$ and a morphism $\phi:Xarrow X’$ such that:
a) the following diagram commutes
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$D-X$
$P^{1}\downarrow\downarrow-X$

’

where $D$ is as in (1.1),

b) $\phi$ maps $X-D$ biholomorphically onto $X’-P^{1}$ .
I would like to remark that the above result is still true for $X$ with non

negative logarithmic Kodaira dimension by a simple modification of the proof
given in this paper.

I would also like to thank the referee for his helpful comments.
Last, but not the least, I would like to thank Professor Sommese for his

helpful suggestions.

\S 0. Background material and notations.

In this section we will give the notation and as well some of the results that
will be needed. Good references are [10] and [11].

(0.1) Given a sheaf $S$ of abelian groups on a topological space $X$, we denote
the global sections of $S$ over $X$ by $\Gamma(S)$ or by $H^{0}(S)$ .

(0.2) Given a projective variety $X$ we denote the structure sheaf by $O_{X}$ .
Given a coherent sheaf $S$ on $X$, we let $h^{i}(S)$ or $h^{i}(X, S)$ denote dim $H^{i}(X, S)$ .

(0.3) Let $X$ be a projective variety. Let $D$ be an effective Cartier divisor
on $X$. We denote by $[D]$ the line bundle associated to $D$ . If $L$ is a line bundle,
we denote the linear system of Cartier divisors associated to $L$ by $|L|$ . If
$D\in|L|$ and $C$ is a curve in $X,$ $L\cdot C=D\cdot C=c_{1}(L)[C]$ . We denote by $K_{X}$ the
canonical bundle of $X$ if $X$ is a smooth projective variety.

(0.4) DEFINITION. A local complete intersection is a complex analytic
space $X$ with the following properties:

i) each irreducible component has the same dimension, say $n$ ,
ii) each point $x$ has a neighborhood $U$ with the property that it can be

embedded in the ball in $C^{N}$ so that the defining ideal is generated by exactly
$N-n$ equations.

(0.5) Let $X$ be a local complete intersection. We denote by $\omega_{X}$ the dualiz-
ing sheaf of $X$ which is a locally invertible sheaf, see [10] for a proof.

(0.5.1) Let $X$ be as in (0.5). Let $L$ be a line bundle on $X$. We define
$\kappa(L, X)$ as in [13]
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$\kappa(L, X)=\{\begin{array}{ll} \max_{m\in N(L,X)}(\dim\phi_{|mL|}(X)) if N(L, X)\neq\emptyset-\infty if N(L, X)=\emptyset.\end{array}$

(0.6) Let $X$ be a local complete intersection. We denote by $\kappa(\omega_{X}, X)$ the
so called $\omega_{X}$-dimension of the invertible sheaf $\omega_{X}$ . It is easy to see that $\kappa(X)$

$\leqq\kappa(\omega_{X}, X)$ where $\kappa(X)$ denotes the Kodaira dimension of $X$. For a singular
variety $X$ the Kodaira dimension of $X$ is defined to be equal to the Kodaira
dimension of a non singular model of $X$.

Let $Y$ be a closed subvariety of $X$ which is a local complete intersection.
By $N_{Y/X}$ we denote the normal bundle of $Y$ in $X$. If no confusion arises we
will denote $N_{Y/X}$ by $N_{Y}$ . If $Z\subset Y\subset X$ are closed subvariety of $X$, by $N_{Y/X,Z}$

we denote the normal bundle of $Y$ in $X$ restricted to $Z$ .

(0.7) Let $p:Xarrow Y$ be a morphism and let $S$ be any locally free sheaf on
$Y$ of finite rank. We denote by $p*s$ the pullback of $S$ . If $S$ is a locally free
sheaf on $X$ of finite rank we denote by $p_{(i)}s$ the i-th direct image sheaf of $S$

and sometimes we denote $p_{(0)}s$ , the zero direct image of $S$ , by $p_{*}s$ .
(0.8) By $F_{r}$ with $r\geqq 0$ we denote the Hirzebruch surfaces which are the

unique $P^{1}$-bundle over $P^{1}$ with a section $E$ satisfying $E\cdot E=-r$ . If $r\geqq 1$ we
denote by $\tilde{F}_{r}$ the normal surface obtained from $F_{r}$ by blowing down $E$ . In case
$r=1,$ $F_{1}=P^{2}$ . If $L$ is a line bundle in $F_{r}$ then $L$ is given by $[E]^{a}\otimes[f]^{b}$ where
$f$ is a fibre in $F_{r}$ and $[E]^{a}\otimes[f]^{b}$ is ample if and only if $a>0$ and $b\geqq ar+1$ .
And $[E]^{a}\otimes[f]^{b}$ is spanned by global sections if and only if $a\geqq 0$ and $b\geqq ar$ .
Given a line bundle $L$ on $fl_{r}$ the pullback of $L$ to F. is of the form $([E]\otimes$

$[f]^{r})^{a}$ for some integer $a$ . If we think of $F_{r}$ as the projective space bundle
associated to $O_{P^{1}}\oplus O_{P^{1}}(-r)$ then a base for the group Pic $(F_{r})$ is $O_{F_{r}}(1)$ and
$P^{*}\mathcal{O}_{P^{1}}(1)$ where $P$ is the projection map of $F_{r}$ onto $P^{1}$ . Therefore a line bundle on
$F_{r}$ is of the form $O_{F_{r}}(a)\otimes p*o_{P^{1}}(b)$ with $a,$

$b$ integers. For $r=0,$ $i.e.$ , on $F_{0}\simeq$

$P^{1}\cross P^{1}$ we denote a line bundle by $q^{*}O_{P^{1}}(a)\otimes p^{*}O_{P^{1}}(b)$ , where $q$ is the other
projection map of $F_{0}$ onto $P^{1}$ . For simplicity we will use the notation $O(a, b)$

to denote $q^{*}O_{p1}(a)\otimes p*o_{p1}(b)$ . See [10] for further details.

(0.9) PROPOSITION. Let $X$ be a local complete intersection with isolated
singulanties. Let $O_{X.x}$ be the local ring at $x\in Sing(X)$ . We denofe $Spec(O_{X.x})$

by $U$ and $Spec(O_{X,x})-\{x\}$ by $U_{x}$ . Then the group $Pic(U_{x})=0$ .
For a proof combine Theorem 3.13 (ii), $Exp$ . $Xl$ and Proposition (3.5) $Exp$ .

XI in [9].

(0.10) KODAIRA VANISHING THEOREM. Let $X$ be an irreducible n-dimensional
normal prOjectjve variety with isolated Cohen-Macaulay singulari ties. Let $L$ be
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an ample line bundle on X. Then

$H^{i}(X, \omega_{X}\otimes L)=0$ for $i>0$

and if moreover $X$ is Cohen-Macaulay

$H^{i}(X, L^{-1})=0$ for $i<n$ .

PROOF. The proof of this theorem is well known to experts but for the
sake of completeness we will sketch the proof. Let $\pi:\tilde{X}arrow X$ be a desingulari-
zation of $X$. Then there exists a spectral sequence with

$E_{2}^{pq}(t)=H^{p}(X, \pi_{(q)}O_{\tilde{X}}(-tA))\Rightarrow H^{p+q}(\tilde{X}, \pi^{*}(-tA))$

for every $t\in Z$ , where $\pi_{(q)}O_{\tilde{X}}(-tA)$ is as in (0.7). Note that $\pi_{(q)}O_{\tilde{X}}$ is $suPported$

at Sing(X) for $q>0$ . Thus

E\S $=0$ for $q>0,$ $p>0$ ,

dim E\S $0_{=h^{p}(X}O_{X}(-tA))=h^{n-p}(X, \omega_{X}\otimes[tA])=0$ for $p<n$ , $t\gg O$ .

Hence for $t\gg O$ and $q<n-1$ , dim $E_{2}^{0q}(t)=h^{Q}(\tilde{X}, \pi^{*}(-tA))=0$ by Ramanujam’s
vanishing theorem. This implies that

$\pi_{(q)}O_{\dot{X}}=0$ for $q<n-1$ .

Then dim $E_{2}^{p,0}(t)\leqq h^{p}(X, \pi^{*}(-tA))=0$ for $p<n$ and for every $t>0$ . In particular
$H^{p}(X, [A]^{-1})=0$ for $p<n$ . $\square$

For generalizations of Kodaira Vanishing Theorem to singular varieties see
also [21] Chapter VII.

\S 1.

(1.0) Throughout this section we assume $X$ is a four dimensional connected
projective variety which is a local complete intersection with isolated singularities.
Let $L$ be an ample line bundle on $X$ with at least a smooth $A$ in the linear
system $|L|$ . We also assume that the $\omega_{X}$-dimension of the invertible sheaf $\omega_{X}$

is non negative, where $\omega_{X}$ denotes the dualizing sheaf of $X$.
(1.1) LEMMA. Let $X,$ $A$ and $L$ be as in (1.0). Assume that $A$ is the blow

up of a smooth pr0jective threefold $A’$ with center a smooth curve $R_{g}$ of genus
$g\geqq 0$ . Let $Y$ be the excepti0nal &visor of such blow up and let $f$ be a fibre of
Y. Then there exists a divisor $D$ on $X$ such that:

a) $D$ intersects A transversely in $Y$ , and
b) $Y\subset D_{reg}$ .

PROOF. Note that $A$ is a smooth divisor on $X$ therefore there exists a
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smooth neighborhood $U$ of $A$ in $X$. An easy computation shows that $h^{1}(N_{f}|_{U})$

$=0$ and that $h^{0}(N_{f}|_{U})>0$ . Thus by Kodaira-Spencer deformation theory it fol-
lows that there exist deformations of $f$ in $U$ . Now let $\mathcal{H}$ be the irreducible
component of the Hilbert scheme of $X$ which contains deformations of $f$ in $Y$

and of $f$ in $U$ . Since $X$ is projective the deformations of $f$ in $U$ give rise to
deformations of $f$ in $X$. Let $D$ be the closure of the union of all the deforma-
tions of $f$ in $X$. The same argument as in [4], (1.1) shows that dim $D=3$ and
that $D$ meets $A$ transversely in $Y$ and $Y\subset D_{reg}$ . $\square$

(1.2) LEMMA. The divisor $D$ in (1.1) is a normal Cartier divisor.

PROOF. Note that $D-Sing(X)$ is a Cartier divisor on $X-Sing(X)$ . Assume
that $D$ goes through $x\in Sing(X)$ . Let $0_{x.x}$ be the local ring at $x$ . We denote
$Spec(O_{X.x})$ by $U$ and $Spec(O_{X.x})-\{x\}$ by $U_{x}$ . By (0.9), $Pic(U_{x})=0$ , thus $[D\cap U_{x}]$

$=O_{U}$ . Hence $[D\cap U_{x}]$ extends trivially to $U$ , $i.e.$ , $[D\cap U]=O_{U}$ . Let $s\in$

$\Gamma(U, O_{U})$ . Thus $s$ is a germ of a holomorphic function at $x$ , such that the zero
locus of $s$ is equal to $D\cap U$ . Therefore $D$ is defined, locally, by a single func-
tion which means tbat $D$ is a Cartier divisor. Hence $D$ is a local complete
intersection. Moreover by (1.1), $D$ intersects $A$ transversely in $Y$ and $Y$ is
smooth. Thus Sing $(D)\subset D-A$ . But $A$ is an ample divisor on a variety of
dimension 4 therefore $D$ has isolated singular points. We now use Serre’s
criterion to conclude that $D$ is normal. $\square$

(1.3) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.1) and (1.2). Assume that
the genus of $R_{g}$ is zero. Then $Pic(D)\simeq Pic(Y)$ .

PROOF. The map $Pic(D)arrow Pic(Y)$ is injective and the cokernel is torsion
free. $A$ proof of this was given by H. Hamm; for further details see [8].

Thus $Pic(D)$ is either isomorphic to $Z$ or to $Z\oplus Z$ . If Pic $(D)\simeq Z$ then using
the fact that $Y\simeq F_{r}$ is ample in $D$ and the adjunction formula it is straight-
forward to see that this case does not occur for $r\geqq 2$ . If $r=0$ or 1, let $M$ be
an ample generator of $Pic(D)$ . Thus $[Y]=M^{a}$ for some $\alpha\geqq 1$ and so $[Y]|_{Y}\simeq$

$M^{a}|_{Y}\simeq([E]^{a}\otimes[f]^{b})^{a}$ with $a>0$ and $b>ar$ . Let $X’$ be a very ample line bundle
on $A’$ . Note $P^{*}\mathcal{L}’$ extends to a unique line bundle $X$ on $X$ with $X_{D}|_{Y}=$

$p^{*}(\mathcal{L}’|_{P^{1}})$ . Moreover $P^{*}(X’|_{P^{1}})=n[f]$ for some integer $n$ and $\mathcal{L}_{D}=M^{\beta}$ for some
$\beta$ . Therefore $\mathcal{L}_{D}|_{Y}=([E]^{a}\otimes[f]^{b})^{\beta}$ and by the above $n[f]\simeq([E]^{a}\otimes[f]^{b})^{\beta}$ .
Such an isomorphism is impossible. Thus $Pic(D)\simeq Z\oplus Z\simeq Pic(Y)$ . $\square$

(1.4) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.1) and (1.2). Let $p:Yarrow R_{g}$

be the restnction of the blow up map $p:Aarrow A’$ . Then $p$ extends to a holo-
morphic map $\tilde{p}$ from $D$ to $R_{g}$ but for the case $Y\simeq P^{1}\cross P^{1}$ and $L|_{Y}=O(a, 1)$ with
$a>0$ , where $O(a, 1)$ is as in (0.8). Note that $p*o(1)$ is denoted by $O(O, 1)$ in the
above exceptional case.
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PROOF. If $g\geqq 1$ , then as in [4], (1.2) we see that the map $p$ extends to a
holomorphic map $\tilde{p}:Darrow R_{g}$ .

If $g=0$ then by (1.3) $Pic(D)\simeq Pic(Y)$ . Consider in $P^{1}$ the line bundle $O_{p1}(1)$ .
Let $\overline{\mathcal{L}}$ be the unique extension of $p^{*}\mathcal{O}_{P1}(1)$ to $D$ . Since the image of the map
associated to the linear system $|p*o_{P1}(1)|$ is $P^{1}$ we can consider such a map as
the map $P$ without loss of generality. If the sections of $p*o_{P1}(1)$ extend to $D$

as sections of $\overline{\mathcal{L}}$ then the map $P$ extends to a map $\tilde{p}:Darrow P^{1}$ . To show that
the sections extend, it is enough to prove that

$(*)$ $H^{1}(Y, (\overline{\mathcal{L}}\otimes[Y]^{-t})|_{Y})=0$ for all $t>0$ ,

see [18] or [6]. Since the divisor $Y$ is ample on $D$ we have that $[Y]|_{Y}=$

$O_{Y}(a)\otimes p*o_{P^{1}}(b)$ with $a>0$ and $b>ar$ . Thus

$H^{1}(Y,\overline{\mathcal{L}}_{Y}\otimes[Y]|_{Y}^{-t})=H^{1}(Y, O_{Y}(-ta)\otimes p_{P1}^{*}(1-bi))$ .

It is an easy check to verify that the hypothesis of the Ramanujam’s vanishing
theorem for the divisor $O_{Y}(ta)\otimes p*o_{P^{1}}(tb-1)$ are satisfied except for the case
where $Y=P^{1}\chi P^{1}$ and $[Y]|_{Y}=\mathcal{O}(a, 1)$ and $t=1$ . Therefore $(*)$ follows from [16].

Thus the map $P$ extends to $D$ except for the case when $Y=P^{1}\cross P^{1}$ and $[Y]|_{Y}$

$=O(a, 1)$ with $a>0$ . In the latter case, as we will see in (1.5), using the adjunc-
tion process we will be able to get a holomorphic map defined on $D$ which,
although is not an extension along the ruling of $Y$ defined by $p$ , is an exten-
sion along the “other” ruling. We denote by $q:Yarrow P^{1}$ the map that defines
the “other” ruling, see (0.8). $\square$

(1.5) LEMMA. Let $X,$ $A,$ $L,$ $Y$ and $D$ be as in (1.1) and (1.2). Assume that
$Y\simeq P^{1}\cross P^{1}$ and $N_{A/X.Y}=O(a, 1)$ with $a\geqq 2$ . Then the map $q$ above extends to a
holomorphic map $\phi:Darrow\phi(D)$ with $\phi(D)\simeq P^{1}$ .

PROOF. Let us denote by $[Y]_{D}$ the line bundle on $D$ associated to the divisor
$Y$ . For convenience we call it $M$. If we tensor the residue sequence for $Y$

with $M^{2}$ we have

$0arrow\omega_{D}\otimes M^{2}arrow\omega_{D}\otimes M^{3}arrow(\omega_{D}\otimes M^{3})|_{Y}arrow 0$ .
Note that

$(\omega_{D}\otimes M^{3})|_{Y}=(\omega_{D}\otimes M)|_{Y}\otimes M^{2}|_{Y}=\mathcal{O}(-2, -2)\otimes O(2a, 2)=O(2a-2,0)$

is spanned by global sections. Moreover $H^{1}(D, \omega_{D}\otimes M^{2})=0$ by Kodaira vanish-
ing theorem, see (0.10). Therefore

$(*)$ $\Gamma(D, \omega_{D}\otimes M^{3})arrow\Gamma(Y, (\omega_{D}\otimes M^{3})|_{Y})arrow 0$ .

Note that $(\omega_{D}\otimes M^{3})|_{Y}=O(2a-2, O)=q^{*}O(2a-2)$ , where $q$ is as in (1.4). Thus
the rational map $\tilde{\phi}$ defined by $|(\omega_{D}\otimes M^{3})|_{Y}|$ is $q:Yarrow P^{1}$ followed by the $(2a-2)-$
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fold Veronese embedding of $P^{1}$ . By $(*)$ it is clear that the above map is the
restriction of $\phi$ , the rational map defined by $|\omega_{D}\otimes M^{3}|$ . Then from [6], (2.7)

it follows that the map $\phi$ is a morphism and that $\phi(D)=\tilde{\phi}(Y)=P^{1}$ . $\square$

It should be noted that in the case $g=0$ and $Y\simeq F_{r}$ with $r\geqq 2$ , Badescu’s
result [2] for smooth threefolds can be carried over for local complete intersec-
tions, but we prefer to give a much easier proof.

(1.6) LEMMA. The tnples $(D, R_{g}, \beta)$ , where $g\geqq 0$ , and $(D, P^{1}, \phi)$ are $P^{2}-$

bundles.

PROOF. As in [4], (1.3) the fibres $F$ of $\tilde{p}$ are smooth and isomorphic either
to $F_{r}$ with $r\geqq 0$ or to $P^{2}$ . Assume that $F\simeq F_{r}$ . We will distinguish two cases:

1) Sing(X) is not contained in $D$ . Since deformation theory is a local
theory and $X$ is a projective variety we can argue as in [4], (1.4) to show that
$F\simeq F_{r}$ does not occur.

2) Sing(X) is contained in $D$ . If $F\simeq F_{r}$ does not contain any $x\in Sing(X)$

then as in 1) we see that $F\simeq F_{r}$ cannot occur. Assume that there exists $x\in$

Sing(X) with $x\in F_{r}$ . We consider the deformations of the fibre $f$ of $F_{r}$ which
misses the singular point $x$ . Again as in 1), $F\simeq F_{r}$ does not occur.

Thus $F\simeq P^{2}$ . Moreover an easy numerical computation shows that the restric-
tion of the line bundle $L$ to $P^{2}$ is isomorphic to $O_{P^{2}}(1)$ . We now note that the
map $\tilde{p}:Darrow R_{g}$ is flat and that its fibres are smooth. Moreover the line bundle
$L|_{D}$ in $D$ is such that its restriction to the fibres of $\tilde{p}$ is isomorphic to $O_{P^{2}}(1)$ .
Hence by Hironaka’s theorem $\tilde{p}:Darrow R_{g}$ is a $P^{2}$-bundle, see [12].

As for the triple $(D, P^{1}, \phi)$ we let $F$ be the generic fibre of $\phi$ . Since $F$ is
smooth and $\omega_{D}|_{F}\simeq K_{F}$ we get that $(K_{F}\otimes M_{F}^{3})\simeq O_{F}$. Therefore by Kobayashi-
Ochiai theorem it follows that $F\simeq P^{2}$ and $M_{F}\simeq O_{F}(1)$ .

If $F$ is singular then as in [4] (1.3) $F$ is either $F_{r}$ with $r\geqq 0$ or $F_{r}$ with
$r\geqq 1$ . Assume that $F=\tilde{F}_{r}$ . We note that $Y$ intersects $F$ transversely in $h$ ,

where $h$ is a fibre of $\tilde{\phi}:Yarrow P^{1}$ . Moreover $h(\simeq P^{1})$ is ample in $F$ thus $h=$

$(E+rf)^{\alpha}$ for some integer $\alpha>0$ . Since $F\cap Y=h$ we get that $N_{h/F}=N_{Y/D.h}$ .
Moreover $N_{h/F}=O_{h}(r\alpha^{2})$ and $N_{Y/D}=M|_{Y}=O(a, 1)$ . Thus $O_{h}(r\alpha^{2})=O_{h}(1),$ $i.e.,$ $r\alpha^{2}$

$=1$ from which it follows that $r=1$ and $\alpha=1,$ $i$ . $e.,$ $F=P^{2}$ .
Note that the map $\phi$ is flat and its generic fibre $F\simeq P^{2}$ and there exists a

line bundle on $D$ whose restriction to $F$ is the hyperplane bundle. Moreover all
the fibres of $\phi$ are smooth. Hence by Hironaka’s theorem $\phi:Darrow P^{1}$ is a $P^{2}-$

bundle, see [12]. $\square$

The following example that was pointed out to me by the referee shows
that the map $p:Yarrow R_{g}$ does not always extend in the case $g=0$ and $Y\simeq P^{1}\cross P^{1}$ .

(1.7) EXAMPLE. Let $M$ be any projective smooth fourfold and let $x\in M$ be
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a point in $M$. Let $M_{1}$ be the blow up of $M$ with center $x$ and let $E_{1}$ be the
exceptional divisor over $x$ . Take a line $l$ in $E_{1}\simeq P^{3}$ . Let $X$ be the blow up of
$M_{1}$ with center 1 and let $E_{2}$ be the resulting exceptional divisor. Denote by $D$

the proper transform of $E_{1}$ on $X$. Let $H$ be a sufficiently ample line bundle
on $M$ and consider the linear system $\Lambda=|H_{X}-2E_{1}|_{X}-E_{2}|$ . By $E_{1}|_{X}$ we denote
the total transform, so $E_{1}|_{X}=D+E_{2}$ . It can be easily seen that the base locus

of $\Lambda$ is empty and $[\Lambda]$ is ample. So any general member $A$ of $\Lambda$ is an ample

smooth divisor on $X$ . Set $Y=D\cap A$ . Then via the map $Darrow E_{1}\simeq P^{3},$ $Y$ is mapped
isomorphically onto a smooth quadric containing 1. So $Y\simeq P^{1}\cross P^{1},$ $t$ being a
fibre. The normal bundle $N_{Y/A}$ is $[D]_{Y}=[E_{1}-E_{2}]$ , so of bidegree $O(-1, -2)$ .
Hence $Y$ can be blown down to $P^{1}$ in such a way that $l$ is mapped to a point.
However, $D$ is not blown down smoothly to a curve.

(1.8) THEOREM. Let $X$ be a connected four dimensional projective vanety
which is a local complete intersection with isolated srngulanties. Assume that the
$\omega_{X}$-dimenston of the invertible sheaf $\omega_{X}$ is non negative. Let $A$ be a smooth
ample divisor on X. Assume that $A$ is the blow up of a smooth projective three-
fold $A’$ with center a smooth projecfive curve $R_{g}$ of genus $g\geqq 0$ and let $Y$ denote
the exceptional divisor on A. Then

(i) if $g\geqq 0$ and $Y\not\simeq P^{1}\cross P^{1}$ there exists a four dimenstonal vanety $X’$ which
is a local comPlete intersection such that $A’$ lies in $X’$ as a dimsor, such that $X$

is the blow up of $Y’$ along $R_{g}$ ,
(ii) if $g=0$ and $Y\simeq P^{1}\cross P^{1},$ $(i)$ is still true unless $N_{A/X,Y}=O(a, 1)$ with $a\geqq 2$ .

In the case when $N_{A/X,Y}=O(a, 1),$ $a\geqq 2$ there exists a four dimensional Cohen-
Macaulay variety $X’$ and a morpfusm $\phi:Xarrow X’$ such that:
a) the following &agram commutes

$Darrow X$

$|$ $\downarrow$

$P^{1}-X’$
where $D$ is as in (1.1),

b) $\phi$ maps $X-D$ biholomorphically onto $X’-P^{1}$ .

PROOF. (i) The divisor $D$ in (1.1) is smooth since it is a $P^{2}$-bundle over a
smooth curve, $R_{g}$ . Note that a smooth Cartier divisor on a local complete inter-
section $X$ does not go through the singular set of $X$ . Moreover by (1.6) $D$ is a
$P^{2}$-bundle over $R_{g}$ , and $[D]|_{D}\simeq O_{P^{2}}(-1)$ . Thus we can smoothly blow down $D$ ,
see [15]. Therefore there exists a four dimensional variety $X’$ and a holomor-
phic map $p$ from $X$ to $X’$ such that $X$ is the blow up of $X’$ along the curve
$R_{g}$ . Thus it is clear that $X’$ is a local complete intersection.

(ii) From (1.6) we see that for $g=0$ and $Y\simeq P^{1}\cross P^{1}$ the map $p$ extends
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unless $N_{A/X.Y}\simeq O(a, 1)$ with $a\geqq 2$ . In this case we can find a morphism $\phi:Darrow P^{1}$

which is a $P^{2}$-bundle over $P^{1}$ . Thus to prove (ii) it is enough to show that
$N_{D/X,F}$ is negative for all fibres $F$ of $\phi$ , see [3].

Let $h$ denote the fibre of $\phi$ . If we show that $N_{D/X,h}$ is negative it will
follow that $N_{D/X,F}$ is negative. In fact since $F\simeq P^{2}$ then $N_{D/X.P^{2}}\simeq \mathcal{O}_{P^{2}}(\beta)$ for
some integer $\beta$ . Thus $N_{D/X,h}\simeq O_{h}(\alpha\beta)$ since $h\in|O_{P^{2}}(\alpha)|$ with $\alpha$ being a posi-
tive integer. By assumption $N_{D/X,h}=O_{h}(-n)$ with $n\in Z,$ $n>0$ . Thus $\alpha\beta=-n$

which implies that $\beta$ is negative, $i$ . $e.,$ $N_{D/X,F}$ is negative.
We claim that $N_{D/X.h}$ is not spanned by global sections. Assume otherwise,

$i$ . $e.,$ $N_{D/X}\cdot h\geqq 0$ . Since $F\cap Y=h$ and such intersection is transverse in $D$ it fol-
lows that $N_{h/F}=N_{Y/D,h}=\mathcal{O}(a, 1)|_{h}=\mathcal{O}_{h}(1)$ . From $h\subset F\subset D$ we get

$0arrow N_{h/F}arrow N_{h/D}arrow N_{F/D.h}arrow 0$ .

From the long exact cohomology sequence associated to it, it follows that
$h^{1}(h, N_{h/D})=0$ . From $h\subset D\subset X$ we get the following sequence

$0arrow N_{h/D}arrow N_{h/X}arrow N_{D/X.h}arrow 0$ .
Using the long exact cohomology sequence associated to the above sequence, the
fact that $N_{D/X,h}$ is spanned by global sections and $h^{1}(N_{h/D})=0$ we get that $N_{h/X}$

is spanned by global sections and that $h^{1}(N_{h/X})=0$ . Since $N_{h/X}$ is spanned by
global sections, using Kodaira-Spencer theory, the deformations of $h$ in $X$ fill
out a dense subset. An easy computation shows that this is impossible since $\kappa(X)$

$\neq-\infty$ .
Clearly $\phi_{(\cdot)}0_{X}=0_{X’}$ and $\phi_{(i)}0_{X}=0$ for $i>0$ . From this it follows that $X’$

is Cohen-Macaulay, for a proof see [5], (0.9). $\square$
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