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1. Introduction.

Let $M$ be a connected 2-dimensional Riemannian manifold which is iso-
metrically immersed into $Q^{n}(c),$ $n\geqq 4$ , where $Q^{n}(c)$ stands for the sphere $S^{n}(c)$

of radius $1/c$ , the Euclidean space $R^{n}$ or the hyperbolic space $H^{n}(c)$ , according
to $c$ is positive, zero or negative. Through this paper we assume that the
normal curvature tensor $R^{\perp}$ of the immersion is nowhere zero. In this case there
exists an orthogonal bundle splitting $\nu=\nu^{*}\oplus\nu^{0}$ of the normal bundle $\nu$ of the
immersion, where $\nu^{0}$ consists of the normal directions that annihilate $R^{\perp}$ and $\nu^{*}$

is a 2-plane subbundle of $\nu$ . We know by [1] that if $M$ is compact and oriented,
then the Gaussian curvature $K$ of $M$ is strongly related to the normal curvature
$K^{\nu}$ of the immersion and to the intrinsic curvature $K^{*}$ of $\nu^{*}$ . The first result
of this paper is an extension of Theorem 2 of [1] to the case when $M$ is not
necessarily compact.

THEOREM 1. Let $M$ be a connected, oriented 2-dimensional Riemannian mani-
fold immersed with nowhere zero normal curvature tensor into $Q^{n}(c)$ . Assume
that the normal curvature $K^{\nu}$ is constant and that the mean curvature vector $H$

of the immerston is Parallel in the normal connection. We have
(a) if $M$ is comPlete and $K^{*}\geqq 0$ , then $K$ and $K^{*}are$ constant and $K=K^{*}/2$ ;
(b) if $K^{*}$ is constant, then $K=K^{*}/2$ .
It should be noted that no global assumption is made in part (b). When $M$

is complete and minimal in the unit sphere $S^{n}$ with $K^{\nu}$ constant, it follows
immediately from (a) that

$(a’)$ if $K^{*}>0$ , then $M=S^{2}(K^{*}/2)$ is one of the Veronese surfaces studied
by Calabi [2] and do Carmo-Wallach [3];

$(a’’)$ if $K^{*}=0$ , then we obtain a minimal plane in $S^{n}$ . These were studied
by Kenmotsu [7], [8].

As a consequence of Theorem 1 and its proof we can deduce the following
result.

THEOREM 2. (a) If $c\leqq 0$ , then there is no mimmal immersion of a surface
$M$ into $Q^{n}(c)$ with $K^{\nu}$ constant and $K^{*}\geqq 0$ .
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(b) Let $f$ : $Marrow S^{n}$ be an isometric minimal immersion with $K$ “ and $K^{*}$

posztjve constant. Then $M$ is locally one of the Veronese surfaces of $f$

Calabi and
do Carmo-Wallach.

When $n=4$ then $\nu^{*}=\nu,$ $K^{*}=K^{\nu}$ and we have the following result which
was firstly proved by Wong in [13], Theorem 4.9. See also [6] for a similar
result.

COROLLARY 1. Let $M$ be a 2-dimensional submanifold of $Q^{4}(c)$ with $K^{\nu}$

constant and $H$ parallel. Then $c>0$ and $M$ is locally a Veronese surface $S^{2}(c/3)$

in $S^{4}(c)$ .
The proofs of the above results are presented in Section 3. In Section 4 we

present the proof of the following extension of Theorem 2 of [9].

THEOREM 3. Let $f$ : $Marrow Q^{6}(c)$ be an isometric minimal immersion of a
connected surface $M$ of constant curvature $K$ and with nonzero constant normal
curvature $K^{\nu}$ . Then $c>0$ and either

(a) $K=c/3$ and $M$ is locally a Veronese surface in $S^{4}(c)$ ;
(b) $K=0$ and $f$ is locally one of the immersions $R^{2}arrow S^{5}(c)$ described in [7]; $or$

(c) $K=c/6$ and $M$ is locally a Veronese surface in $S^{6}(c)$ .
As a consequence we see that the hyperbolic 2-plane cannot be minimally

immersed with constant normal curvature in the 6-sphere, even locally.
I want to thank the hospitality of the people of the SUNY at Stony Brook

Mathematics Department, where this work was done. I want also to thank
Professor B. Lawson for bringing [9] to my attention and to the referee for
pointing out several mistakes.

2. Preliminaries.

Let $f$ : $Marrow Q^{n}(c)$ be an isometric immersion of a 2-dimensional Riemannian
manifold $M$ into the space $Q^{n}(c)$ and denote by $\nu=\nu(f)$ the normal bundle of
the immersion. We will always assume that $M$ is connected, oriented and with
complex structure $J$. We denote by $\nabla^{\perp}$ the covariant derivative of $\nu$ associated
to the induced connection and by $R^{\perp}$ the corresponding curvature tensor, that is,

$R^{\perp}(X, Y)\xi=\nabla_{X}^{\perp}\nabla_{Y}^{\perp}\xi-\nabla_{Y}^{\perp}\nabla_{X}^{\perp}\xi-\nabla_{[X,Y]}^{\perp}\xi$ ,

for tangent fields $X,$ $Y$ and normal field $\xi$ . Now we recall the Ricci’s equation

$R^{\perp}(X, Y)\xi=B(X, A_{\xi}Y)-B(A_{\xi}X, Y)$ , (2.1)

where $B$ is the second fundamental form of the immersion and $A_{\xi}$ is the associ-
ated symmetric endomorphism of the tangent bundle $TM$. We set $B_{ij}=B(e_{i}, e_{j})$

for a tangent frame $e_{1},$ $e_{2}$ . With this notation the mean curvature vector $H$ of
the immersion is given by $H=trB/2=(B_{11}+B_{22})/2$ .
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We shall make use of the curvature ellipse of $f$ : $Marrow Q^{n}(c)$ , which is, for
each $P$ in $M$ the subset of $\nu_{p}$ given by

$\epsilon_{p}=$ { $B(X,$ $X)\in\nu_{p}$ ; $X\in TM_{p}$ and $\Vert X\Vert=1$ }.

If $X=\cos\theta\cdot e_{1}+\sin\theta\cdot e_{2}$ we can see that $B(X, X)=\cos 2\theta\cdot u+\sin 2\theta\cdot v$ , where
$u=(B_{11}-B_{22})/2$ and $v=B_{12}$ . This shows that $\epsilon_{p}$ is in fact an ellipse with center
in the tip of $H(p)$ . Also it is not difficult to see that $R_{p}^{\perp}\neq 0$ if and only if $\epsilon_{p}$

is nondegenerate, and that this happens if and only if $u$ and $v$ are linearly
independent. From now on we assume that $R_{p}^{\perp}\neq 0$ for all $p$ in $M$ so that we
can define a 2-plane subbundle of the normal bundle, namely the bundle $\nu^{*}$

whose fiber over $P$ is the subspace of $\nu_{p}$ spanned by $u$ and $v$ (one can check
that this $\nu^{*}$ is the $\nu^{*}$ of the Introduction). We define an orientation on $\nu^{*}$ as
follows: a pair $(\xi, \eta)$ in $\nu_{p}^{*}$ will be positively oriented if $\langle R^{\perp}(X, JX)\eta, \xi\rangle>0$ for
one (and hence all) $X\neq 0$ in $TM_{p}$ . This plane bundle inherits a canonical covari-
ant derivative from that of $\nu$ , which we denote by $\nabla^{*}$ . Let $R^{*}$ be the cor-
responding curvature tensor and define the intrinsic curvature $K^{*}$ of $\nu^{*}$ by

$K^{*}=\langle R^{*}(e_{1}, e_{2})e_{4}, e_{3}\rangle$ ,

where $(e_{1}, e_{2})$ and $(e_{3}, e_{4})$ are positively oriented frames of $TM$ and $\nu^{*}$ , respec-
tively. The normal curvature of $f$ at $P$ is given by

$K_{p}^{\nu}=\langle R^{\perp}(e_{1}, e_{2})e_{4}, e_{3}\rangle|_{p}$ ,

where the frames are as above (hence $K^{\nu}$ is positive by definition). It can be
shown that Area $(\epsilon_{p})=K_{p}^{\nu}\cdot\pi/2$ (see [11]).

At this point it is convenient to introduce some notation related to the method
of moving frames. We will be based on the framework of Section 2 of [4],

but we remark here that our sign convention is the opposite of that of [4]. Let
$(e_{1}, \cdots , e_{n})$ be a local frame field tangent to $Q^{n}(c)$ such that $(e_{1}, e_{2})$ spans $TM$.
Such a frame is said to be adapted to $M$. Define as usual functions $h_{ij}^{\alpha}$ by

$h_{ij}^{a}=\langle B_{ij}, e_{\alpha}\rangle=h_{ji}^{a}$ ,

where we are using the following convention on the range of indices:

$1\leqq A,$ $B,$ $C,$ $\cdots\leqq n$ ; $l\leqq i,$ $j,$ $k,$ $\cdots\leqq 2$ ; $3\leqq\alpha,$ $\beta,$ $\gamma,$
$\cdots\leqq n$ .

We take the normal covariant derivative of $B$ and define a trilinear form $\tilde{B}$

from $TM$ into $\nu$ , and functions $h_{ijk}^{a}$ by

$\tilde{B}(e_{i}, e_{j}, e_{k})=(\nabla_{e_{k}}^{\perp}B)(e_{i}, e_{j})=\sum_{\alpha}h_{ijk}^{a}e_{\alpha}$ .

We set $\tilde{B}_{ijk}=\tilde{B}(e_{i}, e_{j}, e_{k})$ . A simple calculation shows that

$\sum_{k}h_{ijk}^{\alpha}w_{k}=dh_{ij}^{\alpha}+\sum_{s}h_{is}^{\alpha}w_{sj}+\sum_{s}h_{sj}^{\alpha}w_{si}+\sum_{\beta}h\beta_{j}w_{\beta\alpha}$ , (2.2)
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where $w_{A},$ $w_{AB}$ are l-forms on $Q^{n}(c)$ defined by

$w_{A}(e_{B})=\delta_{AB}$ , $w_{AB}(e_{C})=\langle\nabla_{e_{C}}e_{A}, e_{B}\rangle$ .
These are the dual and the connection forms of $Q^{n}(c)$ relative to the given
frame, respectively. In particular

$w_{i\alpha}= \sum_{j}h_{ij}^{\alpha}w_{j}$

when restricted to $M$. Since we are in a space of constant curvature, it follows
from the Codazzi equations that $\tilde{B}_{ijk}=\tilde{B}_{ikj}$ , that is, $\tilde{B}$ is symmetric. This
implies that $h_{ijk}^{\alpha}=h_{ikj}^{a}$ for all $\alpha$ . If $M$ is minimal in $Q^{n}(c)$ then from (2.2) we
have

$h_{111}^{\alpha}=-h_{221}^{\alpha}=-h_{212}^{\alpha}=-h_{122}^{\alpha}$ ,
(2.3)

$h_{222}^{\alpha}=-h_{112}^{\alpha}=-h_{121}^{\alpha}=-h_{211}^{\alpha}$ ,

for all $\alpha$ . Suppose that $M$ is minimal and that the frame is chosen with $(e_{3}, e_{4})$

spanning $\nu^{*}$ . Then $h_{ij}^{\gamma}=0$ for $\gamma\geqq 5$ and using (2.2) and (2.3) we obtain

$K^{\nu}=K^{*}+ \sum_{\gamma\geqq 6}((w_{3\gamma}(e_{2})w_{4\gamma}(e_{1})-w_{3\gamma}(e_{1})w_{4\gamma}(e_{2}))$

$=K^{*}+ \frac{2}{K^{\nu}}\sum_{\gamma\geqq 5}((h_{111}^{\gamma})^{2}+(h_{112}^{\gamma})^{2})$ .
(2.4)

Now we take the normal covariant derivative of $\tilde{B}$ and define functions
$h_{ijkl}^{\alpha}$ by

$( \nabla_{e_{l}}^{\perp}\tilde{B})(e_{i}, e_{j}, e_{k})=\sum_{\alpha}h_{ijkl}^{\alpha}e_{\alpha}$ .

A simple calculation shows that

$\sum_{l}h_{tjkl}^{\alpha}w_{l}=dh_{ijk}^{\alpha}+\sum_{s}h_{sjk}^{\alpha}w_{si}+\sum_{s}h_{isk}^{a}w_{sj}+\sum_{s}h_{ijs}^{\alpha}w_{sk}+\sum_{\beta}h_{ijk}^{\beta}w_{\beta a}$ . (2.5)

If the frame is such that $(e_{3}, e_{4})$ spans $\nu^{*}$ then $h_{11}^{\gamma}=h_{22}^{\gamma},$ $h_{12}^{\gamma}=0$ for $\gamma\geqq 5$ . In this
case we apply equation (2.15) of [4] to obtain

$h_{ij12}^{\gamma}=h_{ij21}^{\gamma}$ ,

for all $\gamma\geqq 5$ . From (2.3) and (2.5) it follows tbat

$h_{1212}^{\gamma}=h_{1221}^{\gamma}=h_{2121}^{\gamma}=h_{2211}^{\gamma}$ ,
(2.6)

$h_{1112}^{\gamma}=h_{1121}^{\gamma}=h_{1211}^{\gamma}=h_{2111}^{\gamma}$ ,

for all $\gamma\geqq 5$ , in such a frame.
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3. Surfaces with constant normal curvature.

For our purposes it is convenient to divide $M$ into two subsets $F$ and
$A=M-F$, where $F$ consists of the points $p$ in $M$ where $\epsilon_{p}$ is a circle. Obviously
$A$ is open and $F$ is closed in $M$. For each $P$ in $A$ there exist (cf. [1]) aneigh-
borhood $U$ of $P$ and smooth positively oriented frames $(e_{1}, e_{2})$ in $TM|U$ and
$(e_{3}, e_{4})$ in $\nu^{*}|U$ such that

$B_{11}-H=\lambda e_{3}=-B_{22}+H$ ,
(3.1)

$B_{12}=\mu e_{4}$ ,

where $\lambda$ and $\mu$ are the length of the semi-axes of the curvature ellipse. We
may in addition assume that $\lambda>\mu$ on $U$ . On the other hand, if the ellipse is a
circle on a neighborhood of a point $p$ in $F$, we can start with any positively
oriented $(e_{3}, e_{4})$ and choose $(e_{1}, e_{2})$ in a way to obtain (3.1) again. In this case
$\lambda=\mu$ . The Gauss equation takes the form

$K=c+\Vert H\Vert^{2}-\lambda^{2}-\mu^{2}=C-S$ (3.2)

where $S=\lambda^{2}+\mu^{2}$ and $C=c+\Vert H\Vert^{2}$ , which is a constant whenever $H$ is parallel.
Also from (2.1) and (3.1) we obtain

$K^{\nu}=2\lambda\mu$ . (3.3)

Suppose that we are in $A$ or in Int$(F)$ with a frame as in (3.1) and assume
from now on that $H$ is parallel and $K^{\nu}$ is constant. By the Codazzi equations
we obtain

$e_{i}(\lambda)=(\mu w_{34}-2\lambda w_{12})\circ J(e_{i})$ , $e_{i}(\mu)=(\lambda w_{34}-2\mu w_{12})\circ J(e_{i})$ . (3.4)

Then
$d\lambda=(\mu w_{34}-2\lambda w_{12})\circ J$ , $d\mu=(\lambda w_{34}-2\mu w_{12})\circ J$ . (3.5)

Since $d(\lambda\mu)=0,$ $(3.5)$ implies
$Sw_{34}=2K^{\nu}w_{12}$ . (3.6)

Therefore we can rewrite (3.5) as

$d \lambda=2\frac{\mu K^{\nu}-\lambda S}{S}w_{12}\circ J$ ,

and then

$d \mu=2\frac{\lambda K^{\nu}-\mu S}{S}w_{12}\circ J$ , (3.7)

\langle $grad\lambda$ , grad $\mu\rangle$ $=-2K^{\nu} \frac{S^{2}-(K^{\nu})^{2}}{S^{2}}\Vert w_{12}\Vert^{2}$ . (3.8)

Differentiating (3.6) we have by the definition of $w_{12}$ and $w_{34}$
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$2K=\frac{8(S^{2}-(K^{\nu})^{2})}{S^{2}}\Vert w_{12}\Vert^{2}+\frac{K^{*}S}{K^{\nu}}$ in $A$ ,
(3.9)

$2K=K^{*}$ in Int $(F)$ .
This immediately implies the following

(3.10) PROPOSITION. Let $f$ : $Marrow Q^{n}(c)$ be an isometric immersion with $K^{\nu}$

constant and Hparallel. If $K^{*}\geqq 0$ on $M$, then $K\geqq 0$ on $M$.
In fact, $K\geqq 0$ in $A$ and in Int $(F)$ by (3.9). By continuity, $K\geqq 0$ on $M$.
Now from (3.5) we have

$dS= \frac{4((K^{\nu})^{2}-S^{2})}{S}w_{12}\circ J$ (3.11)

which with (3.9) gives

$|| gradS\Vert^{2}=-2(2+\frac{K^{*}}{K^{\nu}})S^{3}+4CS^{2}+2K^{\nu}(2K^{\nu}+K^{*})S-4C(K^{\nu})^{2}$ . (3.12)

Also, by a simple calculation using (3.4) and (3.6), we have

$\Delta\lambda=4(\frac{\lambda(K^{\nu})^{2}2\mu K^{\nu}}{S^{2}S}+\lambda)\Vert w_{12}\Vert^{2}-\mu K^{*}+2\lambda K$ ,
(3.13)

$\Delta\mu=4(\frac{\mu(K^{\nu})^{2}2\lambda K^{\nu}}{S^{2}S}+\mu)\Vert w_{12}\Vert^{2}-\lambda K^{*}+2\mu K$ .
Then

$\frac{1}{2}\Delta S=\frac{8(S^{2}-(K^{\nu})^{2})}{S}\Vert w_{12}\Vert^{2}+2KS-K^{\nu}K^{*}$ .

By applying (3.9) to the last equation in two different ways we get

$\frac{1}{4}\Delta S=\frac{4(S^{4}-(K^{\nu})^{4})}{S^{3}}\Vert w_{12}\Vert^{2}+\frac{(S^{2}-(K^{\nu})^{2})}{S}K$ ,

(3.14)
$\Delta S=-2(4+\frac{K^{*}}{K^{\nu}})S^{2}+8CS-2K^{\nu}K^{*}$ .

(3.15) PROOF OF THEOREM 1. Suppose first that $M$ is complete and that
$K^{*}\geqq 0$ . Then $K\geqq 0$ on $M$ by (3.10), which jointly with (3.2) imply that $0<S\leqq C$

on $M$. This also implies, by (3.14), that $\Delta S\geqq 0$ on $M$. In summary, $S$ is a
bounded subharmonic function defined in a complete surface of nonnegative
curvature. It is well known that such a function must be constant, that is,
$K=C-S$ is constant. It also follows that $\lambda$ and $\mu$ are constant and then $M=A$

or $M=F$. If $M=F$, from (3.9) we have $2K=K^{*}$ . If $M=A$ we cannot have
$w_{12}\neq 0$ otherwise from (3.11) we obtain $0=S^{2}-(K^{\nu})^{2}=(\lambda^{2}-\mu^{2})^{2}$ , which is impos-
sible in $A$ . So $w_{12}=0,$ $K=0$ and $K^{*}=0$ in this case. This completes the proof
of part (a). To prove part (b), we follow closely Wong [13], p. 486. We claim
that if $K^{\nu}$ and $K^{*}$ are constant then $dS=0$ , that is, $S$ is constant. It is clear,
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by (3.11), that $dS=0$ in Int $(F)$ . If we are in $A$ , by $(3,12)$ and (3.14) we know
that lgradSll2 $=g(S),$ $\Delta S=h(S)$ , where $g(S)$ and $h(S)$ are polynomials in $S$ with
constant coefficients. If $S$ is not constant it is known (cf. [13], [9]) that there
exist local coordinates $(S, T)$ in $A$ such that the Prst fundamental form of $M$ is
given locally by

$ds^{2}= \frac{1}{g(S)}(dS^{2}+\exp(2\int\frac{h}{g}dS)dT^{2})$ .

Then the Gaussian curvature $K$ of $M$ satisfies

$2gK+(h- \frac{dg}{dS})(2h-\frac{dg}{dS})+g(2\frac{dhd^{2}g}{dSdS^{2}})=0$ ,

which is equivalent to

$(6K^{\nu}-K^{*})S^{4}+C(7K^{*}-12K^{\nu})S^{3}+K^{v}(10C^{2}-10(K^{\nu})^{2}-9K^{\nu}K^{*}-6(K^{*})^{2})S^{2}$

$+C(K^{\nu})^{2}(12K^{\nu}-7K^{*})S+2(K^{\nu})^{3}(-5C^{2}+2(K^{\nu})^{2}+5K^{\nu}K^{*}+3(K^{*})^{2})=0$ .

This is a polynomial equation in $S$ with constant coefficients. Therefore $S$ must
be constant, which is a contradiction. This proves our claim and an argument
as in part (a) shows that $K^{*}=2K$. So Theorem 1 is proved.

(3.16) PROOF OF THEOREM 2. To prove part (a), we observe that if $M$ is
minimal in $Q^{n}(c)$ with $c\leqq 0$ , then $K<0$ . Therefore we cannot have $K^{\nu}$ constant
$andK^{*}\geqq 0$ , by (3.10). For the second part, we note that in view of Theorem l-(b),
$f$ is now a minimal immersion of a surface with constant positive Gaussian
curvature $K=K^{*}/2$ . By a theorem of Wallach [12], $f$ can be extended to a
minimal immersion of the whole 2-sphere $S^{2}(K)$ into $S^{n}$ . This completes the
proof of Theorem 2.

(3.17) PROOF OF COROLLARY 1. We have $H\equiv 0$ , otherwise from Theorem
4 of [14], $M$ is contained in a 3-dimensional umbilic submanifold of $Q^{4}(c)$ , which
is impossible because $R^{\perp}$ never vanishes. The corollary then follows from part
(b) of Theorem 2.

(3.18) REMARKS. (1) If $M$ is minimal in $Q^{n}(c)$ with $K^{\nu}\equiv 0$ , then either
$M$ is totally geodesic in $Q^{n}(c)$ and $K=c$ is constant, or the first normal space
$N_{1}$ of the immersion has constant dimension 1. In the later case, using a
theorem on reduction of codimension of [5], we can say that $M$ is minimal in a
totally geodesic 3-dimensional submanifold of $Q^{n}(c)$ . By Lemma 1 of [9] the
only constant curved minimal surfaces in $Q^{3}(c)$ with dim $N_{1}=1$ are locally Clifford
surfaces, for which $K=0$ and $c>0$ .

(2) The arguments used in this section can be easily adapted to prove the
following. Let $f$ : $Marrow Q^{n}(c)$ be an immersion under the same hypothesis of
Theorem 1 but without assuming that $K^{\nu}$ is constant. We have
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(a) if $M$ is complete and $K$ is a nonnegative constant, then $K^{\nu}$ and $K^{i}$ .

are constant and $K^{*}=2K$ ;
(b) if $K$ and $K^{*}$ are constant, then $K^{\nu}$ is also constant and $K^{*}=2K$. When

we assume further that $M$ is minimal in $S^{n}$ and $K$ is a positive constant, we
can use again the result of [12] to see that we do not need completeness in (a)

(or the constancy of $K^{*}$ in $(b)$ ) to get the same conclusions. This fact leads us
to conjecture that Theorem l-(a) still holds without any global assumption on
$M$, at least in the case $K^{*}>0$ .

4. Minimal surfaces with constant Gaussian and normal curvatures.

Through this section we assume that $M$ is minimal in $Q^{n}(c)$ with $K$ constant
and $K^{\nu}>0$ . If $K^{\nu}$ is also constant, equations (3.2) and (3.3) imply that $\lambda$ and $\mu$

are constant. Choosing an adapted frame as in (3.1), it follows from (2.2) and
(3.5) that

$h_{ijk}^{3}=h_{ijk}^{4}=0$ . (4.1)

Sometimes we will have to rotate $(e_{1}, e_{2})$ and $(e_{3}, e_{4})$ but we still want (4.1) to
hold in the new frame. This will cause no problem when $\lambda=\mu$ In case that
$\lambda>\mu$ we have

(4.2) LEMMA. Let $M$ be a minimal surface in $Q^{n}(c)$ with $K$ and $K^{\nu}$ constant
and let $(e_{1}, \cdots e_{n})$ be any local adapted frame field such that $(e_{3}, e_{4})$ spans $\nu^{*}$ .
Then $h_{ijk}^{3}=h_{ijk}^{4}=0$ in such a frame, Provided that $\lambda>\mu$ .

PROOF. Since $h_{ij}^{\gamma}=0$ for $\gamma\geqq 5$ ,

$c-K=(h_{11}^{3})^{2}+(h_{12}^{3})^{2}+(h_{11}^{4})^{2}+(h_{12}^{4})^{2}$

and
$K^{\nu}/2=h_{11}^{3}\cdot h_{12}^{4}-h_{12}^{3}\cdot h_{11}^{4}$

are constant functions on $M$. Differentiating them and using (2.2) and (2.3),
gives $L\cdot(h_{111}^{3}, h_{112}^{3}, h_{111}^{4}, h_{112}^{4})=0$ , where $L$ is a certain $4\cross 4$ matrix whose entries
are $\pm h_{ij}^{a}$ , $1\leqq i,$ $j\leqq 2$ , $3\leqq\alpha\leqq 4$ . The determinant of $L$ is $(\lambda^{2}-\mu^{2})^{2}$ and this
proves the lemma. Q. E. D.

For any unit vector $X=\cos\theta\cdot e_{1}+\sin\theta\cdot e_{2}$ tangent to $M$, let us denote by $\tilde{B}(\theta)$

the normal vector $\tilde{B}(X, X, X)$ . Then
$\tilde{B}(\theta)=(\nabla_{X}^{\perp}B)(X, X)=\cos 3\theta\cdot\tilde{B}_{111}+\sin 3\theta\cdot\tilde{B}_{112}$

$=A\cdot(\cos 3\theta, \sin 3\theta)$ ,

where $A$ : $TMarrow\nu$ is the operator given in the bases $(e_{1}, e_{2})$ and $(e_{3}, \cdots , e_{n})$ by
the $(n-2)\cross 2$ matrix

$A=(\begin{array}{ll}h_{111}^{3} h_{112}^{3}\vdots \vdots h_{l_{\wedge}1}^{n} h_{112}^{n}\end{array})$ .
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It follows that the image of $S_{p}^{1}$ under $\tilde{B}$ is an ellipse $\tilde{\epsilon}_{p}$ in $\nu_{p}$ with area given
by

Area $( \tilde{\epsilon}_{p})=(\sum_{a.\beta}(h_{111}^{\alpha}h_{112}^{\beta}-h_{112}^{\alpha}h_{111}^{\beta})^{2})^{1/2}\cdot\pi/2$ .

We list below some properties of $\tilde{B}(\theta)$ and $\tilde{\epsilon}_{p}$ .
(4.3) LEMMA. (i) $\tilde{B}(\theta+(2k+1)\pi/3)=-\tilde{B}(\theta),\tilde{B}(\theta+2k\pi/3)=\tilde{B}(\theta)$ , for all

$k\in Z$ .
(ii) The line tangent to $\tilde{\epsilon}_{p}$ by the point $\tilde{B}(\theta+\pi/6)$ is parallel to the vector

$\tilde{B}(\theta)$ .
(iii) If $K$ and $K^{\nu}$ are constant, then $\tilde{\epsilon}_{p}$ is contained in the normal space $\nu_{p}^{*\perp}$

of $\nu_{p}^{*}$ in $\nu_{p}$ . Moreover, if $\tilde{\epsilon}_{p}$ is nondegenerate we can choose the adaPted frame
in a way that $(e_{3}, e_{4})$ spam $\nu^{*}$ and that

$\tilde{B}_{111}=\tilde{\lambda}e_{5}$ , $\tilde{B}_{112}=\tilde{\mu}e_{6}$ ,

where $\tilde{\lambda}\geqq\beta$ are the length of the semi-axes of $\tilde{\epsilon}_{p}$ .
PROOF. The verification of (i) is routine. To verify (ii), define a curve

$c(\theta)=A\cdot(\cos 3\theta, \sin 3\theta)$ and observe that $(dc/d\theta)(\theta+\pi/6)=-3\tilde{B}(\theta)$ . To verify
the first half of (iii), it is sufficient to note that $\tilde{B}_{ijk}=\sum_{\gamma\geqq 5}h_{ijk}^{\gamma}e_{\gamma}$ for a frame as

in Lemma (4.2). For the second half of (iii), it is clear that we can choose the
frame such that $e_{5}$ and $e_{6}$ give the directions of the semi-axes of $\tilde{\epsilon}_{p}$ . We can
also rotate $(e_{1}, e_{2})$ so that the frame satisfies $\tilde{B}_{111}=\tilde{\lambda}e_{\gamma},$ $\gamma=5$ or 6. Then $\tilde{B}_{112}=$

$\tilde{B}(\pi/2)$ is normal to $\tilde{B}_{111}$ by (ii). To conclude the proof we only have to change
(if necessary) $e_{5}$ by $e_{6}$ or $-e_{6}$ . Q. E. D.

Assume that $p$ is a point where $\tilde{\epsilon}_{p}$ is nondegenerate, for a minimal immer-
sion with $K$ and $K^{\nu}$ constant. We believe that the following is now clear: if

$\tilde{\epsilon}_{p}$ is not a circle, or if $\tilde{\epsilon}$ is a circle on a neighborhood of $p$ , then we can
always choose a local adapted frame field around $p$ such that $(e_{3}, e_{4})$ spans $\nu^{*}$ ,
$(e_{5}, e_{6})$ spans the bundle generated by $\overline{\epsilon}$ and that

$\tilde{B}_{111}=\tilde{\lambda}e_{5}$ , $\tilde{B}_{112}=\overline{\mu}e_{6}$ .

In such a frame we have $h_{111}^{5}=\tilde{\lambda},$ $h_{112}^{6}=\overline{\mu}$ and $h_{112}^{5}=h_{111}^{6}=h_{ijk}^{\gamma}=0$ for $\gamma\neq 5,6$ .
We are in a position to state the following proposition, whose proof is similar
to that of Theorem l-(b).

(4.4) PROPOSITION. Let $f$ : $Marrow Q^{6}(c)$ be a minimal immersion of a surface
with constant Gaussian and normal curvatures. Assume that there exis $ts$ a point
$P$ in $M$ such that $\tilde{\epsilon}_{p}$ is nondegenerate. Then $c>0$ , $K>0$ and $M$ is locally a
Veronese surface $S^{2}(c/6)$ in $S^{6}(c)$ .

PROOF. Let $(e_{1}, \cdots , e_{6})$ be an adapted frame field around $P$ as above. From
the minimality of $M$ and from (2.6) we have
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$e_{1}(\tilde{\lambda})=-e_{1}\langle\tilde{B}_{221}, e_{5}\rangle=-\langle\nabla_{e_{1}}^{\perp}\tilde{B}_{221}, e_{5}\rangle$

$=-\langle(\nabla_{e_{1}}^{\perp}\tilde{B})(e_{2}, e_{2}, e_{1}), e_{5}\rangle=-\langle(\nabla_{e_{2}}^{\perp}\tilde{B})(e_{1}, e_{2}, e_{1}), e_{6}\rangle$

$=-\langle\nabla_{e_{2}}^{\perp}\tilde{B}_{112}-2\tilde{B}(\nabla_{e_{2}}e_{1}, e_{2}, e_{1})-\tilde{B}(e_{1}, e_{1}, \nabla_{e_{2}}e_{2}), e_{5}\rangle$

$=(\beta w_{56}-3\tilde{\lambda}w_{12})\circ J(e_{1})$ .
Analogously we determine $e_{2}(\tilde{\lambda})$ and $e_{i}(\tilde{\mu}),$ $i=1,2$ . The conclusion is

$d\tilde{\lambda}=(\tilde{\mu}w_{56}-3\tilde{\lambda}w_{12})\circ J$ $d\tilde{\mu}=(\tilde{\lambda}w_{56}-3\tilde{\mu}w_{12})\circ J$ .
Since $K$ and $K$ “ are constant, $K^{*}$ is obviously constant. Using (2.4) we see
that $\tilde{S}=\tilde{\lambda}^{2}+\tilde{\mu}^{2}$ is also constant and then $d\tilde{S}=0$ gives

$2\tilde{\lambda}\tilde{\mu}w_{66}=3\tilde{S}w_{12}$ . (4.5)

So we can write

$d \tilde{\lambda}=-\frac{3(\tilde{\lambda}^{2}-\overline{\mu}^{2})}{2\tilde{\lambda}}w_{12}\circ J$ , $d \tilde{\mu}=\frac{3(\tilde{\lambda}^{2}-\tilde{\mu}^{2})}{2\tilde{\mu}}w_{12}\circ J$ ,
(4.6)

$d( \tilde{\lambda}\beta)=\frac{3(\tilde{\lambda}^{2}-\beta^{2})^{2}}{2\tilde{\lambda}\sqrt{}}w_{12}\circ J$ .

Let us call $\tilde{\lambda}\tilde{\mu}=X$ for simplicity. Then (4.6) gives

\langle $grad\tilde{\lambda}$ , grad $\tilde{\mu}\rangle$

$=- \frac{9(\tilde{\lambda}^{2}-\tilde{\mu}^{2})^{2}}{4X}\Vert w_{12}\Vert^{2}$ ,
(4.7)

$|| gradX\Vert^{2}=\frac{9(\tilde{\lambda}^{2}-\tilde{\mu}^{2})^{4}}{4X^{2}}\Vert w_{12}\Vert^{2}$ .

Now a long but simple calculation using (4.6) and (4.7) shows that

$\Delta X=-\frac{9(\tilde{\lambda}^{2}-\beta^{2})^{2}(\hat{S}^{2}+4X^{2})}{4X^{3}}\Vert w_{12}\Vert^{2}-\frac{3(\tilde{\lambda}^{2}-\beta^{2})^{2}}{2X}K$ . (4.8)

On the other hand, by differentiating (4.5) and using (2.2) and (2.3) we obtain

$\frac{9S(\tilde{\lambda}^{2}-\beta^{2})^{2}}{2X^{2}}\Vert w_{12}\Vert^{2}=\frac{8SX^{2}}{(K^{\nu})^{2}}3\hat{S}$K. (4.9)

Bringing (4.9) into (4.7) and (4.8) gives

$\Vert gradX\Vert^{2}=-\frac{16S}{(K^{\nu})^{2}\hat{S}}X^{4}+(6K+\frac{4S\hat{S}}{(K^{\nu})^{2}})X^{2}-\frac{3\hat{S}K}{2}$ ,

(4.10)
$\Delta X=-\frac{16S}{(K^{\nu})^{2}\tilde{S}}X^{3}+(12K-\frac{4S\tilde{S}}{(K^{v})^{2}})X$ .

As in the proof of part (b) of Theorem 1, it follows from (4.10) that $X$ must be
constant. Then $\overline{\lambda}$ and $\overline{\mu}$ are constant around $p$ and we conclude that they are
constant all over $M$. With this we differentiate (4.5) to obtain
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$\frac{8SX^{2}}{(K^{\nu})^{2}}=3\tilde{S}K$ .

Therefore $K>0$ and then $c>0$ . The proposition is now a consequence of Theorem
2 and of the fact that, according to Theorem 5.6 of Calabi [2], the curvature

of a full minimal sphere $S^{2}(K)$ in $S^{2k}(c)$ must satisfy $K= \frac{2c}{k(k+1)}$ . Q. E. D.

(4.11) PROOF OF THEOREM 3. Choose an adapted frame $(e_{1}, \cdots , e_{6})$ in $Q^{6}(c)$

such that $(e_{3}, e_{4})$ spans $\nu^{*}$ and $h_{ijk}^{\alpha}=0$ for $\alpha=3,4$ . By (2.4) we know that
$h= \sum_{\gamma\geq 6}(h_{ijk}^{\gamma})^{2}$ is constant. If $h=0$ , then $2K=K^{*}=K^{\nu}>0$ and $c>0$ . Also by a

lemma of Otsuki [10], p. 96, $M$ is contained in a 4-dimensional totally geodesic
submanifold $Q^{4}(c)$ of $Q^{6}(c)$ . Hence $M$ must be locally a Veronese surface $S^{2}(c/3)$

in $S^{4}(c)$ , thus giving (a). Now $h\neq 0$ means that $\tilde{\epsilon}$ is never a point. If $\tilde{\epsilon}_{p}$ is
nondegenerate for some $P$ in $M$, then Proposition (4.4) gives (c). The only
possibility left is when $\tilde{\epsilon}$ is a line segment of constant length $2\tilde{\lambda}$ . In this case
we choose the frame so that $\tilde{B}_{111}=\tilde{\lambda}e_{5}$ and of course $\tilde{B}_{112}=0$ . Then $0=d\tilde{\lambda}=$

$-3\tilde{\lambda}w_{12}\circ J$ and this immediately implies that $w_{12}=0,$ $K=0$ and $c>0$ . Again by

the above lemma of Otsuki, we see that $M$ is contained in a totally geodesic
$Q^{5}(c)$ of $Q^{6}(c)$ . This gives (b) and completes the proof of the Theorem.
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