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0. Introduction.

Let $G$ be a finite group. A G-manifold and a G-map are understood to be
a smooth G-manifold and a continuous G-map respectively in this paper.

Smith equivalence has recently been studied by T. Petrie and others $(e.g$ .
[11], [19], [28]). The result in [11] is roughly described as follows. Let $G$ be
a finite cyclic group with at least four distinct primes dividing $|G|$ (the order
of $G$ ). If complex G-modules $V$ and $W$ satisfy certain conditions concerning (i)

dimension, (ii) restriction to Sylow subgroups and (iii) G-signature, then we
have a rational homotopy sphere $f;\Sigmaarrow S(R\oplus V\oplus U)$ with G-action such that
$\Sigma^{G}=\{p, q\},$ $T_{p}\Sigma\cong V\oplus U$ and $T_{q}\Sigma\cong W\oplus U$ as real G-modules. Here $R$ is the 1-
dimensional real G-module with trivial action and $U$ a complex G-module.

The purpose of this paper is to consider a similar problem for an oriented
G-manifold instead of $S(R\oplus V\oplus U)$ under several hypotheses.

Let $X$ be a closed l-connected oriented G-manifold with a finite number of
G-fixed points $x_{1},$

$\cdots$ $x_{n}$ . We denote by $V_{i}$ the oriented tangential G-representa-
tions at $x_{i}$ respectively for $i=1,$ $\cdots$ $n$ . Let $\Lambda$ be the field of rational numbers
$Q$ or the ring of integers $Z$ . Let $W_{1},$ $\cdots W_{n}$ be oriented G-modules. Then we
have the problem:

$(P\Lambda)$ Give sufficient conditions on $W_{1},$ $\cdots W_{n}$ for the existence of a closed
l-connected oriented G-manifold $Y$ and a degree one G-map $f:Yarrow X$ satisfying
the following properties,

(0.1) (i) $f$ induces an isomorphism $f_{*}:$ $H_{*}(Y_{j}\Lambda)arrow H_{*}(X;\Lambda)$ . (ii) $Y$ has G-
fixed points $y_{1},$ $\cdots$ $y_{n}$ , $n=card(Y^{G})$ , such that $f(y_{i})=x_{i}$ and $T_{y_{i}}Y\cong W_{i}$ as
oriented real G-modules for $i=1,$ $\cdots$ $n$ .

This work was partially supported by Grant-in-Aid for Scientific Research (No.

59740034), Ministry of Education, Science and Culture.



240 M. MORIMOTO

In the present paper we give some sufficient conditions on $W_{1},$
$\cdots,$

$W_{n}$ to
get $f:Yarrow X$ satisfying above (0.1).

THEOREM A. Let $G$ be a finite: abelian group of odd order and let $X$ be a
closed l-connected onented G-manifold with a finite number of G-fixed points
$x_{1},$

$\cdots$
$x_{n}$ . Supp0se $|G|$ is dimsible by at leas $t$ two distinct primes and dim $X>5$ ,

and further
(0.2) $X^{H}=X^{G}$ for any subgroup $H$ not of pnme p0wer order, and

(0.3) (Gap $hy\Gamma$othesis) 2 dim $X^{g}<\dim X$ for any $g\in G-\{1\}$ .

Let $V_{i}$ be the onented tangential G-representations at $x_{i}$ . If oriented real G-
modules $W_{1},$ $\cdots$ $W_{n}$ satisfy the conditions (0.4) and (0.5) below, then we have a
closed l-connected oriented G-manifold $Y$ and a degree one G-map $f:Yarrow X$ satisfy-
ing (0.1) with coefficients $\Lambda=Q$ ;

(0.4) (Restriction condition) $res_{P}W_{i}\cong res_{P}V_{i}$ as oriented real P-modules for
all $i=1,$ $\cdots$ $n$ and all Sylow subgroups $P$ of $G$ .

(0.5) (Signature condition) $\sum_{i=1}^{n}\nu(W_{i})(g)=\sum_{i=1}^{n}\nu(V_{i})(g)$ for all elements $g$ of $G$

whose orders are dimstble by at least two distinct pnmes. For the definition of
$\nu(-)(g)$ see Section 1.

This theorem is generalized to Theorem $C$ in Section 1.
Next, we consider the case $\Lambda=Z$ under the assumption that $G$ is a finite

cyclic group of odd order and G-actions are semi-free. We shall be concerned
with a special case of G-homotopy equivalences. If $f:Yarrow X$ is a G-homotopy
equivalence, then by K. Kawakubo [17] $S(T_{y}Y)$ is G-homotopy equivalent to
$S(T_{f(y)}X)$ for any $y\in Y$ , and hence the Whitehead torsion $\tau(T_{y}Y, T_{f(y)}X)$ is
defined (see Section 7). We note that if the G-actions on $S(V_{i})$ and $S(W_{i})$ are
free then (0.4) implies that $S(W_{t})$ is oriented $G$-homotopy equivalent to $S(V_{i})$ .

THEOREM B. Let $G$ be as above and let $X$ be a closed l-connected onented
G-manifold with semi-free action. Supp0se dim $X>5$ and $X^{G}=\{x_{1}, \cdots x_{n}\}$ . Let
$V_{i}$ be the onented tangential G-representations at $x_{i}$ . If onented real G-modules
$W_{1},$ $\cdots$ $W_{n}$ satisfy (0.4), (0.5) and

(0.6) $\sum_{i=1}^{n}[\tau(W_{i}, V_{i})]=0$ in $Wh(G)/2Wh(G)$ ,

then we have a closed l-connected onented G-manifold $Y$ with semi-free action and
a degree one G-homotopy equivalence $f;Yarrow X$ satisfying (0.1) with $coeJficients$

$\Lambda=Z$ and the further property:

(0.7) The underlying manifold of $Y$ is diffeomorphjc to that of $X$ .
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For example we can use Theorem $B$ to show the following assertion to
which we do not refer in detail in the present paper.

Let $G$ be a finite cyclic group whose order is odd and divisible by at least
two distinct primes, and let $W$ be a complex G-module of odd dimension $n>4$ .
Suppose the corresponding G-structure $P(W)$ on complex projective $(n-1)$-space
$CP^{n-1}$ is semi-free and has isolated fixed points $x_{1},$

$\cdots$ , $x_{n}$ . Then we have a
smooth semi-free G-structure $Y$ on $CP^{n-1}$ satisfying the properties:

(i) $Y/G$ is homotopy equivalent to $P(W)/G$ .
(ii) $Y^{G}=\{y_{1}, \cdots y_{n}\}$ and $T_{y_{i}}Y\cong T_{x}{}_{\iota}P(W)$ as oriented real G-modules.
(iii) $Y$ is not G-homotopy equivalent to $P(W)$ .
Our main tool is the G-surgery theory employed in [11] and [27], with

some modifications. In order to construct a quasi-normal map (for the definition
see Section 2) we give an Atiyah-type theorem in Section 5 and introduce the
notion of a resolving map in Section 6.

The author heartily expresses his gratitude to Professor T. Petrie for sug-
gesting the problem and giving invaluable advice, and the author is also thankful
to Professors M. Nakaoka, K. H. Dovermann, I. Hambleton, K. Kawakubo,
M. Masuda for their cordial conversation.

1. Notations and statement of Main Theorem C.

We mean by a G-module a G-representation space of finite rank. For a
complex G-module $W$ we denote by $r(W)$ its realification. If a real G-module is
equipped with an orientation and if the G-action is orientation preserving, then
we call the G-module (more precisely the pair of a real G-module and its orienta-
tion) an oriented real G-module. For a complex G-module $W$ we denote by or$(W)$

the oriented real G-module (the pair of $r(W)$ and the orientation inherited from
the complex structure). We shall use $W$ instead of $r(W)$ or or $(W)$ if there is
no fear of confusion. For oriented real G-modules $W$ and $W’$ we say that $W$

is isomorphic to $W’$ (and we write $W\cong W’$ ) if there exists an orientation preserv-
ing isomorphism of real G-modules from $W$ to $W’$ .

Let $G$ be a finite group of odd order and let $Y$ be a closed oriented G-
manifold with $Y^{G}$ non-empty. For each $y\in Y^{G}$ we obtain an oriented real G-
module $T_{y}Y$ whose orientation is given by that of $Y$ .

For an oriented real G-module $V$ and $g\in G$ with $V^{g}=\{0\}$ , we define $\nu(V)(g)$

by

$\nu(V)(g)=\prod_{i=1}^{k}\frac{1+e_{i}}{1-e_{i}}$

if $res_{\langle g\rangle}V\cong or(W)$ and $e_{i}$ are the eigenvalues of $g$ on $W$ , where $k=\dim V/2$ and
$\langle g\rangle$ is the subgroup of $G$ generated by $g$ . If $Y^{g}$ is finite,
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$\pm Sign(g, Y)=\sum_{y\in Y^{g}}\nu(T_{y}Y)(g)$ .

Let $\Omega(G),$ $S(G)$ and $S_{y}(G)$ denote the Burnside ring, the set of subgroups of
$G$ and the set of Sylow subgroups of $G$ respectively. For a subgroup $H$ of $G$

we have the homomorphism $\chi_{H}$ ; $\Omega(G)arrow Z$ given by $\chi_{H}([A])=x(A^{H})$ for finite G-
CW-complexes $A$ , where $\chi$ is the Euler characteristic. $G$ acts on $S(G)$ by
conjugation. We call a subset $\mathcal{H}$ of $S(G)$ a family if $\mathcal{H}$ is G-invariant (that is,
$\mathcal{H}$ is closed under conjugation). A family $\mathcal{H}$ is said to be closed if, for $H\in \mathcal{H}$ ,
any subgroup of $H$ also belongs to $\mathcal{H}$ . We define a pair $(\mathcal{H}, \mathcal{H}’)$ of closed
families $\mathcal{H}$ and $\mathcal{H}’$ with $\{1\}\in \mathcal{H}’\subset \mathcal{H}\neq S(G)$ to be good if there exists an element
$\omega$ of $\Omega(G)$ such that $\chi_{H}(\omega)=0$ for any $H\in \mathcal{H}’$ and $\chi_{H}(\omega)=1$ for any $H\in S(G)-\mathcal{H}$ .

EXAMPLE. In the following two examples (I) and (II) we suppose that $G$

is nilpotent and $|G|$ is divisible by at least two distinct primes.
(I) Let $J\zeta$ be the family consisting of subgroups of $G$ not with prime

power indices. Then $(S(G)-\{G\}, Jt)$ is a good pair.
(II) Let $\mathcal{P}(G)$ be the set of subgroups $P$ of $G$ whose orders $|P|$ are prime

powers. Then $(\mathcal{P}(G), \{1\})$ is good.

THEOREM C. Let $G$ be a finite nilp0tent group of odd order, $(\mathcal{H}, \mathcal{H}’)$ a good
pair of families in $S(G)$ and $X$ a closed l-connected onented G-manifold with
$X^{G}=\{x_{1}, \cdots x_{n}\}$ . Supp0se dim $X>5$ ,

(C.1) $X^{H}=X^{G}$ for all $H\in S(G)-\mathcal{H}’$ , and

(C.2) (Gap hypothesis) $2\dim X^{g}<\dim X$ for all $g\in G-\{1\}$ .

We put $V_{i}=T_{x_{i}}X$ as onented real G-modules for $i=1,$ $n$ . If oriented real G-
modules $W_{1},$ $\cdots$ $W_{n}$ satisfy (C.3) and (C.4) below, then we have a closed l-con-
nected onented G-manifold $Y$ and a degree one G-map $f;Yarrow X$ satisfying (0.1)

with coefficients $\Lambda=Q$ ;

(C.3) (Restriction condition) $res_{H}W_{i}\cong res_{H}V_{i}$ for all $H\in S_{y}(G)\cup \mathcal{H}$ .

(C.4) (Signature condition) $\sum_{i=1}^{n}\nu(W_{i})(g)=\sum_{i=1}^{n}\nu(V_{i})(g)$ for all elements $g$ of
$G$ with $\langle g\rangle\in S(G)-\mathcal{H}$ .

2. Definition of a quasi-normal map.

Let $G$ be a finite group and $X$ a closed l-connected G-manifold of dimension
$\geqq 5$ in this section. We put $d=\dim X$.

In the following sections we need to deform a G-map $f:Yarrow X$ by G-surgery
in $Y-Y^{s}$ , where $Y^{s}= \bigcup_{H\neq l1\}}Y^{H}$ . Here G-surgery is a simple analogy of ordinary
surgery (described in [33] for example).
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If a real G-vector bundle is an oriented real vector bundle, then we call it
an oriented real G-vector bundle. Here the G-action may not be orientation
preserving. Since in the following sections we mainly treat groups of odd orders,
we may not be too nervous on it.

It seems obvious that an analogy of ordinary surgery (so called G-surgery)

works well for the following “quasi-normal maps” (see [9]).

DEFINITION 2.1. If $Y$ is a closed oriented G-manifold, $f:Yarrow X$ a degree
one G-map, $Z$ a compact G-submanifold of $Y,$ $\xi$ an oriented real G-vector bundle
over $X$ and $b$ a stable isomorphism of oriented real G-vector bundles from
$(f^{*}\xi)|Z$ to $(TY)|Z(i.e., b:(f^{*}\xi)|Z\oplus\underline{V}arrow(TY)|Z\oplus\underline{V}$ for some complex G-module
$V)$ and if they satisfy the following $(2.2)\sim(2.4)$ , then we call the triple $(f, \xi, b)$

a quasi-normal map. We often call such a G-map $f$ also a quasi-normal map
making an improper use of the term:

(2.2) Each connected component of $Y$ and $Z$ has dimension $d$ .

(2.3) (Gap hypothesis) dim $Y^{g}<[d/2]$ for any $g\in G-\{1\}$ .
(2.4) The inclusion map $k:Zarrow Y$ is $[d/2]$ -connected, that is, $k_{\#}$ : $\pi_{0}(Z)arrow$

$\pi_{0}(Y)$ is bijective, $k_{\#}$ : $\pi_{i}(Z, z)arrow\pi_{i}(Y, k(z))$ is bijective for all $i<[d/2]$ and $z\in Z$

and $k_{\#}$ ; $\pi_{[d/2]}(Z, z)arrow\pi_{[d/2]}(Y, k(z))$ is surjective for any $z\in Z$ .

Here $[d/2]$ is the largest integer which does not exceed $d/2$ .

As ordinary surgery, if a quasi-normal map $f:Yarrow X$ is given, then we can
perform G-surgery detached from $f^{s}=f|$ : $Y^{S}arrow X^{S}$ and get a new quasi-normal
map $f’$ : $Y’arrow X$ which is $[d/2]$ -connected. We have several types of G-surgery
obstruction for a $[d/2]$ -connected quasi-normal map $f:Yarrow X$. For example:

(I) If $\chi(Y^{g})=x(X^{g})$ for any $g\in G-\{1\}$ , then we have the (rational) G-
surgery obstruction $\sigma(f;Q)$ in $L_{d}^{h}(Q[G], w)$ to converting $f$ to a rational
homology equivalence.

(II) If $f^{s}$ : $Y^{s}arrow X^{s}$ is a G-homotopy equivalence, then we have the G-
surgery obstruction $\sigma(f)=\sigma(f;Z)$ in $L_{d}^{h}(Z[G], w)$ to converting $f$ to a G-
homotopy equivalence.

Although Definition 2.1 is enough for the following sections, we can define
a quasi-normal map more generally as follows.

(2.5) We call a degree one G-map $f:Yarrow X$ with (2.2) and (2.3) a (generalized)

quasi-normal map if there exist a compact oriented G-manifold $W$ with boundary
$\partial W$, a degree one G-map $F:(W, \partial W)arrow(I\cross X, \partial(I\cross X))$ , a finite G-CW-complex
$U$ , a $[d/2]$ -connected G-map $k:Uarrow W$, an oriented real G-vector bundle $\xi$ over
$I\cross X$ and a stable isomorphism $b:(F\circ k)^{*}\xiarrow k^{*}TW$ of oriented real G-vector
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bundles such that $\partial W=Y_{0}\coprod Y$ as oriented G-manifolds and $F(y)=(1, f(y))$ for all
$y\in Y$ .

3. G-surgery in rational coefficients.

The idea of this section is due to Dovermann and Petrie [11], and [12]

and the mathematical tools are due to Alexander, Conner and Hamrick [1].

Let $G$ be a finite group of odd order and $n$ an even integer $>5,$ $n=2m$ say.
We denote by $\Lambda Z$ or $Q$ , and by $W_{n}(G, \Lambda)$ the equivariant Witt ring (denoted

by $W_{n}(\Lambda, G)$ in [1]). Roughly to say $W_{n}(G, \Lambda)$ consists of equivalence classes
of pairs $(M, \phi)$ of $M\Lambda$ -torsion free $\Lambda[G]$ -modules and $\phi$ G-invariant non-singular
$(-1)^{m}$-symmetric $\Lambda$-valued bilinear forms defined on $M\cross M$.

Let $X$ be a closed oriented G-manifold of dimension $n$ . We define $w[G, X;\Lambda]$

$\in W_{n}(G, \Lambda)$ as the equivalence class of $(H^{m}(X;\Lambda)/Torsion, \phi_{X})$ , where $\phi_{X}$ is
the cup product bilinear form on $X$ (see [1; p. 98]). It is known that $w[G, X;\Lambda]$

depends only on the oriented G-cobordism class of $X$ . We have the natural
homomorphism of changing rings $\tau;W_{n}(G, Z)arrow W_{n}(G, Q)$ . Immediately we have
$\tau(w[G, X;Z])=w[G, X;Q]$ .

Let $g$ be an element of $G$ . We denote by $\langle g\rangle$ the subgroup of $G$ generated
by $g$ , and by $\mathcal{P}$ the set of positive prime integers. We set $Z_{2}=Z/2Z$ . $M(\mathcal{P}, Z_{2})$

stands for the ring consisting of all maps from $\mathcal{P}$ to $Z_{2}$ . We define a map $\epsilon$

from $G$ to $M(\mathcal{P}, Z_{2})$ by putting $\epsilon(g)(p)=1,$ $g\in G$ and $p\in \mathcal{P}$, if $p$ divides $|\langle g\rangle|$

and $-1\equiv p^{h}$ mod $|\langle g\rangle/P|$ for some integer $h$ , and $\epsilon(g)(p)=0$ if not, where $P$ is
the Sylow $p$ -subgroup of $\langle g\rangle$ .

For a closed oriented G-manifold $X$ of dimension $n$ , we define the torsion
signature $f(G, X):Garrow M(\mathcal{P}, Z_{2})$ by

$f(g, X)(p)=x(F^{2}(P)\cap X^{g})\epsilon(g)(p)$ ,

where $g\in G,$ $p\in \mathcal{P},$ $f(g, X)=f(G, X)(g),$ $\chi$ is the Euler characteristic, $P$ is the
Sylow $p$ -subgroup of $\langle g\rangle$ and $F^{2}(P)$ is the P-fixed point set of $X$ of codimension
2 mod4 (see [1; p. 142 (2.1) and p. 149 (3.5)]). If dim $X^{g}=0$ , then

$f(g, x)(p)= \sum_{x\subset X^{g}}\frac{1}{2}(\dim T_{x}X-\dim T_{x}X^{p})\epsilon(g)(p)$ .

We remark that $f(G, X)$ depends only on the oriented G-cobordism class of $X$.
Corollary (3.6) of [1; p. 151] gives

LEMMA 3.1. Let $X$ and $Y$ be closed oriented G-manifolds of dimension $n$ .
Then $w[G, X;Z]=w[G, Y;Z]$ if Sign$(G, X)=Sign(G, Y)$ and $f(G, X)=f(G, Y)$ .

Let $X$ and $Y$ be closed l-connected oriented G-manifolds of dimension $n$ ,
and $f:Yarrow X$ an m-connected quasi-normal map wherein $m=n/2$ . We put
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$K(f)=K_{m}(f;Q)=Ker[f_{*} : H_{m}(Y;Q)arrow H_{m}(X;Q)]$ .
We assume that $\chi(X^{g})=x(Y^{g})$ for any $g\in G-\{1\}$ . Then $K(f)$ is $Q[G]$ -free.
Since $K(f)=\pi_{m+1}(f)\otimes Q$ by the Hurewicz theorem and the universal coefficient
theorem, we obtain the triple $(K(f), \lambda, \mu)$ of the free $Q[G]$ -module $K(f)$ , the
intersection form $\lambda:K(f)\cross K(f)arrow Q[G]$ and the self-intersection map $\mu:K(f)arrow\Gamma$,
where $\Gamma=Q[G]/\{x-(-1)^{m}\overline{x};x\in Q[G]\}$ and the anti-automorphism $-ofQ[G]$

is given by $( \sum a_{g}g)^{-}=\sum a_{g}g^{-1}$ for $g\in G$ and $a_{g}\in Q$ (see [33; p. 21]). Denote
by $\sigma(f;Q)$ the equivalence class of $(K(f), \lambda, \mu)$ in the Wall group $L_{n}^{h}(Q[G], 1)$

of homotopy equivalences. It goes without saying that $\sigma(f;Q)$ is equivariant
surgery obstruction to converting $f$ to a rational homology equivalence (see [9],
[12]).

LEMMA 3.2. The equivariant surgery obstruction $\sigma(f;Q)$ vanishes if
Sign$(G, X)=Sign(G, Y)$ and $f(G, X)=f(G, Y)$ .

PROOF. An element of $L_{n}^{h}(Q[G], 1)$ is represented by $(M’, \lambda’, \mu’)$ , where $M’$

is a free $Q[G]$ -module, $\lambda’$ : $M’\cross M’arrow Q[G]$ is a non-singular Q-bilinear form and
$\mu’$ : $M’arrow\Gamma$ is a map such that $\lambda’(x, ay)=a\lambda’(x, y),$ $\lambda’(x, y)=(-1)^{m}\overline{\lambda’(y,x)},$ $\lambda’(x, x)$

$=\mu’(x)+(-1)^{m}\mu’(x)^{-}$ in $Q[G],$ $\mu’(x+y)-\mu’(x)-\mu’(y)=\lambda’(x, y)$ in $\Gamma$, and $\mu’(ax)$

$=a\mu’(x)\overline{a}$ for $x,$ $y\in M’$ and $a\in Q[G]$ . For such $(M’, \lambda’, \mu’)$ there uniquely ex-
ists a G-invariant non-singular Q-valued $(-1)^{m}$-symmetric bilinear form $\phi$ on
$M’\cross M’$ such that

$\lambda’(x, y)=\sum_{geG}\phi(x, g^{-1}y)g$ for $x,$ $y\in M’$ .
The correspondence: $(M’, \lambda’, \mu’)rightarrow(1W’, \phi)$ induces a homomorphism $\omega;L_{n}^{h}(Q[G], 1)$

$arrow W_{n}(G, Q)$ . We have

$\omega(\sigma(f ; Q))=w[G, Y;Q]-w[G, X;Q]$

$=\tau(w[G, Y;Z]-w[G, X;Z])$ .
By Lemma 3.1 we get $\omega(\sigma(f;Q))=0$ . Since $1/2\in Q,$ $\omega$ is injective. Thus $\sigma(f;Q)$

vanishes.

4. Proof of Theorem C.

Let $G,$ $(\mathcal{H}, \mathcal{H}’),$ $X,$ $V_{i}$ and $W_{i},$ $i=1,$ $\cdots$ , $n$ , be as in Theorem C. We will
show in Section 6 that there is a quasi-normal map $f:Yarrow X$ satisfying

(4.1) $Y^{G}=\{y_{1}, \cdots , y_{n}\}$ , $f(y_{i})=x_{i}$ and $T_{y_{i}}Y\cong W_{i}$ ,

(4.2) dim $Y_{\alpha}=\dim X_{f(\alpha)}^{\sim}$ for all $\alpha\in\Pi(Y)$ ,

(4.3) $\chi(Y^{g})=x(X^{g})$ for any $g\in G-\{1\}$ , and
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(4.4) $res_{H}(f:Yarrow X)\sim O$ for all $H\in \mathcal{H}’$ .

Here $\Pi(X)=\coprod_{H}\pi_{0}(X^{H}),$ $H$ running over all the subgroups of $G$ , and $f;\Pi(Y)$

$arrow\Pi(X)$ is given by $\tilde{f}=\coprod_{H}f_{\#}^{H}$ , $(f_{*}^{H} : \pi_{0}(Y^{H})arrow\pi_{0}(X^{II}))$ , and $res_{H}(f:Yarrow X)\sim 0$

means that there exist a compact oriented H-manifold $W$ with boundary $\partial W$ and
a degree one H-map $F:(W, \partial W)arrow(I\cross X, \partial(I\cross X))$ such that $\partial W=Y_{0}\coprod Y,$ $F(Y)\subset$

$\{1\}\cross X,$ $f=F|$ : $Yarrow\{1\}\cross X=X$, and $F|$ : $Y_{0}arrow\{0\}\cross X=(-X)$ is an H-homotopy
equivalence.

LEMMA 4.5. One has Sign$(G, X)=Sign(G, Y)$ and $f(G, X)=f(G, Y)$ .

PROOF. We show Sign$(G, X)=Sign(G, Y)$ . If $g\in G$ generates a subgroup
in $\mathcal{H}’$, then we have Sign$(g, X)=Sign(g, Y)$ by (4.4). Suppose $g$ to generate
a subgroup in $S(G)-\mathcal{H}’$ . Then we have $Y^{g}=Y^{G}$ by (C.1), (4.1), (4.2) and (4.3).

Thus

Sign $(g, Y)=\sum_{i=1}^{n}\nu(W_{i})(g)$

By (C.3) and (C.4) we have Sign$(g, X)=Sign(g, Y)$ .
We can prove $f(G, X)=f(G, Y)$ in a similar manner. That is, $f(g, X)=$

$f(g, Y)$ is shown in the two cases: one is that $g$ generates a subgroup in $\mathcal{H}’$ ,

and the other is that $g$ generates a subgroup in $S(G)-\mathcal{H}’$ . We left the detail
to the reader.

We remark that Lemma 4.5 is kept under G-surgery, that is, if $f:Yarrow X$ is
converted by G-surgery to another quasi-normal map $f’$ : $Y’arrow X$, then Sign$(G, X)$

$=Sign(G, Y’),$ $f(G, X)=f(G, Y’)$ . Perform G-surgery of the above $f:Yarrow X$ below
the middle dimension to get a quasi-normal map $f’$ : $Y’arrow X$ such that $Y’$ is 1-
connected and $f’$ is m-connected, where $2m=\dim X$. Then $K(f’)$ is $Q[G]$ -free
by (4.3). We get the G-surgery obstruction $\sigma(f’ ; Q)$ in $L_{2m}^{h}(Q[G], 1)$ . By
Lemmas 3.2 and 4.5 we have $\sigma(f’, Q)=0$ . Thus we can perform G-surgery of
$f’$ to get a quasi-normal map $f’’$ : $Y’’arrow X$ such that $Y’’$ is closed, l-connected
and oriented, and $f_{*}’’$ : $H_{*}(Y’’ ; Q)arrow H_{*}(X;Q)$ is bijective.

5. An Atiyah-type theorem.

Let $X$ be a G-space and $V$ a G-module. Then we get a G-vector bundle
$\underline{V}=X\cross V$ over $X$. We ask for which G-modules $V$ and $W,\underline{V}$ and $\underline{W}$ are iso-
morphic. The following well known theorem partially answers the question.

THEOREM (Atiyah [2]). Let $X$ be a finite G-CW-complex with free G-action,
and $V$ and $W$ complex G-modules such that $res_{P}V\cong res_{P}W$ for all the Sylow
subgroups $P$ of G. Then there exists a complex G-module $U$ such that $\underline{V}\oplus\underline{U}\cong$

$\underline{W}\oplus\underline{U}$.
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For making a quasi-normal map we need certain information on isomor-
phisms: $\underline{V}\oplus\underline{U}arrow\underline{W}\oplus\underline{U}$. We make a theorem including the information in the
following. We have the theorem without the stable term $U$ by placing restric-
tions on $G$ , and it seems to be interesting independently of G-surgery.

Let $\xi:Earrow X$ and $\xi’$ : $E’arrow X$ be G-vector bundles and $f_{0},$ $f_{1}$ : $E’arrow E$ isomor-
phisms of G-vector bundles (covering the identity map on $X$ ). We call a G-
vector bundle map $F:E’\cross Iarrow E$ a regular G-homotopy from $f_{0}$ to $f_{1}$ (and write
$F:f_{0}\simeq f_{1})$ if $F(z, 0)=f_{0}(z),$ $F(z, 1)=f_{1}(z)$ and $\xi(F(z, t))=\xi’(z)$ for all $z\in E’$ and
$t\in I$ .

THEOREM 5.1 (an Atiyah-type theorem). Let $G$ be a finite nilp0tent group
and $X$ a finite G-CW-complex with free G-action. If $V$ and $W$ are onented real
G-modules such that $res_{P}V\cong res_{P}W$ as oriented real P-modules for all the Sylow
subgroups $P$ of $G$ , then there exists an isomorphism $f:\underline{V}arrow\underline{W}$ of onented real G-
vector bundles over $X$ with the property:

If an isomorphism $h:res_{K}Varrow res_{K}W$ of oriented real K-modules, $K\in S(G)$ ,

is artn trarily given, then $f$ is regularly $K$-homotolnc to the induced isomorphism
$\overline{h}=id\cross h:X\cross Varrow X\cross W$ of onented real K-vector bundles.

The following corollary is a partial answer to the question raised at the
beginning of this section.

COROLLARY 5.2. Let $G,$ $V$ and $W$ be as above, and let $Y$ be a finite G-CW-
complex. Suppose $Y$ to have the points $y(1),$

$\cdots,$ $y(m)$ such that $Gy(i)\cap Gy(])=\emptyset$

if $i\neq j$, and the G-action on $Y-\cup\{Gy(i);i=1, \cdots m\}$ is free, where $m$ is some
integer. Further supp0se that for $K(i)=G_{y(i)}$ the isotropy subgroups at $y(i)$ ,

$i=1,$ $\cdots$ $m$ , isomorphisms $h_{i}$ : $res_{K(i)}Varrow res_{K(i)}W$ of onented real $K(i)$-modules
are given. Then there exists an isomorphism $f:\underline{V}arrow\underline{W}$ of onented real G-vector
bundles over $Y$ such that $f|(y(i)\cross V);res_{K(t)}Varrow res_{K(i)}W$ agree with $h_{i}$ respec-
tively for $i=1,$ $\cdots,$ $m$ .

We prove the theorem in Section 9.

6. Construction of a quasi-normal map.

In this section we construct a quasi-normal map required in Section 4.
Suppose $G$ to be a finite nilpotent group of odd order and $(\mathcal{H}, \mathcal{H}’)$ to be a good
pair of families in $S(G)$ (see Section 1 for definition).

Let $X$ be a closed oriented G-manifold with $X^{G}$ finite. Fix a point $x$ in $X^{G}$ .
We call a degree one smooth G-map $f:Yarrow X$ an $(\mathcal{H}, \mathcal{H}’)$ -resolving normal map
at $x$ (or a resolving map for short) if

(6.1) $f^{-1}(X^{G}-\{x\})=Y^{G}$ and $f|$ : $Y^{G}arrow X^{G}-\{x\}$ is bijective,
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(6.2) $G_{y}$ belongs to $\mathcal{H}$ for all $y\in f^{-1}(x)$ ,

(6.3) $(df)_{y}$ : $T_{y}Yarrow T_{f(y)}X$ are bijective for all $y\in f^{-1}(X^{G})$ ,

(6.4) there exist an oriented real G-module $M$ and an orientation preserving
real G-vector bundle map $\overline{f}:TY\oplus\underline{M}arrow TX\oplus\underline{M}$ covering $f$ , and

(6.5) $res_{H}(f:Yarrow X)\sim O$ for all $H\in \mathcal{H}’$ .

Since $f$ is of degree one, the conditions (6.1) and (6.3) imply $T_{y}Y\cong T_{f(y)}X$ as
oriented real G-modules for $y\in Y^{G}$ . Given a resolving map $f:Yarrow X$ at $x$ , we
relate an element $\omega(f)$ of $\Omega(G)$ to $f$ by

$\omega(f)=$
$\sum_{y\in J^{-1}(x)}$

$(s((df)_{y})/|G/G_{y}|)[G/G_{y}]$ ,

where $s((df)_{y})=1$ (resp. $-1$ ) if $(df)_{y}$ is orientation preserving (resp. reversing).

For $u= \sum_{H}u(H)[G/H]\in\Omega(G)$ , where $H$ is taken one for each element of $S(G)/G$ ,

and $u(H)\in Z$ , we define $|u|\in\Omega(G)$ by $|u|= \sum_{H}|u(H)|[G/H]$ . We say a resolving
map $f:Yarrow X$ to be nice if

(6.6) $[f^{-1}(x)]=|\omega(f)|$ and

(6.7) $[Y]=[X]+[f^{-1}(x)]-[G/G]$ .

Let $X$ be a finite G-CW-complex. For a real G-module $M$, we denote by
$[\underline{M},\underline{M}]_{G}$ the set of proper G-homotopy classes of proper G-maps from $\underline{M}=$

$X\cross M$ to $\underline{M}$ itself covering the identity map on $X$. For another real G-module
$N$ with $N\supset M$, we have the suspension map from $[\underline{M},\underline{M}]_{G}$ to $[\underline{N},\underline{N}]_{G}$ . Roughly
to say, $\omega_{G}^{0}(X)$ is lim $[\underline{M},\underline{M}]_{G}$ , where $M$ runs over a set of representatives
chosen one for each isomorphism class of real G-modules (see [30]).

In the following we fix an element $\omega$ of $\Omega(G)$ such that $\chi_{H}(\omega)=0$ for $H\in \mathcal{H}’$

and $x_{H}(\omega)=1$ for $H\in S(G)-\mathcal{H}$ .

LEMMA 6.8. Given an onented real G-module $V$ with $Iso(G, V-\{0\})\subset \mathcal{H}’$

and a sufficiently large integer $N$, there exists a nice $(\mathcal{H}, \mathcal{H}’)$ -resolving normal
map $f:Aarrow S$ at $(-1,0)$ with $\omega(f)=1-\omega^{N+1}$ , where $S=S(R\oplus V)$ , $-1\in R$ and
$0\in V$.

PROOF. We put $p=(1,0)$ and $q=(-1,0)$ , where $\pm 1\in R$ and $O\in V$ . We have
$\omega_{G}^{\cap}(S^{G})=\omega_{G}^{0}(p)\oplus\omega_{G}^{0}(q)$ . Both $\omega_{G}^{0}(p)$ and $\omega_{G}^{0}(q)$ are identified with $\Omega(G)$ . Denote by
$L$ the multiplicatively closed set generated by $\omega,$

$i.e.$ , $L=\{\omega, \omega^{2}, \omega^{3}, \cdots\}$ . The
inclusion map $j:S^{G}arrow S$ induces the restriction homomorphism $j^{*}:$ $\omega_{G}^{0}(S)arrow\omega_{G}^{0}(S^{G})$ .
Since $Iso(G, V-\{0\})\subset \mathcal{H}’$ , $L^{-1}j^{*}:$ $L^{-1}\omega_{G}^{0}(S)arrow L^{-1}\omega_{G}^{0}(S^{G})$ is bijective. We suppose
$N$ to be so large that there exists an element $u\in\omega_{G}^{0}(S)$ such that $j^{*}(u)=(0, \omega^{N})$

$\in\omega_{G}^{\cap}(p)\oplus\omega_{G}^{0}(q)$ . We put $v=1-\omega u\in\omega_{G}^{\cap}(S)$ . We remark that $res_{H}v=1\in\omega_{G}^{0}(res_{H}S)$

for $H\in \mathcal{H}’$ . Take a representative $h:S\cross Marrow S\cross M$ of $v$ , where $h$ is a proper
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G-map over the identity map on $S$ and $M$ is a complex G-module with $M^{G}\neq\{0\}$ .
By the equivariant transversality theorem ([26]) $h$ is properly G-homotopic to
$h’$ : $S\cross Marrow S\cross M$ transverse to $S=S\cross\{0\}$ in $S\cross M$. We put $B=h^{\prime-1}(S)$ and
$h’=h’|B:Barrow S$ . The G-manifold $B$ has the orientation induced by $h’,$ $(TB\oplus$

$\nu(B, S\cross M)=\{T(S\cross M)\}|B$ and $\nu(B, S\cross M)=h^{\prime\prime*}\nu(S, S\cross M))$ . We can choose $h’$

so that $h’’$ : $Barrow S$ is an $(\mathcal{H}, \mathcal{H}’)$-resolving normal map at $q=(-1,0)$ with (5.6),

by [14] or [29]. We have $\omega(h’’)=1-\omega^{N+1}$ and $[h^{\prime\prime-1}(q)]=|\omega(h’’)|$ . We put $cx=$

{ $H\in S(G)$ : dim $S^{H}\geqq 2$ }. Then $cx\subset \mathcal{H}’$ and $h’’(B^{H})\subset\{p, q\}$ if $H\in S(G)-c\chi$ . We
have $\chi_{H}([B])=x_{H}([G/G]+[h^{\prime\prime-1}(q)])$ and $\chi_{H}([S])=x_{H}(2[G/G])$ for $H\in S(G)-f\zeta$ .
Further we have $\chi_{H}([B])\equiv\chi_{H}([S])$ mod 2 and $\chi_{H}([h^{\prime\prime-1}(q)])=x_{H}(|1-\omega^{N+1}|)\equiv$

$\chi_{H}(1-\omega^{N+1})=1$ mod2 for all $H\in \mathcal{H}’$ . Since $|G|$ is odd, we get

$[B]-([S]+[h^{\prime\prime-1}(q)]-[G/G])=$
$\sum_{(H)\in iC/G}$ $2a(H)[G/H]$

for some integers $a(H)$ . We can perform G-surgery on trivial elements of
$\pi_{1}(h^{\prime\prime H})$ and $\pi_{2}(h^{\prime\prime H})$ of $h’’$ : $Barrow S$ to get a nice $(\mathcal{H}, \mathcal{H}’)$-resolving normal map
$f:Aarrow S$ at $q$ .

We complete the proof of Lemma 6.8. We remark that the basic idea of the
proof is due to Petrie [27].

Given an oriented real G-module $V$ , we denote by $V^{-}$ the oriented real G-
module whose underlying real G-module is that of $V$ and whose orientation is
opposite to that of $V$ .

LEMMA 6.9. Let $V$ be an oriented real G-module such that dim $V\geqq 6$ ,

(6.10) 2dim $V^{g}<\dim V$ for all $g\in G-\{1\}$ , and

(6.11) $Iso(G, V-\{0\})\subset \mathcal{H}’$ .

Let $V’$ be another satisfying

(6.12) $res_{H}V’\cong res_{H}V$ for all $H\in S_{y}(G)\cup \mathcal{H}$ .

Then there exests a quasi-normal map $f:Yarrow S,$ $S=S(R\oplus V)$ , with a $(\dim V/2)-$

connected incluszon map $k:Zarrow Y$ and a stable isomorphjsm $b:(f^{*}TS)|Zarrow(TY)|Z$

of onented real G-vector bundles over $Z$ such that

(6.13) $Y^{G}=\{u, v\},$ $f(u)=p,$ $f(v)=q,$ $T_{u}Y\cong V’$ and $T_{v}Y\cong V^{-}$ , where $p=(1,0)$

and $q=(-1,0),$ $(\pm 1\in R, O\in V)$ ,

(6.14) dim $Y_{\alpha}=\dim S_{f(\alpha)}^{\sim}$ for any $\alpha\in\Pi(Y)$ ,

(6.15) $[Y]=2[G/G]$ in $\Omega(G)$ ,

(6.16) $res_{H}(f : Yarrow S)\sim O$ for all $H\in \mathcal{H}’$ , and
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(6.17) $Z$ is a compact G-submanifold including an equivanant closed disk
neighborhood of $v$ in $Y$.

We note here that (6.11), (6.14) and (6.15) imply $Iso(G, Y-Y^{G})\subset \mathcal{H}’$ .

PROOF. We put $p’=(1, O)\in S(R\oplus V’),$ $q’=(-1, O)\in S(R\oplus V’)$ and $S’=S(R\oplus V’)$ .
There exist a positive integer $N$ and nice $(\mathcal{H}, \mathcal{H}’)$-resolving normal maps $h$ :
$Aarrow S$ at $p$ and $h’$ : $A’arrow S’$ at $q’$ such that $\omega(h)=1-\omega^{N+1}=\omega(h’)$ by Lemma 6.8.
We take a small closed equivariant tubular neighborhood $D$ (resp. $D’$ ) of $h^{-1}(p)$

(resp. $h^{\prime-1}(q’)$ ) in $A$ (resp. $A’$). The condition (6.12) allows us to take an orienta-
tion reversing G-diffeomorphism $\phi:D’arrow D$ . We set $A_{0}=A$–Int $D,$ $A_{0}’=A’$–Int $D’$

and $\partial\phi=\phi|$ : $\partial D’arrow\partial D$ . We define $Y$ by $Y=A_{0} \bigcup_{\partial\phi}A_{0}’$ . G-homotopically deform
$h:Aarrow S$ in a small neighborhood of $D$ to $h’’$ : $Aarrow S$ such that $h’(D)=\{p\}$ . We
define $f:Yarrow S$ by $f|A_{0}=h’’|A_{0}$ and $f(A_{0}’)=\{p\}$ . Let $B$ be a compact G-mani-
fold. We denote by $B^{s}$ the set of points in $B$ at which the isotropy subgroups
of $G$ are non-trivial. $N(B^{s}, B)$ denotes a closed equivariant regular neighborhood
of $B^{s}$ in $B$ (which is a union of closed equivariant tubular neighborhoods of $B^{K}$

in $B,$ $\{1\}\neq K\subset G$ ). We define $B^{r}$ by putting $B^{r}=B-IntN(B^{S}, B)$ . We give $Z$

by $Z=A_{0} \bigcup_{(\partial\phi)1}A_{0}^{\prime r}$ and denote the inclusion map of $Z$ into $Y$ by $k$ . By (6.10)
$k$ is $(\dim V/2)$-connected. We put $u=h^{\prime-1}(p’)$ and $v=h^{-1}(q)$ . (6.13) and (6.7)

are obvious. (6.14) follows from (6.4). (6.15) is obtained from (6.6), (6.7) and
the construction. We have (6.16) by (6.5). It remains to make a stable isomor-
phism $b:(f^{*}TS)|Zarrow(TY)|Z$ of oriented real G-vector bundles over $Z$. Firstly
we note $\underline{R}\oplus TS\cong\underline{R}\oplus\underline{V}$ and $\underline{R}\oplus TS’\cong\underline{R}\oplus\underline{V}’$ . By the construction we get stable
isomorphisms $f^{*}TSarrow TA$ and $h^{\prime*}TS’arrow TA’$ . By taking the restriction of the
first one we get a stable isomorphism $c:(f^{*}TS)|A_{0}arrow(TA)|A_{0}$ . We are going to
make $b$ with $b|A_{0}=c$ . By (6.12) and Theorem 5.1 (an Atiyah-type theorem) we
have $\underline{R}\oplus(TA’)|A_{0^{r}}’\oplus\underline{M}\cong\underline{R}\oplus(f^{*}TS)|A_{0^{r}}’\oplus\underline{M}$ as oriented real G-vector bundles
over $A_{0}^{\prime r}$ for some complex G-module $M$. There are a lot of stable isomorphisms
$c’$ : $(f^{*}TS)|A_{0^{r}}’arrow(TA’)|A_{0}^{;r}$ . We wonder if we can choose $c’$ to be combined with
$c$ . We put our eyes on the specially described property in Theorem 5.1 (an

Atiyah-type theorem) and recall that $c|\partial D$ expands to a stable isomorphism over
$D$ . We see that there exists such a stable isomorphism $c’$ : $(f^{*}TS)|A_{0}^{\prime r}arrow$

$(TA’)|A_{0}^{\prime r}$ that is able to be combined with $c$ ; we get $b=c\cup c’$ .

In the rest of this section we let $X,$ $V_{i}$ and $W_{i},$ $i=1,$ $\cdots$ $n$ , be as in
Theorem C.

For each $i$ we apply Lemma 6.9 to the case $V=V_{i}$ and $V’=W_{i}$ . We get a
quasi-normal map $f_{i}$ : $Y_{i}arrow S(R\oplus V_{i})$ with a $(\dim X/2)$-connected inclusion map
$k_{i}$ : $Z_{i}arrow Y_{i}$ and a stable isomorphism $b_{i}$ : $(f_{i}^{*}TS(R\oplus V_{i}))|Zarrow(TY_{i})|Z_{i}$ of oriented
real G-vector bundles over $Z_{i}$ with the described properties in Lemma 6.9, for
each $i=1,$ $\cdots$ $n$ . We put $p_{i}=(1,0)$ and $q_{i}=(-1,0),$ $(\pm 1\in R, 0\in V_{i})$ . We define
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$u(i)$ and $v(i)$ by $Y_{i}^{G}=\{u(i), v(i)\},$ $f_{i}(u(i))=p_{i}$ and $f_{i}(v(i))=q_{i}$ . Then $T_{u(i)}Y_{i}\cong W_{i}$ ,
$T_{v(i)}Y_{i}\cong V_{i}^{-}$ . We denote by $k_{0}$ the identity map on $X$ and by $b_{0}$ the identity
map on $TX\oplus\underline{M}$, where $\underline{M}$ is a stable term. We have the quasi-normal map
$id_{X}$ : $Xarrow X$ with data $k_{0}$ and $b_{0}$ . Take equivariant closed disk neighborhoods
$D_{i}$ of $x_{i}$ in $X$ and $D_{i}’$ of $v(i)$ in $Z_{i}$ (see (6.17)), and take orientation reversing
G-diffeomorphisms $\phi_{i}$ : $D_{i}’arrow D_{i}$ . We put $X_{0}=X-U_{i}$ Int $D_{i},$ $Y_{i0}=Y_{i}$–Int $D_{i}’,$ $Z_{i0}=$

$Z_{i}$–Int $D_{i}’$ and $\partial\phi=\coprod_{i}(\phi_{i}|\partial D_{i}’):\coprod_{i}\partial D_{i}’arrow X_{0},$ $i=1,$ $\cdots$ $n$ . We define $Y$ and $Z$ by
$Y=X_{0}U_{\partial\phi}(\coprod_{i}Y_{i0})$ and $Z=X_{0}U_{\partial\phi}(\coprod_{i}Z_{i0})$ . We G-homotopically deform $id_{X}$ : $Xarrow X$

in a small neighborhood of $U_{i}^{D_{i}}$ to $f_{0}$ : $Xarrow X$ such $thatf_{0}(D_{i})=\{x_{i}\},$ $i=1,$ $\cdots$ $n$ .
We define $f:Yarrow X$ by $f|X_{0}=f_{0}|X_{0}$ and $f(Y_{i0})=\{x_{i}\},$ $i=1,$ $\cdots$ , $n$ . We put $\xi=TX$

and denote by $k$ the inclusion map of $Z$ into $Y$. We can easily obtain a stable
isomorphism $b:(f^{*}\xi)|Zarrow(TY)|Z$ of oriented real G-vector bundles over $Z$ by
combining $b_{i}$ with $b_{0},$ $i=1,$ $\cdots$ $n$ . By the construction $(f, \xi, b)$ is a quasi-normal
map. $(4.1)\sim(4.4)$ follow from $(6.13)\sim(6.16)$ respectively.

7. Proof of Theorem B.

In this section let $G$ be a finite cyclic group of odd order.
Let $V$ and $W$ be real G-modules. Suppose that the G-action on $S(V)$ is free

and $S(V)$ is G-homotopy equivalent to $S(W)$ . A G-homotopy equivalence $f:S(V)$

$arrow S(W)$ determines the Whitehead torsion $\tau(f)$ in $Wh(G)$ . Since all G-homotopy
equivalences from $S(V)$ to $S(W)$ are G-homotopic to one another, $\tau(f)$ is in-
dependent of the choice of a G-homotopy equivalence $f$. Hence we denote the
Whitehead torsion by $\tau(V, W)$ instead of $\tau(f)$ .

We do not use the following proposition in this paper, but that may be
helpful to understand the condition (0.6). Since $G$ is cyclic, of odd order, we
have $Wh(G)=U(Z[G])/\{\pm g|g\in G\}$ , where $U(Z[G])$ is the group of units in
$Z[G]$ . Thus $Wh(G)/2Wh(G)=U(Z[G])/\{\pm x^{2}|x\in U(Z[G])\}$ . Fix a generator $g$

of $G$ . Let $t^{a},$ $a\in Z$, be the complex G-module whose underlying space is $C$ and
on which $g$ acts as $\exp(2a\pi\sqrt{-1}/|G|)$ .

PROPOSITION. Let $V$ and $W$ be as above and suppOse $V\cong r(t^{a_{1}}\oplus\cdots\oplus t^{a_{k}})$ and
$W\cong r(t^{b_{1}}\oplus\cdots\oplus t^{b_{k}})$ . Then one has

$\tau(V, W)=\prod_{i=1}^{k}\frac{1-g^{f_{i}}(}{1-g^{c_{i}}}$ ,

where $c_{i}$ and $d_{i}$ are given by $a_{i}c_{i}\equiv 1\equiv b_{i}d_{i}mod |G|$ .

PROOF OF THEOREM B. From the construction in Section 6 we obtain a
quasi-normal map $f:Yarrow X$ satisfying

(7.1) $Y$ is a closed l-connected oriented G-manifold with semi-free action,
(7.2) $Y^{G}=\{y_{1}, \cdots , y_{n}\},$ $f(y_{i})=x_{i}$ and $T_{y_{i}}Y\cong W_{i}$ for $i=1,$ $\cdots$ , $n$ , and
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(7.3) if we forget G-action, then the bundle data of $f$ expands over $Y$ so
that $f$ is tangentially normally cobordant to the identity map on $X$.

(Here $f$ may not be a G-homotopy equivalence.) We have the G-surgery
obstruction $\sigma(f)$ in $L_{2m}^{h}(Z[G], 1)$ to converting $f$ to a G-homotopy equivalence,
where $2m=\dim X$. There is an exact sequence (so called the Rothenberg exact
sequence (see [31])):

$...arrow L_{2m}^{s}(Z[G], 1)arrow L_{2m}^{h}(Z[G], 1)arrow^{a}H^{2m}(Z_{2} ; Wh(G))arrow\ldots$

Since $Z_{2}$ acts trivially on $Wh(G)$ ([21; Lemma 6.7]), we have $H^{2m}(Z_{2} ; Wh(G))$

$=Wh(G)/2Wh(G)$ . Theorem 13.A.4 (ii) of [33] gives

LEMMA 7.4. Let $G$ be a finite cyclic group of odd order. Then the homomor-
phism

$a\oplus trans.\oplus Sign$ : $L_{2m}^{h}(Z[G], 1)arrow(Wh(G)/2Wh(G))\oplus L_{2m}(Z, 1)\oplus R(G)$

is injective.

Since trans. $(\sigma(f))=0$ and Sign $(\sigma(f))=0$ by (7.3) and (0.5), it suffices to show
$a(\sigma(f))=0$ . Here we note that (0.7) is obtained from $L_{2m+1}(Z, 1)=0$ and (7.3).

Let $N(X^{G})$ be an equivariant closed tubular neighborhood of $X^{G}$ in $X$ and
put $X^{\tau}=X$–Int $N(X^{G})$ . We can G-homotopically deform $f$ to satisfy $f(N(Y^{G}))\subset$

$N(X^{G})$ and $f(Y^{r})\subset X^{r}$ . By observing the diagram:

$0arrow C_{*}(\partial Y^{r})arrow C_{*}(Y^{r})arrow C_{*}(Y, N(Y^{G}))arrow 0$

$\downarrow f_{\#}$ $\downarrow f_{\#}$ $\downarrow f_{\#}$

$0arrow C_{*}(\partial X^{r})arrow C_{*}(X^{r})arrow C_{*}(X, N(X^{G}))arrow 0$

and the Poincar\’e duality map: $H^{m}(Y;Z)arrow H_{m}(Y;Z)$ , we have

$a( \sigma(f))=\sum_{y\in Y^{G}}[\tau(T_{y}Y, T_{f(y)}X)]$ in $Wh(G)/2Wh(G)$

(see [13]). This and (0.6) imply $a(\sigma(f))=0$ . Hence we can convert $f$ to a G-
homotopy equivalence by G-surgery in the trivial orbit type as was required.

8. Examples.

This section gives examples of Theorem $B$ in which the target G-manifolds
are equivariant complex projectjve spaces.

For a positive integer $k$ , we denote by $Z_{k}$ the group of k-th roots of 1 in
$C$ , and we put $\zeta=\exp(2\pi\sqrt{-1}/k)$ . For an integer $a$ we have the complex $Z_{k^{-}}$

module $t(k)^{a}$ of dimension one on which $\zeta$ has the eigenvalue $\zeta^{a}$ . We fix $k$ and put
$G=Z_{k}$ and $t^{a}=t(k)^{a}$ . Let $V$ be a complex (more precisely unitary) G-module.
$S(V)$ stands for the unit sphere of $V$ and $S^{1}$ denotes the group consisting of
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complex numbers of absolute value one. Since $S^{1}$ acts on $V$ by complex multiplica-
tion, $V$ can be thought of as a complex $(G\cross S^{1})$-module and $S(V)$ as a $(G\cross S^{1})-$

manifold. We set $P(V)=S(V)/S^{1}$ and call $P(V)$ an equivanant complex pr0jective
space. $P(V)$ is a closed l-connected oriented G-manifold if $\dim_{C}V\geqq 2$ . $V$ is
decomposed to irreducible complex G-modules of dimension one. Hence we put
$V=\oplus_{i}t^{a(i)}$ , where $i$ ranges over the integers from 1 to $n=\dim_{C}V$ and $a(i)$ are
integers with $0\leqq a(i)<|G|$ . $P(V)^{G}$ is finite if and only if all $a(i),$ $i=1,$ $\cdots$ , $n$ ,

are distinct. We assume $P(V)^{G}$ to be finite. Each complex line $t^{a(i)}$ in $V$ cor-
responds to a G-fixed point of $P(V),$ $x_{i}$ say; we have $P(V)^{G}=\{x_{1}, \cdots x_{n}\}$ . $V_{t}=$

$T_{x_{i}}P(V)$ is isomorphic to $\oplus_{j}t^{a(j)-a(i)}$ , where the sum is taken over the integers
$j$ with $1\leqq j\leqq n$ and $j\neq i$ . We see

Sign $(g, P(V))= \sum_{i=1}^{n}\nu(V_{i})(g)=\{10$
if $n$ is odd
if $n$ is even,

for all generators $g$ of $G$ .
In the rest of this section let $p$ and $q$ be distinct primes $\geqq 5,$ $G=Z_{pq}$

$(=Z_{p}\cross Z_{q}),$ $u=t(p)$ and $v=t(q)$ . For integers $a$ and $b,$ $u^{a}\otimes v^{b}$ is regarded as a
complex G-module.

EXAMPLE 8.1. Let $a,$ $b,$ $x$ and $y$ be integers satisfying $0<a<p,$ $0<b<p$ ,
$a\not\equiv\pm b$ mod $p,$ $0<x<q$ , $0<y<q$ and $x\not\equiv\pm y$ mod $q$ . Give a complex G-module
$V$ by

$V=u^{a}\otimes v^{x}\oplus u^{-a}\otimes v^{-x}\oplus u^{b}\otimes v^{y}\oplus u^{-b}\otimes v^{-y}$ .
Then we have

$V_{1}=u^{-2a}\otimes v^{-2x}\oplus u^{b- a}\otimes v^{y-x}\oplus u^{-(a+b)}\otimes v^{-(x+y)}$ ,

$V_{2}=u^{2a}\otimes v^{2x}\oplus u^{a+b}\otimes v^{x+y}\oplus u^{a-b}\otimes v^{x-y}$ ,

$V_{3}=u^{a-b}\otimes v^{x-y}\oplus u^{-(a+b)}\otimes v^{-(x+y)}\oplus u^{-2b}\otimes v^{-2y}$ , and

$V_{4}=u^{a+b}\otimes v^{x+y}\oplus u^{b-a}\otimes v^{y-x}\oplus u^{2b}\otimes v^{2y}$ .
We put

$W_{1}=u^{-2a}\otimes v^{-2x}\oplus u^{b-a}\otimes v^{-(x+y)}\oplus u^{-(a+b)}\otimes v^{y-x}$ ,

$W_{2}=u^{2a}\otimes v^{2x}\oplus u^{a+b}\otimes v^{x-y}\oplus u^{a-b}\otimes v^{x+y}$ ,

$W_{3}=V_{3}$ and $W_{4}=V_{4}$ . These $G,$ $X=P(V),$ $V_{t}$ and $W_{i}$ , $i=1,$ $\cdots$ , 4, satisfy the
hypotheses of Theorem B. We remark tbat there is no complex G-module $V’$

such that $P(V’)^{G}=\{y_{1}, \cdots y_{4}\}$ , and $T_{y_{i}}P(V’)\cong W_{i},$ $i=1,$ $\cdots$ , 4, as real G-modules.
More generally we can get examples for equivariant projective spaces $P(V)$

of type

$V= \bigoplus_{i=1}^{k}(u^{a(i)}\otimes v^{b(i)}\oplus u^{-a(t)}\otimes v^{-b(i)})$ ,

where $a(i)$ and $b(i),$ $i=1,$ $\cdots$ $k$ , are some integers.
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EXAMPLE 8.2. Let $a,$ $b,$ $x$ and $y$ be as in Example 8.1. Give complex G-
modules $V$ and $V’$ by

$V=u^{a}\otimes\iota)^{x}\oplus u^{-a}\otimes v^{-x}\oplus u^{b}\otimes v^{y}\oplus u^{-b}\otimes v^{-y}\oplus u^{0}\otimes v^{0}$ ,

$V’=u^{a}\otimes v^{-x}\oplus u^{-a}\otimes v^{x}\oplus u^{b}\otimes v^{-y}\oplus u^{-b}\otimes v^{y}\oplus u^{0}\otimes v^{0}$ .
Then we have

$V_{1}’=u^{-2a}\otimes v^{2x}\oplus u^{b-a}\otimes v^{x-y}\oplus u^{-(a+b)}\otimes v^{x+y}\oplus u^{-a}\otimes v^{x}$ ,

$V_{2}’=u^{2a}\otimes v^{-2x}\oplus u^{a+b}\otimes v^{-(x+y)}\oplus u^{a-b}\otimes v^{y-x}\oplus u^{-a}\otimes v^{x}$ ,

$V_{3}’=u^{a-b}\otimes v^{y-x}\oplus u^{-(a+b)}\otimes v^{x+y}\oplus u^{-2b}\otimes v^{2y}\oplus u^{-b}\otimes v^{y}$ ,

$V_{4}’=u^{a+b}\otimes v^{-(x+y)}\oplus u^{b-a}\otimes v^{x-y}\oplus u^{2b}\otimes v^{-2y}\oplus u^{b}\otimes v^{-y}$ , and

$V_{5}’=u^{a}\otimes v^{-x}\oplus u^{-a}\otimes v^{x}\oplus u^{b}\otimes v^{-y}\oplus u^{-b}\otimes v^{y}$ .
By replacing $x$ and $y$ by $-x$ and $-y$ , we have the equalities for $V_{i},$ $i=1,$ $\cdots$ , 5.
We put $W_{i}=V_{i}’$ for $i=1,$ $\cdots$ , 5. These $G,$ $X=P(V),$ $V_{i}$ and $W_{i},$ $i=1,$ $\cdots$ $5$,

satisfy the hypotheses of Theorem B. We note that $P(V)$ is not G-homotopy
equivalent to $P(V’)$ (see A. Liulevicius [18]).

9. Proof of Theorem 5.1.

Theorem 5.1 immediately follows from

THEOREM 9.1. Let $G$ be a finite mlp0tent group and $X$ a finite $(n-1)$-connected
G-CW-complex of dimenston $n$ and with free G-action. If $V$ and $W$ are onented
real G-modules such that $res_{P}V\cong res_{P}W$ as oriented real P-modules for all the
Sylow subgroups $P$ of $G$ , then there exists an isomorphism $f:\underline{V}arrow\underline{W}$ of oriented
real G-vector bundles over $X$ with the property: if an isomorphism $h_{K}$ : res $KVarrow$

$res_{K}W$ of oriented real K-modules, $K\in S(G)$ , is arbitrarily given, then $f|X^{(n-1)}$ :
$X^{(n-1)}\cross Varrow X^{(n-1)}\cross W$ is regularly K-homotopic to the induced isomorphism
$\overline{h}_{K}|X^{(n-1)}=id\cross h_{K}$ : $X^{(n-1)}\cross Varrow X^{(n-1)}\cross W$ of oriented real K-vector bundles, where
$X^{(n-1)}$ is the $(n-1)$-skeleton of $X$.

This theorem is a composition of the following two lemmas. In the two
lemmas let $G,$ $X,$ $V$ and $W$ be as above. We number the Sylow subgroups of
$G;S_{y}(G)=\{P(i);i=1, m\},$ $m=|S_{y}(G)|$ , and put $Q(i)=P(i)\cap K$ for $i=1,$ $m$ .
We fix isomorphisms $h_{i}$ ; $res_{P(i)}Varrow res_{P(i)}W$ of oriented real $P(i)$-modules and put
$\overline{h}_{i}=id\cross h_{i}$ : $X\cross Varrow X\cross W$ for all $i$ .

LEMMA 9.2. There exist an isomorphjsm $f;\underline{V}arrow\underline{W}$ of onented real G-vector
bundles over $X$ and regular $P(i)- homoto1nes:f|X^{(n-1)}\simeq\overline{h}_{i}|X^{(n-1)}$ for all $i$ .

LEMMA 9.3. Let $K$ be a subgroup of $G,$ $f:\underline{V}arrow\underline{W}$ an isomorphtsm of onented
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real K-vector bundles over $X$ and $h_{K}$ ; $res_{K}Varrow res_{K}W$ an isomorphjsm of onented
real K-modules. We put $\overline{h}_{K}=id\cross h_{K}$ : $X\cross Varrow X\cross W$ . If there exist regular $Q(i)-$

homotopjes: $f|X^{(n-1)}\simeq\overline{h}_{i}|X^{(n-1)}$ for all $i$ , then one has a regular K-homotopy:
$f|X^{(n-1)}\simeq\overline{h}_{K}|X^{(n-1)}$ .

Before starting the proofs of the two lemmas we prepare several words and
notations.

Let $\xi:Earrow A$ be a fiber bundle and $B$ a subspace of $A$ . A continuous map
$s:Barrow E$ is called a section on $B$ of $\xi$ if $\xi\circ s(b)=b$ for all $b\in B$ . Let $s$ and
$s’$ : $Barrow E$ be sections of $\xi$ . A continuous map $t:B\cross Iarrow E$ is said to be a homotopy
(or a first homotopy) on $B$ from $s$ to $s’$ and written $t;s\simeq s’$ if $\xi\circ t(b, c)=b,$ $t(b, 0)$

$=s(b)$ and $t(b, 1)=s’(b)$ for all $b\in B$ and $c\in I$ . Let $t$ and $t’$ be first homotopies
on $B$ from $s$ to $s’$ . We call a continuous map $u:B\cross I\cross Iarrow E$ a second homotopy
on $B$ from $t$ to $t’$ and write $u;t\simeq t’$ if $\xi\circ u(b, c, d)=b,$ $u(b, c, O)=t(b, c),$ $u(b, c, 1)$

$=t’(b, c),$ $u(b, 0, d)=s(b)$ and $u(b, 1, d)=s’(b)$ for all $b\in B,$ $c\in I$ and $d\in I$ . We
note that a second homotopy is relative to the corresponding sections.

Let $G,$ $X,$ $V$ and $W$ be as in Theorem 9.1. We equip $Hom_{R}(V, W)$ with the
G-action: for $g\in G,$ $x\in Hom_{R}(V, W)$ and $v\in V$ , $(gx)(v)$ is given as $gx(g^{-1}v)$ .
We put

$M=$ { $x\in Hom_{R}(V,$ $W)$ : $x$ is bijective and orientation preserving}.

Then $M$ is G-invariant and homeomorphic to $GL^{+}(\dim V, R)$ . Hence $M$ is con-
nected and simple ( $i$ . $e.,$ $\pi_{1}(M)$ trivially acts on $z_{j}(M)$ ), further $\pi_{j}(M)$ is finitely
generated abelian for each $j\geqq 1$ .

ASSERTION 9.4. The induced G-action on $\pi_{j}(M)$ is tnzrzal.

PROOF. By definition each $g\in G$ preserves the orientations of $V$ and $W$ .
If $g\in G$ is fixed, the $\langle g\rangle$-actions on $V$ and $W$ expand to $S^{1}$-actions with $\langle g\rangle\subset S^{1}$

respectively. Since $S^{1}$ is connected, $S^{1}$ acts on $\pi_{j}(M)$ trivially. Hence $g$ acts on
$\pi_{j}(M)$ trivially.

Let $K$ be a subgroup of $G,$ $P(i)$ and $Q(i),$ $i=1,$ $\cdots$ $m$ , subgroups of $G$ defined
before Lemma 9.2. Let $p_{i}$ : $X/P(i)arrow X/G,$ $q_{i}$ : $Xarrow X/P(i),$ $p_{i}^{J}$ : $X/Q(i)arrow X/K,$ $q_{i}’$ : $X$

$arrow X/Q(i)$ , $r:X/Karrow X/G$ , $r_{i}$ : $X/Q(i)arrow X/P(i)$ for $i=1,$ $\cdots$ , $m,$ $q_{0}$ : $Xarrow X/G$ and
$q_{0}’$ : $Xarrow X/K$ be the canonical projections. We have the commutative diagram:
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We consider the bundles $\xi:E=X\cross Marrow X,$ $\xi_{i}$ : $E_{i}=X\cross P(i)Marrow X/P(i),$ $\xi_{l}’$ : $E_{l}’=$

$X\cross Q(i)Marrow X/Q(i)$ for $i=1,$ $\cdots$ , $m$ , $\xi_{o0G}$: $E=X\cross Marrow X/G$ and $\xi_{0}’$ : $E_{0^{=}K}^{\prime x\cross Marrow}$

$X/K$. Then we have the canonical identifications from $E_{i}$ to $p_{\iota}^{*}E_{0}$ for $i=1,$ $\cdots$ , $m$ ,

etc. The set of isomorphisms: $\underline{V}arrow\underline{W}$ of oriented real G-vector bundles is in
one to one correspondence with the set of sections: $X/Garrow E_{0}$ . Actually, if
$f:\underline{V}arrow\underline{W}$ is an isomorphism, we have the section $s:X/Garrow E_{0}$ corresponding to
$f$ by $s([x])=[x, f_{x}]$ for $x\in X$, where $[]$ stand for the equivalence classes and
$f_{x}\in M$ is given by $f_{x}(v)=f(x, v)$ for $v\in V$ . Similarly the set of regular $P(i)-$

homotopies between isomorphisms: $res_{P(i)}\underline{V}arrow res_{P(i)}\underline{W}$, is in one to one cor-
respondence with the set of homotopies between sections: $X/P(i)arrow E_{i}$ for each
$i=1,$ $\cdots$ , $m$ . We denote by $s_{i}$ the section: $X/P(i)arrow E_{i}$ corresponding to $\overline{h}_{i}$ .

PROOF OF LEMMA 9.2. It suffices to prove that there exist a section $s:X/G$

$arrow E_{0}$ and homotopies $r_{i}$ : $p_{i}^{*}s|(X^{(n-1)}/P(i))\simeq s_{i}|(X^{(n-1)}/P(i))$ for all $i=1,$ $\cdots$ , $m$ .
We construct $s$ and $t_{i}$ by an inductive method on the dimensions of skeletons
of $X$.

Since $M$ is connected, there exist a section $s^{1}$ : $X^{(1)}/Garrow E_{0}$ and homotopies
$t_{i}^{0}$ : $p_{i}^{*}s^{1}|(X^{(0)}/P(i))\simeq s_{i}|(X^{(0)}/P(j))$ for all $i$ . Thus, for a non-negative integer
$j\leqq n-2$, we suppose that there exist a section $s^{j+1}$ : $X^{(j+1)}/Garrow E_{0}$ and homotopies
$t_{i}^{j}$ : $p_{i}^{*}s^{j+1}|(X^{(j)}/P(i))\simeq s_{i}|(X^{(j)}/P(i))$ for all $i$ .

By the obstruction theory of Steenrod [32], the obstruction $\sigma(s^{j+1})$ to ex-
tending $s^{j+1}|(X^{(j)}/G)$ to a section from $X^{(j+2)}$ lies in $H^{j+2}(X/G;\pi_{j+1}(M))$ . Since
$p_{i}^{*}s^{j+1}|(X^{(j)}/P(i))$ are homotopic to $s_{i}|(X^{(f)}/P(i)),$ $p_{i}^{*}s^{j+1}|(X^{(j)}/P(i))$ are extendible
to sections from $X^{(j+2)}/P(i)$ for all $i$ . This implies $p_{i}^{*}(\sigma(s^{j+1}))=0$ . Since

$\bigoplus_{i=1}^{m}p_{t}^{*}$ : $H^{j+2}(X/G; \pi_{j+1}(M))arrow\bigoplus_{i=1}^{m}H^{j+2}(X/P(i);\pi_{j+1}(M))$

is injective, we have $\sigma(s^{j+1})=0$ . We can take an extension $j+_{s:X^{(j+2)}}2/Garrow E_{0}$

of $s^{j+1}|(X^{(j)}/G)$ . The obstructions $\sigma(p_{i}^{*j+2}s, s_{i})$ to finding homotopies: $p_{i}^{*j+2}s|(X^{(j+1)}/$

$P(i))\simeq s_{i}|(X^{(j+1)}/P(i)),$ $i=1,$ $\cdots$ , $m$ , are in $H^{j+1}(X/P(i);\pi_{j+1}(M))$ , where the ob-
structions are determined by $p_{\ell S}^{*f+2},$

$s_{i}$ and $t_{\iota}^{j}$ respectively. Since

$\bigoplus_{i=1}^{m}p_{\ell}^{*}$ : $H^{j+1}(X/G; \pi_{j+1}(M))arrow\bigoplus_{i=1}^{m}H^{j+1}(X/P(i);\pi_{j+1}(M))$

is surjective, there is $b\in H^{j+1}(X/G;\pi_{j+1}(M))$ with $p_{i}^{*}b=\sigma(p_{i}^{*j+2}s, s_{i})$ . Take a
cocycle $b’\in C^{j+1}(X/G;\pi_{j+1}(M))$ which represents $b$ . Lemma 33.9 of [32] allows
us to take a section $j+1S;X^{(j+1)}/Garrow E$ such that $j+1s|(X^{(j)}/G)=^{j+2}s|(X^{(j)}/G)$

$(=s^{j+1}|(X^{(j)}/G))$ and $d(j+1s, J+2s|(X^{(j+1)}/G))=-b’$ . By 33.5 of [32] we have

$c(j+1s)=\delta d(j+1s, !+2s|(X^{(j+1)}/G))+c(J+2s|(X^{(j+1)}/G))$

in $C^{j+2}(X/G;\pi_{j+1}(M))$ . Thus $c(j+1s)=0$ . This means that $j+1s$ extends to a
$sections^{j+2}$ : $X^{(j+2)}/Garrow E_{0}$ . Then we have $\sigma(p_{i}^{*}s^{j+2}, s_{i})=0inH^{j+1}(X/P(i);\pi_{j+1}(M))$
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for all $i$ . There exist homotopies $t_{i}^{j+1}$ ; $p_{i}^{*}s^{j+2}|(X^{(j+1)}/P(i))\simeq s_{i}|(X^{(J+1)}/P(i))$ for all $i$ .
By induction we get a desired $s:X/Garrow E_{0}$ and homotopies $f_{i}$ ; $p_{i}^{*}s|(X^{(n-1)}/P(i))$

$\simeq s_{i}|(X^{(n-1)}/P(i))$ for all $i$ . We complete the proof of Lemma 9.2.

PROOF OF LEMMA 9.3. Let $s$ and $s_{K}$ : $X/Karrow E_{0}’$ be the sections corresponding
to K-isomorphisms $f$ and $\overline{h}_{K}$ respectively. It suffices to give a homotopy:
$s|(X^{(n-1)}/K)\simeq s_{K}|(X^{(n-1)}/K)$ . For convenience’ sake we suppose that $Q(i)$ is non-
trivial if and only if $i\leqq m’$ . In the following $i$ ranges over the integers from
one to $m’$ . Since $M^{Q(i)}$ is connected, there exist regular $Q(i)$-homotopies $k_{i}$ :
$h_{i}\simeq h_{K}$ . Set $\overline{k}_{i}=id\cross k_{i}$ : $X^{(n-1)}\cross V\cross Iarrow X^{(n-1)}\cross W$ . Then $\overline{k}_{i}$ give homotopies $u_{i}$ ;

$r_{i}^{*}s_{i}|(X^{(n-1)}/Q(i))\simeq p_{i^{*}}’s_{K}|(X^{(n-1)}/Q(i))$ . By the assumption in Lemma 9.3 we have
homotopies $t_{i}$ : $p_{i^{*}}’s|(X^{(n-1)}/Q(i))\simeq r_{i}^{*}s_{i}|(X^{(n-1)}/Q(i))$ . Thus for all $i$ we have the
homotopies $t_{i}’=t_{i}\vee u_{i}$ ; $p_{i^{*}}’s|(X^{(n-1)}/Q(i))\simeq p_{\iota^{*}}’s_{K}|(X^{(n- 1)}/Q(i))$ .

ASSERTION 9.5. One can choose $k_{i}$ so that there exist second homotolnes:
$q_{1^{*}}’t_{1}’|(X^{(0)}\cross I)\simeq q_{J^{*}}’t_{j}’|(X^{(0)}\cross I)$ for all $j$ with $2\leqq$ ] $\leqq m’$ .

The proof is left to the reader. Note that the natural map from $\pi_{1}(M^{Q(j)})$

to $\pi_{1}(M)$ are surjective and $q_{J^{*}}’:$ $H^{0}(X/Q(j);\pi_{1}(M))arrow H^{0}(X;\pi_{1}(M))$ are bijective
for $j$ with $(2, |Q(])|)=1$ . Using the obstruction theory of Steenrod, the reader
see the existence of required $k_{i}$ . In the following we assume $k_{i}$ to be chosen
as in Assertion 9.5.

ASSERTION 9.6. There exist a (first) homotopy $u^{1}$ ; $s|(X^{(1)}/K)\simeq s_{K}|(X^{(1)}/K)$

and second homotopies $v_{i}^{0}$ : $p_{t^{*}}’u^{1}|(X^{(0)}/Q(i)\cross I)\simeq t_{i}’|(X^{(0)}/Q(i)\cross I)$ for all $i$ .

PROOF. Since $M$ is connected and $q_{0^{*}}’:$ $H^{1}(X/K;\pi_{1}(M))arrow H^{1}(X;\pi_{1}(M))$ is
injective, we get a homotopy $1u;s|(X^{(1)}/K)\simeq s_{K}|(X^{(1)}/K)$ by the obstruction
theory. We have the obstruction $\sigma\in H^{0}(X/Q(1);\pi_{1}(M))$ to finding a second
homotopy: $p_{t^{*1}}’u|(X^{(0)}/Q(1)\cross I)\simeq t_{1}’|(X^{(0)}/Q(1)\cross I)$ . Since $p_{1}^{\prime*}:$ $H^{0}(X^{(n- 1)}/K;\pi_{1}(M))$

$arrow H^{0}(X^{(n-1)}/Q(1);\pi_{1}(M))$ is surjective, by the same technique used in the proof
of Lemma 9.2 we get a homotopy $u^{1}$ ; $s|(X^{(1)}/K)\simeq s_{K}|(X^{(1)}/K)$ , and a second
homotopy $v_{1}^{0}$ ; $p_{i^{*}}’u^{1}|(X^{(0)}/Q(1)\cross I)\simeq t_{1}’|(X^{(0)}/Q(1)\cross I)$ . We denote by $\sigma_{i}$ the ob-
structions in $H^{0}(X^{(n-1)}/Q(i);\pi_{1}(M))$ to finding second homotopies $v_{i}^{0}$ for $i=$

$1,$ $\cdots$ , $m’$ . Of course $\sigma_{1}=0$ . Note $q_{i^{*}}’:$ $H^{0}(X^{(n-1)}/Q(i);\pi_{1}(M))arrow H^{0}(X^{(n- 1)} ; \pi_{1}(M))$

being injective. Assertion 9.5 implies $q_{i^{*}}’\sigma_{i}=q_{1^{*}}’\sigma_{1}=0$ . Hence we have $\sigma_{i}=0$

for all $i$ . This completes the proof of Assertion 9.6.

For a non-negative integer $j\leqq n-3$ we suppose that there exist a homotopy
$u^{j+1}$ ; $s|(X^{(j+1)}/K)\simeq s_{K}|(X^{(j+1)}/K)$ and second homotopies $vi:P_{\iota^{*}}’u^{f+1}|(X^{(j)}/Q(i)\cross I)$

$\simeq t_{i}’|(X^{(j+1)}/Q(i)\cross I)$ for all $i=1,$ $m’$ . We note that

$\bigoplus_{t=1}^{m’}p_{i}’*$ : $H^{J+2}(X/K; \pi_{j+2}(M))arrow\bigoplus_{i=1}^{m’}H^{j+2}(X/Q(i);\pi_{j+2}(M))$
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is injective and

$\bigoplus_{i=1}^{m’}p_{i}’*$ : $H^{j+1}(X/K; \pi_{j+2}(M))arrow\bigoplus_{i=1}^{m’}H^{j+1}(X/Q(i);\pi_{j+2}(M))$

is surjective. By the same technique used in the proof of Lemma 9.2 we get a
homotopy $u^{j+2}$ ; $s|(X^{(j+2)}/K)\simeq s_{K}|(X^{(j+2)}/K)$ and second homotopies $v_{l}^{j+1}$ : $p_{\iota^{*}}’u^{j+2}|$

$(X^{(j+1)}/Q(i)\cross I)\simeq t_{i}’|(X^{(j+1)}/Q(i)\cross I)$ for all $i$ . By induction we get a homotopy
$u:s|(X^{(n-1)}/K)\simeq s_{K}|(X^{(n-1)}/K)$ .
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