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In Tamura [2] the generalized Schoenflies theorem for spheres was proved.
The statement is as follows:

THEOREM. Let $M$ be a connected orientable smooth n-manifold satisfying one
of the following conditions:

i) $M$ is noncompact or with nonempty boundary,
ii) $M$ has a non-zero j-th Betti number for some $j\neq 0,$ $n$ ,
iii) The fundamental group of $M$ is an infinite group,
iv) $M$ is a homology sphere.

Then every inessential $(n-1)$-sphere embedded in $M$ bounds an embedded n-disk.
Also in [3] the generalized Schoenflies theorem for $S^{p}\cross S^{q}$ was proved:

THEOREM. Let $M$ be a manifold as in the above theorem. Let $P+q=n-1$ .
Then every inessential $S^{p}\cross S^{q}$ embedded in $M$ bounds an embedded $D^{p+1}\cross S^{q}$ orran
embedded $S^{p}\cross D^{q+1}$ .

Following Tamura [2], a manifold in which some inessential embedded
sphere (resp. $S^{p}\cross S^{q}$) does not bounds an embedded disk (resp. $D^{p+1}\cross S^{q}$ or $S^{p}$

$\cross D^{q+1})$ is said to be exceptional. In this paper we prove that exceptionality for
sphere is equivalent to that for $S^{p}\cross S^{q}$ in most cases. Theorem 1 below also
shows that the Schoenflies theorem for spheres implies the Schoenflies theorem
for $S^{p}\cross S^{q}$ .

Throughout this paper we work in PL category. Although [2], [3] deal
with smooth manifolds, the PL versions of the theorems can be proved in the
same way. All manifolds are assumed to be connected and orientable. $S^{m}$

denotes the m-sphere, and $D^{m}$ denotes the m-disk centered at $0$ . “Link” denotes
the linking number.

THEOREM 1. If $1<q<p-1$ , every $(p+q+1)$ -dimensional manifold which is
exceptional for $S^{p}\cross S^{q}$ is exceptional for $S^{p+q}$ .

PROOF OF THEOREM 1. Let $M$ be a $(p+q+1)$-dimensional manifold which is
not exceptional for $S^{p+q}$ ; $i.e$ . every inessential $(p+q)$-sphere embedded in $M$

bounds an embedded $(p+q+1)$ -disk. We will prove that every inessential $S^{p}\cross S^{q}$
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embedded in $M$ bounds an embedded $S^{p}\cross D^{q+1}$ or an embedded $D^{p+1}\cross S^{q}$ .
Let $W$ be a $(p+q)$-dimensional inessential submanifold in $M$ which is homeo-

morphic to $S^{p}\cross S^{q}$, and let $A,$ $B$ be closures of two components of $M-W$. Let
$h:S^{p}\cross S^{q}arrow W$ be a homeomorphism which is nullhomotopic in $M$, and let $S=$

$h(\{*\}\cross S^{q})for*\in S^{p}$ . We will show either $A$ or $B$ is homeomorphic to $S^{p}\cross D^{q+1}$

or $D^{p+1}\cross S^{q}$.

CLAIM 1. $S$ bounds a singular disk $\Delta$ contained in $A$ or $B$ .
PROOF. Since $h$ is nullhomotopic, $S$ is contractible. So there exists an im-

mersion $f:D^{q+1}arrow M$ such that $f|\partial D^{q+1}$ is a homeomorphism to $S$ , and that
$f|intD^{q+1}$ is transverse with respect to $W$ . Then $f^{-1}(W)$ is a q-dimensional sub-
manifold in $D^{q+1}$ . We will show that $f$ can be altered preserving $f|\partial D^{q+1}$ so
that $f^{-1}(W)=\partial D^{q+1}$ .

Let $E_{i}(i=1, 2, )$ denote closures of components of $D^{q+1}-f^{-1}(W)$ , and let
$\eta_{i}=(f|f^{-1}(W))_{*}[\partial E_{i}\lrcorner\neg\in H_{q}(W)$ . If there exists $i$ such that $\eta_{i}=0$, we can reduce
the number of components of $f^{-1}(W)$ as follows. Firstly we connect components
of $\partial E_{i}$ by disjoint tubular neighbourhoods of arcs $\{\alpha_{j}\}$ in $E_{i}$ , and define $f’$ : $D^{q+1}$

$arrow M$ so that $f’|(D^{q+1}-E_{i})=f|(D^{q+1}-E_{i}),$ ${\rm Im}(f’|\alpha_{j})\subset W$. Denote $E_{i}-\cup\alpha_{j}$ by $E_{i}’$ .
Then $\partial E_{i}’$ is a connected sum of all components of $\partial E_{i}$ . By assumption $f’|\partial E_{i}’$ :
$\partial E_{i}’arrow W$ induces a zero-map between q-dimensional homology groups. So $f’|\partial E_{i}’$

can be extended to a map $g:E_{i}’arrow W$ because the only obstruction lies in
$H^{q+1}(E_{i}’, \partial E_{i}’ ; \pi_{q}(W))$ , and by Hurewicz’s theorem it is represented by $(f’|\partial E_{i}’)_{*}[\partial E_{i}’]$

which is equal to $\eta_{i}$ . Let $f’’$ : $D^{q+1}arrow M$ be a map such that $f’’|(D^{q+1}-U(E_{i}))=$

$f|(D^{q+1}-U(E_{i}))$ and that $f’’|E_{i}$ is a map made by pushing $g$ off $W$ in the regular
neighbourhood of $W$, where $U(E_{i})$ denotes a regular neighbourhood of $E_{i}$ in $D^{q+1}$ .
Then components of $f^{\prime\prime-1}(W)$ is less tban that of $f^{-1}(W)$ . So make $f’’$ be a new $f$.

Repeating this process, we may assume that every $\eta_{i}$ is not $0$ . If $f^{-1}(W)$

consists of only one component, the proof of Claim 1 terminates. So we may
assume that there are at least two $E_{i}’ s$ .

Let $K_{A}=Ker\{(i_{A})_{*} : H_{q}(W)arrow H_{q}(A)\}$ , and let $K_{B}--Ker\{(i_{B})_{*} : H_{q}(W)arrow H_{q}(B)\}$ ,
where $i_{A},$ $i_{B}$ are inclusions. As $f(E_{i})$ lies in $A$ for some $E_{i},$ $K_{A}\neq 0$ . Similarly
$K_{B}\neq 0$ . Let $x$ be the element of $H_{q}(W)$ represented by $h(\{*\}\cross S^{q})$ , and let $y$ be
the element of $H_{p}(W)$ represented by $h(S^{p}\cross\{*\})$ .

As $H_{q}(W)=\langle x\rangle,$ $K_{A}=\langle m_{A}x\rangle$ and $K_{B}--\langle m_{B}x\rangle$ for some integers $m_{A},$ $m_{B}$ dif-
ferent from $0$ . So there exist $(q+1)$ -chains $C_{A}\in C_{q+1}(A)$ and $C_{B}\in C_{q+1}(B)$ such
that $[\partial C_{A}]=m_{A}x,$ $[\partial C_{B}]=m_{B}x$ , and that $intC_{A}\subset A$ , $intC_{B}\subset B$ . Since $x\cdot y=1$ ,
$[C_{A}, \partial C_{A}]\cdot(i_{A})_{*}y=m_{A}\neq 0$ , and $[C_{B}, \partial C_{B}]\cdot(i_{B})_{*}y=m_{B}\neq 0$ . Thus neither $(i_{A})_{*}y$ nor
$(i_{B})_{*}y$ is a torsion element by duality theorem.

Let $T=h(S^{p}\cross t*\})$ . Similarly to $S,$ $T$ is inessential in $M$. Hence there ex-
ists an immersion $g:D^{p+1}arrow M$ such that $g|\partial D^{p+1}$ is a homeomorphism to $T$ , and
that $g$ is transverse to $W$ . Let $F_{i}$ be closures of components of $D^{p+1}-g^{-1}(W)$ .
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Then for some $F_{i},$ $(g|\partial F_{i})_{*}[\partial F_{i}]\in H_{p}(W)$ is not $0$ because $(g|\partial D^{p+1})_{*}[\partial D^{p+1}]\neq 0$

in $H_{p}(W)$ . So some nonzero multiple of $(i_{A})_{*}y$ or $(i_{B})_{*}y$ equals zero. This is a
contradiction. Thus the proof of Claim 1 is completed.

Since $q<p-1$ , we have $2(q+1)+1\leqq p+q+1$ . This implies that $\Delta$ can be
homotoped to an embedded disk preserving $\partial\Delta$ . So we may assume that $\Delta$ is an
embedded disk.

Let $U(\Delta)$ be a regular neighbourhood of $\Delta$ such that $U(\Delta)\cap W$ is also a
regular neighbourhood of $\partial\Delta=S$ . Let $\phi:D^{p}\cross D^{q+1}arrow U(\Delta)$ be a homeomorphism
such that $\phi(\{0\}\cross D^{q+1})=\Delta,$ $\phi(D^{p}\cross\partial D^{q+1})=U(\Delta)\cap W$ . (The framing is arbitrary.)

Let $W’$ be $(W-\phi(D^{p}\cross\partial D^{q+1}))\cup(\partial D^{p}\cross D^{q+1})$ . Clearly $W’$ is homeomorphic to a
$(p+q)$-sphere.

CLAIM 2. $W’$ is inessential in $M$.
PROOF. Let $V$ be $h^{-1}(U(\Delta)\cap W)$ in $S^{p}\cross S^{q}$ , and let $V’$ be the closure of

$S^{p}\cross S^{q}-V$ . Then both of them are homeomorphic to $D^{p}\cross S^{q}$ . Because $h$ is
nullhomotopic, considering the cone of $S^{p}\cross S^{q}$ we can see that $h|V’$ is homotopic
to $h|V$ relative to $\partial V=\partial V’$ . So $W’$ can be deformed homotopically to ($W’$–

$h(V’))\cup h(V)=\phi(D^{p}\cross\partial D^{q+1})\cup\phi(\partial D^{p}\cross D^{q+1})$ . Clearly it is inessential.
Now by assumption $W’$ bounds an embedded $(p+q+1)$-disk $D$ in $M$. In the

case that $D$ is the opposite side of $M-W’$ to $\Delta,$ $W=\partial(D\cup\phi(D^{p}\cross D^{q+1}))$ . Clearly
$D\cup\phi(D^{p}\cross D^{q+1})$ is homeomorphic to $S^{p}\cross D^{q+1}$ . It is not twisted because its
boundary $W$ is homeomorphic to $S^{p}\cross S^{q}$ . In this case the assumption that $q<$

$p-1$ is unnecessary. In the case that $D$ is in the same side of $M-W’$ as $\Delta$ ,
$W=\partial(D-\phi(D^{p}\cross intD^{q+1}))$ . As $q>1,$ $p+3\leqq p+q+1$ . So by Zeeman’s theorem
([4]), $\phi(D^{p}\cross D^{q+1})$ is unknotted in $D$ . Thus $D-\phi(D^{p}\cross intD^{q+1})$ is homeomorphic
to $D^{p+1}\cross S^{q}$. This completes the proof of Theorem 1.

REMARK 1. Theorem 1 does not hold if $q=1$ . A counterexample can be
constructed as follows.

Let $M$ be a $(p+2)$-dimensional manifold different from a sphere, and let
$D\subset M$ be an embedded $(p+2)$-disk. There exists a knotted $p$-handle $H$ embedded
in $D$ . Since $H$ is knotted, $D-int(H)$ is not homeomorphic to $D^{p+1}\cross S^{1}$ . As $M-D$

is not a disk, $(M-intD)\cup H$ is not homeomorphic to $S^{p}\cross D^{2}$ . So $W=\partial(D-H)$

which is homeomorphic to $S^{p}\cross S^{1}$ bounds neither an embedded $S^{p}\cross D^{2}$ nor an
embedded $D^{p+1}\cross S^{1}$ . Moreover as $W$ is contained in $D$ , it is clearly inessential.
This shows that $W$ is a counterexample to Theorem 1 in case of $q=1$ .

REMARK 2. Claim 1 holds without the assumption on $q$ . If we assume the
simply-connectedness of $M$, Theorem 1 holds for $q=p-1$ . It can be proved using
Whitney’s theorem. If $M$ is 2-connected, Theorem 1 holds for $q=P$ . It is a
consequence of Irwin’s theorem ([1]).



436 K. OHSHIKA

THEOREM 2. (The converse of Theorem 1.) If $p>q,$ $m=p+q$ , then every
$(m+1)$ -dimensional manifold which is exceptional for $S^{m}$ is exceptional for $S^{p}\cross S^{q}$ .

PROOF OF THEOREM 2. Let $M$ be an $(m+1)$ -dimensional manifold which is
not exceptional for $S^{p}\cross S^{q}$ . We will prove that every inessential m-sphere
embedded in $M$ bounds an embedded $(m+1)$ -disk.

Let $W$ be an m-dimensional inessential submanifold of $M$ which is homeo-
morphic to $S^{m}$ . Let $U$ be an open $(m+1)$ -disk embedded in $M$ such that $(U, U\cap W)$

is a standard disk pair. Let $\phi:D^{p+1}\cross D^{q}arrow U$ be an embedding such that $\phi(D^{p+1}$

$\cross D^{q})\cap W=\phi(D^{p+1}\cross\partial D^{q})$ , and Link $(\{x\}\cross\partial D^{q}, \{0\}\cross\partial D^{q})=0$ for $x\in\partial D^{p+1}$ . Then
$W’=$ ($W$–int $D^{p+1}\cross\partial D^{q}$) $\cup\phi(\partial D^{p+1}\cross D^{q})$ is homeomorphic to $S^{p}\cross S^{q}$ . By the de-
finitions of $U$ and $\phi,$ $W’$ can be homotoped into $W$ . Since $W$ is inessential, so
is $W’$ . Hence $W’$ bounds $V$ which is homeomorphic to $S^{p}\cross D^{q+1}$ , or $V’$ which
is homeomorphic to $D^{p+1}\cross S^{q}$ . If $W’$ bounds $V,$ $W$ bounds $V\cup\phi(D^{p+1}\cross D^{q})$ which
is homeomorphic to $D^{m+1}$ . If $W$ bounds $V’,$ $W’$ bounds $V-int\phi(D^{p+1}\cross D^{q})$ which
is homeomorphic to $D^{m+1}$ . So the proof of Theorem 2 is completed.
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