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In Tamura the generalized Schoenflies theorem for spheres was proved.
The statement is as follows:

THEOREM. Let M be a connected orientable smooth n-manifold satisfying one
of the following conditions:

i) M is noncompact or with nonempty boundary,

il) M has a non-zero j-th Betti number for some j+#0, n,

iii) The fundamental group of M is an infinite group,

iv) M is a homology sphere.
Then every inessential (n—1)-sphere embedded in M bounds an embedded n-disk.

Also in [3] the generalized Schoenflies theorem for S?XS? was proved :

THEOREM. Let M be a manifold as in the above theorem. Let p-+q=n—1.
Then every inessential S?XS? embedded in M bounds an embedded D?*'X S? or’an
embedded S? X DI,

Following Tamura [2], a manifold in which some inessential embedded
sphere (resp. S?XxS?% does not bounds an embedded disk (resp. D?*'xS? or S?
X D) is said to be exceptional. In this paper we prove that exceptionality for
sphere is equivalent to that for S?XS? in most cases. below also
shows that the Schoenflies theorem for spheres implies the Schoenflies theorem
for S?x S

Throughout this paper we work in PL category. Although [2], [3] deal
with smooth manifolds, the PL versions of the theorems can be proved in the
same way. All manifolds are assumed to be connected and orientable. S™
denotes the m-sphere, and D™ denotes the m-disk centered at 0. “Link” denotes
the linking number.

THEOREM 1. If 1<q¢<p—1, every (p-+q+1)-dimensional manifold which is
exceptional for SPXS? is exceptional for SP+e

PrOOF oF THEOREM 1. Let M be a (p-+¢-1)-dimensional manifold which is
not exceptional for S?*¢; i.e. every inessential (p-+¢)-sphere embedded in M
bounds an embedded (p+¢+1)-disk. We will prove that every inessential S?x S?
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embedded in M bounds an embedded S?X D?**! or an embedded D?*'xS%

Let W be a (p-+¢)-dimensional inessential submanifold in M which is homeo-
morphic to S?xS? and let A, B be closures of two components of M—W. Let
h:S?xS?-»W be a homeomorphism which is nullhomotopic in M, and let S=
h({x} XS9 for x=S?. We will show either A or B is homeomorphic to S?x D*!
or DP+1x S9,

CLamM 1. S bounds a singular disk 4 contained in A or B.

PROOF. Since h is nullhomotopic, S is contractible. So there exists an im-
mersion f:D?*'—M such that f|dD?*' is a homeomorphism to S, and that
flint D% is transverse with respect to W. Then (W) is a g-dimensional sub-
manifold in D', We will show that f can be altered preserving f|dD?*' so
that f~'(W)=0D*!,

Let E; (=1, 2, ---) denote closures of components of D%*'—f~}(W), and let
0=l *W)«[OE,;=H,W). If there exists 7 such that 5;=0, we can reduce
the number of components of f~X(W) as follows. Firstly we connect components
of 0F; by disjoint tubular neighbourhoods of arcs {a;} in E;, and define f’: D
—M so that f/|(D"™—E)=f|(D""'—E,), Im(f'|a;)CW. Denote E;—\Ja; by E:.
Then 0E} is a connected sum of all components of 0F;. By assumption f/|0E}:
O0E;—W induces a zero-map between g-dimensional homology groups. So f’|0E;
can be extended to a map g:E;—W because the only obstruction lies in
H®™Y(E}, 0E}; n,(W)), and by Hurewicz’s theorem it is represented by (f’|0E7)«[0E}]
which is equal to %;. Let f”:D%!'—M be a map such that f”|[(D*"'—U(E)))=
fI(D¥*—U(E))) and that f”| E; is a map made by pushing g off W in the regular
neighbourhood of W, where U(E;) denotes a regular neighbourhood of E; in D!,
Then components of f”~*(W) is less than that of f/~*(W). So make f” be a new f.

Repeating this process, we may assume that every »; is not 0. If f'(W)
consists of only one component, the proof of Claim 1 terminates. So we may
assume that there are at least two E;’s.

Let K ,=Ker{(i)«: H(W)—H,(A)}, and let Kz=Ker{(ip)sx: H,W)—>HyB)},
where 74 ip are inclusions. As f(E;) lies in A for some E;, K,#0. Similarly
Kz+#0. Let x be the element of H,(W) represented by h({*} xS%, and let y be
the element of H,(W) represented by h(S?X {x}).

As HW)=<{x>, K;={m4x> and Kz=<{mpx) for some integers m,, mp dif-
ferent from 0. So there exist (¢g+1)-chains C,&Cy1(A) and Cp=Cyyy(B) such
that [0C,]=m x, [0Cg]l=mpx, and that intC,CA, intCzCB. Since x-y=l,
[Cy, 0C41-(G)xy=m4#0, and [Cp, 0Cp]-(ig)xy=mp+0. Thus neither (:,)xy nor
(zg)xy is a torsion element by duality theorem.

Let T=h(S?x {*}). Similarly to S, T is inessential in M. Hence there ex-
ists an immersion g:D?*'—M such that g|dD?*! is a homeomorphism to 7', and
that g is transverse to W. Let F; be closures of components of D?*'—g~(I¥).
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Then for some F;, (g|dF)«[0F. ] H,(W) is not O because (g|oD?*!),[0D?+]+0
in H,(W). So some nonzero multiple of (74)xy or (Zg)xy equals zero. This is a
contradiction. Thus the proof of Claim 1 is completed.

Since ¢<p—1, we have 2(¢g-+1)+1=<p-+g+1. This implies that 4 can be
homotoped to an embedded disk preserving 04. So we may assume that 4 is an
embedded disk.

Let U(4) be a regular neighbourhood of 4 such that U)W is also a
regular neighbourhood of 04=S. Let ¢:D?xD¥*'—U(4) be a homeomorphism
such that ¢({0} x D¥*)=4, ¢(D?XoD*)=UMNW. (The framing is arbitrary.)
Let W be W—¢(D?xaD**))\U(@D?x D). Clearly W’ is homeomorphic to a
(p-+q)-sphere.

CramM 2. W’ is inessential in M.

PrROOF. Let V be A" UMW) in SPxS% and let V'’ be the closure of
SPxS?—V. Then both of them are homeomorphic to D?xS% Because & is
nullhomotopic, considering the cone of S? X S? we can see that 4|V’ is homotopic
to h|V relative to dV=0aV’. So W’ can be deformed homotopically to (W’'—
hV'NURV)=¢(D? xadDT )\ Ug(@D? x D*?).  Clearly it is inessential.

Now by assumption W’ bounds an embedded (p+g¢-+1)-disk D in M. In the
case that D is the opposite side of M—W’ to 4, W=0d(D\U¢(D? x D**")). Clearly
DU@(D? x D) is homeomorphic to S?x D% It is not twisted because its
boundary W is homeomorphic to S?xXS% In this case the assumption that ¢<
p—1 is unnecessary. In the case that D is in the same side of M—W’ as 4,
W=0(D—¢(D? xint D**')). As ¢>1, p+3=<p+g¢+1. So by Zeeman’s theorem
([4]), ¢(D?x D*') is unknotted in D. Thus D—¢g(D? X int D?*') is homeomorphic
to DP*'x S%. This completes the proof of [Theorem 1.

REMARK 1. does not hold if g=1. A counterexample can be
constructed as follows.

Let M be a (p+2)-dimensional manifold different from a sphere, and let
Dc M be an embedded (p+2)-disk. There exists a knotted p-handle H embedded
in D. Since H is knotted, D—int(H) is not homeomorphic to D?*'xS*. As M—D
is not a disk, (M—int D)\UH is not homeomorphic to S?x D% So W=d(D—H)
which is homeomorphic to S? X S* bounds neither an embedded S?XD? nor an
embedded D?*1xS'. Moreover as W is contained in D, it is clearly inessential.

This shows that W is a counterexample to in case of ¢g=1.

REMARK 2. Claim 1 holds without the assumption on ¢g. If we assume the
simply-connectedness of M, holds for g=p—1. It can be proved using
Whitney’s theorem. If M is 2-connected, holds for g=p. It is a
consequence of Irwin’s theorem ([1]).
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THEOREM 2. (The converse of Theorem 1.) If p>q, m=p-+q, then every
(m4-1)-dimensional manifold which is exceptional for S™ is exceptional for S? XS4

PrOOF OF THEOREM 2. Let M be an (m-+1)-dimensional manifold which is
not exceptional for S?xS?% We will prove that every inessential m-sphere
embedded in M bounds an embedded (m-1)-disk.

Let W be an m-dimensional inessential submanifold of M which is homeo-
morphic to S™. Let U be an open (m-+1)-disk embedded in M such that (U, UNW)
is a standard disk pair. Let ¢:D?*'xD?-U be an embedding such that ¢(D?**
XDYNW=¢(D?*' xadD?), and Link({x} xaD?, {0} x0D9)=0 for x<oD?*'. Then
W'=W —int D?*'x9D?)\U@(@D?*'x D?) is homeomorphic to S?XS% By the de-
finitions of U and ¢, W’ can be homotoped into W. Since W is inessential, so
is W’. Hence W’ bounds V which is homeomorphic to S?x D%!, or V’ which
is homeomorphic to D?**xS% If W’ bounds V, W bounds V\U@(D?*'x D?) which
is homeomorphic to D™*!. If W bounds V’, W’ bounds V —intg(D?*' X D% which
is homeomorphic to D™*!. So the proof of is completed.
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