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§0. Introduction.

0.1. Any number field we consider is a finite extension of the rational
number field @ in the complex number field C.

Let L/F be an abelian extension of number fields. For L, denote its class
number by A and its group of units by E. We restrict our study to either of
the following cases:

Case 1. F=Q and L is contained in the real number field R.

CASE 2. F is an imaginary quadratic number field.

In this paper, we give a general procedure to calculate i and to find together
fundamental units of L. We first connect 2 to a finite index subgroup E of E
by an index formula of the form h=c(E : E) (Theorem 2 below). Hence ¢ (€Q)
is rather easy to know and E is generated by cyclotomic (Case 1) or so called
elliptic (Case 2) units. The process to decide (E : E) starts from the generators
of E, and ends at a free basis of £ (Algorithm 4 below). Thus 4 and, at a
time, fundamental units are obtained. To make the process effective, an upper
bound of (E: E) should be known beforehand. So we majorize (E : E) by using
the generators of E (Theorem 3J).

Our method will be computer implementable, though we do not discuss it in
detail. What we emphasize is that the classical (explicit) theory of cyclotomic
fields or complex multiplication offers us a new general way of calculating » and
E as above.

We are mainly interested in Case 2. Because, in Case 1, our formula for A
is that of Leopoldt and the principle of calculation is the same as in Gras-
Gras [6] Investigating Case 1 together, we improve Gras-Gras’s method itself.
In Case 2, an analogy of Leopoldt’s formula has been given by Schertz [24, 1] or
Gillard-Robert [5], which, however, has not taken Gras-Gras’s method into ac-
count. This tempts us to prove a more appropriate analogy of Leopoldt’s formula

as in eorem 2
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0.2. We state the main results, preparing the notation. The symbol £S
denotes the number of elements of a finite set S.

For the abelian extension L/F, we let A be the galois group with n=§A=
[L:F] (>1) and 4 be the set of @-irreducible characters of A. It is known
that there is a canonical bijection 4—F; from / to the set of cyclic subexten-
sions of L/F. Denote the torsion part of E by W. For each 1 4, we consider
the group H; of proper A-relative units, which is an A-subgroup of E;=ENF,
containing W,=WNF;, see in §2. Put A*=/AN{1}. Denoting by H the
product of H; (A= A*) and W, we shall see that the product is direct modulo W,
that E*CH and that (E : H) divides Q w" . Here w=%2W and @, is the Grenz-
index in [14]. For every A€ A*, a cyclotomic or an elliptic unit p:€Hy, 7:EW 2,
will be defined explicitly so that a finite index subgroup E; of H; will be gen-
erated by 7,% (a€A) and W;. So (E: E)<co, where E is the product of E;
(A= A*) and W. We can express this as ¢, Q.hA=h,(E : E) with the class num-
ber i, of F and a certain ¢;=@Q, ¢c.>0, or exactly state

THEOREM 2. The notation being as above, one has

c1Qih=h,(E :H) ]11/1 (H,  E)).
We shall see that ¢, is a simple natural number, see Propositions 8, 9 (and
Theorem 4). To decide (E: E), putting V= {,*|Ac 4* a< A}, we use

ALGORITHM 4. (See §3, as to an actual procedure.) Assume that an upper
bound of (E:E) is given and that every unit in Y is known approximately with
precision good enough. Then the index (E : E) can be decided, finding together a
set Z of fundamental units of L. Each e=Z is obtained as a pair (P., €’), where
P, is the minimal polynomial of ¢ over F and ¢'C 1is given closer to e than to
other zeros of P, as in (31).

We shall majorize (E : E) by an explicit function of the units in Y and of
other simpler invariants for L/F. Any unitin Y is numerically known by arith-
metic of F and by evaluating certain well-known functions. So, the assumption
in Algorithm 4 is satisfied. The essential technique utilized in Algorithm 4 is
a simple application of the fundamental theorem on symmetric functions. The
fact that the ring of integers of F is discrete in C enables us to execute Al-
gorithm 4 only using approximate values of the units in Y. Consequently, all
that is needed is to compute exactly in F and approximately in C. No usual
geometric method is employed to find Z. It is not necessary to know any inte-
gral basis of L.

For each i 4* we have another way to decide (H;: E;) and to find a free
basis of H;, which further requires some arithmetic of a cyclotomic field, see
Algorithm 3 in §3. After that, we can apply Algorithm 4, to decide (E : H).



Class numbers and fundamental units 247

This way seems to be more efficient, and the idea has been given in [6], although
there was some ambiguity as an algorithm. Utilizing symmetric functions, we
dissolve the ambiguity and also generalize the method to apply to non-galois ex-
tensions of F. A few examples of non-galois extensions of @ have been studied
in [17], [20], based on the formulas of Schertz [24, II].

0.3. An interpretation of classical theorems on units as in [Proposition I
below is fundamental for our general discussion and will be often used without
any specification.

The group ring Z[ A] over the ring Z of rational intergers acts canonically
on E, so E is a (multiplicative) Z[ A]-module. Then we have the Z[ A]-homo-
morphism

® | :E—>R[A]; e—> 3 log (s°l)-a”",

where |z|=]z] in Case 1 and ||z]|=]z]? in Case 2. We regard R[A] as an
euclidean space, introducing an inner product <{x, y> (x, yER[A]) so that A is
an ortho-normal basis of R[A]. For an order o’ of Q[AJe’ with an idempotent
e’ of Q[A], by an o’-lattice (in Ro’) we mean a discrete o’-submodule of R[A]
spanning Ro’ over R. Let e, denote the primitive idempotent of QL A] associated
with the trivial character of A, and put

(2) e=1—e,, o,==Z[Ale, V=R[Ale.
Dirichlet’s theorem and Kronecker’s theorem are now expressed as

PROPOSITION 1. The image I(E) is an oc-lattice in V, and the kernel Ker(()
is the torsion part W of E.

In §1, we summarize some properties of o.-lattices (in V). In §2, we prove
and majorize (E : E) under a formal condition. In § 3, we fully describe
Algorithms 3, 4. We devote §4-§5 to studying actual calculation in some detail,
restricting ourselves to Case 2. In particular, in §4, we give explicit elliptic
units which satisfy the formal condition in §2 and the assumption in Algorithm
4; in §5, we give numerical examples. As to a summary of this paper, see the

reports [187], [19].

§1. Preliminaries.

Let A, A, A* be as in §0.2 with n=%A>1, and ¢, 0, V be given by (2).
Denote by ¥ the group of C-irreducible characters of A. We imply by ¢|4 that
A is the sum of the Q-conjugates of ¢ with ¢¥, i 4. Any character of A
is extended linearly on C[ A]. If not specified, operations are considered in C[ AJ.

1.1. With each 1= 4, we associate the primitive idempotent ¢; of Q[ A]. If
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0 is the maximal order of Q[AJe, we have the next well-known direct sum
decomposition

0= 0;; ay:=v0e;=2Z[AJe; (QAed*).
AEA*

For every i< A*, there are the A(1) (conjugate) isomorphisms

3) ¢ QAle, ———> Q1 :=Q) (9|2,

which map o; onto the ring of integers of the value field @*. We denote the
absolute value of the discriminant of the cyclotomic field @* by d;. The Grenz-
index Q4 of [14] is then expressed as

4) Qa=(0:0)=vn""*/ 1L d;.
ied+
We also mention the direct sum decompositions
®) R[A]=V DV, V= 6? Vi, Vii=R[Ale; (Ae4).
Aede

Let us take an o.-lattice M in V. We have the maximum p-module M con-
tained in M, and that is given by the direct sum

6) M= @ M?*; M*:=MNV,={xcM|ex=x} QeA*.

ae4e

Regarding the dual M*:=Homz(M, Z) as an p.-module by
(zg)(x)=g(zx) (ze=0,, ge M* xeM),

Frohlich [3], and (7.2), has proved

PROPOSITION 2. The index (M:M) divides Q4; and (M:M)=Q, holds if
and only if M* is v.-projective.

REMARK 1. The sentence just below (9*) of [14], §5.3, requires a modifica-
tion. Indeed, when a?=1 for all a€ A, not (M :M)=Q, but 2" 'n Y (M: M)=0Q,4
holds if M is Z[ A]-principal.

REMARK 2. also says that M is an o-lattice, so each direct
summand M? in (6) is an o;-lattice in V,.

For any A€ A*, let now M, be an o,-lattice in V;. Via (3), M, is operator
isomorphic to a non-zero ideal of Q* If N, is a non-zero Z[ A]-submodule of
M;, then N, is an po;-lattice, and we can define an ideal 4 of the Dedekind
domain o, by its inverse

) Il={xe@[Ale; | xN,CM;}

so that the index is its absolute norm :
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® (M; : N)=N() (¢|4).

For every prime number p, take a prime ideal p of Q% above p, let N(p)=p*
with s€Z, s>0, and choose an integer a< pp~* such that ap~'p is an (integral)
ideal prime to p. If ¢|4, we decide an xy<0,; by ¢(xy)=a. Similar to Proposi-
tion IV.2 of [6], we have

PRrROPOSITION 3. The notation being as above, the following conditions are
equivalent with each other:

(1) p divides (M; :N,).

(ii) p® divides (M, : N;).

(iii) x4N:CpM, for some ¢|A.

Proor. By (8), each of (i), (ii) holds if and only if pD¢(J) for some ¢[4.
The inclusion pD¢P(I) is equivalent to p'xy,=I™' by the choice of a, so to
x4N,CpM; by (7). Thus we complete the proof.

REMARK 3. When (iii) above holds, the p-parts of p~*(M;:N;) and
(M;:p'x¢N;) are the same. If we further define an ideal ¢, of 0; by ¢(2y)
=), the o,-lattice £, 'N; is contained in M, of index exactly p~*(M;:Nj).

REMARK 4. In case p is principal, if we assume (a)=pp~', then p~'xyN;=
%4;'N; in Remark 3.

1.2. Let e;=C[A] be the primitive idempotent associated with each ¢¥.
Extend the inner product <x, y) in §0.3 as a hermitian product on C[A]. Then
not only A but the set {/ne;|¢<¥} is an ortho-normal basis, so the decom-
positions in (5) are orthogonal.

If m(M) denotes the volume of a fundamental domain in V for the o.-lattice
M in §1.1, it is easy to see that

) m(M)=+/n|det (%4, @D)1si<n, 12ac4l

with any Z-basis {x;}2! of M. When M is an o-lattice, then M=M in (6), so
the orthogonality implies that

(10) m(M)= TI m,(M?*),

leAx
where m;(M#*) is the volume of a fundamental domain in V,; for M?, see Re-
mark 2. Relative to a Z-basis {a—1{a=s A} of an o.-lattice (the augmentation

ideal of Z[ A]), the fundamental parallelotope B is a convex body of V sym-
metric with respect to the origin:

(11) B={xeV | |[<x, a>| =1 for all a= A, a+1}.

LEMMA 1. The volume of B in V is 2" */n.
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ProoF. Clear by (9), [(I1).
Till the end of this section, we fix any A= 4*. For the o;-lattices M;, N;

given in §1.1, we have
(12) (M; :N)=myN)/m(M,),

where m(M;) or m;(N;) is the volume of a fundamental domain in V,; for M;
or N;, respectively. Let v; (>0) be the volume of a convex body B* in V,
defined by

(13) B*=BNV;,
and d; be the absolute value of the discriminant of Q% Put

(14) u(My)=inf {rgg(((x, @) | xeM,, x+0}.

Similar to Proposition 1.1 of [6], we have

PROPOSITION 4. Let the notation be as above. Then u(M;)>0. For every
yeN,, y+0, one has

4; o 21e) S 2(¢0)]
(M2 N= %f.ﬂwim SHOVEIL A
If n=p, a prime number, then v,;=27"'/p . ‘

Proor. The last assertion is a consequence of Lemma 1 Let x&M,.
Then maxaecs({x, a))=(n—1)"'maxqes(|<{x, a>|) since the sum of <{x, a) (a€A)
vanishes. Therefore u(M;)>0 because the discrete module M; has an element
with the smallest positive maximum norm. The inequalities follow from the
lemmas below and from 12}

LEMMA 2. m(M;)=v (u(M;)/2)*®.

LEMMA 3. For every yeN;, y+0, one has
mAN )=V T
412 A/'n

the equality holds if and only if N;=Z[Aly.

LEMMA 4. v,=/nm)?®/21)!.

Proors. [Lemma 2: Let t=2-*%4/m, ;(M,;)/v;>0. Then the convex body
tB%, which is symmetric with respect to the origin, has the volume 2*®m (M)
in V;. By Minkowski’s theorem, there exists an x=M;\tB*, x+0. We may
suppose <x, 1><0, replacing x by —x if necessary. By [II), [I3), [14), we see
that

u(M;)= max ((x, ay)= max (|<{x, a>|)=t.
1#a€4 1#a<4
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Taking the A(1)-th power, we complete the proof.

Lemma 3: Since Z[Aly=0,yCN;, it is sufficient to prove the equality for
N;=p;y. The linear transformation V;>x—yx&V; has the eigenvalues ¢(y)
(¢|4), so we may only prove

(15) m;(Dz):\/d,zn_ﬂi)i.
When A(1)=1, is clear. Let A(1)>1 and put r=(1/2)A(1). Then r=Z.
Among the conjugates in (3), we take distinct ¢, -+, ¢, which are not complex

conjugate with each other. Then the map
(16) Vi—>R*®;  x+—~/2/nRe(¢i(x)), Im (:s(x)):igisr

is an isometrical isomorphism from the euclidean space V; to the real vector
space R*®. Hence we obtain easily, see for example Lemma 2 in [13], V,
§2. This completes the proof.

Lemma 4: The case A(1)=1 is trivial. Let 2(1)>1. By and by
the definition of the inner product, we get

B, ::{xem' (ﬁ21]|¢(x)l§n}ch.

Via the volume of B; in V, is (+/nm)*®/A(1)!, see in [137, V,
§ 3, for example. Thus the inclusion proves

REMARK 5. A general arithmetic expression of v; is not known yet for a
composite 7, see [6], II, 4, (c).

§2. A decomposition and a majorization of A.

Let us now study the abelian extenison L/Fin §0. For the galois group A,
we use the notation in §1. Let n=[L:F]=#A>1. We do not distinguish
Cases 1, 2.

2.1. We define a group H, a Z[ A]-submodule of the group E of units of L
containing the torsion part W of E. ,

For any A€ 4, let A;={ac A | Ala)=A(1)} (a subgroup of A), denote the fixed
field of /Nh by F; (a cyclic subextension of L/F) and put E;=ENF,;, W;=WNF,.
Define an order relation < of 4 by

p<2 &= A,D4;, = F,.CF;;

and let pu<4 denote that u<4, p#A. For each 14, we consider a Z[AJ-
module H;, the group of proper A-relative units, given by

(17) H;={e€E; | Ni(e)eW, for every p<i},
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where N% is the norm from F,; to F,. Note that H; depends only on F,/F.
Obviously F=F, and E,=H,=W, Taking the product for all non-trivial Q-
rational characters, we set

(18) H=W-1I H, .

ica*

We also consider, for the image M=I(E) via [ in (1), the inverse images FZ, E*?
of M, M* in (6):

19) E=TIE*; E'={seE|e;l(e)=lc)} (AsA¥).

=

The product in is therefore direct modulo W.
To see the difference of £ and H, for any A=A, we let

X 1= 2 a in Z[A:l, 2= Exey in Q[A])
= Pr;

ILEAI
put 71(/0:(141.21):[1?1 : F] and prove
LEMMA 5. Let p, A A and xC[A]. Then
(20) ax=x for all acd;, &= &x=x;

(21) Xiep=
0 otherwise.

PROOF. Obviously &;x+#x if and only if e,x+#0 for some ¢¥ with ¢(A4;)
#1. So (20) follows easily. Since ¢;e,=¢, (p=2) and ax,;=x; (aEﬁg), we obtain

on account of (20).
THEOREM 1. Let A€ A* and w=4W. Then
(El)wCE,zﬁEXIHj (C_-_El) .

Particularly, I(H;) is an 0;-lattice in V.

PROOF. Let ecE* If acA,, then al(e)=I(e) by [19), (20), therefore e%-*
W, hence (¢¥)*=¢®. This proves (EHYCF, so (EY)YCE;NE* Next let
e€E;. For any u<a, we see that Ni(e)eW, if and only if ((Ni(e)=
(n(A)/n)x ,l(e)=0, while (20), show that

n
()
Therefore e H, if and only if ¢,l(e)=0 for all p<2, or, by (20) again, if and
only if e;l(e)=I(e). This proves H;=FE;NE* on account of [19). The last as-
sertion now follows from what we have studied in §1.1 since H, is a finite index
A-subgroup of E*.

xul(e)=x,8;l(e)= e,ul(e).
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COROLLARY 1. The product in (18) is direct modulo W. If Q4 is as in (4),
then (E:H) divides Q w™. Moreover E*CH.

PROOF. The first assertion is trivial as the product in is direct modulo
W. The second assertion directly follows from [Proposition 2 and [Theorem 1l
If A= A*, then ne;e Z[A], therefore e™*? = E;NE* (e€E) by [19), (20). So the
product E” of E™e? (i A*) is contained in H by and by [I8).

REMARK 6. If n=p, a prime number, obviously E=H and Q,=1.
REMARK 7. In Case 1, we have (E*:H;)<2 (A 4*) by [14], §6.

2.2. We give an index formula for the class number i of L under a formal
condition, which is always satisfied as will be seen in §4.

For each 1= 4, we put A;:A/;l 1, which we regard as the galois group of
F;/F, then E;, H;, W, are Z[ A;]-modules. If ¢|4, we consider ¢ as a character
of A;. Set C*=C\{0}. For any zC, we denote ||z||=|z| or |z|* respectively
in Case 1 or 2.

Assume that, for each A€ A%, there is a map

(CO) 0,: A,—C"

satisfying (Cl1), (C2) below :
0:(a)

0:(a)\o_ 6a(ad)
(C1) If a, beA,, then WEEX and <01(1)) T0:0)

(C2) If ¢l2, then S()#0, where S(P)= g‘_éAzb(a'l) log (16:(a)]) .

Under the conditions (C0)-(C2), the image 6,(A;) generates a subgroup @;
of the multiplicative group C*. Via the actions

0:(a)’=0;(ab) (a, be Ay,

we consider @; as a Z[A;]-module. By (Cl), if 4; denotes the augmentation
ideal of Z[A], the subgroup @,;92=0,(1)%2 of E; is also a Z[ A;]-submodule of
E,; the operations are compatible. -Fixing a generator a(4) of the cyclic group

A;, we put
TW= TI (a@"®?"~1) (42,
pin

where p runs through the prime divisors of n(A)=#A4,=[F,:F](>1). Let us
define a Z[ A;]-submodule E; of E; by

(22) E/z:Wx'mZ[Au, 771:01(1)“2) (eE)).

On the other hand, by (C2), we define a number ¢;>0 satisfying

(23) ctRh=h, II 11 |S()|=hy II [S()].
red* @12 (r[yew‘t
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Here R is the regulator of L, h, is the class number of F, and ¥*=¥\{1}.
From this formal analytic formula, we obtain

THEOREM 2. The assumption and the notation being as above, one has n; < H;,
NiEW; for every AcA*. If Q4 is as in (4), then

crQah=h,(E :H)xgp (Hy:E))=h(E:E),

where E is the product of E; (A€ A*) and W (direct modulo W).

ProoOF. Let A= A* and suppose L=F;, or equivalently A=A;. As the first
assertion is independent of L containing F;, we may prove it under this sup-
position. From the definition, it is easily verified that

i )=T () X log (10:(@))-a™.

If <2, then (a"®—1)e,=0 by (20), hence e¢,T(2)=0. Therefore 0+T(d)e
Q[ Ale;, which proves 7;E* on account of thus ;€ H; by [Theorem 1.
Moreover, via (3), we have

SUN=PT@NS(P)  with 0=HT AR} (PA),

which proves 7;&W; on account of (C2). Note that the different of Q* is the
principal ideal generated by n/¢(T(4)) for any ¢|4.  So, taking the product of
the above equalities, we get

(24) II [gUp N =d; " TL n| S(P)].
g1 $ia

Removing the assumption A=A;, this remains true as we easily see. By the
first assertion just obtained, we can apply the results in § 1 putting M,=I(H;)

and N;=I(E;)=Z[A]l(y,), see also [Theorem 1. Thus, by Lemma 3, we can
express as
(25) (H;: Ez>=(mz<Mz>«/Ei?)"¢flg VS,

see also [I2Z). While, if we put M={(H) in §1, then m(M)=+nR(E :H) by (9),
and M=M in (6) with M?*=[(H;)=M, (A= A*) by [Theorem 1. Hence we obtain
from that

vVnR(E :H):lgt m (M) .

Combining this with [23), [25), we complete the proof.

REMARK 8. Assume A=A; with some 1= 4*. By the proof above, T'(1) is
a non-zero element of o; and /(E;) is an 0;-lattice of the form 0;7(2)y. Since
0;T(A) is stable under the isomorphisms of o;, the group E; is independent of
the choice of a(4). By [21), N4(»,)=1 if p<A. These facts are true even in
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case A+ A;.

REMARK 9. Theorems 1, 2 enable us to use the results in §1 for the o;-
lattices M,={(H};), N}ZZ(EQ:Z[A]Z(‘)?;) (/ZE/I*)

2.3. Assuming (C0)-(C2), we majorize (H;: E;) in Theorem 2.
Let A= A*. We define a real number £;=1 by

(26) mzinf{rglgjc(lleall) | eeH;, eEW 4},

which depends only on F;/F. Then we have

THEOREM 3. The strict inequality k;>1 holds. Under the conditions (CO)-
(C2), let E; be given by (22). Then

1 2v/nfS@)] _ AQ)! 21S(¢)]|
vivd; ¢ii loge;) ~A/d; ¢ii /T log (k)

Here v; is as in Proposition 4. If n(A)=p, a prime number, then
< | S(¢)]
e T
PrROOF. We may assume L=F;. Then A=A; and n=n(1). From a prop-
erty of the logarithmic function, follows

(H,: E)N=

log (x;)=inf {rggf(log(lls“l\)) | e H;, e W3},

Let M;, N; be as in Remark 9. Then u(M;)=Ilog(x;) in (14). Hence Proposi-
tion 4, together with (24), easily completes the proof.

COROLLARY 2. The assumption and the notation being the same as in Theorem 2,
one has

hif 2w \n-1 A! | S|
< i = Ny IENEAL
h:cL(\/n-> xg*\/dg o2 log (k3)
If a?=1 for all a= A with a prime number p, then
Byt 15|
¢ iEmgii log(ey) ©

(w=%W).

h=

Proor. Clear from Corollary 1 and Theorems 2, 3.
We prove here a useful property of an e H of the form

(27) 5:'2124‘51; EIEH,z, 81¢W1 or 5,1:1 (ZEA*)

For any @ A%, let Fy be the composite of F; (A=®) and F. As a generaliza-
tion of Proposition III.1 in [6], we can show

PROPOSITION 5. Let eH be given by (27). Then F(e)=Fp, where ®.=
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{AeA* | ¢, #1}.

PrROOF. Clearly e€Fp,. Assume F(e)#Fp. Then e¢*=¢ for some a€A4,
a&A;, with some A= ®,. By [19), and by [Theorem 1, we see that [(g;%)
=e,l(e*)=e;l(e)=l(e;), hence (¢;*)*=¢;*. Thus F,=F(e;%) for a certain p<4,
and then Ni(e;*)=e,"€W,CW, by where ¢g=n(2)/n(y). Consequently
e,€W;, but ¢;#1 as 1@, which contradicts [27), and we complete the
proof, ‘

Let i 4* and D; be the discriminant relative to F;/F. As an estimation
of £; in [26), we have

PROPOSITION 6. The absolute norm N (D;) does not exceed (|n(Q)|g;"? ~1)rd,
i.e. k=" /DN, / |InA)].

PrROOF. We may suppose L=F;, A=A;, n=n(A). Lete=H,, e&W,. Then,
since F(e)=F; by Hadamard’s inequality shows

N(D)ZIdet (“asicn, acal’=<I T 3 1e°11,
hence
N(D)=[n™ max (|| *™D)] .
acd

Thus the assertion follows.

REMARK 10. When N(D;)>|n(A){, [Proposition 6 and [I’heorem J majorize
(H;: E;) by a simple function of 8;(a) (a€ A;), n(2) and N(D;). In Case 1, not
assuming N(D;)>n(2)"®, [6] has given a better estimation. In Case 2, even if
N(D;)Zn(A)*»  we can consider as follows: Let h; be the class number of
F,. As is well-known, h; does not exceed the number of integral ideals a of
F; with 1=N(a)<=x, where x=@2n)! (Vd/zn(A))*¥+/N(D;) with the discrim-
inant —d of F. By (Hg:Ez)éCplQAZh,z/hl. Thus (H;: E;) is
majorized by a simple function of Ay, d, cr;, Q4, n(4) and N(D;); roughly esti-
mating, (H;: E)Scr,Qa,x**?/h,.

§3. Calculation of % and E.

We prepare general algorithms in §3.1, give an outline of our method in
$3.2, and state the main algorithms in §3.3.

3.1. Fix a number field %2 as a base field. Let g=Z, ¢>0, and a<I be
given, where I is the ring of all algebraic integers in C. For a given number
field KDk(a), we show a way to decide KNI, , explicitly in a sense, where
I, .={psl|p=a}.

Let I,=INk and X be a complex variable. For any fe<l, let Pgel,[X]
be its minimal polynomial over k. The set of conjugates of 8 over k is the
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inverse image J '(Pg) via the map J defined by

J:I—I,[X]; Br—>Ps.

The image J(I) consists of all monic irreducible polynomials in /,[X]. We first
give two lemmas. It is easy to prove

LEMMA 6. If B, 4 then k(a)TkR(B), [R(B): k(a)]=q and the set of con-
jugates of B over k(a) is given by I «NJ ' (Pp).
Let feZ, 1=f=<q, N=f[k(a): k] and let P=P,” =M, where

M={QeI,[X]| Q is monic of degree N}.

Factor P as P=(X—a;) - (X—ay) in I[X]. Among the ¢ elements (X—g,) -
(X—Bx) (Bi€1gap -+, BvEIg ay) of I[X], let My=M, . ; consist of those be-
longing to I,[X]:

(28) Mi=My o, ;= {(X—B1) - (X—=By)EM| i€l a; 1=I=N)}.

LEMMA 7. For any Q&M factoring as Q=Q, - Q, with Q,, -, Q,J{),
one has QEM; if and only if Q,, -+, Q-EJ (U, a); and then QeM,, -+, Q, €M,
with certain fi€Z, ;>0 (1=i<r) such that f,+ --- +f.=/.

PrROOF. The ‘only if’-part follows from the definition. Let @, ---, Q.
JUy o). For i=1, -, 7, by we have Q;€ M;, with f;€Z, f,>0, such
that deg (Q.)=f[k(a):k]; thus f=f,+ - +f, and Q=M,, which proves the
‘if’-part and completes the proof.

As I, Nk(@)={p<l, o | k(a)=Fk(p)}, similar to Lemma IV.1 of [6], from
Lemmas 6, 7, we immediately obtain

PROPOSITION 7. The map [ is injective on I, .Nk(a), and the image
JU g «Nk(@)) coincides with My=My q,1.

We next express (28) in terms of the coefficients, using a bijection ¢ : M—
I.Y :={(uy, -, uy)€C¥ | uy, -+, uysl,} (in the complex vector space C¥)
defined by

@)=y, =, uy) (Q=XY—u, XV 4 - H(=DYuyeM).
For the above P, we have another expression
(29) C(P):<Sl(a'h Tty aN)) Ty SN(aly Tty aN)))

where s;=s;(x;, -+, x5) (1=7/=N) are the elementary symmetric functions of N
independent complex variables xy, ==+, xy:

N N
$1= 3 X3, Se= 2 XiXj 0, SN:H-’Ci~
i=1 15i<jsN i=1
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For /=1, ---, N, as is well-known, we can define a polynomial ¢;=¢,(s,, *-, Sx)
€Z[sy, =+, sy] by

O-i(sl(xly ) xN); Tty SN(xly ) xN)>:S‘L'(xlq) R qu)°

Denote a(u)={a(us, -+, un), -+, on(us, -, uy)} €I,V for every u=(uy, --, ux)
eI,Y¥. Obviously from the definition, follows

LEMMA 8.
c(Mp)=c(My o p)={ucI¥a(u)=c(P)}.

We proceed under an important assumption. Suppose that
(30) I, is discrete in C;
i,e. k=Q or k is imaginary quadratic. To know P,, we prepare

ALGORITHM 0. Let J7X(P,) be known approximately with precision good enough.
Then P, can be decided.

PROCEDURE. By (30), if zy, -+, zyC is close enough to ay, -, ay,
then c(P) is the nearest (relative to the maximum norm of C¥) element of I,
to (si(zy, ==+, 2N), o0, Swl@y, -, 28D

Conversely, let Q= J(I) be given. Then J Q) can be known approximately
with any good precision by Lehmer’s method in [12], §2.7, for example. If some
p’'eC is given close enough to one B</]*(Q), we can know p approximately
with any good precision (or can decide j); a sufficient condition of such a 8’ is
given by

(31) |/ —BI<|p'—y|  for all y&JHQ), 7+§.

Under a stronger condition, we may use other methods in [12], but we do not
discuss them (or error estimate); and B’<C only denotes a number close to
B&I; whenever ', Pg are both given, we assume 3’ to be close enough to §3
depending on circumstances. In this sense, we express 3 by (Pg, ) (only approx-
imately unless S< k).

ALGORITHM 1. Let P, be known. Then J(I, .N\k(a)) can be known. When
I NEk(@)# D, let a’ be further given. Then all (P, B) (Bl .Nk(a)) can be
obtained.

PROCEDURE. By we may know M, and (Q, 8) (QeM,,
Bel, .NJ Q). More generally, we have (I)-(II) below :
(I) Let c¢(P) be given. Take a bounded set B in C¥ so that ¢(M;)CB; e.g.

put B={(by, -+, by)ECY | lbilé(jj)q«/ﬁ (1=7=N)} with m=1+ max (|v:]),
where ¢(P)=(v,, ---, vy). Then BNI,Y is a finite set by (30). Computing ¢(u)
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(us BNI,Y), we know M, by

() Let QeJ(I)NM; and (P,., a’) be given. Eliminating the ¢— f points in
Iy o\ JHQ) (see from I, , (approximately known using a’), we obtain
(Pg, B’) for each =i, ,NJ Q).

REMARK 11. If B in (I) is close to ¢(M;), we can omit (II) since the zeros
of Q=M are continuous functions of ¢(Q).

ALGORITHM 2. For a number field KDk(a), let K=Fk(0) with 6=ay?#0,
r€INK, and Ps; be known. Then $(I, .NK) can be known. When I, ,NK# @,
let v" (with precision good enough) and (Pa, @') be further given. Then all (Ps, ')
(Bl «NK) can be obtained.

PROCEDURE. Since the maps I, NK3p—prel, ;K and [, sNK2e—P,
€M, ;, are bijective (see [Proposition 7), we do:

(I) Let P; be given. Decide M, by (I) of Algorithm 1; then #(,.NK)
=#¥M,y s, is known. Let 0’=a’y’? be also given. Then all (P, &) (e, ;NK)
are known by (II) of Algorithm 1.

(II) Let (P, a’) be given. Decide M;=M, ,,; 1=f=gq) by (I) of Algorithm
1. Eliminating Q& M, such that »>1 and f;<f, @;€M;, (1=i=<r) in
we get J(I)N\M; inductively for f=1, .-+, ¢q. Since J(I;.) is the union of
JIOHNM; (1=f=gq), we obtain all (Pg, 8') (8€I, ) by (I) of Algorithm 1.

() Let (Pg, B) (BEly o), (P, €') (e€lysNK) be known by (I), (II). For
every eI, ;NK, we find a unique <, , such that 8’/¢’ is close to 7’; thus
we can decide all (Ps, 8) (BE€1y, NK).

REMARK 12. It will be possible to give another algorithm, using Lagrange’s

resolvent as in of [17, III].

3.2. Coming back to the abelian extension L/F, we sketch how to decide
the class number A and the group E of units of L. Putting 2=F in §3.1, we
keep the notation there.

Let C(}) be the ray class group of F modulo an ideal ¥ (#0) of I». By
arithmetic of F as in Remark 14 below, we can obtain for C(f) a full set of
representative ideals expressing its group operation and the conductor of each
subgroup: When {=Ir, a method for deciding the class number h,; of F offers
such a way, see [1], Chapter 2, §7. When {+[; we may use the exact
sequence

(32) 1—Wy/Wi{§) — Ur/D*—>CH) —> CUp)—>1,

where W,(H=W,N\(1+} is the group of units of F congruent to 1 modulo | and
(Ir/1)* is the group of units of the ring I/{; the conductor for a subgroup of
C(}) is known by reduction (modulo divisors of }) of its inverse image via the
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map (I7/1)*—C()).

Take a subgroup U, expressed as a subset of a full set of representative
ideals as above, of C(f) with conductor exactly §. Let L/F be the class field
corresponding to U; so C(f)/U=~ A via the Artin map; i.e. instead of L, we
start from the class group U corresponding to L/F. Then Q,4 is known by (4).
As we shall do later, define 8; (A= 4*) in (C0) by means of well-known class
invariants so that (Cl), (C2) hold. Then ¢y in is easily known (cf. (36)
below), and @;(a) (A= A*, acA;) are approximately known with any good
precision ; see (Case 1) and in §4.1 (Case 2). For the units
neEE,; A€4¥) in let
(33) Y——‘Xg*l’z; Y= (Pr)=1{ntlac As} (Aed¥).

Then Y can be known approximately with any good precision. (See Examples 3,
4 in §5.2 as to this step.)

We accomplish our purpose by ; starting from Y, we decide
(E: E) and find a free basis Z of E; every fundamental unit e Z is obtained
as a pair (P, ¢’) (cf. the context of [3I)). We divide this in two steps: First,
for each A€ A*, starting from Y ;, we decide (H,: E,) and find a free basis Z4
of H; by Algorithm 3. Next, starting from Z?* (A€ A4*), we decide (E : H) and
find Z by Algorithm 4. (We can decide (¥ : E) only by Algorithm 4, see §0.2.)

We add a few preparatory observations. As in Remark 10, by using the
values of 6;(a) (A A*, a= A;) or by another method,

(34) r,=Z can be taken so that (H;: E;)<r; AsAd*).

(See also Example 2.) By for an < E of the form
@7 p= I; NP with explicit x(ANEZ[A;] (Asd¥),
AEA*

we can know [~!(P,) approximately. Therefore, by Algorithm 0,
(35) P, can be decided if nEE is given as in (27').

(See Examples 3.(i), 5, 6.) Moreover, as an application of (35),
36) w(:=tW), w,(:=tWyeZ (AcA) can be decided.

Indeed, we can do as follows: Decide feZ, f>0, by fZ={NZ. Let x(1)=12f
(A€ A4*) in (27’). Then L=F(y) by so, by (35) and by Algorithm
2, we decide the number of 12f-th roots of 1 in L, which is equal to w since
w divides 12f by Lemme 7 of [23]. For each 2 A*, put »=7,;"*' in (27’) and
get w, similarly. As w, is known a priori, (36) holds. (See Example 5.(i).)

REMARK 13. In Case 2, for a ring class field, we may start from a ring
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class subgroup, see in §4.2. Instead of [32), we then use (4) in
[20], where the case n=3 was studied.

REMARK 14. If a number field K has the ring of integers of type Z[w]
with an explicit P=P(X)=Z[X] as the minimal polynomial of w= K over Q, the
following arithmetic of K is possible, which we can apply to K=Q* (1€ A*) (the
n(A)-th cyclotomic fields) or to K=F: Every element of K is written via the
basis {w'}{;!, where N=[K:Q]. The sum, the product of elements of K or
the inverse of a non-zero element of K is computable as usual. Any (non-zero
fractional) ideal of K is expressed by its Z-basis obtained from its finite gener-
ators by elementary matrix transformation. Hence the sum or the product of
ideals of K is also known. The inverse of an ideal of K is the dual multiplied
by the different P’(w) so is known by elementary matrix transformation since
the traces of o' (1=/<2N—2) are given by Newton’s formula, see [13], III, §1.
The prime ideals of K above a given prime number p are decided by factoring
P modulo p, see Proposition 25 in [13], I, §8. Thus, we can explicitly factor a
given ideal of K into prime ideals of K. For given ideals q, |, {CZ[w], of K,
an explicit B<af™* can be found so that Ba'f is prime to f; e.g. decide the
distinct prime ideals p,, -+, p, of K dividing §, let b=a 'fp, ---p,, take one
B:€bpy?, B:&D, for each 7=1, -+, », and put =g+ - +8.

3.3. Let us decide (E: E) and find a free basis Z of E under the situation
as in §3.2, esp. under (34), (36) executed in advance. Further Y in is
assumed to be known approximately with precision good enough, so (35) is often
utilized.

ALGORITHM 3. Let A= A*. The index (H;: E;) can be decided, finding a
free basis Z* of H;. Each e=Z* is obtained as (P., &)

PROCEDURE. Let M;, N; be as in Remark 9. Put r=1 and J=bp;. Note
that Py, is known by (35). For every prime number p, we use the result and
the notation in and Remark 3. By ordinary arithmetic of @* as
in Remark 14, we can do (I)-(III):

(I) Take every prime number p in increasing order of p°. Put p=7n;,
qg=(p, w;) (the greatest common divisor) and go to (II).

(II) If p*>r,, then (H;: E;)=r and J is that defined by (7); go to (III).
If p*<r;, for each ¢|4, put §,=7"¢, get P5¢ from P, and decide J(qu.5¢f\Fz)
by Algorithm 1. When Ipq,5¢f\F;:@ (i.e. »®¢ is not a p-th power in F;
modulo W;) for any ¢|4, go to (I) to take the next p. Else, choose one
Q&JUpq.eyNF2) with some ¢|4; then, as Q=P, for an e€H; with ¢?={5",
CeW,, replace r by p’r, 9 by P,9, ra by p~*ra2, 5 by & and repeat (II) for the
same p.

(I) Let {z;}:% be a Z-basis of r47'Co;. Note that M;=r"*(r4 ' )N;. Put
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g=(@r, w;). For i=1, ---, A1), put &;=9,;%, decide P by (35). We obtain
(P.,, e7) for an e; &1, ¢,NF; by Algorithm 1, then e,€H; such that e/={»;*
with some {&W,;. Thus we may put Z*= {g;} 2.

REMARK 15. If the class number of Q% is one, we obtain Z% only by
(I)-(II) above, provided a is chosen as in Remark 4, but such an « is not
obtained by arithmetic as in Remark 14 alone.

Let {&)2-! be the union of Z* (AeA*). Put ¢g=(w, n). Since E*CH by
Corollary 1, we can define, inductively for /=1, ---, n—1, the smallest divisor
k., eZ, k;>0, of n such that

(37) (Eljl Ei—1ji'lsiki)q:85nq with an ¢,€F

for some 7,{0, ---, ky—1}, -+, 7:..€ {0, ---, k;.;—1} (i.e. the unit in the paren-
theses in is an n-th power in L modulo W); then (F:H)=n""/ky - by
and Z=1{e;} 7= is a free basis of E.

ALGORITHM 4. Let Z* (A€ A*) be given by Algorithm 3. Then (E :H) can
be decided, finding a set Z of fundamental units of L. Every e=Z is obtained
as (P, ¢’).

PROCEDURE. Inductively for :=1, -+, n—1, we decide the %; above by (I)
and obtain (P, &;) for an ¢; as in by I):

(1) Take every divisor k;=Z, k;>0, of n in increasing order. Let &=
&\, -+, Ji-1, ko) be any unit as in the left side of [37). Then & is of the form
in [27). We may assume that & is given with precision good enough. Let 7
be the product of all 5, (A€ A*, A& D), where D, is as in Then
L=F(¢), where e=£7?". Take a small teZ, t>0, such as &< E. Then ¢ is
of the form in (27’). Decide P.t by (35). Since ¢’ is known, we can decide P,
in J(I, «NL) obtained by Algorithm 1. So we test by Algorithm 2 whether
I..eNL is empty or not. If I,,."L=@ for all j,{0, -+, k1—1}, -+, ji1E
{0, ---, ki_y}, we repeat (I) for the next divisor k; of n. If I, ,.NL+#@ for
some &, then k; is that defined above; fix such a & and go to (II).

(II) We keep the notation in (I). Since &’ is also of the form in (27/), we
decide Py by (35), and obtain (P, §’) by using Algorithm 1 similarly. As 7’ is
given, we obtain (P, ¢i) for an e;&I,, L which satisfies by using
Algorithm 2.

REMARK 16. In the procedures above, for simplicity, we have not taken
into account of efficiency of algorithms. As to actual calculation, see Examples

5, 6 in §5.3 and [17], [20].
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§4. Explicit elliptic units.

In Case 1, Leopoldt and Gras-Gras used cyclotomic units 9, =H; as
in giving @, in (C0) explicitly by means of the sine function. Then ¢;=1
in [23). Numerical tables of A and E have been given in [7], [8], [9], [15].

In the rest of this paper, we only study Case 2.

We explicitly define 6; (A 4*) in (CO) so that (Cl), (C2) hold, quoting
Siegel [25], Ramachandra [22], Robert in §4.1, and Hasse [11], Deuring

[2], Meyer [16], Schertz in §4.2. Considering as in Stark [26], we show
another formula in §4.3 like that in [Theorem 2 with a smaller ¢; but with
elliptic units not so explicit. As to details, see the above literatures.

4.1. For each A= A*, let {; (CIy) be the conductor of F,;/F, and decide
fi€Z, f,>0, by fiZ=1;NZ. From the ray class group C(i;) onto the galois
group A,, there is a canonical homomorphism denoted by ¢;:C(f;)—A;, the
Artin map. For every a= A;, let

o(k) it f;=1,
ks(op U

(38) 0:(a)=03%(a)=

k otherwise.
kewpﬂ(a)gou( )

Here the class invariants 6(k) and ¢;,(k) are defined as follows: For complex
variables ¢, z, Im(z)>0, put é(t)=exp(2rx+/—11) and set

n@=8(57) I A—8Gi2),

z tIm ()

ot z):zé(-15 + 9 mG)

If £=2zZ+2z,7Z with z,, z,C*, Im(z,/z,)>0, we can define 4(.L) by

)Sin €13 ﬁ(l—é(jz—}—t))(l——é(jz——t)) .

@2m) 2 A(L)= (25" n(2:1/22)")"
When f;=1, for any k=Cp), let ack™, acF, alp=0a"1, and put
(39) 0(k)=a**((2m) *4(a)) ™.

When f;#1, for any k<C({;), take an ideal a, one Be<af;’ so that Ba'f; €k,
choose a Z-basis {a,, a.}, Im(a,/a,)>0, of a, and put

(40) o1 (B)=0(B/as, a/a,)? 1.

Let w=4W, w,=$W,; A€ 4), put wi)=4W,N\(1+1:)), and set
24h, if f;=1,

(41) ¢ :{
12fw(ty) otherwise.
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PROPOSITION 8. For each A€ A*, let the map 6, in (CO) be given by (38).
Then (Cl), (C2) are satisfied, and cy in (23) is a natural number expressed
explicitly by ¢; (A€ A*) in (41) as
42) cr=ww, IT ¢;* .

=¥
One can compute 0 ,(a) (A A*, as A;) with any good precision.

ProOOF. The conditions (Cl), (C2) are verified easily by Propositions 4, 15
and Théoréme 3.(ii) of [23]. The expression of ¢, is obtained together. To
compute 0;(a) (A= A*, ac A;), we can utilize the explicit Fourier expansions in
Propositions 5, 6 of [25], I, §4, for 5(z) and &((¢t Im())/(2 Im(z)))n(2)e(t, z). The
fact that c,=Z follows from Lemme 7 of [23] and from Lemma 9 below.

LEMMA 9. Let p be a prime number. For any q=Z, define v(g)eZ, v(g)=0,
by qEp*PZ, g p* P Z. If v(w)>v(w,), then v(w)=v(w,;) with some A A*
such that fi>1 or n(Q)=2, except the case where p=2, F#Q(v/—1), F+Q(~/—2),
v(w)=3. In the exceptional case, v(w)—v(w;)=2 e min(v(w,), v(n(d)).

PRrROOF. The assertions are verified without any difficulty.

REMARK 17. In (41), w(i;)>1 only when F#Q(+/—1), F+Q(~/—3), 1:=2IF
and 2 does not split in F/Q. Then w(i;)=2, and #C(};)=2h, or 3h, respectively
if 2 ramifies or inerts in F/Q.

4.2. Let now A% (CA*) be the set of (rational) ring class characters of
L/F; namely A% consists of A€ A* such that F;/F is a ring class field. For
each A€ A%, we have f;=f;[r. Denote by I, the order of F with conductor f3,
by R(f,) the group of classes of proper I,,-ideals of F, and let 7;:R(f2)—A:;

be the canonical onto homomorphism such that the composite C(};)— R(f 1)314 1
is the Artin map o¢;. For any ideal a in I,=Iy prime to f;, put a=aNly,.
Define natural numbers g(4), m(4) by

q n(4) .
A=—"1—, A= with ¢=%R hy.
For any k<Ker(z;), take and fix one b,=k. For each a=A,, take an ideal a
of I, prime to f; so that G k,”! with some k,=(r;)"*(a), choose an a<F such
that a™*=al,, and let
A(@5,) )m(/z)

—=0B(q)=q'282 T
(43) 0:1(a)=0%(a)=a ()keKer(Tl)(A(Ek)

For each 1= A*, we further put
24m(2) if 2e4%,
Ci=

(44)
12f; otherwise.
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PROPOSITION 9. For each A€ A*, let the map @, in (CO) be given by (43)
(0:=0% if 2 4%, and by (38) (0:=0%) otherwise. Then (Cl), (C2) are satisfied,
and ¢z in (23) is a natural number expressed explicitly by ¢, (A= A*) in (44) as
in (42). One can compute 0;(a) (A A*, as A;) with any good precision.

PrOOF. If we observe that

é ¢(a)=0 whenever ¢|4, 1€ 4*,
agd;

and that w(i))=1 A€ 4* A& A4%) by Remark 17, the conditions (Cl), (C2) are
verified easily by (3.12), Satz (3.2) (and its proof) in [24, I], and by Propositions
5, 6 in [25]. The expression of ¢; is obtained together. To compute §;(a)
(A€ A*, a= A;), we can do similarly as in the proof of Proposition 8. If i A%,
then F(W ;) is a cyclic ring class field over F abelian over @, so w; divides 12
by Satz 1, b) of [10]. Hence c¢,=Z follows from Lemme 7 in [23] and from
Lemma 9 above by the same way.

REMARK 18. If f;=1, we have 03(a)/05(1)=0%(a)?, g=h,/n(A).

4.3. In this subsection, we assume that 6,=03%, ¢; and %; (A€ 4*) are
respectively given by (38), (41) and (22).

Let f;=1. For any k=C(Ir)? take a prime ideal p, p~’ck, 6&p, splitting
in F/Q, then choose a, S F, Im(f)>0, such that alr=p™* and that {B, 1} (resp.
{B, p°1) is a Z-basis of I (resp. p*), where p=N(p). Then x(p~28)/pn(B) be-
longs to the absolute class field F® of F by [2], C.21, therefore, by the expres-
sion d(k)/d(1)=a(n(p~*B)/p7n(B))*™, the norm @:(c:(k))/0:(1)=NE(0(k)/(1))
is a (24hy/n(A)-th power in F,;, thus 7, is also so by the definition (of T'(2))
unless n(d)=2. Consequently, putting

(45) &=n) if n()>2, f1=1,

the following assertion is obtained:

(46) mAeH;2  and  &;€Z, £;>0, divides ¢;.
By Corollary 3 in §2.3 of [23] and by Remark 17 above, putting
(45%) Gi=6n(A)=12  if n(A)=2, fi=1,

we also obtain (46). Let next f;>1. For any k=C(},), take 8, a;, a, as in (40).
Then ¢(B/as, ai/a,) belongs to the ray class field modulo 12f;® over F by
Theorem 3 of [26], so 6;(a) (asA;) are c¢;-th powers in the ray class field
modulo 12f;*w(};) over F by Lemme A-4 of [6], hence Lemma 6 of [26] and
Lemme 7 of [23] prove (46) by putting

(45") Gr=w; if f,>1.



266 K. NaAKAMULA

and together with Lemme 7 of and

now enable us to state

THEOREM 4. There are certain units 7, H, (A€ A*) such that

CLQah=hy(E 3H)11;1‘(H1 SWa527H49).

Here ¢;, is a natural number given by &; in (45), (45”), (45”) as

5L:w—1w1 H 511(1) .
ica

REMARK 19. Though we cannot compute 7, approximately, is
useful to find divisors of (H;: E;) in The process described above
is also efficient for #;=60% in [43), but is omitted here.

§5. Examples.

We study only Case 2. Let —d be the discriminant of F, | be the conductor
for L/F and decide f€Z, >0, by fZ=INZ.

5.1. Let us study some special cases.

EXAMPLE 1. Let n=p be a prime number and A*={4}. Fix a generator
b of A and a primitive p-th root {=C of 1. Put

[ 24h, ¢/ b it =1, p>2,
621 24h,  s=1 2, if f=1, p=2,
12fw(@) c/w otherwise .

Then, by Theorems 2, 3 and by Proposition 8, we have
wlw,c?th=h(E: E), E=W-9;®, 7,=0:0)/6:1),

E: B2 s 10,001

=1

Here 6,;=67% in (38), so ECE® by Theorem 4, and x=«; in (26), so

ccE, agéw}zpﬁ-wm <z‘: —_2—5)

fc:inf{ max (] ] 2%
1<i<p l

by Proposition 6. (See also Remarks 6, 10.)

ExAMPLE 2. Fix one 1 A*, assume L=F; and let k=k; be given by (26).
Then k=inf{|e|?| e H"}, where

H'={ccH; | eEW;, le|=|e*| (acA)}.
Assume that L/Q is galois, put K=LNR and £°=inf{|e| | e KNH"}. The
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galois group of L/@ is the semi-direct product of the normal subgroup A and
the galois group of L/K generated by the complex conjugation. So, if e=H°,
then e=H"° and |e|?’cKNH°. Hence x=k°. In some cases, we can estimate
£° using the discriminant D° of K:

(i) When n=2, clearly £°=e°=(+/|D°|++/|D°|+4s)/2, where ¢°(>1) is
the fundamental unit of K and s=-+1=N(¢°) is its norm.

(ii) When 7n=3 and D°#-—23, it is known by Artin’s lemma that
£°> ¥|D°|/4—6, see [20].

(iiiy When n=4 and A is cyclic, we can show similarly as Artin’s lemma
that £°>+ ¥|D°|/4--512—7, see [17, 1I].

5.2. Let I,=wZ+Z be the ring of integers of F, where
N—=d/2 if 4|4,
o { (—14++—a)/2  otherwise.
We show how we get elliptic units. Recall Remark 8 again.

ExAMPLE 3. Let L be the absolute class field of F. Then {=I; and n=h,.
Let 6;(a) (A= A*, a= A;) be given by [38), [39).

(i) Let d=20. Then h;=2, L=Q(~/5, ~/—1). The absolute ideal class
group C(I,) is represented by I; and p=(w—2)Z+2Z. Let A*= {4} and A={1, b}.
Then, since p*=2I,, we have

0.(D=n(@)*, 0:(b)= 212(; (“’T“l))4

As in the proof of we can compute by that
70:=0:()/0:(1)=%,;"" ~ 321.99689438—4.1150486124-107%- .

As we get 9;+12~322.00000000—4.1150089233-10"**-w, the minimal polynomial
P, of 5, over F=Q(+~/—5) is decided by Algorithm 0:

P, =X*—322X+1 (9,=161+724/5).

(i) Let d=84. Then hy=4 and L=Q(v/—1,+/—3,+/—=7). Let A*={2;,2,,25}.
Then {F;,, Fa,, Fi,}={F(~/—1), F(~/=3), F(+/=T)}. For i=1, 2, 3, the 2;-rela-
tive elliptic units in are as follows:

niizaﬂai/ajakeHl.[:Eli ({Z’ j; k}: {ly 2: 3}) .

Here the class invariants d; (¢=0, 1, 2, 3) are given by

0o=n(w)*®, 324 /3 ,
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52:224<_§_n<w7+1>2)48, 53:(w+2)24(n(9%_£)2/5)48.

(iii) Let d=104. Then h,=6 and L/F has just three cyclic subextensions
F,=Q(~/—1, +/13), F, and F,=L of degrees respectively 2, 3 and 6. The elliptic
units in are as follows:

7:=0,0107/0,0103 belongs to F,

75=0§07/040s, 74°=0105/0%67  belong to Fi.

76=0401/0%0s, 78=0,01/0:0%, i = plti=]
Here b is a generator of the cyclic group A, and

Fo=n(@), 5f=(12w¢109>12(77(“’;5i—2-)2 /5)",

=t (o(“5) /9 sm2(alQ))"
The signs correspond respectively.

ExAMPLE 4. Now we consider ramifying cases.

(i) Let d=7 and L be the ray class field modulo 3/, over F. Then {=3I,,
and C(}) is cyclic of order n=4 represented by I, p=(w+1)I;, p*=(w—1)I,,
p=wl,=2p~'. Let A*=/{4, A} with n(A;)=¢ (=2, 4). Then, by [22), we have

N1, =103/ PoP2 » N2, =02/ Qo
where ¢; (1=0, 1, 2, 3) are defined by as follows:

ome(h ) el o)

We observe that C(f)= R(3), the group of classes of proper I;-ideals, so we can
take other elliptic units defined by 6;=60% in [43). Fix a generator b of A and
put

d=n@0/ol0—1)%,  0=((%) /20-D)",

=LY fr)'. am(o(Y /)

Further let E,=F,,=H;,, H=H;,. Then we have

772:5153/5052€E2 with 1}21+b:1 :
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7:=0,/0,, MP=0,/0,€H,  with 5 *"=1.

(ii) Let d=3, n=6 and {=71,=Q2w+3)2w—1)I, be given first. Then, since
C(}) is cyclic of order 6 and the conductor of the subgroup U=1 is exactly {, a
corresponding L actually exists and is uniquely decided as the ray class field
modulo { over F. The elliptic units in can be explicitly written similarly
as in Example 3.(iii), utilizing [40) instead of [39).

(ili) Let d=8, n=2 and {=6/,=w*w+1)(w—1)I, be given first. Then C(})
is of type (2, 2), so there are three subgroups U,, U, U, of index 2. It is easy
to see that the conductors of U,, U, U, are 2I,, 3I,, 6I,. Therefore only one
subgroup, say U,, can correspond to an abelian extension L/F of degree n=2
with conductor {=6I,. The group U, is represented by I, 2w-+3)I,, and the
non-trivial coset of C()/U, is represented by (Bw+1)I,, (0+3)],. We also see

that L=Q(+v/=2, ~—6) by [10].

5.3. Though the moduli of elliptic units are exceedingly large in general,
we can do as in Example 5.(ii) then.

ExaMmpPLE 5. The assumption and the notation being the same as in Example
3.(1), Theorems 2, 3 show that

8w th=(E :Wx<n>)=2llog(In])/log (k)  with k=x,,

see also Example 1. We compute 4 and E in two different ways:

(i) The first one is to follow our general way faithfully. Let us decide w
by (36). Recall that w divides 12. From P,,, we obtain P,=X?*—33385282X+1
for é=7,° Consider the equation

a*—3af=33385282, B'=1 (a, Bel,=Z[w]).

Obviously f=1, and a is close to pu-(pu)™* for some pcC, p*=1, where u=
321.99689438—4.1150486124-107**-w. The equation has only one solution (a, B)=
(322, 1), so w is prime to 3. For &=p9,* we get P:=X*—10749957122X 1.
Similarly, we see that the equation

a*—4a®B+252=10749957122, B*=1 (a, B&1y)
has just 4 solutions (a, 8)=(£322, 1), (144w, 1). Thus w=4 and
47) 122=(E : <V —=D>X<n ) =2]log (|92 1)] /log (x) .
This identity also implies that »,;*< E*®; i.e. the equation
(((a*—3aB)*—28°)*—2[%)*—28'%)*—25*=10749957122, pe=1

is soluble in /;. By the same method as above, we find the 4 solutions (a, B)=
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(£1, —1), (o, —1). Therefore h=(E :{~/—1>x<(e°)) with ¢°€E, P.=X*—
X—1. By virtue of Remark 10, we have h=<1+4+4=9 since x<4 by the nota-
tion there. While, for p=2, 3, 5, 7, we see that ¢°? is not a pg-th power in L,
where ¢=(p, w)=(p, 4); this is the simplest case of Algorithm 3. Consequently,
we get

h=1 and E=<{(+/—1)x<e°y with P.=X*-X—1 (¢°=(1++5)/2).

(ii) The second way is to use a smaller unit. Practically, w=4 is clear,
so we start from [47). Since £=(14++/5)/2 by Example 2.(i), we have
(E <V =1yx<{n»)<24. We can show 5;=c¢', where

e 3w-+-2 <w+10)
T 49 7

and g(z) is a modular function with respect to the group

with g@)=(y(z)/7(72))*,

F0(7):{(i £>ESL2(Z) 1 ueTz}.

The Fourier expansion of g(z) at every cusp has coefficients in Q. Therefore,
since {0410, 7}, {0410, 1} are bases of ideals, the value g((w+10)/7) belongs to
the absolute class field L of F, hence e E. By a similar treatment as the ex-
ample of in on pp. 217-218, it can be shown that

()=o) (re) /(7).

Thus A=(E : {~/—1)x<{e))<2 with ¢**=—1. Computing approximately,

e ~ 1.294382-107°—1.617977601+/—1
follows. Applying Algorithm 0, we get
e+e’=e—e™t ~ 0.000000001—0.999984415w ,

so P.=X*+wX—1. If e=& or &+/—1 with é€€FE, then —1 is a square in
F=Q(+/—5), which is a contradiction. Thus the same result holds;

h=1, E=(V—=1>x e with P.=X?+wX—1 (e=—e°v/—1).

EXAMPLE 6. Let the assumption and the notation be the same as in Ex-
ample 4.(). Then w=w; =w;,=6, w,;=2. Let E;=W 9 ™ (=2, 4), F,=F,,
and h, be the class number of F,. By [Theorem 2,

9216 h=(E : H)(E,: E)(H,: E;) and  8h,=(E,: E,)

hold, see also [Proposition 9 and (4). The complex conjugate of 7. is 7741’3.
Hence claims
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: 32(log (| 74])\2 . 21log (1.
(H4.E'4)§v4( o (m) and  (Ey: Bz E D,

Here v,=v;,=8 by and
E=K3,> V¥842.75—17, k,=k2,=(5++/21)/2
by Examples 2.(i), (iii). The values of the elliptic units are
7. ~ 526.99810246-+1.5774048734-10 2.4/ —1,
71~ 31277.539527+3.4516838278-1071%-4/—1,
7% ~ 0.73022048160+ 0.68321156918+/—1 .
Therefore, together with Algorithm 0, we obtain
P,,=X*-527TX+1, (Eo: E,)=8;
P,,=X*-312719X°1-45681X*—31279X+1, (H,:E)=2143.

Immediately 8h2:(E2:E2):8, hgzl, SO 528:7]2 or '_‘)72 With an égeEz, and
E,=<{—1>%x<&,>. We find &, by Algorithm 1, testing whether

((p?*£1)*—2)*—2=527 or —527, ol =7,

with some p&l; similarly as in Example 5.(i);

(48) E,={—1>X<(&», P:;;=X’—Qo+1)X—1, |&|>1, h,=1

Before we apply Algorithm 3, we reduce 7, to a smaller unit. As is mentioned
in Remark 19, we can find that y,€ H*. Put K=LNR and H;=H,NK. Since
nEH;, p,>1, and w=6, we have yp,€H/° By Algorithm 1 (cf. [17, II]), we
see that »,=§,° with §,€Hy, §>1, P, =X*—7X*+9X*—7X+1. Similarly, we
see that §,==§° with &, HY, §&>1, Pef,=X*—X*-3X*—X+1, and that &;& H %,
hence &, H,? so —§,=H,’. Therefore, for a, 8, y€I,, checking the conditions

a’—2B=y*—2p=—1, B*+2ar+2=-3, lal,|7|=V17, |BI=+40,
we see by Algorithm 1 again that —&,=e¢,® with e, H,,
(49) P.,=X'—Qo+1)X*—3X2+Q2u+1DX+1, |e>1, e=—1.

Put E,=We,2®, Then (H,: E)=24"*H,: E)<3. We use Algorithm 3 here.
No prime ideal p of Q*=Q(+~/—1) except p=(1—+/—1)Z[+/—1] has the norm
N(p)=<3. Since w=6, testing whether ¢,** " or ¢,24*? belongs to H,* in a similar
manner, we get (H,: E’4)=1;

(50) H,=Wx{e)xLely, (H, E,)=24*.



272 K. NAKAMULA

shows that (E : H) divides 2-6°. In the present case, from Proposi-
tion 1 of (and 1.2.A there), follows that (E : H) divides 2, while 2h=(E : H)
by [48), [50). Therefore

(61) (E:H)=2, h=1.

Since &,, &, &, form a free basis of H and since w=~6, one of the units +e,,
+el, el &, i, +E&e0 56,0 is asquare in L, and we actually
find by Algorithms 1, 2 that

(52) E=W X {epX{el»*x ey, P,=X'—0X*+(0+1)X—1

with e,€E such that e,>=—&,e,'"%; this is a simple case of Algorithm 4. In
(52), it is easy to see that we may take as e, any one of the 4 conjugates. The

units &, &, are uniquely decided by [(48), Thus the following has been
computed :

For the ray class field L modulo 3 over Q(~/—7), the class numbers and the
groups of units of the subfield F,=Q(~/—7, ~/—3) and L are given by [48}-(52).

Starting from 7., 72, in Example 4.(i) (P7722:X2—12098X—l—1, P,714=
X*—5531575X°—4737927 X*—5531575 X +1, 51,°=1%.*, n.2=7.%), we can attain to
the same result.
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