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1. Introduction.

When we study non-compact complete riemannian manifolds, we observe
that quasi-isometric deformations of their metrics do not alter global or qualita-
tive properties of the manifolds: For example, two complete riemannian mani-
folds quasi-isometric to each other obviously have the same volume growth rate.
On the other hand, for a non-compact complete riemannian manifold, “attaching
finitely many handles” (see Fig. 1) also preserves such geometric invariants of
the manifold; in other words, we may say that a local topological deformation
of the manifold does not exert essential influences on global geometry. Suggested
by these observations, we introduced the notion of rough isometry in [10]. A
map $\varphi:Xarrow Y$ , not necessarily continuous, between two metric spaces $X$ and $Y$

is called a rough isometry if the following two conditions are satisfied:
(i) for some $\epsilon>0$, the $\epsilon$ -neighborhood of the image of $\varphi$ in $Y$ covers $Y$ ;
(ii) there are constants $a\geqq 1$ and $b\geqq 0$ such that

$a^{-1}d(x_{1}, x_{2})-b\leqq d(\varphi(x_{1}), \varphi(x_{2}))\leqq ad(x_{1}, x_{2})+b$ for all $x_{1},$ $x_{2}\in X$ .

A metric space $X$ is said to be roughly isometric to a metric space $Y$ if
there exists a rough isometry from $X$ into Y. Evidently being roughly isometric
is an equivalence relation among metric spaces. Also, since we do not impose
continuity to rough isometries, there are a lot of pairs of complete riemannian
manifolds which are roughly isometric to each other but are not homeomorphic;
e.g., two manifolds in Fig. 1. Nevertheless, some geometric attributes of rieman-
nian manifolds are inherited through rough isometries. In fact we proved the
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following facts in [10].

Let $X$ and $Y$ be complete riemannian manifolds each of which satisfies the
geometric uniformness condition that

$(*)$ the Ricci curvature is bounded below, and the injectivity radius is positive,

and suppose that $X$ is roughly isometric to $Y$. Then
(I) $X$ and $Y$ have the same volume growth rate ([10; Theorem 3.3]).
(II) If max{ $\dim X$, dim $Y$ } $\leqq m\leqq\infty$ , and if $X$ satisfies the m-dimenstonal isoPer-
imetrzc inequality $(vol\Omega)^{(m-1)/m}\leqq const\cdot area\partial\Omega$ (where we adoPt the convention
that $(m-1)/m=1$ when $m=\infty$ ) for all bounded $dom\alpha ns\Omega$ in $X$ with smooth
boundanes $\partial\Omega$ , then this m-dimensional isoperjmetnc inequality is also valid for $Y$

with a suitable constant ([10; Theorem 4.1]).

Moreover we proved that
(m) If $X$ is a complete nemanman manifold satisfyng the $con\ovalbox{\tt\small REJECT} tion(*)$ and
roughly isometric to the euclidean $m$-space with $m\geqq\dim X$, then there is no $po\alpha tive$

harmomc function on $X$ other than constants ([10; Theorem 5.1]).

The aim of this article is to give the additional fact that the parabolicity
is also preserved by rough isometries. By definition, a complete riemannian
manifold $X$ is said to be parabolic if all positive superharmonic functions on $X$

are constant. Also there is an equivalent definition. Let $p_{t}(x, y)(t>0, x, y\in X)$

be the minimal positive fundamental solution of the heat equation $(\partial/\partial t-\Delta)u=0$

for functions $u$ on $(0, \infty)\cross X$ (cf. [8], [3]). Then $X$ is non-parabolic if and

only if the Green function $g(x, y)= \int_{0}^{\infty}p_{t}(x, y)dt$ exists ([9]). As is well known,

the euclidean n-space is non-parabolic if and only if $n\geqq 3$ . Our main theorem in
the present paper is

THEOREM 1. Suppose that $X$ and $Y$ are complete nemanman mamfolds
satisfying the condition $(*)$ and roughly isometric to each other. Then $X$ is para-
bolic if so is $Y$.

As an immediate consequence of the theorem, we get a theorem of Lyons-
Sullivan [12]: SuppOse that $X$ is a normal covering of a compact nemannian
mamfold whose deck transformation group is abelian of rank $m$ . Then $X$ is par-
abolic if and only if $m\leqq 2$ , because $X$ is roughly isometric to the euclidean m-
space unless it is compact (cf. [10]).

As in [10], we employ the discrete approximation method to prove Theorem
1; we approximate “continuous” geometry of a riemannian manifold by com-
binatorial geometry of a suitable discrete subset of the manifold, which we call
an $\epsilon$ -net. By definition, a net means a countable set $P$ with a family $\{N_{p}\}_{p\in P}$
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satisfying the following two conditions: (i) for each $p\in P,$ $N_{p}$ is a finite subset
of $P$ ; (ii) for all $p,$ $q\in P,$ $p\in N_{q}$ if and only if $q\in N_{p}$ . In other words, a net is
nothing but a countable locally finite l-dimensional simplicial complex when we
combine each pair of points $P$ and $q$ in $P$ with $p\in N_{q}$ by an edge. Suppose that
$P$ is a net. A sequence $p=(p_{0}, \cdots , p_{\iota})$ of elements of $P$ is called a path from
$p_{0}$ to $p_{l}$ of length 1 if $p_{k}\in N_{p_{k-1}}$ holds for all $k=1,$ $\cdots$ $1$ , and the net Pis said
to be connected if for all $p,$ $q\in P$, there is a path from $P$ to $q$ . For a net $P$, a
linear operator $L$ acting on functions $u$ on $P$ is defined by

$Lu(p)=( \# N_{p})^{-1}\sum_{q\in N_{p}}u(q)-u(p)$ , $p\in P$ ,

where, for a set $S,$ $\# S$ denotes the cardinality of $S$ . It is classically known
that the operator $L$ enjoys a lot of properties which the Laplace operator on
the euclidean space, or more generally, the Laplace-Beltrami operator on a
riemannian manifold, possesses (see, e.g., [4], [5]). As in the case of the
Laplace-Beltrami operator, a function $u$ on a net $P$ is said to be suPerharmonic
if $Lu\leqq 0$, and a net $P$ is called parabolic if every positive superharmonic func-
tion on $P$ is constant.

Now let $X$ be a complete riemannian manifold. Recall that a subset $P$ of
$X$ is said to be \’e-separated if $d(p, q)\geqq\epsilon$ whenever $P$ and $q$ are distinct points
of $P$. A maximal $\epsilon$-seParated subset $P$ in $X$ has a canonical structure of net;
in fact we set $N_{p}=\{q\in P:0<d(p, q)\leqq 3\epsilon\}$ for $p\in P$, and we call this $P$ an $\epsilon$ -net
in X. (By a technical reason, the definition of $\epsilon$-nets here is slightly different
from that given in [10]; in fact, in [10], we define an $\epsilon$-net by $N_{p}=\{q\in P$ :
$0<d(p, q)\leqq 2\epsilon\}.)$ We can easily show that an $\epsilon$ -net in $X$ is connected if $X$ is
connected. Then Theorem 1 will follow from

THEOREM 2. SuPpose that $X$ is a complete nemanman mamfold satisfy $ng$

the condition $(*)$ , and $P$ is an $\epsilon$ -net in $X$ with an arbitrary $\epsilon>0$ . Then $X$ is para-
bolic if and only if $P$ is parabolic.

Here, we must refer to the works of Varopoulos [13] and Lyons-Sullivan
[12], who established theorems similar to Theorem 2 of ours by constructing a
discrete random walk approximating the brownian motion on a riemannian mani-
fold. But their arguments, which are probabilistic rather than analytic, are
different from ours in many points; especially, in the proof of Theorem 2, we
employ a criterion of parabolicity, which relates the parabolicity of a rieman-
nian manifold to the capacity of a bounded domain in it, and it will be shown
by a kind of variational arguments.

We begin the proofs of Theorem 1 and Theorem 2 by showing this criterion
for parabolicity in \S 2 (Proposition 3). Next, in \S 3, we develop the elementary
discrete potential theory on nets, and especially establish discrete analogues of
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Theorem 1 and Proposition 3. Using these results, we prove Theorem 1 and
Theorem 2 in the final section. Throughout this paper, we assume that all
manifolds are connected and smooth ( $i.e.$ , being differentiable of class $C^{\infty}$), and
that all nets are connected.

2. Capacity and parabolicity.

Let $X$ be a complete riemannian manifold, and $\Omega$ a non-empty bounded domain
in $X$ with smooth boundary. The capacity of $\Omega$ is defined by

cap $( \Omega)=\inf\{\int_{X}|\nabla u|^{2}dx$ : $u\in C_{0}^{\infty}(X),$ $u|_{\Omega}=1\}$ .
Then we get

PROPOSITION 3. $X$ is non-parabolic if and only if cap $(\Omega)>0$ .

PROOF (cf. [6; \S 1]). First we prove the “only if” part. Suppose that $X$ is
non-parabolic. Fix a point $P$ in $\Omega$ and put $v(x)=\log g(p, x)$ , where $g$ denotes
the Green function. Since $g(P, \cdot)$ is harmonic except at $p$ , we have $\Delta v=-|\nabla v|^{2}$

on $X-\Omega$ . Thus for an arbitrary $u\in C_{0}^{\infty}(X)$ with $u=1$ on $\Omega$ , we get, by Green’s
formula, that

$\int_{X-\Omega}u^{2}|\nabla v|^{2}dx=-\int_{X-\Omega}u^{2}\Delta vdx$

$=- \int_{\partial\Omega}\frac{\partial v}{\partial\nu}dx+2\int_{X-\Omega}u\langle\nabla u, \nabla v\rangle dx$

$\leqq-\int_{\partial\Omega}\frac{\partial v}{\partial\nu}dx+2\int_{X-\Omega}|u||\nabla u||\nabla v|dx$

$\leqq-\int_{\partial\Omega}\frac{\partial v}{\partial\nu}dx+\int_{X-Q}|\nabla u|^{2}dx+\int_{X-\Omega}u^{2}|\nabla v|^{2}dx$ ;

$i.e.$ ,

$\int_{X}|\nabla u|^{2}dx\geqq\int_{\partial\Omega}\frac{\partial v}{\partial\nu}dx$ ,

where $\partial/\partial\nu$ denotes the “inward” normal derivative on the boundary of $\Omega$ . This

shows that cap $( \Omega)\geqq\int_{\partial\Omega}\frac{\partial v}{\partial\nu}dx>0$ .
Next we show the “if” part. Assume cap $(\Omega)>0$ . Take an increasing

sequence of bounded domains $\Omega_{k}$ in $X$ with smooth boundaries so that they
cover $X$ and each of them contains $\overline{\Omega}$ . Then for each $k$ there is a function
$u_{k}\in C^{\infty}(\overline{\Omega}_{k}-\Omega)$ which is harmonic on $\Omega_{k}-\overline{\Omega}$ and satisfies the Dirichlet con-
dition $u_{k}=1$ on $\partial\Omega$ and $u_{k}=0$ on $\partial\Omega_{k}$ . Note that cap $( \Omega)=\lim_{karrow\infty}\int_{\Omega_{k^{-}}\Omega}|\nabla u_{k}|^{2}dx$ .

By the Harnack inequality and the Schauder estimate, we can find a subsequence
$\{u_{j}\}$ of $\{u_{k}\}$ which converges, with respect to the $C^{2,\alpha}$-norm on any compact
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subset in $X-\Omega$ , to a positive function $u\in C^{\infty}(X-\Omega)$ harmonic on $X-\overline{\Omega}$ and with
$u=1$ on $\partial\Omega$ (cf. [7]). Obviously the extension of $u$ by $u=1$ on $\Omega$ is a positive
superharmonic function on $X$, and therefore, to prove the non-parabolicity of $X$,

it is sufficient to show that $u$ is not constant. By Green’s formula, we get

$\int_{\partial\Omega}\frac{\partial u}{\partial\nu}dx=\lim_{jarrow}\int_{\partial\Omega}\frac{\partial u_{j}}{\partial\nu}dx=\lim_{jarrow}\int_{\Omega_{j}-\Omega}|\nabla u_{j}|^{2}dx=cap(\Omega)>0$ ,

and this implies that $u$ is non-constant. $\square$

From the proposition above, we can immediately conclude that the parabo-
licity of complete riemannian manifolds is a quasi-isometry invariant; that is,

one of two complete riemannian manifolds quasi-isometric to each other is para-
bolic if so is the other. This fact was proved by Lyons and Sullivan [12] using
the Kelvin-Nevanlinna-Royden criterion for parabolicity, which says that a com-
plete riemannian manifold is non-parabolic if and only if there is a vector field
on the manifold satisfying some suitable conditions. Compared with this criterion,
Proposition 3 of ours has an advantage that it characterizes the non-parabolicity
by the non-vanishing capacity, which is defined as the infimum of some quanti-
ties, and does not require the existence of functions or vector fields for which
some conditions are to be satisfied.

3. Discrete potential theory.

As was seen in [10], a net is rich in combinatorial geometry, and some
geometric properties of complete riemannian manifolds satisfying the condition
$(*)$ are approximated by corresponding combinatorial properties for e-nets in the
manifolds. Tbeorem 2 suggests just that this is also the case with the paraboli-
city, and to see this, we study potential theoretic aspects of nets in this section
(cf. Dodziuk [4]).

Let $P$ be a net, and put

$\nu(p)=\# N_{p}$ , and $\pi(P, q)=\{0$
if $q\in N_{p}$

otherwise.
Recall that the linear operator $L$ acting on functions $u$ on $P$ is defined by

$Lu(p)= \sum_{q\equiv N_{p}}\pi(p, q)u(q)-u(p)$
, $P\in P$ .

Also, as was mentioned in the introduction, a function $u$ on $P$ is said to be
superharmonic if $Lu\leqq 0$ , and the $netP$ is called parabolic if it does not carry
positive superharmonic functions other than constants. (It is familiar to
probabilists that the net $P$ is parabolic if and only if the Markov chain on $P$

with the transition probability $\pi$ is recurrent.) For each $k=0,1,$ $\cdots$ define a
function $\pi_{k}$ ; $P\cross Parrow R$ inductively by
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$\pi_{0}(p, q)=\{01$ $ififp\neq qp=q$
$\pi_{k+1}(p, q)=\sum_{r\subset P}\pi_{i}(p, r)\pi(r, q)$ .

This corresponds to the heat kernel of a riemannian manifold. Moreover, the
Green function $g$ of $P$ is defined by

$g(p, q)= \sum_{k=0}^{\infty}\pi_{k}(p, q)$ ,

if it exists. Since we have been assuming that the net $P$ is connected, it is
easy to see that $g(P, q)<\infty$ for all $p,$ $q\in P$ if $g(P_{0}, q_{0})<\infty$ for some $p_{0},$ $q_{0}\in P$.
Moreover if $g<\infty$ then for each fixed $q\in P$, we have

(1) $Lg_{q}(p)=\{0-1$ $ififp\neq qp=q$

where $g_{q}(p)=g(p, q)$ . First we prove a discrete counterpart of It\^o’s theorem [9].

LEMMA 4. $P$ is non-parabolic if and only if $g<\infty$ .

PROOF. The “if” part is trivial from (1). We prove the “only if” part.
Let $u$ be a non-constant positive superharmonic function on $P$, and put $f=-Lu$
$\geqq 0$ . We may assume $f\not\equiv O$ . (In fact, in the case when $Lu=0$, take a real
number $a$ between infu and $\sup u$ , and define a function $u’$ on $P$ by $u’(P)=u(p)$

if $u(P)\leqq a$ , and $u’(P)=a$ if $u(p)>a$ . This $u’$ is a non-constant positive superhar-
monic function on $P$ with $Lu’\not\equiv 0.$ ) Then we get

2 $\Sigma\pi_{j}(p, q)f(q)=-\sum^{k}\sum\pi_{j}(p, q)\{ \sum\pi(q, r)u(r)-u(q)\}$

$J^{=0q\in P}$ $j=0q\in P$ $r\in P$

$=- \sum_{j=0}^{k}\sum_{q\in P}\{\pi_{j+1}(p, q)-\pi_{j}(p, q)\}u(q)$

$=u(P)- \sum_{q\in P}\pi_{k+1}(p, q)u(q)$

$\leqq u(P)$ ,

and this shows that $\sum_{q\in P}g(p, q)f(q)=\sum_{j=0}^{\infty}\sum_{q\in P}\pi_{j}(p, q)f(q)$ is absolutely sum-
mable. Thus we conclude $g<\infty$ . $\square$

For functions $u$ and $v$ on $P$, we define functions $\langle Du, Dv\rangle$ and $|Du|$ on $P$ by

$\langle Du, Dv\rangle(P)=\sum_{q\in N_{p}}\{u(q)-u(P)\}\{v(q)-v(p)\}$ ,

$|Du|(P)=\sqrt{\langle Du,Du\rangle(P)}$

for $p\in P$. Then we get

LEMMA 5 (Green’s formula). Let $u$ and $v$ be functions on $P$, and assume that
at least one of them has a finite suppOri. Then the following identity holds:
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$\sum_{p\in P}(2\nu uLv+\langle Du, Dv\rangle)(P)=0$ .
The lemma follows from direct computation, and the proof is omitted.

We are now in a position to give a discrete version of Proposition 3. For
a finite subset $S$ of $P$, the capacity of $S$ is defined by

cap$( S)=\inf$ { $\sum_{p\in P}|Du|^{2}(p)$ : $u$ is a function on $P$

with finite support, and $u=1$ on $S$ }.

PROPOSITION 6. Let $S$ be a non-empty finite subset of a net P. Then $P$ is
non-parabolic if and $mly$ if cap$(S)>0$ .

PROOF. Take an increasing sequence of finite subsets $S_{k}$ of $P$ so that $S\subset S_{k}$ ,
$P=\cup S_{k}$ , and, for each $k$ , let $u_{k}$ be a function on $P$ which minimizes the
quantity $\sum_{p\in P}|Dv|^{2}(p)$ among all functions $v$ on $P$ with $v=1$ on $S$ and $v=0$

on $P-S_{k}$ . Obviously $0\leqq u_{k}\leqq 1$ , $u_{k}=1$ on $S$ , $u_{k}=0$ on $P-S_{k}$ , and cap(S) $=$

$\lim karrow\infty\Sigma_{p\in P}|Du_{k}|^{2}(p)$ . Moreover we can see that $Lu_{k}=0$ on $S_{k}-S$ as follows.
Let $w$ be an arbitrary function on $P$ such that its support lies in $S_{k}-S$ , and
put $u_{k.t}=u_{k}+tw,$ $t\in(-1,1)$ . Then $\Sigma_{p\in P}|Du_{k,t}|^{2}(p)$ is minimized at $t=0$ , and
hence, by Lemma 5, we get

$0= \frac{1}{2}\frac{d}{dt}|_{t=0}\sum_{p\subset P}|Du_{k,t}|^{2}(p)=\sum_{p\subset P}\langle Du_{k}, Dw\rangle(p)=-2\sum_{p\in S_{k}- S}(\nu wLu_{k})(p)$ .

Since this must hold for any $w$ , we have $Lu_{k}=0$ on $S_{k}-S$ . Now we can find
a subsequence $\{u_{j}\}$ of $\{u_{k}\}$ which converges pointwise to a function $u$ on $P$.
It is easy to see that $u$ is a positive superharmonic function such that $u=1$ on
$S$ and $Lu=0$ on $P-S$ . In addition, by Lemma 5, we have

(2) $-2 \sum_{p\in S}\nu(p)Lu(p)=-2\lim_{j\infty}\sum_{p\in S}\nu(p)Lu_{j}(p)$

$= \lim_{jarrow\infty}\sum_{p\in P}|Du_{j}|^{2}(p)=cap(S)$ .

Now the “if“ part of the proposition follows from (2) directly, since $u$ is non-
constant if cap$(S)>0$ . We prove the “only if” part. Assume $P$ is non-parabolic.
Then, by Lemma 4, the Green function $g$ exists. Note that it is sufficient to
show that cap$(S)>0$ only for $S$ consisting only of one element of $P$, say $q$ .
By the choice of $u$ and the maximum principle, we get $g(p, q)/g(q, q)\geqq u(p)$ for
all $p\in P$. If $u$ were identically equal to 1, then $g(P, q)\geqq g(q, q)$ in contradiction
to (1). Hence $u$ is non-constant, and consequently cap$(\{q\})>0$ by (2). $\square$

Finally we prove a discrete analogue of Theorem 1 by virtue of the proposi-
tion above. For a net $P$, denote by $\delta(p, q)$ the minimum of the lengths of paths
from $P$ to $q$ . Obviously $\delta$ is a metric on $P$, which we call the combinatorial
metric of $P$. Also a net $P$ is said to be uniform if $\sup_{p\in P}\# N_{p}<\infty$ .
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COROLLARY 7. Supp0se that $P$ and $Q$ are uniform nets roughly isometric to
each other (with respect to therr combinatonal metrics). Then $P$ is paraboljc if
so is $Q$ .

PROOF. Let $\varphi:Parrow Q$ be a rough isometry, and suppose that $P$ is non-
parabolic. Then, for a non-empty finite subset $S$ of $P$, we have cap$(S)>0$ by
Proposition 6. We show that cap $(\varphi(S))>0$ , which implies the non-parabolicity of
$Q$ . Let $v$ be an arbitrary function on $Q$ of finite support with $v=1$ on $\varphi(S)$ ,

and put $u=v\circ\varphi$ Obviously $u=1$ on $S$ , and hence, it suffices to show that
$\sum_{p\in P}|Du|^{2}(p)\leqq c_{1}\sum_{q\in Q}|Dv|^{2}(q)$ with some constant $c_{1}$ independent of $v$ . By the
definition, there exists a constant $c_{2}$ such that for all $p,$ $P’\in P$ with $\delta(p, P’)=1$

there is a length-minimizing path $q=(q_{0}, \cdots q_{l})$ in $Q$ from $q_{0}=\varphi(p)$ to $q_{l}=\varphi(p’)$

of length $l\leqq c_{2}$ . From this we get

$(u(P’)-u(p))^{2}\leqq c_{2}\{(v(q_{0})-v(q_{1}))^{2}+\cdots+(v(q_{larrow 1})-v(q_{l}))^{2}\}$

and hence, with the uniformness of $P$, we get

$|Du|^{2}(p) \leqq c_{3}\sum_{\delta(q.\varphi(p))<c_{2}}|Dv|^{2}(q)$ .

Again, from the uniformness assumption on $P$ and $Q$ , we obtain a constant $c_{1}$

such that $\Sigma_{p\in P}|Du|^{2}(p)\leqq c_{1}\Sigma_{q\in Q}|Dv|^{2}(q)$ . $\square$

4. Proofs of Theorem 1 and Theorem 2.

To prove Theorem 2 we first show

LEMMA 8 (The local Poincar\’e inequality). Let $X$ be a complete nemannian
n-manifold whose Ricci curvature is bounded below by a $constant-(n-1)K^{2}(K\geqq 0)$ .
Then for the geodesic ball $B=B_{r}(p)$ in $X$ with center at $p\in X$ and of ra&us $r>0$ ,

there is a constant $\beta=\beta(n, K, r)>0$ such that

$\int_{B}|\nabla u|dx\geqq\beta\int_{B}|u-u^{*}|dx$ for all $u\in C^{\infty}(\overline{B})$ ,

where $u^{*}$ denotes the integral mean of $u$ over $B$ ; $u^{*}=( volB)^{-1}\int_{B}udx$ .

PROOF. It is sufficient to prove the lemma only for $u\in C^{\infty}(\overline{B})$ such that
$u^{*}=0$ , the critical points of $u$ are of finite number, and that vol $\{x\in B;u(x)>0\}$

$\leqq vol\{x\in B;u(x)<0\}$ . Put $D_{t}=\{x\in B;u(x)>t\}$ . Since vol $D_{t}\leqq(volB)/2$ for
$t\geqq 0$ , Buser’s local isoperimetric inequality [1; \S 5] implies that area $(\partial D_{t}\cap B)$

$\geqq c_{1}volD_{t}$ for $t\geqq 0$ , where $c_{1}=c_{1}(n, K, r)>0$ is a constant, and hence we get

$\int_{B}|\nabla u|dx\geqq\int_{D_{0}}|\nabla u|dx=\int_{0}^{\infty}area(\partial D_{t}\cap B)dt$

$\geqq c_{1}\int_{0}^{\infty}volD_{t}dt=c_{1}\int_{D_{0}}udx=\frac{c_{1}}{2}\int_{B}|u|dx$ . $\square$
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Other necessities to prove Theorem 2 are concerned with nets in manifolds.
Suppose that $P$ is an $\epsilon$ -net in a complete riemannian manifold $X$. First of all,
we must note that $B_{\epsilon/2}(p)s(p\in P)$ are disjoint, and that $\{B_{\epsilon}(p)\}_{p\in P}$ covers $X$,
since $P$ is a maximal $\epsilon$ -separated subset of $X$. Moreover, if the Ricci curvature
of $X$ is bounded below, then the following hold:

(3) for any $r>0$ , there is a constant $\mu(r)$ such that $\#(P\cap B_{r}(x))\leqq\mu(r)$ for all
$x\in X$ ; especially $P$ is uniform;

(4) the net $P$ with its combinatorial metric is roughly isometric to $X$.

The proofs of these facts are found in [10; \S 2]. Also, before giving the proof
of Theorem 2, we mention what the condition $(*)$ implies. Suppose that $X$ is a
complete riemannian manifold satisfying $(*)$ . Then the following volume estimates
for geodesic balls are known:

(5) vol $B_{r}(p)\geqq V_{0}(r)$ for $p\in X$ and $r\in(O$, (inj $X$ ) $/2$];

(6) vol $B_{r}(p)\leqq V_{1}(r)$ for $p\in X$ and $r>0$ ,

where $V_{0}(r)$ and $V_{1}(r)$ are constants independent of $p\in X$, and inj $X$ denotes the
injectivity radius of $X$. The first inequality (5) is a theorem of Croke [2: Prop-
osition 14], and the second is a consequence of a well-known comparison
theorem.

PROOF OF THEOREM 2. Let $X$ be a complete riemannian manifold satisfying
$(*)$ . Then, by (3) and (4), any two nets in $X$ are uniform and roughly isometric
to each other (recall that to be roughly isometric is an equivalence relation).

Hence, from Corollary 7, one of them is parabolic if and only if so is the other,
and this makes it possible to prove Theorem 2 only for an $\epsilon$-net $P$ in $X$ with
$0<\epsilon\leqq(injX)/2$ . First we show that $P$ is non-parabolic if so is $X$. Assume
that $X$ is non-parabolic, and take a non-empty bounded domain $\Omega$ in $X$ with
smooth boundary. Then, by Proposition 3, $\Omega$ has a positive capacity. We will
show that the finite subset $S=\{p\in P:B_{2\epsilon}(p)\cap\Omega\neq\emptyset\}$ of $P$ also has a positive
capacity, which implies the non-parabolicity of $P$ by Proposition 6. For each
$p\in P$, take a function $\eta_{p}\in C_{0}^{\infty}(X)$ such that $0\leqq\eta_{p}\leqq 1$ , $\eta_{p}=1$ on $B_{\text{\’{e}}}(p)$ , $\eta_{P}=0$

outside of $B_{2\epsilon}(p)$ , and that $|\nabla\eta_{p}|\leqq c_{1}$ on $X$, where $c_{1}$ is a constant indePendent of
$p$ , and put $\xi_{p}(x)=\eta_{p}(x)/\sum_{q\in P}\eta_{q}(x)$ for $x\in X$. Note that there is a constant $c_{2}$

such that $|\nabla\xi_{p}|\leqq c_{2}$ . In fact, we have

$| \nabla\xi_{p}|\leqq|\nabla\eta_{p}|(\sum_{q}\eta_{q})^{-1}+\eta_{p}\sum_{q}|\nabla\eta_{q}|(\sum_{q}\eta_{q})^{-2}$

$\leqq|\nabla\eta_{p}|+\sum_{q}|\nabla\eta_{q}|\leqq(\nu_{0}+2)c_{1}$ ,

where $\nu_{0}=\sup_{p\equiv P}\#N_{p}<\infty$ . Suppose that $u^{*}$ is an arbitrary function on $P$ of
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finite support with $u^{*}=1$ on $S$ , and set

$u(x)= \sum_{p\in P}u^{*}(p)\xi_{p}(x)$ , $x\in X$ .

Then, at $x\in B_{\epsilon}(p)$ , we have

$\nabla u(x)=$
$\sum_{q\in N_{p}\cup\{p\}}$ $u^{*}(q) \nabla\xi_{q}(x)=\sum_{q\in N_{p}-\{p\}}(u^{*}(q)-u^{*}(p))\nabla\xi_{q}(x)$

since $\Sigma_{q\in N_{p}\cup tp\}}\nabla\xi_{q}(x)=0$ , and this shows that

$|\nabla u(x)|^{2}\leqq c_{2}^{2}\nu_{0}|Du^{*}|^{2}(p)$ .
Hence with (6) we get

$\int_{X}|\nabla u|^{2}dx\leqq\sum_{p\in P}\int_{B_{\epsilon}(p)}|\nabla u|^{2}dx\leqq c_{3}\sum_{p\in P}|Du^{*}|^{2}(p)$

with $c_{3}=c_{2}^{2}\nu_{0}V_{1}(\epsilon)$ . On the other hand, $u=1$ on $\Omega$ , and therefore, we have
$c_{3}\Sigma_{p\in P}|Du^{*}|^{2}(p)\geqq cap(\Omega)>0$ . This proves cap$(S)>0$ .

Next we show the non-parabolicity of $X$ under the assumption that $P$ is
non-parabolic. Fix a non-empty finite subset $S$ of $P$. Then, by Proposition 6,
cap$(S)>0$ . Also let $\Omega$ be a bounded domain in $X$ with smooth boundary such
that $B_{4\epsilon}(p)\subset\Omega$ for $p\in S$ . For an arbitrary function $u\in C_{0}^{\infty}(X)$ with $u=1$ on $\Omega$ ,

define a function $u^{*}$ on $P$ by

$u^{*}(P)= \frac{1}{volB_{4\epsilon}(p)}\int_{B_{4\epsilon}(p)}udx$ .

Obviously $u^{*}=1$ on $S$ . Also for $p\in P$ we have

$V_{1}(4 \epsilon)\int_{B_{4\epsilon}(p)}|\nabla u|^{2}dx\geqq\{\int_{B_{4\epsilon}(p)}|\nabla u|dx\}^{2}\geqq\beta^{2}\{\int_{B_{4\epsilon}(p)}|u(x)-u^{*}(p)|d_{X}\}^{2}$ ,

by (6), the Schwarz inequality and Lemma 8. Hence for $p,$ $q\in P$ with $\delta(p, q)=1$ ,

we get

$2 \beta^{-2}V_{1}(4\epsilon)\int_{B_{7s}(p)}|\nabla u|^{2}dx$

$\geqq\beta^{-2}V_{1}(4\epsilon)\{\int_{B_{4\epsilon}(p)}|\nabla u|^{2}dx+\int_{B_{4\epsilon}(q)}|\nabla u|^{2}d_{X}\}$

$\geqq\{\int_{B_{4\epsilon}(p)}|u(x)-u^{*}(p)|dx\}^{2}+\{\int_{B_{4\epsilon}(q)}|u(x)-u^{*}(q)|dx\}^{2}$

$\geqq\frac{1}{2}\{\int_{B_{4\epsilon}(p)}|u(x)-u^{*}(p)|dx+\int_{B_{4\epsilon}(q)}|u(x)-u^{*}(q)|dx\}^{2}$

$\geqq\frac{1}{2}\{\int_{B_{4\Xi}(p)\prime 13_{4\epsilon}(q)}|u^{*}(q)-u^{*}(p)|d_{X}\}^{2}$

$\geqq\frac{1}{2}V_{0}(\epsilon)^{2}(u_{\backslash }^{*}q)-u^{*}(p))^{2}$ ,
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because of $B_{\epsilon}(p)\subset B_{4\epsilon}(p)\cap B_{4\epsilon}(q)$ and (5). Especially this implies

$c_{4} \int_{B_{7\epsilon}(p)}|\nabla u|^{2}dx\geqq|Du^{*}|^{2}(p)$

with a suitable constant $c_{4}$ independent of $u$ and $p$ . Moreover, from (3), we get

$\mu(7\epsilon)\int_{X}|\nabla u|^{2}dx\geqq\sum_{p\in P}J_{B_{7\epsilon}(p)}|\nabla u|^{2}dx$ ,

and therefore we obtain

$c_{5} \int_{X}|\nabla u|^{2}dx\geqq\sum_{p\in P}|Du^{*}|^{2}(p)$ .

This shows that $c_{6}cap(\Omega)\geqq cap(S)>0$ , and consequently, implies the non-parabolicity
of $X$ as Proposition 3 suggests. This completes the proof of Theorem 2. $\square$

PROOF OF THEOREM 1. Let $X$ and $Y$ be complete riemannian manifolds
satisfying $(*)$ and roughly isometric to each other, and take nets $P$ and $Q$ in $X$

and $Y$ , respectively. Note that, by (4), $P$ and $Q$ are roughly isometric to each
other with respect to their combinatorial metrics, and that both of $P$ and $Q$ are
uniform as (3) suggests. Hence, by Corollary 7, $P$ is parabolic if so is $Q$ . Also,

as is seen in Theorem 2, $P$ (resp. $Q$ ) is parabolic if and only if $X$ (resp. $Y$ ) is
parabolic. Thus the parabolicity of $Y$ implies those of $Q$ and $P$, and consequently
that of $X$. This completes the proof of Tbeorem 1. $\square$

References

[1] P. Buser, A note on the isoperimetric constant, Ann. Sci. \’Ecole Norm. Sup., 15
(1982), 213-230.

[2] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci.
\’Ecole Norm. Sup., 13 (1980), 419-435.

[3] J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open
manifolds, Indiana Univ. Math. J., 32 (1983), 703-716.

[4] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain
random walks, Trans. Amer. Math. Soc., 284 (1984), 787-794.

[5] E. B. Dynkin and A. H. Yushkevich, Markov Processes; Theorems and Problems,
Plenum Press, New York, 1969.

[6] D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal sur-
faces in 3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math.,
33 (1980), 199-211.

[7] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order, 2nd edition, Springer, New York, 1983.

[8] S. It\^o, Fundamental solutions of parabolic differential equations and boundary value
problems, Japan. J. Math., 27 (1957), 55-102.

[9] S. It\^o, On existence of Green function and positive superharmonic functions for
linear elliptic operators of second order, J. Math. Soc. Japan, 16 (1964), 299-306.

[10] M. Kanai, Rough isometries, and combinatorial approximations of geometries of
non-compact riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413.



238 M. KANAI

[11] A. Kasue, A laplacian comparison theorem and function theoretic properties of a
complete riemannian manifold, Japan. J. Math., 8 (1982), 309-341.

[12] T. Lyons and D. Sullivan, Function theory, random paths, and covering spaces,
J. Diff. Geom., 19 (1984) , 299-323.

[13] N. Th. Varopoulos, Brownian motion and random walks on manifolds, Ann. Inst.
Fourier (Grenoble), 34 (1984) , 243-269.

Masahiko KANAI
Department of Mathematics
Faculty of Science and Technology
Keio University
Yokohama 223, Japan


	1. Introduction.
	THEOREM 1. ...
	THEOREM 2. ...

	2. Capacity and parabolicity.
	3. Discrete potential ...
	4. Proofs of Theorem 1 ...
	References

