Ergodic affine maps of locally compact groups

By Masahito DATEYAMA and Tatsuro KASUGA

(Received Dec. 26, 1983)

§0. Introduction.

Let X be a locally compact group with a left invariant Haar measure μ . Let $f_a = af: X \supseteq$ be a continuous affine map where f is a continuous group automorphism of X and $a \in X$. f_a is said to be *ergodic* under μ if it is measurable and whenever $E \subset X$ is a Borel set such that $f_a(E) = E$ we have either $\mu(E) = 0$ or $\mu(X \setminus E) = 0$. The shift map σ of Z is a translation defined on the discrete group Z of integers by $\sigma(n) = n + 1$.

Recently N. Aoki [1] has answered the problem of Halmos (p. 29 of [7]) negatively, i.e., if X is a locally compact totally disconnected group which has an ergodic continuous automorphism with respect to a Haar measure μ , then X is compact. For the affine maps, the problem of Halmos remains an open question when X is totally disconnected.

The purpose of this paper is to prove the following:

THEOREM. Let X be a locally compact group with a left invariant Haar measure μ and $f_a: X \supseteq$ be a continuous affine map. Let $\sigma: Z \supseteq$ be the shift map. If (X, f_a, μ) is ergodic, then either X is compact or (X, f_a) is homeomorphic to (Z, σ) .

In N. Aoki's proof, concepts of the pseudo-orbit tracing property and topological mixing for topological dynamics play an important role. We shall apply his techniques for the proof of Theorem.

REMARK 1. Let X, f_a and μ be as in Theorem. If (X, f_a, μ) is ergodic and if X is discrete, either X is compact or (X, f_a) is homeomorphic to (Z, σ) . Indeed, if X is finite then X is compact. If X is infinite, then $X = \{f_a^n(x); n \in Z\}$ for each $x \in X$ by ergodicity of (X, f_a, μ) . We define a homeomorphism φ of Z onto X by $\varphi(n) = f_a^n(x)$ $(n \in \mathbb{Z})$, and then we get $\varphi \circ \sigma = f_a \circ \varphi$ on Z.

For the subclasses of abelian groups and connected groups, the following results are known.

THEOREM A (N. Aoki and Y. Ito [2]). Let X be a locally compact abelian group with a left invariant Haar measure μ . If on X there exists an affine map

 $f_a(x) = af(x)$ ($x \in X$) which is totally ergodic, then X must be compact.

THEOREM B (S.G. Dani [6]). Let X be a connected locally compact group. Suppose that there exists an affine automorphism f_a of X and $x_0 \in X$ such that the orbit $\{f_a^n(x_0); n \in \mathbb{Z}\}$ is dense in X. Then X is compact.

For the proof of Theorem we shall use the definitions and the results in topological groups and topological dynamics for locally compact spaces. If X is a σ -compact group and $f: X \supseteq$ is a bicontinuous automorphism, then there is an f-invariant compact normal subgroup H of X such that X/H is separable and metrizable (see [1]). When X/H is compact, so is X. If (X, f_a, μ) is ergodic then f_a is bicontinuous and μ -measure preserving (Appendix 1) and moreover X is σ -compact. Let V be a compact open subgroup of the identity e in X. The set $H = \bigcup_{n \ge 1} V^n$ is a σ -compact open subgroup of X. Since f_a is bicontinuous, the set $K = \bigcup_{j \in \mathbb{Z}} f_a^j(H)$ is open σ -compact and $f_a^{-1}(K) = K$. Since $\mu(X \setminus K) = 0$, K is dense in X. Put $F = \bigcup_{n \ge 1} (K \cup K^{-1})^n$, then F is a σ -compact open subgroup of X such that $K \subset F$. Since F is a closed subgroup of X, we have F = X and so X is σ -compact.

Let Y be a locally compact metric space with a metric function d and g be a homeomorphism from Y onto itself. We recall that (Y, g) is topologically mixing iff there is an M>0 for any nonempty open sets U and V of Y such that $U \cap g^n(V) \neq \emptyset$ for all $n \ge M$. If (Y, d) is complete and if (Y, g) is topologically mixing, then (Y, g) has a dense orbit. We say that g is expansive under d if there is an $\varepsilon > 0$ such that $x \neq y$ implies the existence of $n \in \mathbb{Z}$ such that $d(g^n(x), g^n(y)) > \varepsilon$ and that ε is an *expansive constant for g*. For $\delta > 0$, a sequence $\{x_i\}_{i \in (\alpha, \beta)}$ $(-\infty \leq \alpha < \beta \leq \infty)$ of points of Y is called a δ -pseudo-orbit under d for g if $d(g(x_i), x_{i+1}) < \delta$ for $i \in (\alpha, \beta)$. Given $\varepsilon > 0$, a pseudo-orbit $\{x_i\}$ is called to be ε -traced under d by a point $x \in Y$ if $d(g^i(x), x_i) < \varepsilon$ for $i \in (\alpha, \beta)$. We say g to have the *pseudo-orbit tracing property* (abbrev. P.O.T.P.) under d if for every $\varepsilon > 0$ there is a $\delta > 0$ such that every δ -pseudo-orbit under d for g can be ε -traced by some point in Y. Note that P.O.T.P. is defined for continuous maps. Let X be a metric space and $\varphi: Y \to X$ be a homeomorphism for which φ^{-1} is uniformly continuous. If g is expansive then so is $\varphi \circ g \circ \varphi^{-1}$. If in particular φ and φ^{-1} are uniformly continuous and g has P.O.T.P., then $\varphi \circ g \circ \varphi^{-1}$ has P.O.T.P.

Our result will be reduced to the case when X is metrizable and separable and f_a is bicontinuous. Since X has a countable base, the assumption for (X, f_a, μ) to be ergodic will be changed by the assumption that (X, f_a) has a dense orbit (see p. 26 [7]).

The conclusion of Theorem will be obtained in proving the following two propositions.

PROPOSITION 1. Let X be a locally compact group with a left invariant Haar measure μ and X_0 be the connected component of the identity e in X. Let $f_a: X \supset$ be a bicontinuous affine map. If (X, f_a, μ) is ergodic and X/X_0 is compact, then X is compact.

PROPOSITION 2. Let X be a locally compact totally disconnected metric group with a left invariant metric function d_0 and $f_a: X \supseteq$ be a bicontinuous affine map. If X is not discrete and (X, f_a) has a dense orbit, then there exist an f-invariant compact subgroup B of X and an f-invariant open subgroup Y of X with $B \subseteq Y$ such that X/Y is compact, (Y/B, h) is topologically mixing and (Y/B, h) has P.O.T.P. Here h denotes a homeomorphism on X/B defined by h(xB)=f(x)B ($x \in X$).

§1. Proof of Proposition 1.

It is enough to show that X_0 is compact. To do this, assuming X_0 is not compact. We see (p. 175, [10]) that there exists the maximal compact normal subgroup N of X_0 such that X_0/N is a Lie group. It is easy to see that N is normal in X and invariant under f. Put Y=X/N and $Y_0=X_0/N$. Since Y/Y_0 is homeomorphic to X/X_0 , Y/Y_0 is totally disconnected. Since Y_0 is connected and Y/Y_0 is compact, there is a compact normal subgroup K of Y such that Y/K is a Lie group. Let $\tilde{f}: Y \supseteq$ be the automorphism induced by $f: X \supseteq$ and put

$$K_n = K\bar{f}(K)\bar{f}^2(K)\cdots\bar{f}^n(K)$$
 for $n \ge 0$.

Since K_n is a compact normal subgroup of Y, Y/K_n is a Lie group. For $n \ge 0$, Y_0K_n/K_n is open in Y/K_n because the connected component of the identity of a Lie group is open. Therefore Y_0K_n is open and closed in Y. $H=\bigcup_{n\geq 0}Y_0K_n$ is an open-closed subset of Y and $\overline{f}(H) \subset H$ holds. Since \overline{f} is measure preserving, we have $\overline{f}(H) = H$. Denote by $\overline{f}_a: Y \supseteq$ the affine map induced by $f_a: X \supseteq$ and by $\tilde{f}_a: Y/H \supset$ the map induced by $\bar{f}_a: Y \supset$. Since (X, f_a, μ) is ergodic, (Y, \bar{f}_a) is ergodic with respect to the induced Haar measure $\bar{\mu} = \mu \circ \pi^{-1}$ where $\pi : X \to X/N$ is the projection. Since H is open in Y, Y/H is discrete. By Remark 1, either $(Y/H, \tilde{f}_a)$ is homeomorphic to (Z, σ) or Y/H is compact. If $(Y/H, \tilde{f}_a)$ is homeomorphic to (\mathbf{Z}, σ) , then we can find an element $\bar{x} \in Y$ such that $Y/H = \{ \hat{f}_a^n(\bar{x}H) \}$ $n \in \mathbb{Z}$ since $(Y/H, \tilde{f}_a)$ has a dense orbit. Hence $\bar{x}H$ is a wandering set of Y for \overline{f}_a . Since $\overline{x}H$ is open and closed in Y, we have $\overline{x}H = \{\overline{x}\}$; i.e. $H = \{\overline{e}\}$. Therefore $(X/N, \tilde{f}_a)$ is homeomorphic to (Z, σ) , hence X/N is discrete and N is open and closed. We conclude that $N=X_0$. This contradicts that X_0 is not compact. We now give a proof for the case when Y/H is compact. Since Y/His discrete, Y/H is finite. Since $\bar{f}^{-1}(K)$ is compact in Y and $\bar{f}^{-1}(K) \subset H = \bigcup_{n \ge 0} Y_0 K_n$, there is an m>0 such that $\bar{f}^{-1}(K) \subset Y_0 K_{m-1}$. Hence

M. DATEYAMA and T. KASUGA

$$K \subset \overline{f}(Y_0 K_{m-1}) \subset Y_0 K_m$$
 and so $Y_0 K_m \subset \overline{f}(Y_0 K_m)$.

Since Y_0K_m is open and closed, $\bar{f}(Y_0K_m)=Y_0K_m$. Hence we get $H=Y_0K_m$. Since K_m is a compact normal subgroup of Y, we get $K_m \cap Y_0 = \{\bar{e}\}$ because $N=\bar{e}$ and Y_0 contains no compact normal subgroups of Y. We have $H=K_m \times Y_0$. Since the projections of $\bar{f}(K_m)$ and $\bar{f}^{-1}(K_m)$ to Y_0 are compact normal subgroups of Y_0 , they must be the trivial subgroup $\{\bar{e}\}$. Therefore we get $\bar{f}(K_m) \subset K_m$ and $\bar{f}^{-1}(K_m) \subset K_m$ so that K_m is invariant under \bar{f} . Therefore $\bar{f}(\bar{k}, \bar{y})=(\bar{f}(\bar{k}), \bar{f}(\bar{y}))$ for $(\bar{k}, \bar{y})\in K_m \times Y_0$. We note that $(Y/H, \bar{f}_a)$ is ergodic with respect to the induced Haar measure $\tilde{\mu}=\bar{\mu}\circ\pi^{-1}$ where $\pi:Y\to Y/H$ is the projection. Since Y/H is finite and $(Y/H, \tilde{f}_a)$ has a dense orbit, there exists a natural number n such that $\bar{f}_a^n(H)=\tilde{f}_a^n(H)=H$ and $Y/H=\{H, \tilde{f}_a(H), \cdots, \tilde{f}_a^{n-1}(H)\}$. Since Y is the disjoint sum of cosets $\bar{f}_a^i(H), 0\leq i\leq n-1$, and since (Y, \bar{f}_a) has a dense orbit, (H, \bar{f}_a^n) has also a dense orbit. Since $\bar{f}_a^n=a\bar{f}(a)\cdots \bar{f}^{n-1}(a)\bar{f}^n$, there exists a $(b, c)\in K_m\times Y_0$ such that

$$\bar{f}_a^n = (b, c)\bar{f}^n: (\bar{k}, \bar{y}) \longrightarrow (b\bar{f}^n(\bar{k}), c\bar{f}^n(\bar{y})) \quad \text{for} \quad (\bar{k}, \bar{y}) \in K_m \times Y_0,$$

then $b\bar{f}^n: K_m \to K_m$ and $c\bar{f}^n: Y_0 \to Y_0$ are affine maps and $(c\bar{f}^n)(Y_0) = Y_0$. Since (H, \bar{f}^n_a) has a dense orbit, $(Y_0, c\bar{f}^n)$ has a dense orbit. Since Y_0 is connected, Y_0 is compact (Theorem B). This contradicts that Y_0 is not compact. The proof is completed.

§2. Proof of Proposition 2.

Since X is totally disconnected and not discrete, there is a compact open subgroup B_0 of X. Put $B = \bigcap_{i \in \mathbb{Z}} f^i(B_0)$, then B is a compact subgroup of X and f(B) = B holds. Now define a compatible metric function d of the left coset space X/B by

$$d(xB, yB) = \inf \{ d_0(xb, yb'); b, b' \in B \}$$
 $(x, y \in X).$

Define the maps $h: X/B \supseteq$ and $h_a: X/B \supseteq$ by h(xB) = f(x)B and $h_a(xB) = af(x)B$ $(x \in X)$ respectively. Then (X/B, d) is a complete metric space and h is a bicontinuous map on X/B. Since B_0/B is a compact open set of X/B and $\bar{e} = B \in B_0/B$, there exists an $\varepsilon_0 > 0$ such that $U_{\varepsilon_0}(\bar{e}) \subset B_0/B$, where $U_{\varepsilon_0}(\bar{e}) = \{\bar{x} \in X/B; d(\bar{x}, \bar{e}) < \varepsilon_0\}$. Then ε_0 is its expansive constant for $(X/B, h_a)$. Indeed, for $\bar{x} = xB$, $\bar{y} = yB \in X/B$, if $d(h_a^n(\bar{x}), h_a^n(\bar{y})) < \varepsilon_0$ for all $n \in \mathbb{Z}$, then

$$d(f^{n}(y^{-1}x)B, B) = d(f^{n}(x)B, f^{n}(y)B) = d(f^{n}_{a}(x)B, f^{n}_{a}(y)B) < \varepsilon_{0}$$

for all $n \in \mathbb{Z}$. This implies that $f^n(y^{-1}x) \in B_0$ for all $n \in \mathbb{Z}$, hence $\bar{x} = \bar{y}$. If X/B is not discrete then (X/B, h) has P.O.T.P. (see §2, [1]), hence $(X/B, h_a)$ has P.O.T.P. (Appendix 2). We now consider the case when X/B is discrete. Then $(X/B, h_a)$ is homeomorphic to (\mathbb{Z}, σ) or X/B is compact (by Remark 1). If

 $(X/B, h_a)$ is homeomorphic to (\mathbf{Z}, σ) , then $B = \{e\}$ since B is open and (X, f_a) has a dense orbit. Hence (X, f_a) is homeomorphic to (\mathbf{Z}, σ) , but this contradicts nondiscreteness of X. If X/B is compact, X is compact since B is compact. Since f is a continuous automorphism of X, (X, f) has P.O.T.P. (N. Aoki [4]). Hence (X, f_a) has P.O.T.P. (Appendix 2). This is enough to give a proof for $(X/B, h_a)$.

Let $Per(h_a)$ be the set of all periodic points of h_a .

LEMMA 1. $Per(h_a)$ is dense in X/B.

PROOF. Take $\bar{x} \in X/B$ and λ with $0 < \lambda < \varepsilon_0$. For this λ , let δ $(0 < \delta < \lambda)$ be the number in the definition of P.O.T.P. for $(X/B, h_a)$. Since $(X/B, h_a)$ has a dense orbit, there are $\bar{x}_0 \in X/B$ and $m, n \in \mathbb{Z}$ (m > n) such that

$$d(h_a^n(\bar{x}_0), \bar{x}) < \delta/2$$
 and $d(h_a^m(\bar{x}_0), h_a^n(\bar{x}_0)) < \delta/2$.

Put $\bar{z}_i = h_a^{n+k}(\bar{x}_0)$ for $i \equiv k \mod (m-n)$ $(0 \leq k < m-n)$, then $\{\bar{z}_i\}_{i \in \mathbb{Z}}$ is a δ -pseudoorbit for $(X/B, h_a)$. Since $(X/B, h_a)$ has P O.T.P., there exists $\bar{z} \in X/B$ such that $d(h_a^j(\bar{z}), \bar{z}_j) < \lambda/2$ for all $j \in \mathbb{Z}$. Hence

$$d(h_a^j(\bar{z}), h_a^{j+(m-n)}(\bar{z})) \leq d(h_a^j(\bar{z}), \bar{z}_j) + d(\bar{z}_j, h_a^{j+(m-n)}(\bar{z})) < \lambda$$

for all $j \in \mathbb{Z}$. By expansiveness of $(X/B, h_a)$, we have $\overline{z} = h_a^{m-n}(\overline{z})$: i.e. $\overline{z} \in \operatorname{Per}(h_a)$, and

$$d(\bar{z}, \bar{x}) \leq d(\bar{z}, h_a^n(\bar{x}_0)) + d(h_a^n(\bar{x}_0), \bar{x}) < \lambda$$

For ε with $0 < \varepsilon < \varepsilon_0$ and $\bar{x} = xB \in X/B$, let $W^s_{\varepsilon}(\bar{x}, h_a)$ and $W^u_{\varepsilon}(\bar{x}, h_a)$ be the local stable and unstable sets defined by

$$\begin{split} W^s_{\varepsilon}(\bar{x}, h_a) &= \{ \bar{y} \in X/B \text{ ; } d(h^j_a(\bar{y}), h^j_a(\bar{x})) < \varepsilon, \ j \ge 0 \}, \\ W^u_{\varepsilon}(\bar{x}, h_a) &= \{ \bar{y} \in X/B \text{ ; } d(h^{-j}_a(\bar{y}), h^{-j}_a(\bar{x})) < \varepsilon, \ j \ge 0 \}. \end{split}$$

Now define the stable and unstable sets $W^{s}(\bar{x}, h_{a})$ and $W^{u}(\bar{x}, h_{a})$ as

$$W^{s}(\bar{x}, h_{a}) = \bigcup_{n \ge 0} h_{a}^{-n}(W^{s}_{\varepsilon}(h_{a}^{n}(\bar{x}), h_{a})),$$
$$W^{u}(\bar{x}, h_{a}) = \bigcup_{n \ge 0} h_{a}^{n}(W^{u}_{\varepsilon}(h_{a}^{-n}(\bar{x}), h_{a})).$$

Then for every $\bar{x} \in X/B$ we obtain (see [1]) that

$$\begin{split} W^{s}(\bar{x}, h_{a}) &= \{ \bar{y} \in X/B \text{ ; } \lim_{n \to \infty} d(h_{a}^{n}(\bar{x}), h_{a}^{n}(\bar{y})) = 0 \}, \\ W^{u}(\bar{x}, h_{a}) &= \{ \bar{y} \in X/B \text{ ; } \lim_{n \to \infty} d(h_{a}^{-n}(\bar{x}), h_{a}^{-n}(\bar{y})) = 0 \}. \end{split}$$

REMARK 2. Since d is left invariant for X/B, we have that

$$W^{s}(\bar{x}, h_{a}) = W^{s}(\bar{x}, h) = \{\bar{y} \in X/B; \lim_{n \to \infty} d(h^{n}(\bar{x}), h^{n}(\bar{y})) = 0\},\$$

$$W^{u}(\bar{x}, h_{a}) = W^{u}(\bar{x}, h) = \{ \bar{y} \in X/B ; \lim_{n \to \infty} d(h^{-n}(\bar{x}), h^{-n}(\bar{y})) = 0 \}.$$

M. DATEYAMA and T. KASUGA

Hereafter we denote by \overline{E} the closure of a subset E.

LEMMA 2. For $\overline{p} \in \operatorname{Per}(h_a)$, put $W^s_{\overline{p}}(h_a) = \overline{W^s(\overline{p}, h_a)}$ and $W^u_{\overline{p}}(h_a) = \overline{W^u(\overline{p}, h_a)}$. Then $W^s_{\overline{p}}(h_a)$ and $W^u_{\overline{p}}(h_a)$ are open in X/B.

PROOF. For $\lambda > 0$ with $0 < \lambda < \varepsilon_0$, let $\delta > 0$ be the number in the definition of P.O.T.P. for $(X/B, h_a)$. Put

$$U_{\delta/2}(W^{s}_{\bar{p}}(h_{a})) = \{ \bar{y} \in X/B ; d(\bar{y}, W^{s}_{\bar{p}}(h_{a})) < \delta/2 \}.$$

Since $\operatorname{Per}(h_a)$ is dense in X/B, it is enough to see that if $\bar{q} \in \operatorname{Per}(h_a) \cap U_{\delta/2}(W^s_{\bar{p}}(h_a))$ then $\bar{q} \in W^s_{\bar{p}}(h_a)$. Now take $\bar{x} = xB \in W^s(\bar{p}, h_a)$ with $d(\bar{x}, \bar{q}) < \delta$ and put $\bar{y}_j = h^j_a(\bar{x})$ for $j \ge 0$ and $\bar{y}_j = h^j_a(\bar{q})$ for $j \le -1$. Then $\{\bar{y}_j\}_{j \in \mathbb{Z}}$ is a δ -pseudo-orbit for $(X/B, h_a)$. Hence there is $\bar{y} \in X/B$ such that

$$d(h_a^j(\bar{x}), h_a^j(\bar{y})) < \lambda$$
 for $j \ge 0$ and $d(h_a^j(\bar{q}), h_a^j(\bar{y})) < \lambda$ for $j \le -1$.

This implies that $\bar{y} \in W^{s}(\bar{x}, h_{a}) \cap W^{u}(\bar{q}, h_{a})$. Since \bar{p} and \bar{q} are periodic points of h_{a} , let $h_{a}^{m}(\bar{p}) = \bar{p}$ and $h_{a}^{n}(\bar{q}) = \bar{q}$. Since $\bar{x} \in W^{s}(\bar{p}, h_{a})$, $W^{s}(\bar{x}, h_{a}) = W^{s}(\bar{p}, h_{a})$ and $h_{a}^{-kmn}(\bar{y}) \in h_{a}^{-kmn}(W^{s}(\bar{x}, h_{a})) = h_{a}^{-kmn}(W^{s}(\bar{p}, h_{a})) = W^{s}(\bar{p}, h_{a})$ for all k > 0. Hence

$$\lim_{k\to\infty} d(h_a^{-kmn}(\bar{y}), \bar{q}) = \lim_{k\to\infty} d(h_a^{-kmn}(\bar{y}), h_a^{-kmn}(\bar{q})) = 0.$$

Therefore $\bar{q} \in \overline{W^{s}(\bar{p}, h_{a})} = W^{s}_{\bar{p}}(h_{a})$ and $W^{s}_{\bar{p}}(h_{a})$ is open in X/B. Similarly, $W^{u}_{\bar{p}}(h_{a})$ is open in X/B.

Since $h_a^m(\bar{p}) = \bar{p}$ and $h_a(W^s_{\bar{p}}(h_a)) = W^s_{h_a(\bar{p})}(h_a)$, we have $h_a^m(W^s_{\bar{p}}(h_a)) = W^s_{\bar{p}}(h_a)$. Since $(X/B, h_a)$ has a dense orbit, there is $m' (1 \le m' \le m)$ such that

$$X/B = W^{\mathfrak{s}}_{\overline{p}}(h_a) \cup h_a(W^{\mathfrak{s}}_{\overline{p}}(h_a)) \cup \cdots \cup h^{m'-1}_{\mathfrak{a}}(W^{\mathfrak{s}}_{\overline{p}}(h_a))$$

is a disjoint union. Similarly,

$$X/B = W^{\underline{u}}(h_a) \cup h_a(W^{\underline{u}}(h_a)) \cup \cdots \cup h^{\underline{m'}-1}(W^{\underline{u}}(h_a))$$

is a disjoint union. Since $W_{\bar{p}}^{\mathfrak{s}}(h_a)$ and $W_{\bar{p}}^{\mathfrak{u}}(h_a)$ are open in X/B and $\bar{p} \in W_{\bar{p}}^{\mathfrak{s}}(h_a) \cap W_{\bar{p}}^{\mathfrak{u}}(h_a)$ holds, there is a δ $(0 < \delta < \varepsilon_0)$ such that

$$U_{\delta}(\bar{p}) \subset W^{s}_{\bar{p}}(h_{a}) \cap W^{u}_{\bar{p}}(h_{a})$$

where $U_{\delta}(\bar{p}) = \{ \bar{x} \in X/B ; d(\bar{x}, \bar{p}) < \delta \}$. We note that

$$W^u_{\delta}(\bar{p}, h_a) \subset U_{\delta}(\bar{p}) \qquad \text{and} \qquad W^u_{\bar{p}}(h_a) = \bigcup_{i \geq 0} h^{jm}_a(W^u(\bar{p}, h_a)) \,.$$

Then every h_a^m -invariant closed set which contains $U_{\lambda}(\bar{p})$ coincides with $W_{\bar{p}}^u(h_a)$. Similarly, each h_a^{-m} -invariant closed set which contains $U_{\lambda}(\bar{p})$ coincides with $W_{\bar{p}}^s(h_a)$. Hence $W_{\bar{p}}^s(h_a) = W_{\bar{p}}^u(h_a)$. We write

$$W_{\bar{e}}(h) = W^{\underline{s}}_{\bar{e}}(h) = W^{\underline{u}}_{\bar{e}}(h)$$
.

LEMMA 3. $(W_{\bar{e}}(h), h)$ has P.O.T.P.

PROOF. Since $W_{\bar{e}}(h)$ is open in X/B, there is a $\lambda > 0$ such that $U_{\lambda}(\bar{e}) = \{\bar{x} \in X/B ; d(\bar{x}, \bar{e}) < \lambda\} \subset W_{\bar{e}}(h)$. For $\lambda/2$, let δ $(0 < \delta < \lambda/2)$ be the number in the

definition of P.O.T.P. for (X/B, h). If $\{\bar{x}_i\}_{i\in(a,b)}$ is a δ -pseudo-orbit for $(W_{\bar{\epsilon}}(h), h)$, then there exist $\bar{z}_a \in W^u(\bar{e}, h)$ and n > 0 such that $d(h(\bar{z}_a), \bar{x}_{a+1}) < \delta$ and $d(h^{-n}(\bar{z}_a), \bar{e}) < \delta$. Put $\bar{y}_k = h^{-n+k}(\bar{z}_a)$ for $0 \leq k \leq n$ and $\bar{y}_k = \bar{x}_{a+(k-n)}$ for $n+1 \leq k \leq b-a+1$. Then $\{\bar{y}_k\}_{k\in(-1, b-a+n)}$ is a δ -pseudo-orbit for (X/B, h). Since (X/B, h) has P.O.T.P., there is an $\bar{x} \in X/B$ such that $d(h^j(\bar{x}), \bar{y}_j) < \lambda/2$ for $0 \leq j \leq b-a+n$ and in particular, $d(\bar{x}, \bar{e}) < \lambda$. Hence $\bar{x} \in W_{\bar{e}}(h)$. Put $\bar{z} = h^{n-a}(\bar{x})$. Since $W_{\bar{e}}(h)$ is h-invariant, $\bar{z} = h^{n-a}(\bar{x}) \in W_{\bar{e}}(h)$ and \bar{z} is a λ -tracing point for $\{\bar{x}_i\}_{i \in (a,b)}$. Therefore $(W_{\bar{e}}(h), h)$ has P.O.T.P.

LEMMA 4. $(W_{\bar{e}}(h), h)$ is topologically mixing.

PROOF. Let U and V be nonempty open sets of $W_{\bar{e}}(h)$. Then there exist $\bar{x} \in W^u(\bar{e}, h) \cap U$ and $\bar{y} \in W^s(\bar{e}, h) \cap V$ and $\lambda > 0$ such that $U_\lambda(\bar{x}) \subset U$ and $U_\lambda(\bar{y}) \subset V$. For λ , let δ $(0 < \delta < \lambda)$ be the number in the definition of P.O.T.P. for $(W_{\bar{e}}(h), h)$. Then there exists an $n_0 > 0$ such that $d(\bar{e}, h^{-n}(\bar{x})) < \delta/2$ and $d(\bar{e}, h^n(\bar{y})) < \delta/2$ for $n \ge n_0$. For $n \ge n_0$ and $j \ge 0$, since the finite sequence

$$\{\bar{y}, h(\bar{y}), \dots, h^{n+j}(\bar{y}), \bar{e}, h^{-n}(\bar{x}), \dots, h^{-1}(\bar{x}), \bar{x}\}$$

is a δ -pseudo-orbit for $(W_{\bar{e}}(h), h)$, there is a $\bar{z} \in W_{\bar{e}}(h)$ such that $d(\bar{y}, \bar{z}) < \delta$ and $d(h^{2(n+1)+j}(\bar{z}), \bar{x}) < \delta$. Put $M = 2(n_0+1)$, then $\bar{z} \in U_{\lambda}(\bar{y}) \subset V$ and $h^n(\bar{z}) \in U_{\lambda}(\bar{x}) \subset U$ for $n \ge M$. This implies that $h^n(V) \cap U \neq \emptyset$ for all $n \ge M$.

LEMMA 5 (N. Aoki [1]). Let Y be a locally compact totally disconnected metric group with a left invariant metric function d and g be a bicontinuous automorphism of Y. If (Y, g) is topologically mixing and has P.O.T.P. under d, then Y is compact.

Let $\pi: X \to X/B$ be the projection. Put $Y = \pi^{-1}(W_{\bar{e}}(h))$. Then Y is open in X since $W_{\bar{e}}(h)$ is open in X/B. It is easy to see that Y is a subgroup of X. Indeed, for xB and $yB \in W^u(\bar{e}, h)$, since $d(h^{-j}(xB), \bar{e}) \to 0$ and $d(h^{-j}(yB), \bar{e}) \to 0$ as $j \to \infty$, we have

$$d(h^{-j}(y^{-1}xB), \bar{e}) = d(f^{-j}(x)B, f^{-j}(y)B)$$

$$\leq d(h^{-j}(xB), \bar{e}) + d(h^{-j}(yB), \bar{e}) \to 0 \quad \text{as} \quad j \to \infty$$

and so $y^{-1}xB \in W^u(\bar{e}, h)$. This implies that Y is a group since $W^u(\bar{e}, h)$ is dense in $W_{\bar{e}}(h)$ and $Y = \pi^{-1}(W_{\bar{e}}(h))$. It is easy to see that the left coset space X/Y is compact. Indeed, since $\#(X/Y) = \#((X/B)/W_{\bar{e}}(h)) \leq m'$ (the notation #(E)means the cardinality of a set E), X/Y is finite. Moreover, since $Y/B = W_{\bar{e}}(h)$, (Y, f) is topologically mixing and it has P.O.T.P. (see § 2, [1]). Therefore the conclusion of Theorem is obtained by Proposition 2 and Lemma 5.

§ 3. Appendices.

In this section, we prove some properties of ergodic affine maps of locally compact groups.

APPENDIX 1. Let X be a locally compact group with a left invariant Haar measure μ and $f_a: X \supseteq$ be a continuous affine map. If (X, f_a, μ) is ergodic, then

(1) f_a is bicontinuous, and

(2) f_a is μ -measure preserving.

PROOF OF (1). As the assertion is obvious if X is discrete, we assume that X is not discrete. If f_a is not bicontinuous, then f is not bicontinuous. Thus there exists an open σ -compact subgroup H of X such that $f(H) \subset H$ and $f^{-1}(H)$ is not σ -compact. Let F be the subgroup of X generated by the σ -compact set $H \cup f_a(H)$. Since f is continuous, the sets $f^j(F)$ $(j=0, 1, 2, \cdots)$ are σ -compact. The subgroup K of X generated by $\bigcup_{j\geq 0} f^j(F)$ is open and σ -compact. Clearly $f(K) \subset K$. Since $a \in f_a(H) \subset K$, we see that $f_a^{-1}(K) = f^{-1}(a^{-1})f^{-1}(K) = f^{-1}(a^{-1}K) = f^{-1}(K)$. Put $P = f^{-1}(K) \setminus K$. Since $f^{-1}(K)$ is not σ -compact, P is a nonempty open-closed subset of X and $f_a^k(P) \cap f_a^j(P) = \emptyset$ whenever $k \neq j$. Since X is not discrete, there is a compact subset C such that $\mu(C) > 0$ and $\mu(P \setminus C) > 0$. The set $W = \bigcup_{j \in \mathbb{Z}} f_a^j(C)$ is a Borel set of X satisfying $f_a^{-1}(W) = W$. However, $\mu(W) > 0$ and $\mu(X \setminus W) \ge \mu(P \setminus C) > 0$ because P is a wandering set. This contradicts the ergodicity of f_a .

PROOF OF (2). Since f_a is bicontinuous and μ is a left invariant Haar measure, there is a $\delta > 0$ such that $\mu(f_a(E)) = \mu(af(E)) = \mu(f(E)) = \delta\mu(E)$ and $\mu(f_a^{-1}(E)) = \mu(f^{-1}(a^{-1})f^{-1}(E)) = \mu(f^{-1}(E)) = \delta^{-1}\mu(E)$ for all Borel sets $E \subset X$. If f_a is not μ -measure preserving, then $\delta \neq 1$ and X is not compact. If $\delta > 1$, then we show that the ergodicity of f_a does not hold. For $\lambda > 0$, there is a nonempty open subset U such that $\mu(U) < \lambda$. Now let V be a compact neighborhood of the identity e of X. Put $W = \bigcup_{n \geq 1} f_a^{-n}(V)$. Then $\mu(W) \leq \sum_{i=1}^{\infty} \mu(f_a^{-n}(V)) = \sum_{i=1}^{\infty} (\delta^{-n}) \mu(V)$ $= (1/(\delta-1))\mu(V) < \infty$. Clearly, $f_a(W) \supset W$ and $f_a^n(X \setminus W) \cap W = \emptyset$ for $n = 0, 1, 2, \cdots$. Since W is open and σ -compact, there is a σ -compact open subgroup H of Xsuch that $W \subset H$. Therefore there exists a Borel subset E of X such that $E \subset X \setminus W$ and $0 < \mu(E) < ((\delta-1)/2)\mu(V)$. Then

$$\mu(\bigcup_{n\geq 1}f_a^{-n}(E)) \leq \sum_{1}^{\infty} (\delta^{-n})\mu(E) < \mu(V)/2.$$

Put $F = \bigcup_{n \in \mathbb{Z}} f_a^n(E)$. Then $f_a^{-1}(F) = F$ and $\mu(F) > 0$. Since $f_a^n(E) \cap V = \emptyset$ for $n = 0, 1, 2, 3, \cdots$,

$$\mu(X \setminus F) \ge \mu \Big(V \setminus \bigcup_{n \in \mathbf{Z}} f_a^n(E) \Big) = \mu \Big(V \setminus \bigcup_{n \ge 1} f_a^{-n}(E) \Big) \ge \frac{1}{2} \mu(V) > 0.$$

This contradicts the ergodicity of f_a . For the case when $\delta < 1$, f_a^{-1} is not ergodic

since $\delta^{-1} > 1$. In any case f_a must be μ -measure preserving.

APPENDIX 2. Let X be a locally compact metric group with a left invariant metric function d and $f:X \supseteq$ be a bicontinuous automorphism. Let $f_a:X \supseteq$ be a bicontinuous affine map defined by $f_a(x)=af(x)$ ($x \in X$). If (X, f) has P.O.T.P., then (X, f_a) has P.O.T.P.

PROOF. For $\varepsilon > 0$, let $\delta > 0$ be the number in the definition of P.O.T.P. for (X, f). Let $\{x_i\}_{i \in \mathbb{Z}}$ be a δ -pseudo-orbit for (X, f_a) . Now put

$$z_n = f^{n-1}(a^{-1}) f^{n-2}(a^{-1}) \cdots f(a^{-1}) a^{-1} x_n \qquad (n \in \mathbb{Z}),$$

then

$$d(f(z_n), z_{n+1}) = d(f^n(a^{-1}) \cdots f(a^{-1})f(x_n), f^n(a^{-1}) \cdots f(a^{-1})a^{-1}x_{n+1})$$

= $d(f(x_n), a^{-1}x_{n+1}) = d(f_a(x_n), x_{n+1}) < \delta \qquad (n \in \mathbb{Z}).$

Hence $\{z_n\}_{n \in \mathbb{Z}}$ is a δ -pseudo-orbit for (X, f). Since (X, f) has P.O.T.P., there exists a $z \in X$ such that $d(f^n(z), z_n) < \varepsilon$ $(n \in \mathbb{Z})$. Hence

$$d(f_a^n(z), x_n) = d(f_a^n(z), af(a) \cdots f^{n-1}(a)z_n) = d(f^n(z), z_n) < \varepsilon$$

for all $n \in \mathbb{Z}$. The proof is completed.

References

- [1] N. Aoki, Dense orbits of automorphisms and compactness of groups, to appear in Topology Appl.
- [2] N. Aoki and Y. Ito, Ergodic properties of affine transformations, J. Math. Anal. Appl., 38 (1972), 447-453.
- [3] N. Aoki, On homeomorphisms with the pseudo-orbit tracing property, Tokyo J. Math., 6 (1983), 329-334.
- [4] N. Aoki, The splitting of zero-dimensional automorphisms and its application, to appear in Colloq. Math.
- [5] E. M. Coven and W. L. Reddy, Positively expansive maps of compact manifolds, Global Theory of Dynamical Systems, Lecture Notes in Math., 819 (1980), Springer-Verlarg, 96-110.
- [6] S. G. Dani, Dense orbits of affine automorphisms and compactness of groups, J. London Math. Soc. (2), 25 (1982), 241-245.
- [7] P. R. Halmos, Lecture on Ergodic Theory, Publ. Math. Soc. Japan, Tokyo, 1956.
- [8] R. Kaufman and M. Rajagopalan, On automorphisms of a locally compact group, Michigan Math. J., 13 (1966), 373-374.
- [9] R. Mané, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc., 252 (1979), 313-319.
- [10] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, New York, 1955.
- [11] M. Rajagopalan and B. M. Schreiber, Ergodic automorphisms and affine transformations, Proc. Japan Acad., 46 (1970), 633-636.
- [12] W. L. Reddy, Expansive maps on compact metric spaces, Topology Appl., 13 (1982), 327-334.
- [13] T. S. Wu, Continuous automorphisms on locally compact groups, Math. Z., 96

(1967), 256-258.

- [14] S. A. Yuzvinskii, Metric properties of automorphisms of locally compact commutative groups, Sibirsk. Mat. Zh., 6 (1965), 224-247.
- [15] S. A. Yuzvinskii, Metric properties of automorphisms of a locally compact group, Russian Math. Surveys, 22 (1967), 47-52.

Masahito DATEYAMA

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

Tatsuro KASUGA

Kumamoto Radio Technical College Nishigoshi-Machi, Kikuchi-Gun Kumamoto 861-11, Japan