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\S 0. Introduction.

The annulus theorem, which is significant in 3-manifold topology, was first
announced by Waldhausen [15] and proved by Cannon-Feustel [1]. It is stated
as follows:

Let $M$ be a compact orientable P. L. manifold with boundary and let $A$ be
a P. L. annulus. Suppose $f$ : $(A, \partial A)arrow(M, \partial M)$ is an essential P. L. map. Then
there exists an essential P. L. embedding $f^{*}:$ $(A, \partial A)arrow(M, \partial M)$ .

In this paper we prove the above annulus theorem in the smooth category,
realizing it by area-minimizing minimal surfaces on a Riemannian manifold.

To this end we take an arbitrary compact Riemannian manifold $M$ of dimen-
sion $m$ with convex boundary $(m\geqq 3)$ and solve in \S 3 the energy minimizing
problem for essential ($i.e$ . incompressible and boundary incompressible) maps
from $(\Delta, \partial\Delta)$ into $(M, \partial M)$ , where $\Delta$ is a k-ply connected compact planar domain
$(2\leqq k<\infty)$ . Our variational problem is, as found from this setting, what is called
a free boundary problem. Since the convergence in free boundary cases is
attended with some troubles, we solve an appropriate fixed boundary problem in
\S 2 to make sure of some converging sequence whose limit is the required solution.

Next in \S 4 we suppose $m=3$ and show that the above minimally immersed
solution surface is an embedding or a double covering map of an embedded
Mobius strip in case $k=2$ . We find difficulties in fulfilling this, since the tower
construction does not preserve the boundary incompressibility. We get over this
obstacle by utilizing, with the characters of an annulus, a certain covering which
is adequate for this situation. A simple example (Example 1) shows that the
solution surfaces, in case $k\geqq 3$ , are neither embeddings nor double covering maps
of embedded surfaces in general. Our main result or the geometric annulus
theorem is achieved in \S 5:

THEOREM (Geometric Annulus Theorem). Let $M$ be a compact orientable
Riemannian 3-manifold with convex incompressjble boundary and let $A$ be a smooth
annulus. Suppose that there is an essential smooth map $f:(A, \partial A)arrow(M, \partial M)$ .
Then:
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(1) There exists an essential smooth immersion $f^{*}:$ $(A, \partial A)arrow(M, \partial M)$ which
has least area among all such essential smooth maps.

(2) Any such immersion of least area is either an embedding, or a double
covering map onto an embedded Mobius stnp.

(3) The image of any two such extremal maps either are disjoint, or are
identical or intersect each other along a single essential arc. Furthermore the
distinct images of the double covering maps, which happen to appear, are all
mutually disjoint.

Meeks-Yau [9], [10] gave the geometric versions for a triple of theorems
(Dehn’s lemma, the loop theorem and the sphere theorem) in 3-manifold topology,
realized by area-minimizing minimal surfaces. While these theorems deal with
simply connected surfaces, our result corresponds to the case of an annulus, $i.e$ .
the doubly connected surface.

Finally the author would like to express his gratitude to Professors
K. Shibata, M. Ochiai, F. Asakura and T. Kobayashi for their valuable sugges-
tions and encouragements.

\S 1. Preliminaries.

The following notations will be used throughout this paper:
$M$ : an m-dimensional compact Riemannian manifold with convex boundary

$(m\geqq 3)$ ,
$\Delta$ : a k-ply connected compact domain in $C$ with a smooth boundary

$(2\leqq k<\infty)$ ,

where the boundary $\partial M$ is said to be convex if its mean curvature is non-negative
with respect to the inward normal.

We use the Sobolev space $W^{1.2}(int\Delta, M)$ , where int $\Delta$ denotes the interior
of $\Delta$ ; this is possible, because we may suppose $M$ to be an embedded Riemannian
submanifold of a Euclidean space $R^{p}$ with some $p\in Z^{+}$ owing to Nash’s iso-
metric embedding. We refer to Friedman [4] for the Sobolev space. For sim-
plicity we abbreviate $W^{1,2}(int\Delta, M)$ as $W^{1.2}(\Delta, M)$ . For $f\in W^{1.2}(\Delta, M)$ , the area
$A(f, \Delta)$ and the energy $E(f, \Delta)$ are respectively given by

$A(f, \Delta):=\int\int_{\Delta}\sqrt{}\overline{|\partial f/\partial x|^{2}|\partial f/\partial y|^{2}-\langle\partial f/\partial x,\partial f/\partial y\rangle^{2}}dxdy$ ,

$E(f, \Delta):=\int\int_{\Delta}(|\partial f/\partial x|^{2}+|\partial f/\partial y|^{2})dxdy$ .
We refer to Morrey ([13], Theorem 3.4.5) for the following compact operator

$T:W^{1,2}(\Delta, M)arrow L^{2}(\partial\Delta, M)$

such that $T(f)=f|_{\partial\Delta}$ in $L^{2}(\partial\Delta, M)$ for $f\in W^{1.2}(\Delta, M)\cap C^{0}(\Delta, M)$ .
While it is commonplace that the induced homomorphism
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$f_{\#}$ : $\pi_{1}(\Delta)arrow\pi_{1}(M)$

is defined for a continuous map $f$ : $\Deltaarrow M$, we can consider this homomorphism
even for possibly non-continuous maps as follows (cf. Schoen-Yau [14]):

LEMMA 1.1 (Schoen-Yau). If $f$ belongs to $W^{1.2}(\Delta, M)$ , then $f_{*}is$ well-defined.
Although they dealt with the case in which $\Delta$ is a closed surface and $M$ has

an empty boundary, the proof is similar for the present situation.
On the other hand it is familiar that the induced map

$f_{\#,\partial}$ : $\pi_{1}(\Delta, \partial\Delta)arrow\pi_{1}(M, \partial M)$

is defined for a continuous map $f$ : $(\Delta, \partial\Delta)arrow(M, \partial M)$ , where $\pi_{1}( , )$ is a l-dimen-
sional base-point-free relative homotopy. (We use the notation $f_{*.\partial}$ in view of
distinction from $f_{\#}.$ ) Corresponding to Lemma 1.1, we have

LEMMA 1.2. If $f$ belongs to $W^{1.2}(\Delta, M)$ and if $T(f)$ is equal to a continuous
map $\phi$ from $\partial\Delta$ into $\partial M$ in $L^{2}(\partial\Delta, M)$, then $f_{\#,0}$ is well-defined.

PROOF. We first define $f_{*,\partial}$ as follows:
Let $\xi$ be any element of $\pi_{1}(\Delta, \partial\Delta)$ . Take a smooth path $\beta:(I, \partial I)arrow(\Delta, \partial\Delta)$

representing $\xi$ . Without loss of generality, $\beta$ meets $\partial\Delta$ at $\beta(I)\cap\partial\Delta=\beta(\partial I)$ non-
tangentially. Choose a smooth immersion $\psi:(I, \partial I)\cross(-\eta, \eta)arrow(\Delta, \partial\Delta)(\eta>0)$ such
that $\psi( , 0)=\beta$ . Then $f$ is absolutely continuous on a path-image $\psi(I, t)$ for
$a.e$ . $t\in(-\eta, \eta)$ , since $f$ belongs to $W^{1.2}(\Delta, M)$ . Taking such a path $\psi(, t_{0})$

$(t_{0}\in(-\eta, \eta))$ , we dePne $f_{\#.\partial}(\xi)$ as the homotopy class in $\pi_{1}(M, \partial M)$ represented
by the continuous path $f\circ\psi(, t_{0}):(I, \partial I)arrow(M, \partial M)$ .

We will show that $f_{\#.\partial}$ is well-defined. Suppose $\beta_{i}$ : $(I, \partial I)arrow(M, \partial M)$ to be
a smooth path $(i=1,2)$ such that $f$ is (absolutely) continuous on them and that
both the paths represent the same homotopy class in $\pi_{1}(M, \partial M),$ $i.e$ . there is a
homotopy

$H:(I, \partial I)\cross Iarrow(\Delta, \partial\Delta)$

satisfying $H( , 0)=\beta_{1}$ and $H(, 1)=\beta_{2}$ . We may suppose that $f\circ H( , t):(I, \partial I)$

$arrow(M, \partial M)$ is (absolutely) continuous for any $t\in J$, where $J$ is a subset of equi-
measure of the interval $I$ .

On the other hand we may assume that $M$ is an embedded submanifold of
some Euclidean space $R^{p}$ . There exists a small number $\delta_{0}$ such that we can
find a retraction $\rho$ of the $\delta_{0}$-neighborhood $M_{\delta_{0}}$ of $M$ in $R^{p}$ onto $M$. Take and
fix a positive number $\epsilon_{0}<\min\{(\delta_{0}/2), E(f, \Delta)\}$ . We can obtain $t_{1}\in J$ such that
$E(f, I\cross[0, t_{1}])=\epsilon_{0}$ . It loses no generality to suppose $f\circ H=\phi\circ H$ on $\partial I\cross\partial[0, t_{1}]$ .
Then we define the closed curve $\gamma$ as a map of the rectangle $\partial(I\cross[0, i_{1}])$ into
$M$ by the relationship

$f\circ H$ on $I\cross\partial[0, t_{1}]$ ,

$\phi\circ H$ on $\partial I\cross[0, t_{1}]$ .
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It is neither simple nor smooth in general. Deform it to a smooth Jordan curve
$\gamma’$ , in the $\delta_{0}/2$-neighborhood $M_{\delta_{0}f2}$ of $M$ : This deformation may be written by
the continuous map

$\sigma;(I\cross[0, t_{1}])\backslash Darrow M_{\delta_{0^{l}}2}$

such that
$\sigma=\gamma$ on $\partial(I\cross[0, t_{1}])$ ,

$\sigma=\gamma’$ on $\partial D$ ,

where $D$ is an open disk contained in int $(I\cross[0, t_{1}])$ . We solve the Plateau
problem for $\gamma’$ in $R^{p}$ and obtain the solution $g:Darrow R^{p}$ . We see $g(D)\subset M_{\delta_{0}}$ by
a theorem of Alexander-Osserman. We may suppose $g=\gamma’$ on $\partial D$ up to a
diffeomorphism over $D$ . Then we define a continuous map $h$ of $I\cross[0, t_{1}]$ into
$M_{\delta_{0}}$ by $\sigma$ and $g$ on each domain of definition. The continuous map $\rho\circ h$ provides
a homotopy joining the two paths $f\circ\beta_{1}=f\circ H( , 0)$ and $f\circ H( , t_{1})$ as maps of
pairs from (I, $\partial I$) into $(M, \partial M)$ . Thus we conclude that they both represent the
same class in $\pi_{1}(M, \partial M)$ .

Next we take $t_{2}(>t_{1})\in J$ such that $E(f\circ H, I\cross[t_{1}, t_{2}])=\epsilon_{0}$ . (We set $t_{2}=1$ if
$E(f\circ H, I\cross[t_{2},1])<\epsilon_{0}.)$ We can verify similarly as above that both the two paths
$f\circ H( , t_{1})$ and $f\circ H( , t_{2})$ represent the same class in $\pi_{1}(M, \partial M)$ . After repeating
this process $q=([E(f\circ H, I\cross I)/\epsilon_{0}]+1)$ times, where $[]$ is the Gauss’ symbol, we
have $t_{q}=1$ . Therefore we conclude that both the two paths $f\circ\beta_{1}=f\circ H( , 0)$ and
$f\circ\beta_{2}=f\circ H( , 1)$ represent the same class in $\pi_{1}(M, \partial M)$ . $q.e.d$ .

Keeping in mind the above facts, we introduce the following definition (cf.

Jaco [6]):

DEFINITION 1. (i) For $f\in C^{0}(\Delta, M)$ or $W^{1.2}(\Delta, M)$ we say $f$ is incompres-
sible (in $M$), if $f_{\#}$ is injective.

(ii) For a continuous map $f:(\Delta, \partial\Delta)arrow(M, \partial M)$ or a map $f$ satisfying the
assumptions of Lemma 1.2, we say $f$ is boundary incompressible (in $M$), if $f_{*\partial}$

is injective.

\S 2. Some fixed boundary problem.

In this section we will consider an energy minimizing problem (and conse-
quently an area minimizing one) in a fixed boundary setting. Just as mentioned
in the introduction, this is convenient to solve the free boundary problem desired.

We begin with explanation of some terms necessary for describing an admis-
sible class.

From the viewpoint of conformal equivalence we have only to consider
compact planar domains all of whose boundary consist of $k$ circles and which
are contained in the unit disk centered at the origin, where one of the boundary
components is the unit circle. In case $k=2$ , we may assume further that they
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are concentric annuli. We call them normalized domain, which we adopt as our
parameter domain.

Next we will define the $\epsilon$ -boundary incompressibility which is weaker than
the boundary incompressibility. We use this weaker form in this section, since
an approximate step is required for solving the free boundary problem in \S 3.
Let $\epsilon$ be an arbitrary fixed non-negative number and let $N(\partial M, \epsilon)$ be the
closed $\epsilon$ -neighborhood of $\partial M$. For any continuous map $f$ : $(\Delta, \partial\Delta)arrow(M, N(\partial M, \epsilon))$ ,
we have the induced map

$f_{\#,\partial,\epsilon}$ : $\pi_{1}(\Delta, \partial\Delta)arrow\pi_{1}(M, N(\partial M, \epsilon))$ ,

where we use the notation $f_{\#.\partial.\epsilon}$ in view of distinction from $f_{\#,\partial}$ . With respect
to the induced map $f_{\#.\partial.\epsilon}$ , we have similarly to Lemma 1.2:

LEMMA 2.1. If $f$ belongs to $W^{1.2}(\Delta, M)$ and if $T(f)$ is equal to a continuous
?nap from $\partial\Delta$ into $N(\partial M, \epsilon)$ in $L^{2}(\partial\Delta, M)$ , then $f_{\#.\partial.\epsilon}$ is well-defined.

Then we give the following definition:

DEFINITION 2. For a continuous map $f:(\Delta, \partial\Delta)arrow(M, N(\partial M, \epsilon))$ or a map $f$

satisfying the assumptions of Lemma 2.1, we say $f$ is $\epsilon$ -boundary incompressible
(in $M$ ), if $f_{\#.\partial.\epsilon}$ is injective.

Now the terms are ready for our variational problem. Let $\Gamma$ be a collection
of $k$ mutually disjoint Jordan curves in $N(\partial M, \epsilon)$ . We dePne an admissible class

$\mathcal{F}_{\epsilon}(\Gamma)$ of pairs $(f, \Delta)$ of maps and domains satisfying the following four conditions:
1 $\Delta$ is a normalized domain,
2 $f$ belongs to $W^{1.2}(\Delta, M)$ ,
3 $T(f)$ in $L^{2}(\partial\Delta, M)$ is equal to a continuous map of $\partial\Delta$ into $M$, the

restriction of which to each component is a parametrization of the corresponding
Jordan curve of $\Gamma$,

$4^{o}$ $f$ is incompressible and $\epsilon$ -boundary incompressible.
Then we set

PROBLEM I. Minimize the energy $E$ $( , )$ in $\mathcal{F}_{\text{\’{e}}}(\Gamma)$ .
The standard argument assures the following lemma (cf. Morrey [13], Courant

[2]): It provides the usual reason why we deal with the energy minimizing
problem for the purpose of the area minimizing one:

LEMMA 2.2. If $(f, \Delta)$ minimizes the energy $E$ $( , )$ in $\mathcal{F}_{\epsilon}(\Gamma)$ , then it also
minimizes the area $A( , )$ . Both minimum values are equal to each other.

We introduce the following natural topology to $\mathcal{F}_{\epsilon}(\Gamma)$ :
DEFINITION 3. Let $(f_{n}, \Delta_{n})$ and $(f, \Delta)$ be members of $\mathcal{F}_{\epsilon}(\Gamma)(n=1, 2, )$ .

We say $(f_{n}, \Delta_{n})$ converges to $(f, \Delta)$ as $n$ increases to infinity if the following
two conditions are satisfied:

1o $\Delta_{n}$ converges to $\Delta$ in the sense of Fr\’echet,
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2 there exist diffeomorphisms $\chi_{n}$ ; $\Deltaarrow\Delta_{n}(n=1,2, \cdots)$ such that $\chi_{n}$ and $d\chi_{n}$

converge to the respective identities uniformly on $\Delta$ and that $f_{n}\circ\chi_{n}$ converges to
$f$ weakly in $W^{1.2}(\Delta, M)$ .

Then the energy $E( , )$ is lower semi-continuous on $\mathcal{F}_{\epsilon}(\Gamma)$ . Furthermore we
have

LEMMA 2.3. For an arbitrary positive number $C$,

$\mathcal{F}_{\epsilon}(\Gamma)\cap\{E(f, \Delta)\leqq C\}$

is sequentially compact.
PROOF. In the following, $D(z, r)$ denotes the open disk centered at $z$ with

radius $r$ in $C$ . Let $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ be an arbitrary sequence in $\mathcal{F}_{\epsilon}(\Gamma)\cap\{E(f, \Delta)\leqq C\}$ .
We may suppose that $\{\Delta_{n}\}_{n=1}^{\infty}$ , passing to a subsequence if necessary, converges
to a compact domain $\Delta_{\infty}$ by their normalization. Suppose that $\Delta_{\infty}$ is not normal-
ized. Then there are two cases to be considered:

Case 1. A boundary component $C_{n}$ of $\Delta_{n}$ converges to a point.
Case 2. There exist (at least) two components $C_{n}^{1}$ and $C_{n}^{2}$ such that dist $(C_{n}^{1}$ ,

$C_{n}^{2})$ tends to $0$ as $narrow\infty$ .
We first consider Case 1. Let $z_{n}$ denote the center of the circle $C_{n}$ . The

standard estimate shows that for any $\eta$ such that $0<\eta<1$ , there exists an $r_{0}=$

$r_{0}(\eta)\in[\eta^{2}, \eta]$ satisfying the following two conditions (cf. Morrey [13]):

(i) Taking a subsequence of $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ , we see that $f_{n}$ is absolutely
continuous on $\partial D(z_{n}, r_{0})$ contained in $\Delta_{n}$ ,

$\int_{0}^{2\pi}\Vert\frac{\partial f_{n}}{\partial\theta}(z_{n}+r_{0}e^{i\theta})\Vert d\theta\leqq\ulcorner\frac{2\pi C}{|\log\eta|}$ .

Hence the length of the curve $f_{n}|_{\partial D(z_{n},r_{0})}$ becomes as small as one pleases. Then
by the compactness of the manifold $M$, this curve is zero-homotopic in $M$ for any
sufficiently small $\eta$ . This contradicts the incompressibility of $f_{n}$ .

We next examine Case 2. We may assume that the radii of the circle $C_{n}^{1}$

and $C_{n}^{2}$ are uniformly bounded below by a positive constant, since otherwise we
can reduce to Case 1. We may suppose that for all $n,$

$C_{n}^{i}$ corresponds to a
Jordan curve $\gamma_{i}$ of $\Gamma(i=1,2),$ $i$ . $e$ . $f_{n}|_{C_{n}^{i}}$ is a parametrization of $\gamma_{i}$ . The assump-
tion makes us find a point $z_{n}^{1}$ of $C_{n}^{1}$ for each $n$ such that dist $(z_{n}^{1}, C_{n}^{1})$ tends to $0$

as $narrow\infty$ . Then it follows similarly to Case 1 that for any $\eta$ such that $0<\eta<1$ ,

there exists an $r_{0}=r_{0}(\eta)\in[\eta^{2}, \eta]$ satisfying the following two conditions:
(i) Passing to a subsequence of $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ if necessary, $f_{n}$ is absolutely

continuous on $\partial D(z_{n}, r_{0})\cap\Delta_{n}$ which consists of two circular arcs joining $C_{n}^{1}$ and
$C_{n}^{2}$ ,

(ii) $\int\Vert\frac{\partial f_{n}}{\partial\theta}(z_{n}+r_{0}e^{i\theta})\Vert d\theta\leqq\sqrt{}\frac{2\pi C}{|\log\eta|}$ ,
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where the integral is over the set $\{\theta\in[0,2\pi];z_{n}+r_{0}e^{i\theta}\in\Delta_{n}\}$ . dist $(\gamma_{1}, \gamma_{2})$ is
majorized by the above integral which becomes as small as one pleases. Hence
dist $(\gamma_{1}, \gamma_{2})=0,$ $i.e$ . these two Jordan curves are not mutually disjoint. This is a
contradiction. Therefore we conclude that $\Delta_{\infty}$ is a normalized domain.

Since $\Delta_{n}$ converges to $\Delta_{\infty}$ , we can find diffeomorphisms $\chi_{n}$ ; $\Delta_{\infty}arrow\Delta_{n}$ such that
$\chi_{n}$ and $d\chi_{n}$ converge to the respective identities uniformly on $\Delta_{\infty}$ . $\{f_{n}\circ\chi_{n}\}_{n=1}^{\infty}$ is
a bounded sequence in $W^{1.2}(\Delta_{\infty}, M)$ , since it has a uniform upper bound with
respect to the energy. Therefore its appropriate subsequence has a weak limit
$f_{\infty}$ in $W^{1.2}(\Delta_{\infty}, M)$ . Then $(f_{n}, \Delta_{n})$ converges to $(f_{\infty}, \Delta_{\infty})$ in our topology. Hence
we have

$E(f_{\infty}, \Delta_{\infty})\leqq\lim_{n\infty}\inf E(f_{n}, \Delta_{n})\leqq C$ .

Thus $(f_{\infty}, \Delta_{\infty})$ satisfies the defining properties 1 and 2 of $\mathcal{F}_{\epsilon}(\Gamma)$ together with
$E(f_{\infty}, \Delta_{\infty})\leqq C$.

Next we will show that it satisfies the property $3^{o}$ as well. Obviously
$(f_{n}\circ\chi_{n}\Delta_{\infty})$ belongs to $\mathcal{F}_{\epsilon}(\Gamma)$ : Especially there exists a continuous map $\phi_{n}$ of

$\partial\Delta_{\infty}$ into $M$ satisfying the following two conditions:
(i) The restriction of $\phi_{n}$ to each component is a parametrization of the

corresponding Jordan curve of $\Gamma$,
(ii) $T(f_{n}\circ\chi_{n})$ is equal to $\phi_{n}$ in $L^{2}(\partial\Delta_{\infty}, M)$ .

Then $\{\phi_{n}\}_{n=1}^{\infty}$ is equi-continuous on $\partial\Delta_{\infty}$ by the standard estimate (see Morrey
[13], Chap. 9) together with the incompressibility of $f_{n}$ . Hence by the theorem
of Ascoli-Arzela, $\phi_{n}$ converges to a continuous map $\phi_{\infty}$ of $\partial\Delta_{\infty}$ into $M$ uniformly
there. (Evidently $\phi_{\infty}$ satisfies the above condition (i) in place of $\phi_{n}.$ ) On the
other hand $T(f_{n}\circ\chi_{n})$ converges to $T(f_{\infty})$ strongly in $L^{2}(\partial\Delta_{\infty}, M)$ , since $T$ is a
compact operator. Therefore $T(f_{\infty})$ is equal to $\phi_{\infty}$ in $L^{2}(\partial\Delta_{\infty}, M)$ .

Finally we check the property 4’. We will show that $f_{\infty}$ is incompressible.
Suppose not. Then there exists a loop $\gamma:S^{1}arrow\Delta_{\infty}$ such that $\gamma$ is not zero-homo-
topic in $\Delta_{\infty}$ and that $f\circ\gamma$ is a zero-homotopic continuous loop in $M$. Without
loss of generality we may assume that all $f_{n}$ are absolutely continuous on $\gamma(S^{1})$ .
Then taking a subsequence if necessary, we can see that $\{f_{n}\circ\gamma\}_{n=1}^{\infty}$ is equi-
continuous, since $\{f_{n}\}_{n=1}^{\infty}$ has a uniform upper bound with respect to the energy.
Consequently $f_{n}\circ\gamma$ is zero-homotopic in $M$ for sufficiently large $n$ , since $f_{\infty}\circ\gamma$ is
so. This contradicts the incompressibility of $f_{n}$ . Thus we conclude that $f_{\infty}$ is
incompressible. We can also verify that $f_{\infty}$ is $\epsilon$-boundary incompressible, by the
similar argument with respect to paths instead of loops. $q$ . $e.d$ .

Now we take an energy minimizing sequence $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ in $\mathcal{F}_{\epsilon}(\Gamma)$ . We
may assume that it has a uniform upper bound of the energy. Lemma 2.3
Implies that passing to a subsequence, it converges to some member $(f_{\infty}, \Delta_{\infty})$ of

$\mathcal{F}_{\epsilon}(\Gamma)$ as $narrow\infty$ . Then by the lower continuity of the energy, we conclude that
$(f_{\infty}, \Delta_{\infty})$ minimizes the energy in $\mathcal{F}_{\epsilon}(\Gamma)$ .
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The regularity arguments of Morrey [13] prove that $f_{\infty}$ belongs to
$C^{0}(\Delta_{\infty}, M)\cap C^{\infty}(int\Delta_{\infty}, M)$ : We should note that his arguments preserve the
incompressibility and the $\epsilon$ -boundary incompressibility. In view of Lemma
2.2, $f_{\infty}$ is of vanishing mean curvature with possible exception of isolated branch
points. Consequently we have

PROPOSITION 1. If $\mathcal{F}_{\epsilon}(\Gamma)$ is not empty, there exists a solution $(f^{*}, \Delta^{*})$ of
Problem $I$ : $(f^{*}, \Delta^{*})$ minimizes the energy and the area in $\mathcal{F}_{\text{\’{e}}}(\Gamma)$ . $f^{*}is$ a branched
minimal immersion of the interior of $\Delta^{*}$ , which is continuous on $\Delta^{*}$ .

\S 3. Essential branched minimal immersions.

In this section we are going to consider the free boundary problem mentioned
in the introduction. For the formulation we first dePne an admissible class $\mathcal{F}$

of pairs $(f, \Delta)$ of maps and domains satisfying the following three conditions:
1’ $\Delta$ is a normalized domain,
2 $f:(\Delta, \partial\Delta)arrow(M, \partial M)$ is a smooth map,
3 $f$ is incompressible and boundary incompressible.

Then we intend to solve

PROBLEM II. Minimize the energy $E(, )$ in $\mathcal{F}$ .
Although for this purpose we would make a minimizing sequence converge

to a member of $\mathcal{F}$ in some sense, it is not easy to find directly such a converg-
ing sequence. So we take another course:

In the paragraph A we define an $aPProximate$ sequence $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ of pairs
of maps and domains (Definition 4): $f_{n}(\partial\Delta_{n})$ does not lie on $\partial M$, but it is $k$

mutually disjoint Jordan curves in a neighborhood of $\partial M$ which becomes closer
and closer to $\partial M$ as $n$ grows to infinity.

The paragraph $B$ is concerned with a convergence of the approximate
sequence: In general, such a sequence $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ does not converge in any
reasonable sense, even if it minimizes the value lim $\inf_{narrow\infty}E(f_{n}, \Delta_{n})$ in the class
of all approximate sequences. So we replace each term $(f_{n}, \Delta_{n})$ by the solution
$(f_{n}^{*}, \Delta_{n}^{*})$ of Problem I and adopt the new approximate sequence $\{(f_{n}^{*}, \Delta_{n}^{*})\}_{n=1}^{\infty}$ .
The area minimality yields the convergence of the maps, which owes to the
argument of Meeks-Yau [10].

The paragraph $C$ deals with the boundary regularity of its limit map: We
can verify that the limit $(f_{\infty}^{*}, \Delta_{\infty}^{*})$ belongs not to $\mathcal{F}$ but to a wider class $\overline{\mathcal{F}}$

indifferent to the definite boundary images of maps (Definition 5). On the other
hand the argument of J\"ager [7] shows that the energy minimizing map in $\tilde{\mathcal{F}}$

has the boundary regularity. Thus we conclude that $(f_{\infty}^{*}, \Delta_{\infty}^{\star})$ belongs to $\mathcal{F}$

and minimizes the energy (and consequently the area) in this class.
Now we carry out the details of the above steps.



Geometric annulus theorem 25

A. We first take and fix a positive number $\epsilon_{0}$ such that there is a defor-
mation retraction $\rho$ of $N(\partial M, \epsilon_{0})$ onto $\partial M$. We give the following definition:

DEFINITION 4. We say $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ is an approximate sequence if the fol-
lowing three conditions are satisfied:

1’ $\Delta_{n}$ is a normalized domain,
2 $f_{n}$ is a continuous map of $\Delta_{n}$ into $M$, which is smooth in the interior,
3 for any $\epsilon$ such that $0<\epsilon<\epsilon_{0}$ , there is an $n_{0}=n_{0}(\epsilon)\in Z^{+}$ such that $f_{n}$ is

incompressible and $\epsilon$ -boundary incompressible for all $n>n_{0}$ ; more precisely,
$f_{n}(\partial\Delta_{n})$ consists of $k$ mutually disjoint Jordan curves in $N(\partial M, \epsilon)(n>n_{0})$ .

We use the following notations throughout this section:
$\hat{A}$ $:= \inf$ { $\lim_{narrow}\inf_{\infty}A(f_{n},$

$\Delta_{n});\{(f_{n},$ $\Delta_{n})\}_{n=1}^{\infty}$ is an approximate sequence} ;

$\text{\^{E}};=\inf$ { $\lim_{narrow}\inf_{\infty}E(f_{n},$
$\Delta_{n});\{(f_{n},$ $\Delta_{n})\}_{n=1}^{\infty}$ is an approximate sequence},

where the infima are taken with respect to all the approximate sequences.
We can verify $\hat{A}=\hat{E}$ , since each $f_{n}$ of any approximate sequence can be

approximated by an immersion $f_{n}$ of $\Delta_{n}$ into $M$ in the $C^{2}$-topology, where $f_{n}$

admits the isothermal parameters.

B. We take an approximate sequence $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ such that $E(f_{n}, \Delta_{n})$

tends to \^E as $narrow\infty$ , whose existence follows from the diagonal method. Then
$A(f_{n}, \Delta_{n})$ converges to $\hat{A}=\text{\^{E}}$, since the area is always not greater than the
energy. We may assume that there exists a positive constant $C_{0}$ satisfying
$E(f_{n}, \Delta_{n})\leqq C_{0}$ for any $n\in Z^{+}$ . Take a monotone decreasing sequence $\{\epsilon_{n}\}_{n=1}^{\infty}$ of
positive numbers less than $\epsilon_{0}$ . Choosing a subsequence of $\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ , we may
suppose that for $alln\in Z^{+},$ $f_{n}(\partial\Delta_{n})$ is contained in $N(\partial M, \epsilon_{n})$ , and that $f_{n}$ is
$\epsilon_{n}$-boundary incompressible. Note here that $f_{n}(\Delta_{n})$ consists of $k$ mutually disjoint
Jordan curves. The collection of such $k$ Jordan curves is denoted by $\Gamma_{n}$ . For
each $n$ we consider Problem I in \S 2 for $\epsilon_{n}$ and $\Gamma_{n}$ . Proposition 1 implies that
there exists an area and energy minimizing solution in $\mathcal{F}_{\epsilon_{n}}(\Gamma_{n})$ . Let this solu-
tion be denoted by $(f_{n}^{*}, \Delta_{n}^{*})$ . We pay attention to the sequence $\{(f_{n}^{*}, \Delta_{n}^{*})\}_{n=1}^{\infty}$ . It
is an approximate sequence, and $A(f_{n}^{*}, \Delta_{n}^{*})$ as well as $E(f_{n}^{*}, \Delta_{n}^{*})$ converges to
$\hat{A}=\hat{E}$ as $narrow\infty$ . So we may adopt $\{(f_{n}^{*}, \Delta_{n}^{*})\}_{n=1}^{\infty}$ . We have the following lemma
partly similar to Lemma 2.2; in fact we are led to a contradiction by the
$\epsilon_{n}$-boundary incompressibility of $f_{n}$ instead of the previous disjointness of Jordan
curves (cf. Case 2 in the proof of Lemma 2.2). Namely

LEMMA 3.1. $\{\Delta_{n}^{*}\}_{n=1}^{\infty}$ contains a subsequence which converges to a normalized
domain $\Delta_{\infty}^{*}$ in the sense of Fr\’echet.

Then we can choose diffeomorphisms $x_{n}^{*}$ : $\Delta_{\infty}^{*}arrow\Delta_{n}^{*}(n=1, 2, )$ such that $x_{n}^{*}$

and $dx_{n}^{*}$ converge to the respective identities uniformly there. Note again that
each $(f_{n}^{*}, \Delta_{n}^{*})$ is an area minimizing solution in the fixed boundary setting: And
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so is $(f_{n^{\circ}n}^{*\chi*}, \Delta_{\infty}^{*})$ too, since $x_{n}^{*}$ is a diffeomorphism and accordingly $A(f_{n^{\circ}n}^{*\chi*}, \Delta_{\infty}^{*})$

$=A(f_{n}^{*}, \Delta_{n}^{*})$ . Then by the argument of Meeks-Yau ([10], pp. 448-449), we have

LEMMA 3.2. $\{f_{n^{\circ}n}^{*\chi*}\}_{n=1}^{\infty}$ contains a subsequence which converges in $C^{p.\alpha}$-norm
on any compact subset in the interior of $\Delta_{\infty}^{*}$, for any $p\in Z^{+}$ and $\alpha\in(0,1)$ .

C. In the following, $\Delta(\delta)$ denotes the compact set by removing the $\delta$-boundary
strip from $\Delta,$ $i.e$ . $\{z\in\Delta;dist(z, \partial\Delta)\geqq\delta\}$ . Let $f_{\infty}^{*}$ be the limiting smooth map of
$\{f_{n^{\circ}n}^{*\chi*}\}_{n=1}^{\infty}$ , which is guaranteed by Lemma 3.2. (Note that $f_{\infty}^{*}$ is defined only on

$int\Delta_{\infty}^{*}.)$ Then we want to show that $(f_{\infty}^{*}, \Delta_{\infty}^{*})$ belongs to the following class:

DEFINITION 5. Let $(f, \Delta)$ be a pair of map and domain. We say that it
belongs to the admissible class 9 if the following three conditions are satisPed:

1o $\Delta$ is a normalized domain,
2 $f$ is a smooth map of $int\Delta$ into $M$,

3’ for any $\epsilon$ such that $0<\epsilon<\epsilon_{0}$ , there is a $\delta_{1}=\delta_{1}(\epsilon)>0$ such that $f|_{\Delta(\delta)}$ is
incompressible and $\epsilon$-boundary incompressible for all $\delta$ satisfying $0<\delta<\delta_{0}$ ; more
precisely, $f(int\Delta\backslash \Delta(\delta))$ is contained in $N(\partial M, \epsilon)(0<\delta<\delta_{0})$ .

For this purpose we require the following lemma:

LEMMA 3.3. For any $\epsilon$ such that $0<\epsilon<\epsilon_{0}$ , there exists a $\delta_{1}=\delta_{1}(\epsilon)>0$ inde-
pendent of $n$ such that $f_{n}^{*}\circ x_{n}^{*}(int\Delta_{\infty}(\delta)\backslash \Delta_{\infty}(\delta))$ is contained in $N(\partial M, \epsilon)$ for all
sufficiently large $n\in Z^{+}$ and all $\delta$ satisfying $0<\delta<\delta_{0}$ .

PROOF. Suppose not. Then there exist a positive number $\epsilon^{*}<\epsilon_{0}$ and :a
point sequence $\{z_{n}\}_{n=1}^{\infty}$ in $\Delta_{\infty}$ satisfying the following two conditions:

(1) $z_{\infty}= \lim_{narrow\infty}z_{n}$ ,

(2) $f_{n^{\circ}n}^{*\chi*}(z_{n})\not\in N(\partial M, \epsilon^{*})$ $(n\in Z^{+})$ .
By the standard estimate, we can find, for each $n$ , an $r_{n}$ such that $1/n^{2}\leqq$

$r_{n}\leqq 1/n$ and that

$\int\Vert\frac{\partial f_{n}}{\partial\theta}(z_{n}+r_{n}e^{i\theta})\Vert d\theta<\sqrt{\frac{2\pi C}{|\log\eta|}}$ ,

where the integral is over the set $\{\theta\in[0,2\pi);z_{\infty}+r_{n}e^{i\theta}\in\Delta_{\infty}\}$ . Hence

$f_{n^{\circ}n}^{*\chi*}(\partial(D(z_{\infty}, r_{n})\cap\Delta_{\infty}))\subset N(\partial M, \epsilon^{*}/2)$

for all sufficiently large $n$ . Then in view of (2) we have

(3) dist $(f_{n^{\circ}n}^{*\chi*}(z_{n}),$ $f_{n^{o}n}^{*\chi*}(\partial(D(z_{\infty}, r_{n})\cap\Delta_{\infty}))>\epsilon^{*}/2$

for all sufficiently large $n$ . The condition (1) enables us to suppose $|z_{n}-z_{\infty}|<1/n^{2}$ .
Hence noting $r_{n}>1/n$ , we obtain

(4) $z_{n}\in D(z_{\infty}, r_{n})\cap\Delta_{\infty}$ .
Then by Lemma 1 in [10] together with (2), (3) and (4), there exists a positive
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constant $C_{1}$ independent of $n$ such that

$A(f_{n}^{*}\circ\chi_{n}*, D(z_{\infty}, r_{n})\cap\Delta_{\infty})>C_{1}$ ,

accordingly

(5) $E(f_{n}^{*}\circ\chi_{n}*, D(z_{\infty}, r_{n})\cap\Delta_{\infty})>C_{1}$ ,

for all sufficiently large $n$ .
Let $\Delta_{n}’$ denote the compact set $\Delta_{\infty}\backslash D(z_{\infty}, r_{n})$ . We may suppose that $\Delta_{n}’$ is

k-ply connected (yet not normalized) for all $n$ . Let $\psi_{n}$ denote a conformal dif-
feomorphism of a normalized domain $\Delta_{n}’’$ onto $\Delta_{n}’$ . Then $\{(f_{n}^{*}\circ x_{n}^{*}\circ\psi_{n}, \Delta_{n}^{r;})\}_{n=1}^{\infty}$ is
an approximate sequence. Hence we have

(6) $\lim_{narrow}\inf_{\infty}E(f_{n}^{*}\circ\chi_{n}*, \Delta_{n}’)=\lim_{narrow}\inf_{\infty}E(f_{n}^{*}\circ x_{n}^{*}\circ\psi_{n}, \Delta_{n}’’)\geqq\hat{E}$ .
Therefore we conclude from (5) and (6)

$\text{\^{E}}=\lim_{narrow\infty}E(f_{n}^{*}, \Delta_{n}^{*})\geqq\lim_{narrow}\inf_{\infty}E(f_{n}^{*}\circ\chi_{n}*, \Delta_{n}’)+C_{1}\geqq\text{\^{E}}+C_{1}$ .

This is a contradiction. $q$ . $e.d$ .
The above lemma proves the following:

LEMMA 3.4. $(f_{\infty}^{*}, \Delta_{\infty}^{*})$ minimizes the energy and the area in $\mathcal{F}$ : Both two
minimum values are equal to each other.

PROOF. We can see by Lemma 3.3 that $(f_{\infty}^{*}, \Delta_{\infty}^{*})$ possesses the defining
property $3^{O}$ of $\overline{\mathcal{F}}$ (Definition 5). Obviously it also satisfies the other conditions
1, $2^{Q}$ . Thus we conclude that $(f_{\infty}^{*}, \Delta_{\infty}^{*})$ belongs to $\overline{\mathcal{F}}$ . Hence we have

$\tilde{E}\leqq E(f_{\infty}^{*}, \Delta_{\infty}^{*})\leqq\lim_{narrow}\inf_{\infty}E(f_{n}^{*}\circ\chi_{n}*, \Delta_{\infty}^{*})=\lim_{narrow\infty}E(f_{n}^{*}, \Delta_{n}^{*})=\text{\^{E}}$ ,

$\tilde{A}\leqq A(f_{\infty}^{*}, \Delta_{\infty}^{*})\leqq\lim_{narrow}\inf_{\infty}A(f_{n}^{*}\circ\chi_{n}*, \Delta_{\infty}^{*})=\lim_{narrow\infty}A(f_{n}^{*}, \Delta_{n}^{*})=A$ ,

where
$\tilde{E}:=\inf\{E(f, \Delta) ; (f, \Delta)\in\overline{\mathcal{F}}\}$ ,

$\tilde{A}:=\inf\{A(f, \Delta) ; (f, \Delta)\in\overline{\mathcal{F}}\}$ .
(Note that $\lim_{narrow\infty}E(f_{n}^{*}\circ\chi_{n}*, \Delta_{\infty}^{*})=\lim_{narrow\infty}E(f_{n}^{*}, \Delta_{n}^{*})$ , since $d\chi_{n}$ converges to the
identity uniformly on $\Delta_{\infty}^{*}.$ )

Next we will show $\text{\^{E}}\leqq\tilde{E}$ and $\hat{A}\leqq\tilde{A}$ , which will complete the proof. (Note

again $\text{\^{E}}=\hat{A}.$ ) Let $(f, \Delta)$ be an arbitrary member of $\overline{\mathcal{F}}$ . We dePne a sequence
$\{(f_{n}, \Delta_{n})\}_{n=1}^{\infty}$ by

$\Delta_{n}$ $:=\Delta(1/n)$ ,

$f_{n}$ $:=f|_{\Delta_{n}}$ .

Without loss of generality we may assume from the beginning that $\Delta_{n}$ is $k$ -ply
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connected and that $f|_{\partial\Delta_{n}}$ consists of $k$ mutually disjoint Jordan curves. Let $\psi_{n}$

denote a conformal diffeomorphism of a normalized domain $\Delta_{n}^{\mathfrak{h}}$ onto $\Delta_{n}$ . Then
we can verify that $\{(f_{n}\circ\psi_{n}, \Delta_{n}^{\mathfrak{h}})\}_{n=1}^{\infty}$ is an approximate sequence. Hence we
obtain

$\text{\^{E}}\leqq\lim_{narrow}\inf_{\infty}E(f_{n}\circ\psi_{n}, \Delta_{n}^{h})$ .

On the other hand we have

$E(f_{n^{o}}\psi_{n}, \Delta_{n}^{\mathfrak{q}})=E(f_{n}, \Delta_{n})=E(f|_{\Delta_{n}}, \Delta_{n})=E(f, \Delta_{n})\leqq E(f, \Delta)$ .
Therefore

$\text{\^{E}}\leqq\lim_{narrow}\inf_{\infty}E(f_{n}\circ\psi_{n}, \Delta_{n}^{\mathfrak{h}})\leqq E(f, \Delta)$ .
Similarly

$A \leqq\lim_{narrow}\inf_{\infty}A(f_{n}\circ\psi_{n}, \Delta_{n}^{\mathfrak{h}})\leqq A(f, \Delta)$ .

By the arbitrariness of $(f, \Delta)\in \mathcal{F}$ , we conclude $\text{\^{E}}\leqq\tilde{E}$ and $\hat{A}\leqq\tilde{A}$ . $q.e$ . $d$ .
The argument of J\"ager [7] proves the following lemma:

LEMMA 3.5. Let $(f, \Delta)$ be a member of 9 which minimizes the energy in
this class. (Note that $f$ is a branched minimal immersion of the interior.) Then $f$

has a smooth extenston up to the boundary of $\Delta$ .
Lemma 3.4 and Lemma 3.5 enable us to suppose that the limit map $f_{\infty}^{*}$ is

smoothly defined over $\Delta_{\infty}^{*}$ . Then $(f_{\infty}^{*}, \Delta_{\infty}^{*})$ belongs to the class $\mathcal{F}$ . Hence we
conclude that it minimizes the energy and the area in $\mathcal{F}$ , since $\mathcal{F}$ is contained
in $\overline{\mathcal{F}}$ . After all we have

PROPOSITION 2. If $\mathcal{F}$ is not empty, there exists a solution $(f^{*}, \Delta^{*})$ of Prob-
leyn II: $(f^{*}, \Delta^{*})$ minimizes the energy and the area in this class. $f^{*}$ is a branched
minimal immersion.

\S 4. Embeddedness and non-embeddedness.

In this section we investigate whether the solution map $f^{*}$ of Problem II is
an embedding or not. First in case $m=3,$ $f^{*}$ has no interior (true and false)

branch points (Gulliver-Osserman-Royden [5]), and no boundary branch points
(Meeks-Yau [12]) because of the convexity of $\partial M$. On the contrary in case
$m\geqq 4,$ $f^{*}$ admits branch points in general. Henceforth we assume $m=3$ funda-
mentally. Our main purpose here is to prove the following proposition:

PROPOSITION 3. Let $m=3$ and $k=2$ . Suppose that $M$ is orientable and that
$\partial M$ is incompressible. Then any solution map $f^{*}$ of Probleyn II is either an
embedding, or a double covering map onto an embedded Mobnus strip.

Note that in case $k\geqq 3$ , similar results to the above-mentioned do not hold
in general (Example 1).
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REMARK 1. The boundary $\partial M$ is said to be incompressible if the inclusion
map $i:\partial Marrow M$ is incompressible, $i$ . $e$ . $i_{\#}$ ; $\pi_{1}(\partial M)arrow\pi_{1}(M)$ is injective. If $M$ is
not incompressible, we can take a finite number of mutually disjoint embedded
minimal disks whose boundary circles generate Ker $i_{\#}$ (General Geometric Loop
Theorem of Meeks-Yau [10]). Cut $M$ along them and we obtain a new manifold
$M’$ which has a piecewise smooth incompressible boundary with non-negative
mean curvature. Using the approximation method of Meeks-Yau [9] (see also
Meeks-Yau [12], \S 1), we can verify that Proposition 3 still holds for this mani-
fold $M’$ . Therefore the assumption of this proposition is sufficiently general.

The proof of Proposition 3 follows from subsequent three Lemmas 4.4, 4.5,
4.6 with three prerequisite Lemmas 4.1, 4.2, 4.3. We will carry out our argument
as follows:

Let $a_{1}$ and $a_{2}$ denote the boundary components of the annulus $\Delta^{*}$ . First in
case that $f^{*}(a_{1})$ and $f^{*}(a_{2})$ do not lie on the same component of $\partial M$, we can
conclude that $f^{*}$ is an embedding (Lemma 4.2). Therefore we have only to
consider the case that they lie on a single component $C$ of $\partial M$. We take a
covering $p:\tilde{M}arrow M$ corresponding to a subgroup conjugate to $j_{\#}\pi_{1}(C)$ in $\pi_{1}(M)$ ,
where $j:Carrow M$ is an inclusion map. Then:

(a) Any lift of $f^{*}$ to $\tilde{M}$ has some area-minimality, and hence it is an
embedding (Lemma 4.4).

(b) For any two lifts $\tilde{f}_{1},\tilde{f}_{2}$ : $\Delta^{*}arrow\tilde{M}$, we have either $\tilde{f}_{1}(\Delta^{*})\cap\tilde{f}_{2}(\Delta^{*})=\emptyset$ or
$\tilde{f}_{1}(\Delta^{*})=\tilde{f}_{2}(\Delta^{*})$ (Lemma 4.5).

Let $\hat{\Delta}^{*},\hat{M}$ denote the universal covering spaces of $\Delta^{*},$ $M$ respectively. Let
$f_{1},\hat{f}_{2}$ : $\hat{\Delta}^{*}arrow\hat{M}$ be any two embeddings lifted of $f^{*}$ . We can take each $\hat{f}_{i}$ down
to an embedding $\tilde{f}_{i}$ : $\Delta^{*}arrow\tilde{M}_{i}$ lifted of $f^{*}$ , where $\tilde{M}_{i}$ denotes a covering space
corresponding to a subgroup $H_{i}$ conjugate to $j_{\#}\pi_{1}(C)$ in $\pi_{1}(M)$ . In case that we
can choose the covering $M_{i}$ such that $H_{1}=H_{2}$ , the above facts provide us with
all things to prove for the pair $\hat{f}_{1}$ and $\hat{f}_{2}$ . In the other case we will show
$f_{1}(\hat{\Delta}^{*})\cap\hat{f}_{2}(\hat{\Delta}^{*})=\emptyset$ by the cutting-gluing argument in a finite covering of $\tilde{M}_{i}$

(Lemma 4.6).

Now we begin the proof of Proposition 3 along the above line. Hereafter
we suppose $k=2,$ $i.e$ . $\Delta^{*}$ is doubly connected.

LEMMA 4.1. Let $N$ be a (possibly non-compact) 3-manifold with $incompres\alpha ble$

boundary. Let $\alpha:S^{1}arrow\Delta^{*}$ denote one of the boundary Jordan curves of $\Delta^{*}$ . For any
continuous map $f:(\Delta^{*}, \partial\Delta^{*})arrow(N, \partial N)$ , the followzng two conditions are equivalent:

1’ $f$ is incompressible.
2’ $f\circ\alpha$ is not zero-homotopic in $\partial N$.
PROOF. Since 1 $\Rightarrow 2^{0}$ is obvious, we have only to show $2^{O}\Rightarrow 1^{o}$ . Suppose

that $f$ is not incompressible. Then there exists an $n\in Z^{+}$ such that $n[f\circ\alpha]=$

$f_{\#}(n[\alpha])$ is trivial as an element of $\pi_{1}(N)$ . Therefore it is also trivial as an
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element of $\pi_{1}(\partial N)$ , since $\partial N$ is incompressible. On the other hand any non-trivial
element of $\pi_{1}(\partial N)$ is torsion-free, since $\partial N$ consists of mutually disjoint orientable
surfaces. Hence we conclude that $f\circ\alpha$ is trivial as an element of $\pi_{1}(\partial N)$ . This
is a contradiction. $q.e.d$ .

Let $a_{1},$ $a_{2}$ denote the boundary components of $\Delta^{*}$ .
LEMMA 4.2. Let $N$ be a ( $pos\alpha bly$ non-compact) orientable Riemannian 3-mani-

fold with convex incompressz ble boundary, which has at least two boundary compo-
nents $B_{1},$ $B_{2}$ . Let $\mathcal{G}$ denote a class of maps $f$ satisfying the following three
conditions:

1o $f$ : $(\Delta^{*}, \partial\Delta^{*})arrow(N, \partial N)$ is a smooth map,
2 $f$ is incompresszble,
3 $f(a_{i})\subset B_{i}(i=1,2)$ .

If an immersion $f$ ‘ minimizes the area in $\mathcal{G}$, then $f$ ‘ is an embedding.
PROOF. The proof is due to the tower construction of Meeks-Yau, for

which we refer to [9]. It suffices to argue in the real analytic category, by
the approximation method of Meeks-Yau. Ordinarily the real analyticity simplifies
the argument in the cutting-gluing process. We construct the tower for $f$ ‘ in
the usual way: Let $p_{i}$ : $N_{i}arrow N_{i-1}$ denote the constituent of the tower and let
$f_{i}$ : $\Delta^{*}arrow N_{i}$ be the lift of $f^{\dagger}$ to $N_{i}$ for $i=1,2,$ $\cdots$ , $n$ , where $n$ is the height of
the tower. By a standard consideration involving the argument about the first
Betti number of $N_{n}$ , we can verify that $\partial N_{n}$ consists of a single torus component
$T$ and some spheres, and that $f_{n}(a_{i})$ lies on $T$ and represents a non-trivial
homology class of $H_{1}(T;Z_{2})(i=1,2)$ . Then by a topological argument of curves
on a torus, we may conclude that there exist two mutually disjoint annular
regions $\Omega_{1}$ and $\Omega_{2}$ on $T$ satisfying the following three conditions: For $i=1,2$ ;

(i) one of the two boundary components of $\Omega_{i}$ is a Jordan curve contained
in $f_{n}(a_{1})$ , which is denoted by $\gamma_{i}$ : $S^{1}arrow\Omega_{i}$ ,

(ii) another component is a Jordan curve contained in $f_{n}(a_{2})$ ,
(iii) $p_{1}\circ\cdots\circ p_{n}\circ\gamma_{i}$ is not zero-homotopic in $\partial N_{n}$ .

Let $R:N_{n}arrow f_{n}(\Delta^{*})$ be a simplicial retraction such that $R|_{N_{n}}$ covers $f_{n}(\Delta^{*})$ twice
and is locally one-to-one except $f_{n}(\partial\Delta^{*})$ . Then we have

$A(R, \Omega_{1})+A(R, \Omega_{2})\leqq A(R, T)\leqq 2A(f_{n}, T)$ .
Note that by Lemma 4.1, $p_{1}\circ\cdots\circ p_{n}\circ R|_{\Omega_{i}}$ is incompressible $(i=1,2)$ . If $f_{n}$ is not
an embedding, we have a contradiction by the above inequality and the folding
curve argument. Thus we conclude that $f_{n}$ is an embedding. Next we see that
$f_{n-1}$ is an embedding, since otherwise the standard cutting-gluing argument leads
us to a contradiction, except that we must pay a special attention to the defining
property 3 of $\mathcal{G}$ and the incompressibility together with Lemma 4.1. Similarly
descending the tower step by step, we can verify that each $f_{i}$ is an embedding
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$(i=1, \cdots n)$ . $q.e.d$ .
We note here that $\pi_{1}(\Delta^{*}, \partial\Delta^{*})$ consists of a trivial element and a single

non-trivial one, since $k=2$ . Let $\beta:(I, \partial I)arrow(\Delta^{*}, \partial\Delta^{*})$ be a continuous path which
meets $a_{1}$ and $a_{2}$ on its endpoints. $\beta$ is unique up to relative homotopy, and
represents the non-trivial element of $\pi_{1}(\Delta^{*}, \partial\Delta^{*})$ . Note also that a continuous
map $f:(\Delta^{*}, \partial\Delta^{*})arrow(M, \partial M)$ is boundary incompressible if and only if $f\circ\beta$ repre-
sents a non-trivial element of $\pi_{1}(M, \partial M)$ .

We will go on with our proof of Proposition 3. We distinguish the follow-
ing two cases:

Case 1. $f^{*}(a_{1})$ and $f^{*}(a_{2})$ do not lie on the same component of $\partial M$.
Case 2. $f^{*}(a_{1})$ and $f^{*}(a_{2})$ lie on a single component $C$ of $\partial M$.
As for Case 1, applying Lemma 4.2 for $N=M$, we conclude that $f^{*}$ is an

embedding. (Note that the defining property $3^{o}$ of $\mathcal{G}$ in Lemma 4.2 implies the
boundary incompressibility of $f.$ ) Therefore we have only to consider Case 2.
We fix our eyes upon the covering $p:\tilde{M}arrow M$ corresponding to a subgroup con-
jugate to $j_{\#}\pi_{1}(C)$ in $\pi_{1}(M)$ , where $j:Carrow M$ is an inclusion map. This covering
plays an important role as mentioned in the introduction. $\tilde{M}$ is endowed with
the pullback metric via the projection map $P$ and has convex incompressible
boundary. For any continuous map $f:(\Delta^{*}, \partial\Delta^{*})arrow(M, C)$ , we can take a lift
$f;(\Delta^{*}, \partial\Delta^{*})arrow(\tilde{M}, \partial\tilde{M})$ of $f$ to $\tilde{M}$. The following property suggests that this
covering is nice for our purpose.

LEMMA 4.3. Under the above situation, the following two conditions are
equivalent:

1’ $f$ is boundary incompressible.
2’ $f(a_{1})$ and $f(a_{2})$ do not lie on the same component of $\partial\tilde{M}$.
PROOF. 1 $\Rightarrow 2^{o}$ : Suppose on the contrary that $\tilde{f}(a_{1})$ and $\tilde{f}(a_{2})$ lie on a

single component $\hat{C}$ of $\tilde{M}$. Note that $\hat{C}$ is homeomorphic to $C$ by $p|\delta$ . Then
we have the following diagram:

$\pi_{1}(\tilde{C})-\pi_{1}(\tilde{M})arrow\pi_{1}(\tilde{M},\tilde{C})arrow\pi_{0}(\tilde{C})arrow\pi_{0}(\tilde{M})$

$\cong\downarrow$ $0$ $\downarrow\cong$

$ini$

$\pi_{1}(C)-j_{\#}\pi_{1}(C)=p_{*}\pi_{1}(M)<\pi_{1}(M)\cong$ .

The diagram-chasing shows $\pi_{1}(\tilde{M},\tilde{C})=0$ . It follows that $f\circ\beta$ represents a trivial
element of $\pi_{1}(\tilde{M}, \partial\tilde{M})$ . Hence $f\circ\beta=p\circ f\circ\beta$ is trivial as an element of $\pi_{1}(M, \partial M)$ .
This contradicts 1.

2 $\Rightarrow 1^{o}$ : Suppose that $f$ is not boundary incompressible. Then $f\circ\beta$ repre-
sents a trivial element of $\pi_{1}(M, \partial M),$ $i.e$ . there exists a homotopy
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$H:(I, \partial I)arrow(M, \partial M)$

such that $H(, O)=f\circ\beta$ and $H(, 1)=a$ point of $\partial M$. We can take a lift of $H$

$\tilde{H}:(I, \partial I)arrow(\tilde{M}, \partial\tilde{M})$

satisfying $H(, o)=f\circ\beta$ . Thus $f\circ\beta$ represents a trivial element of $\pi_{1}(\tilde{M}, \partial\tilde{M})$ .
Hence both the endpoints of $f\circ\beta$ , accordingly $f(a_{1})$ and $f(a_{2})$ lie on a single
boundary component of M. $q.e.d$ .

LEMMA 4.4. Any lift of $f^{*}$ to $\tilde{M}$ is an embedding.
PROOF. Let $\tilde{f}^{*}:$ $(\Delta^{*}, \partial\Delta^{*})arrow(\tilde{M}, \partial\tilde{M})$ be an arbitrary lift of $f^{*}$ to $\tilde{M}$. Let $\tilde{C}_{i}$

denote the boundary component on which $f*(a_{i})$ lies, for $i=1,2$ . Lemma 4.3
implies $\tilde{C}_{1}\neq\tilde{C}_{2}$ , since $f^{*}$ is boundary incompressible. In view of Lemma 4.2, it
is sufficient to show that $f*minimizes$ the area in the class $\mathcal{G}$ for $N=\tilde{M}$ and
$B_{i}=\tilde{C}_{i}$ . Suppose not. Then there exists a map $g$ belonging to $\mathcal{G}$ such that
$A(g, \Delta^{*})<A(f^{*}, \Delta^{*})$ . Since $\tilde{M}$ is endowed with the pullback metric via the pro-
jection map $p$ , we have $A(P^{\circ}g, \Delta^{*})<A(f^{*}, \Delta^{*})$ . Obviously $p\circ g$ is incompressible,
since so is $g$ . By Lemma 4.3, the defining property 3 of $\mathcal{G}$ implies that $p\circ g$

is boundary incompressible. This contradicts the area-minimality of $f^{*}$ . $q.e.d$ .
LEMMA 4.5. For any two distinct lifts $\tilde{f}_{1},\tilde{f}_{2}$ of $f^{*}$ to $\tilde{M}$, we have either

$f_{1}(\Delta^{*})\cap f_{2}(\Delta^{*})=\emptyset$ or $fi(\Delta^{*})=f_{2}(\Delta^{*})$ .
PROOF. It suffices to argue in the real analytic category, by the approxi-

mation method of Meeks-Yau. Suppose $\tilde{f}_{1}(\Delta^{*})\cap\tilde{f}_{2}(\Delta^{*})\neq\emptyset$ and $\tilde{f}_{1}(\Delta^{*})\neq\tilde{f}_{2}(\Delta^{*})$ .
Then either of the following two cases occur:

Case 1. There exists a Jordan curve $r:S^{1}arrow f_{1}(\Delta^{*})\cap f_{2}(\Delta^{*})$ .
Case 2. There exists a Jordan arc $\gamma_{1}$ : $(I, \partial I)arrow(\tilde{f}_{1}(\Delta^{*})\cap\tilde{f}_{2}(\Delta^{*}),\tilde{f}_{1}(\partial\Delta^{*})\cap$

$\tilde{f}_{2}(\partial\Delta^{*}))$ .
We first consider Case 1. Suppose that $\gamma$ bounds a disk in either of $\tilde{f}_{1}(\Delta^{*})$

or $\tilde{f}_{2}(\Delta^{*})$ , say $f_{1}(\Delta^{*})$ . It follows from the incompressibility of $\tilde{f}_{2}$ that $\gamma$ also
bounds a disk in $f_{2}(\Delta^{*})$ . Then the simple cutting-gluing argument leads us to a
contradiction. Thus we conclude that $\gamma$ bounds a disk neither in $f_{1}(\Delta^{*})$ nor in
$\tilde{f}_{2}(\Delta^{*})$ . Therefore the Jordan curve $f_{i}^{-1}\circ\gamma$ divides $\Delta^{*}$ into a couple of annular
domains $D_{i}^{(1)}$ and $D_{i}^{(2)}(i=1,2)$ . We may assume that $A(\tilde{f}_{1}, D_{1}^{(1)})$ is the minimum
among $A(\tilde{f}_{i}, D_{i}^{(j)})(i, j=1,2)$ . Then $A(\tilde{f}_{1}, D_{1}^{(2)})$ is the maximum. Choosing a
diffeomorphism $\psi^{(j)}$ : $D_{1}^{(2)}arrow D_{2}^{(j)}$ satisfying $\psi^{(j)}(f_{1}^{-1}\circ\gamma(t))=\tilde{f}_{2}^{-1_{\circ}}\gamma(t)(t\in S^{1})$ , we define
a piecewise smooth continuous map $g^{(j)}$ : $(\Delta^{*}, \partial\Delta^{*})arrow(M, \partial M)$ by

$g^{(f^{\lambda}}(z):=\{\begin{array}{ll}p\circ f_{1}(z) (z\in D_{1}^{(1)}),p\circ f_{2}\circ\psi^{(j)}(z) (z\in D_{1}^{(2)}).\end{array}$

Then either $g^{(1)}$ or $g^{(2)}$ is boundary incompressible, since $f^{*}$ is so and
$(g^{(1)} . \beta)^{inv}\cdot\copyright(g^{(2)}\circ\beta)=f^{*}\circ\beta$ , where $(g^{(1)_{O}}\beta)^{inv}$ . denotes the inverse path of $g^{(1)}\circ\beta$ ,



Geometric annulus theorem 33

and \copyright denotes the product of paths. Obviously both $g^{(1)}$ and $g^{(2)}$ are incom-
pressible. Furthermore $A(g^{(j)}, \Delta^{*})\leqq A(f^{*}, \Delta^{*})$ , and $g^{(j)}$ has folding curves. This
contradicts the area-minimality of $f^{*}$ .

We next consider Case 2. We will find another Jordan arc $\gamma_{2}$ corresponding
to $\gamma_{1}$ . We pay attention to the maps $\tilde{f}_{2}\circ f_{1}^{-1}\circ\gamma_{1}$ and $\tilde{f}_{1}\circ f_{2}^{-1}\circ\gamma_{1}$ which are well-
defined, since $\gamma_{1}(I)\subset\tilde{f}_{1}(\Delta^{*})\cap\tilde{f}_{2}(\Delta^{*})$ and $\tilde{f}_{i}$ is an embedding $(i=1,2)$ . Obviously

(7) $p(f_{2^{\circ}}f_{1}^{-1}\circ\gamma_{1}(t))=p(\gamma_{1}(t))=p(f_{1}\circ f_{2}^{-1}\circ\gamma_{1}(t))$ $(t\in I)$ ,

especially
$p(f_{2^{\circ}}f_{1}^{-1}\circ\gamma_{1}(0))=p(f_{1}\circ f_{2}^{-1}\circ\gamma_{1}(0))$ .

Thus we have

(8) $f_{2}\circ f_{1}^{-1}\circ\gamma_{1}(0)=f_{1}\circ f_{2}^{-1}\circ\gamma_{1}(0)$ ,

since they lie on the same boundary component of $\tilde{M}$, and the projection $p$ is
one-to-one on each boundary component of $\tilde{M}$. Therefore by the uniqueness of
lift, the above equalities (7), (8) show

$\tilde{f}_{2}\circ f_{1}^{-1}\circ\gamma_{1}(t)=\tilde{f}_{1}\circ f_{2}^{-1}\circ\gamma_{1}(t)$ $(t\in I)$ .
So we define a Jordan arc $\gamma_{2}$

$:=\tilde{f}_{1}\circ f_{2}^{-1}\circ\gamma_{1}=\tilde{f}_{2}\circ f_{1}^{-1}\circ\gamma_{1}$ .
We assert $\gamma_{1}(I)\neq\gamma_{2}(I)$ . Suppose otherwise. Then $\gamma_{2}=f_{2}\circ f_{1}^{-1}\circ\gamma_{1}$ has a fixed

point $P_{0}$ , since it is a continuous map over $\gamma_{1}(I)=\gamma_{2}(I)$ . Hence $\tilde{f}_{2}(f_{1}^{-1}(P_{0}))=P_{0}=$

$\tilde{f}_{1}(f_{1}^{-1}(P_{0}))$ . Thus by the uniqueness of lift, we conclude $f_{1}=\tilde{f}_{2}$ , which is a
contradiction. We next. claim that the end-points of the Jordan arc $\gamma_{j}$ do not
lie on the same boundary component $(]^{=1},2$), since otherwise the simple cutting-
gluing argument together with the boundary incompressibility leads us to a
contradiction.

We may assume $\gamma_{1}(I)\cap\gamma_{2}(I)=\emptyset$ , since otherwise we can find either a Jordan
curve $\gamma$ as in Case 1, or a Jordan arc $\gamma_{1}$ as in Case 2 such that its end-points
lie on the same boundary component of $M$. Then the two disjoint Jordan arcs

$f_{t}^{-1}\circ\gamma_{1}$ and $f_{t}^{-1}\circ\gamma_{2}$ divide $\Delta^{*}$ into a couple of simply connected domains $D_{i}^{(1)}$ and
$D_{t}^{(2)}(i=1,2)$ . It loses no generality to suppose that $A(\tilde{f}_{1}, D_{1}^{(1)})$ is the smallest
among $A(f_{i}, D_{i}^{(j)})(i, j=1,2)$ . Choosing a diffeomorphism $\psi^{(j)}$ : $D_{1}^{(2)}arrow D_{2}^{(j)}$ satis-
fying $\psi^{(j)}(f_{1}^{-1}\circ\gamma_{i}(t))=f_{2}^{-1}\circ\gamma_{i}(t)(i=1,2:t\in I)$ , we define a piecewise smooth con-
tinuous map $g^{(j)}$ : $(\Delta^{*}, \partial\Delta^{*})arrow(M, \partial M)$ by the same relation as (1). Then either
$g^{(1)}$ or $g^{(2)}$ are incompressible, since $f^{*}$ is so and $[f^{*}\circ\alpha]=[g^{(1)}\circ\alpha]\cdot[g^{(2)}\circ\alpha]$ in
$\pi_{1}(M)$ (note also Lemma 4.1). Obviously both $g^{(1)}$ and $g^{(2)}$ are boundary incom-
pressible. Moreover we can verify $A(g^{(j)}, \Delta^{*})\leqq A(f^{*}, \Delta^{*})$ as well as the existence
of folding curves of $g^{(j)}$ . This is a contradiction. Thus we conclude either
$\tilde{f}_{1}(\Delta^{*})\cap f_{2}(\Delta^{*})=\emptyset$ or $\tilde{f}_{1}(\Delta^{*})=\tilde{f}_{2}(\Delta^{*})$ . $q.e.d$ .

Let $f_{1},\hat{f}_{2}$ : $\hat{\Delta}^{*}arrow\hat{M}$ be arbitrary two distinct embeddings lifted of $f^{*},$ $i$ . $e$ .
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$\hat{\Delta}^{*}\hat{M}\underline{f_{i}}$

proj.
$\rfloor_{*}arrow Mf^{*}|proj$

.

where $\hat{\Delta}^{*}$ and $\hat{M}$ respectively denote the universal covering spaces of $\Delta^{*}and_{\wedge}’M$.
$f_{i}$ can be taken down to a map $\tilde{f}_{i}$ which is a lift of $f^{*}$ to a covering $\tilde{M}_{i}$ corre-
sponding to a subgroup $H_{i}$ conjugate to $j_{*}\pi_{1}(C)$ in $\pi_{1}(M)(i=1,2)$ :

In case that we can choose the covering $\tilde{M}_{i}$ such that $H_{1}=H_{2}$ , Lemmas 4.4 and
4.5 give us all the things to prove for the pair $f_{1}$ and $f_{2}$ .

LEMMA 4.6. If we cannot take the covering $\tilde{M}_{i}$ satisfying $H_{1}=H_{2}$ , then
$\hat{f}_{1}(\hat{\Delta}^{*})\cap\hat{f}_{2}(\hat{\Delta}^{*})=\emptyset$ .

PROOF. We first claim $\hat{f}_{1}(\hat{\Delta}^{*})\neq\hat{f}_{2}(\hat{\Delta}^{*})$ . Suppose otherwise. Then $\hat{f}_{1}(\hat{\Delta}^{*})$ and
$\hat{f}_{2}(\hat{\Delta}^{*})$ touch, on their boundaries, the same boundary component of $\hat{M}$, and
accordingly we can choose the covering $\tilde{M}_{i}$ such that $H_{1}=H_{2}$ . This is a con-
tradiction.

Now we suppose the contrary to our assertion: $\hat{f}_{1}(\Delta^{*})\cap\hat{f}_{2}(\Delta^{*})\neq\emptyset$ . Note
that $\hat{f}_{i}(\hat{\Delta}^{*})$ is an embedded inPnite strip. Then we have the following four
cases to be considered in general:

Case 1. There exists a Jordan curve $\gamma:S^{1}arrow\hat{f}_{1}(\hat{\Delta}^{*})\cap\hat{f}_{2}(\hat{\Delta}^{*})$ .
Case 2. There exists a Jordan arc $\iota;(I, \partial I)arrow(\hat{f}_{1}(\hat{\Delta}^{*})\cap\hat{f}_{2}(\hat{\Delta}^{*}),\hat{f}_{1}(\partial\hat{\Delta}^{*})\cap\hat{f}_{2}(\partial\hat{\Delta}^{*}))$ .
Case 3. There exists a simple curvilinear ray $\kappa;[0, \infty$ ) $arrow\hat{f}_{1}(\hat{\Delta}^{*})\cap\hat{f}_{2}(\hat{\Delta}^{*})$ such

that $\kappa(0)\in\hat{f}_{1}(\partial\hat{\Delta}^{*})\cap\hat{f}_{2}(\partial\hat{\Delta}^{*})$ .
Case 4. There exists a simple infinite arc $\lambda:(-\infty, \infty)arrow\hat{f}_{1}(\hat{\Delta}^{*})\cap\hat{f}_{2}(\hat{\Delta}^{*})$ .
We can rule out Cases 2 and 3, since if either of these cases occurred, we

could take the covering $\tilde{M}_{i}$ satisfying $H_{1}=H_{2}$ by the same reason as at the
beginning of the proof. As for the other two cases we will be led to a con-
tradiction by the cutting-gluing argument: Since $f_{i}(\hat{\Delta}^{*})$ is non-compact, we need
get down to an appropriate intermediate covering.

We consider Case 1. Note that the Jordan curve $f_{i}^{-1}\circ\gamma$ bounds a closed disk
$D_{i}$ in $\Delta^{*}(i=1,2)$ . Then we can verify that there exists a diagram as follows:
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$\hat{\Delta}^{*}arrow^{f_{i}^{\hat}}\hat{M}$

$q_{i} \frac{\downarrow}{\Delta}*arrow^{f_{i}^{\overline}}\frac{\downarrow}{M}p_{i}i$

finite
$covering\downarrow_{\tilde{f}_{i}}\downarrow fi\Delta^{*\sim}\tilde{M}_{i}$

nite covering

such that $p_{i}$ projects the compact set $\hat{f}_{1}(D_{1})\cup\hat{f}_{2}(D_{2})$ into $\overline{M}_{i}$ injectively, where
$\overline{\Delta}^{*}$ is a cover of $\Delta^{*}$ corresponding to the cover $\overline{M}_{i}$ of $\tilde{M}_{i}$ . (Note that since
$\pi_{1}(\tilde{M}_{i})\cong J\#\pi_{1}(C)\cong\pi_{1}(C)$ is a surface group, it is a locally extended residually
finite one. See Freedman-Hass-Scott [3].) Choosing a diffeomorphism $\psi:D_{1}arrow D_{2}$

satisfying $\hat{f}_{1}\circ\psi=\hat{f}_{2}$ on $\partial D_{1}$ , we define a piecewise smooth continuous map
$g_{i}$ : $\Delta^{*}arrow\overline{M}_{i}(i=1,2)$ by

$g_{1}(x):=\{\begin{array}{ll}f_{1}(x) (x\in\Delta^{*}\backslash q_{1}(D_{1})),p_{1}\circ\hat{f}_{2}\circ\psi\circ q_{1}^{-1}(x) (x\in q_{1}(D_{1})),\end{array}$

$g_{2}(x):=\{\begin{array}{ll}f_{2}(x) (x\in\Delta^{*}\backslash q_{2}(D_{2})),p_{2}\circ f_{1}\circ\psi\circ q_{2}^{-1}(x) (x\in q_{2}(D_{2})).\end{array}$

Then we have
$A(\overline{f}_{1}, \Delta^{*})+A(f_{2}, \Delta^{*})=A(g_{1}, \Delta^{*})+A(g_{2}, \Delta^{*})$ ,

and $g_{i}$ has folding curves $(i=1,2)$ . This is a contradiction.
Finally we consider Case 4. We can find the following diagram to be valid:

For $i,$ $j=1,2$ ;
$\hat{f}_{j}$

$\hat{\Delta}^{*}arrow\hat{M}$

$\Delta_{0}^{*}\downarrowarrow^{f_{j}’}M|r$

$|$

$f_{ij}’’$

$\downarrow s_{i}$

$f_{ti}’’$

$\Delta_{i}^{*}arrow M_{i}’’$ $\Delta farrow M_{i}’’$

finite
$covering\downarrow_{*}\Delta$ $\tilde{M}_{i}\downarrow fi$

nite covering
$\Delta^{*}\downarrowarrow^{f_{t}}\tilde{M}_{i}\downarrow$

satisfying the following three conditions:
1 $\Delta_{0}^{*}$ and $\Delta_{i}^{*}$ are covers of $\Delta^{*}$ respectively corresponding to the cover $M’$

and $M_{i}’’$ of $\tilde{M}_{i}$ : $f_{i}’$ and $f_{ii}’’$ are embeddings,
$2^{o}$ the map $r$ projects $\lambda$ onto a Jordan curve in $f_{1}’(\Delta_{0}^{*})\cap f_{2}’(\Delta_{0}^{*})$ ,

3’ the map $s_{i}$ projects this Jordan curve injectively into $M_{i}’’$ .
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Figure 1.
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Then the cutting-gluing argument for $f_{i1}’’$ and $f_{i2}’’$ leads us to a contradiction
(cf. Case 2 in the proof of Lemma 4.5). $q.e.d$ .

Thus we have proved Proposition 3 aimed at.

EXAMPLE 1. As mentioned in the introduction, Proposition 3 does not hold
in general in case $k\geqq 3$ . We give here a simple example indicating it. Let $M$

be a 3-manifold obtained by removing $k$ tori from a solid handle body of genus
$k-1$ , as illustrated in Figure 1, with a metric such that $\partial M$ is convex. $M$

admits incompressible and boundary incompressible maps $f$ of $(\Delta, \partial\Delta)$ into $(M, \partial M)$ ;
however there does not exist any such embedding, nor double covering map.

\S 5. Main result.

In this final section we will prove our main theorem. Under “ annulus “ we
understand an orientable surface of genus $0$ with two boundary components,
which shall be denoted by $A$ . We recall here the following definition:

DEFINITION 6 (Waldhausen [15], Jaco [6]). (i) A continuous map $f:(A, \partial A)$

$arrow(M, \partial M)$ is said to be essential (in $M$) if it is incompressible and boundary
incompressible. (Note that Jaco [6] uses the same term in different sense.)

(ii) A Jordan arc $\gamma:(I, \partial I)arrow(A, \partial A)$ is said to be essential (in $A$ ) if
$\gamma_{\#}$ ; $\pi_{1}(I, \partial I)arrow\pi_{1}(A, \partial A)$ is injective.

We restate our main theorem:

THEOREM (Geometric Annulus Theorem). Let $M$ be a compact orientable
Riemannian 3-manifold with convex incompressible boundary and let $A$ be a smooth
annulus. Supp0se that there is an essential smooth map $f:(A, \partial A)arrow(M, \partial M)$ .
Then:

(1) There exists an essential smooth immersion $f^{*}:$ $(A, \partial A)arrow(M, \partial M)$ which
has least area among all such essential smooth map.

(2) Any such immerszon of least area is either an embedding, or a double
covering map onto an embedded Mofnus strip.

(3) The images of any two such extremal maps either are disjmnt, or are
identical or intersect each other along a srngle essential arc. Furthermore the
distinct images of the double covering maps, which happen to appear, are all
mutually disjoint.

REMARK 2. The above theorem holds good also for a smooth 3-manifold
pair $(M, F)$ in place of $(M, \partial M)$ , where $(M, F)$ is said to be a smooth 3-mani-
fold pair if $F$ is a smooth incompressible surface contained in $\partial M$ (cf. Jaco [7],
p. 154, viii. 13). The proof is carried out similarly with slight modifications.

As a direct consequence of our theorem, we have the smooth version of the
ordinary annulus theorem:
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COROLLARY. Let $M$ be a compact orientable smooth 3-manifold with boundary
and let $A$ be a smooth annulus. Suppose that there is an essential smooth maP
$f:(A, \partial A)arrow(M, \partial M)$ . Then there exists an essential smooth embedding $f^{*}:$ $(A, \partial A)$

$arrow(M, \partial M)$ .
PROOF. $M$ admits such a metric as $\partial M$ is convex. Furthermore by Remark

1, we may assume that $\partial M$ is incompressible. Then our theorem provides a
smooth map $f^{*}:$ $(A, \partial A)arrow(M, \partial M)$ , which is either an embedding or a double
covering map. As for the latter, we can perturb the mapping slightly to obtain
a new essential smooth embedding. $q.e.d$ .

REMARK 3. The above theorem implies equivariant versions of the An-
nulus Theorem (cf. Meeks-Yau [11]). The third case of the first half in the
conclusion (3) indicates the obstruction to the general equivariant assertion. To
these circumstances, we have some versions (for example, Kobayashi [8]).

PROOF OF THEOREM. The conclusion (1) is a direct consequence of Propo-
sition 2. The conclusion (2) follows from Proposition 3. Hence we have only
to show the conclusion (3). It suffices as usual to carry out in the real analytic
category. Let $f_{1}$ and $f_{2}$ be any two such least area immersions as in Theorem.
Suppose $f_{1}(\Delta^{*})\neq f_{2}(\Delta^{*})$ and $f_{1}(\Delta^{*})\cap f_{2}(\Delta^{*})\neq\emptyset$ . Then either of the following two
cases may arise:

Case 1. There exists a Jordan curve $\gamma:S^{1}arrow f_{1}(\Delta^{*}\backslash )\cap f_{2}(\Delta^{*})$ .
Case 2. There exists a Jordan arc $\gamma_{1}$ : $(I, \partial I)arrow(f_{1}(\Delta^{*})\cap f_{2}(\Delta^{*}), f_{1}(\partial\Delta^{*})$ A

$f_{2}(\partial\Delta^{*}))$ .
As for Case 1, using a lift $\sigma_{i}$ ; $S^{1}arrow\Delta^{*}$ of $\gamma$ for the one-to-one or two-to-one

covering $f_{i}$ : $\Delta^{*}arrow f_{i}(\Delta^{*})(i=1,2)$ , we can obtain a contradiction by the cutting-
gluing argument. (See the proof of Lemma 4.5. In case $f_{i}$ is an embedding,
$\sigma_{i}=f_{t}^{-1}\circ\gamma.)$

We next consider Case 2. If $\gamma_{1}$ were not essential, the simple cutting-gluing
argument leads us to a contradiction. $f_{1}(\Delta^{*})\cap f_{2}(\Delta^{*})$ consists of mutually disjoint
essential Jordan arcs, since otherwise we can Pnd either an unessential Jordan
arc or a Jordan curve, whose image is contained in it. If there is another
Jordan arc $\gamma_{2}$ : $(I, \partial I)arrow(f_{1}(\Delta^{*})\cap f_{2}(\Delta^{*}), f_{1}(\partial\Delta^{*})\cap f_{2}(\partial\Delta^{*}))$ , we get a contradiction by
the cutting-gluing argument, together with the use of lifts $\tau_{i}^{j}$ ; $(I, \partial I)arrow(\Delta^{*}, \partial\Delta^{*})$

of $\gamma_{j}(]^{=1},2$ ) for the covering $f_{i}$ : $\Delta^{*}arrow f_{i}(\Delta^{*})$ . Thus we conclude the first half
of (3).

Finally we show the latter half. The above argument proves that $f_{1}(\Delta^{*})\cap$

$f_{2}(\Delta^{*})$ consists of at most one essential Jordan arc. If there were such essential
Jordan arc $\gamma_{1}$ , we can similarly obtain a contradiction, by adopting two distinct
lifts $\tau_{i},$

$\tau_{i}’$ : (I, $\partial I$ ) $arrow(\Delta^{*}, \partial\Delta^{*})$ of $\gamma_{1}$ , for the double covering $f_{i}$ : $\Delta^{*}arrow f_{i}(\Delta^{*})$ , in place
of $\tau_{i}^{1},$ $\tau_{i}^{2}$ . This completes the proof. $q.e$ . $d$ .
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