Minimal surfaces with constant normal curvature

By Antonio Carlos Asperti*

(Received March 8, 1983)

1. Introduction.

Let M be a connected 2-dimensional Riemannian manifold which is isometrically immersed into $Q^{n}(c), n \geqq 4$, where $Q^{n}(c)$ stands for the sphere $S^{n}(c)$ of radius $1 / c$, the Euclidean space \boldsymbol{R}^{n} or the hyperbolic space $H^{n}(c)$, according to c is positive, zero or negative. Through this paper we assume that the normal curvature tensor R^{\perp} of the immersion is nowhere zero. In this case there exists an orthogonal bundle splitting $\nu=\nu * \oplus \nu^{0}$ of the normal bundle ν of the immersion, where ν^{0} consists of the normal directions that annihilate R^{\perp} and ν^{*} is a 2-plane subbundle of ν. We know by [1] that if M is compact and oriented, then the Gaussian curvature K of M is strongly related to the normal curvature K^{ν} of the immersion and to the intrinsic curvature K^{*} of ν^{*}. The first result of this paper is an extension of Theorem 2 of [1] to the case when M is not necessarily compact.

Theorem 1. Let M be a connected, oriented 2-dimensional Riemannian manifold immersed with nowhere zero normal curvature tensor into $Q^{n}(c)$. Assume that the normal curvature K^{ν} is constant and that the mean curvature vector H of the immersion is parallel in the normal connection. We have
(a) if M is complete and $K^{*} \geqq 0$, then K and K^{*} are constant and $K=K^{*} / 2$;
(b) if K^{*} is constant, then $K=K^{*} / 2$.

It should be noted that no global assumption is made in part (b). When M is complete and minimal in the unit sphere S^{n} with K^{ν} constant, it follows immediately from (a) that
(a^{\prime}) if $K^{*}>0$, then $M=S^{2}\left(K^{*} / 2\right)$ is one of the Veronese surfaces studied by Calabi [2] and do Carmo-Wallach [3];
(a") if $K^{*}=0$, then we obtain a minimal plane in S^{n}. These were studied by Kenmotsu [7], [8].

As a consequence of Theorem 1 and its proof we can deduce the following result.

THEOREM 2. (a) If $c \leqq 0$, then there is no minimal immersion of a surface M into $Q^{n}(c)$ with K^{ν} constant and $K^{*} \geqq 0$.

[^0](b) Let $f: M \rightarrow S^{n}$ be an isometric minimal immersion with K^{ν} and K^{*} positive constant. Then M is locally one of the Veronese surfaces of Calabi and do Carmo-Wallach.

When $n=4$ then $\nu^{*}=\nu, K^{*}=K^{\nu}$ and we have the following result which was firstly proved by Wong in [13], Theorem 4.9. See also [6] for a similar result.

Corollary 1. Let M be a 2-dimensional submanifold of $Q^{4}(c)$ with K^{ν} constant and H parallel. Then $c>0$ and M is locally a Veronese surface $S^{2}(c / 3)$ in $S^{4}(c)$.

The proofs of the above results are presented in Section 3. In Section 4 we present the proof of the following extension of Theorem 2 of [9].

THEOREM 3. Let $f: M \rightarrow Q^{6}(c)$ be an isometric minimal immersion of a connected surface M of constant curvature K and with nonzero constant normal curvature K^{ν}. Then $c>0$ and either
(a) $K=c / 3$ and M is locally a Veronese surface in $S^{4}(c)$;
(b) $K=0$ and f is locally one of the immersions $\boldsymbol{R}^{2} \rightarrow S^{5}(c)$ described in [7] ; or
(c) $K=c / 6$ and M is locally a Veronese surface in $S^{6}(c)$.

As a consequence we see that the hyperbolic 2 -plane cannot be minimally immersed with constant normal curvature in the 6 -sphere, even locally.

I want to thank the hospitality of the people of the SUNY at Stony Brook Mathematics Department, where this work was done. I want also to thank Professor B. Lawson for bringing [9] to my attention and to the referee for pointing out several mistakes.

2. Preliminaries.

Let $f: M \rightarrow Q^{n}(c)$ be an isometric immersion of a 2-dimensional Riemannian manifold M into the space $Q^{n}(c)$ and denote by $\nu=\nu(f)$ the normal bundle of the immersion. We will always assume that M is connected, oriented and with complex structure J. We denote by ∇^{\perp} the covariant derivative of ν associated to the induced connection and by R^{\perp} the corresponding curvature tensor, that is,

$$
R^{\perp}(X, Y) \xi=\nabla_{X}^{\perp} \nabla_{\frac{1}{Y}}^{\perp} \xi-\nabla_{Y}^{\perp} \nabla_{X}^{\perp} \xi-\nabla_{[X, Y]}^{\perp} \xi,
$$

for tangent fields X, Y and normal field ξ. Now we recall the Ricci's equation

$$
\begin{equation*}
R^{\perp}(X, Y) \xi=B\left(X, A_{\xi} Y\right)-B\left(A_{\xi} X, Y\right) \tag{2.1}
\end{equation*}
$$

where B is the second fundamental form of the immersion and A_{ξ} is the associated symmetric endomorphism of the tangent bundle $T M$. We set $B_{i j}=B\left(e_{i}, e_{j}\right)$ for a tangent frame e_{1}, e_{2}. With this notation the mean curvature vector H of the immersion is given by $H=\operatorname{tr} B / 2=\left(B_{11}+B_{22}\right) / 2$.

We shall make use of the curvature ellipse of $f: M \rightarrow Q^{n}(c)$, which is, for each p in M the subset of ν_{p} given by

$$
\varepsilon_{p}=\left\{B(X, X) \in \nu_{p} ; X \in T M_{p} \text { and }\|X\|=1\right\} .
$$

If $X=\cos \theta \cdot e_{1}+\sin \theta \cdot e_{2}$ we can see that $B(X, X)=\cos 2 \theta \cdot u+\sin 2 \theta \cdot v$, where $u=\left(B_{11}-B_{22}\right) / 2$ and $v=B_{12}$. This shows that ε_{p} is in fact an ellipse with center in the tip of $H(p)$. Also it is not difficult to see that $R_{p}^{\perp} \neq 0$ if and only if ε_{p} is nondegenerate, and that this happens if and only if u and v are linearly independent. From now on we assume that $R_{p}^{\perp} \neq 0$ for all p in M so that we can define a 2 -plane subbundle of the normal bundle, namely the bundle ν^{*} whose fiber over p is the subspace of ν_{p} spanned by u and v (one can check that this ν^{*} is the ν^{*} of the Introduction). We define an orientation on ν^{*} as follows: a pair (ξ, η) in ν_{p}^{*} will be positively oriented if $\left\langle R^{\perp}(X, J X) \eta, \xi\right\rangle>0$ for one (and hence all) $X \neq 0$ in $T M_{p}$. This plane bundle inherits a canonical covariant derivative from that of ν, which we denote by ∇^{*}. Let R^{*} be the corresponding curvature tensor and define the intrinsic curvature K^{*} of ν^{*} by

$$
K^{*}=\left\langle R^{*}\left(e_{1}, e_{2}\right) e_{4}, e_{3}\right\rangle,
$$

where (e_{1}, e_{2}) and (e_{3}, e_{4}) are positively oriented frames of $T M$ and ν^{*}, respectively. The normal curvature of f at p is given by

$$
K_{p}^{\nu}=\left.\left\langle R^{\perp}\left(e_{1}, e_{2}\right) e_{4}, e_{3}\right\rangle\right|_{p},
$$

where the frames are as above (hence K^{ν} is positive by definition). It can be shown that $\operatorname{Area}\left(\varepsilon_{p}\right)=K_{p}^{\nu} \cdot \pi / 2$ (see [11]).

At this point it is convenient to introduce some notation related to the method of moving frames. We will be based on the framework of Section 2 of [4], but we remark here that our sign convention is the opposite of that of [4]. Let $\left(e_{1}, \cdots, e_{n}\right)$ be a local frame field tangent to $Q^{n}(c)$ such that (e_{1}, e_{2}) spans $T M$. Such a frame is said to be adapted to M. Define as usual functions $h_{i j}^{\alpha}$ by

$$
h_{i j}^{\alpha}=\left\langle B_{i j}, e_{\alpha}\right\rangle=h_{j i}^{\alpha},
$$

where we are using the following convention on the range of indices:

$$
1 \leqq A, B, C, \cdots \leqq n ; 1 \leqq i, j, k, \cdots \leqq 2 ; 3 \leqq \alpha, \beta, \gamma, \cdots \leqq n .
$$

We take the normal covariant derivative of B and define a trilinear form \tilde{B} from $T M$ into ν, and functions $h_{i j k}^{\alpha}$ by

$$
\tilde{B}\left(e_{i}, e_{j}, e_{k}\right)=\left(\nabla_{e_{k}}^{\perp} B\right)\left(e_{i}, e_{j}\right)=\sum_{\alpha} h_{i j k}^{\alpha} e_{\alpha} .
$$

We set $\tilde{B}_{i j k}=\tilde{B}\left(e_{i}, e_{j}, e_{k}\right)$. A simple calculation shows that

$$
\begin{equation*}
\sum_{k} h_{i j k}^{\alpha} w_{k}=d h_{i j}^{\alpha}+\sum_{s} h_{i s}^{\alpha} w_{s j}+\sum_{s} h_{s j}^{\alpha} w_{s i}+\sum_{\beta} h_{i j}^{\beta} w_{\beta \alpha}, \tag{2.2}
\end{equation*}
$$

where $w_{A}, w_{A B}$ are 1 -forms on $Q^{n}(c)$ defined by

$$
w_{A}\left(e_{B}\right)=\delta_{A B}, \quad w_{A B}\left(e_{C}\right)=\left\langle\nabla_{e_{C}} e_{A}, e_{B}\right\rangle .
$$

These are the dual and the connection forms of $Q^{n}(c)$ relative to the given frame, respectively. In particular

$$
w_{i \alpha}=\sum_{j} h_{i j}^{\alpha} w_{j}
$$

when restricted to M. Since we are in a space of constant curvature, it follows from the Codazzi equations that $\tilde{B}_{i j k}=\tilde{B}_{i k j}$, that is, \tilde{B} is symmetric. This implies that $h_{i j k}^{\alpha}=h_{i k j}^{\alpha}$ for all α. If M is minimal in $Q^{n}(c)$ then from (2.2) we have

$$
\begin{align*}
& h_{111}^{\alpha}=-h_{221}^{\alpha}=-h_{212}^{\alpha}=-h_{122}^{\alpha}, \\
& h_{222}^{\alpha}=-h_{112}^{\alpha}=-h_{121}^{\alpha}=-h_{211}^{\alpha}, \tag{2.3}
\end{align*}
$$

for all α. Suppose that M is minimal and that the frame is chosen with $\left(e_{3}, e_{4}\right)$ spanning ν^{*}. Then $h_{i j}^{\gamma}=0$ for $\gamma \geqq 5$ and using (2.2) and (2.3) we obtain

$$
\begin{align*}
K^{\nu} & =K^{*}+\sum_{\gamma \geq 5}\left(\left(w_{3 \gamma}\left(e_{2}\right) w_{4 \gamma}\left(e_{1}\right)-w_{3 \gamma}\left(e_{1}\right) w_{4 \gamma}\left(e_{2}\right)\right)\right. \\
& =K^{*}+\frac{2}{K^{\nu}} \sum_{\gamma \geq 5}\left(\left(h_{111}^{\gamma}\right)^{2}+\left(h_{112}^{\gamma}\right)^{2}\right) \tag{2.4}
\end{align*}
$$

Now we take the normal covariant derivative of \tilde{B} and define functions $h_{i j k l}^{\alpha}$ by

$$
\left(\nabla_{e_{l}}^{\perp} \tilde{B}\right)\left(e_{i}, e_{j}, e_{k}\right)=\sum_{\alpha} h_{i j k l}^{\alpha} e_{\alpha}
$$

A simple calculation shows that

$$
\begin{equation*}
\sum_{l} h_{i j k l}^{\alpha} w_{l}=d h_{i j k}^{\alpha}+\sum_{s} h_{s j k}^{\alpha} w_{s i}+\sum_{s} h_{i s k}^{\alpha} w_{s j}+\sum_{s} h_{i j s}^{\alpha} w_{s k}+\sum_{\beta} h_{i j k}^{\beta} w_{\beta \alpha} \tag{2.5}
\end{equation*}
$$

If the frame is such that $\left(e_{3}, e_{4}\right)$ spans ν^{*} then $h_{11}^{\gamma}=h_{22}^{\gamma}, h_{12}^{\gamma}=0$ for $\gamma \geqq 5$. In this case we apply equation (2.15) of [4] to obtain

$$
h_{i j 12}^{\gamma}=h_{i j 21}^{\gamma},
$$

for all $\gamma \geqq 5$. From (2.3) and (2.5) it follows that

$$
\begin{align*}
& h_{1212}^{\gamma}=h_{1221}^{\gamma}=h_{2121}^{\gamma}=h_{2211}^{\gamma}, \tag{2.6}\\
& h_{1112}^{\gamma}=h_{1121}^{\gamma}=h_{1211}^{\gamma}=h_{2111}^{\gamma},
\end{align*}
$$

for all $\gamma \geqq 5$, in such a frame.

3. Surfaces with constant normal curvature.

For our purposes it is convenient to divide M into two subsets F and $A=M-F$, where F consists of the points p in M where ε_{p} is a circle. Obviously A is open and F is closed in M. For each p in A there exist (cf. [1]) a neighborhood U of p and smooth positively oriented frames (e_{1}, e_{2}) in $T M \mid U$ and $\left(e_{3}, e_{4}\right)$ in $\nu^{*} \mid U$ such that

$$
\begin{align*}
& B_{11}-H=\lambda e_{3}=-B_{22}+H, \\
& B_{12}=\mu e_{4}, \tag{3.1}
\end{align*}
$$

where λ and μ are the length of the semi-axes of the curvature ellipse. We may in addition assume that $\lambda>\mu$ on U. On the other hand, if the ellipse is a circle on a neighborhood of a point p in F, we can start with any positively oriented (e_{3}, e_{4}) and choose (e_{1}, e_{2}) in a way to obtain (3.1) again. In this case $\lambda=\mu$. The Gauss equation takes the form

$$
\begin{equation*}
K=c+\|H\|^{2}-\lambda^{2}-\mu^{2}=C-S \tag{3.2}
\end{equation*}
$$

where $S=\lambda^{2}+\mu^{2}$ and $C=c+\|H\|^{2}$, which is a constant whenever H is parallel. Also from (2.1) and (3.1) we obtain

$$
\begin{equation*}
K^{\nu}=2 \lambda \mu . \tag{3.3}
\end{equation*}
$$

Suppose that we are in A or in $\operatorname{Int}(F)$ with a frame as in (3.1) and assume from now on that H is parallel and K^{ν} is constant. By the Codazzi equations we obtain

$$
\begin{equation*}
e_{i}(\lambda)=\left(\mu w_{34}-2 \lambda w_{12}\right) \circ J\left(e_{i}\right), \quad e_{i}(\mu)=\left(\lambda w_{34}-2 \mu w_{12}\right) \circ J\left(e_{i}\right) . \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
d \lambda=\left(\mu w_{34}-2 \lambda w_{12}\right) \circ J, \quad d \mu=\left(\lambda w_{34}-2 \mu w_{12}\right) \circ J . \tag{3.5}
\end{equation*}
$$

Since $d(\lambda \mu)=0$, (3.5) implies

$$
\begin{equation*}
S w_{34}=2 K^{\nu} w_{12} . \tag{3.6}
\end{equation*}
$$

Therefore we can rewrite (3.5) as

$$
\begin{equation*}
d \lambda=2 \frac{\mu K^{\nu}-\lambda S}{S} w_{12^{\circ}} J, \quad d \mu=2 \frac{\lambda K^{\nu}-\mu S}{S} w_{12}{ }^{\circ} J, \tag{3.7}
\end{equation*}
$$

and then

$$
\begin{equation*}
\langle\operatorname{grad} \lambda, \operatorname{grad} \mu\rangle=-2 K^{\nu} \frac{S^{2}-\left(K^{\nu}\right)^{2}}{S^{2}}\left\|w_{12}\right\|^{2} . \tag{3.8}
\end{equation*}
$$

Differentiating (3.6) we have by the definition of w_{12} and w_{34}

$$
\begin{align*}
& 2 K=\frac{8\left(S^{2}-\left(K^{\nu}\right)^{2}\right)}{S^{2}}\left\|w_{12}\right\|^{2}+\frac{K^{*} S}{K^{\nu}} \quad \text { in } A, \tag{3.9}\\
& 2 K=K^{*} \quad \text { in } \operatorname{Int}(F) .
\end{align*}
$$

This immediately implies the following
(3.10) Proposition. Let $f: M \rightarrow Q^{n}(c)$ be an isometric immersion with K^{ν} constant and H parallel. If $K^{*} \geqq 0$ on M, then $K \geqq 0$ on M.

In fact, $K \geqq 0$ in A and in $\operatorname{Int}(F)$ by (3.9). By continuity, $K \geqq 0$ on M.
Now from (3.5) we have

$$
\begin{equation*}
d S=\frac{4\left(\left(K^{\nu}\right)^{2}-S^{2}\right)}{S} w_{12}{ }^{\circ} J \tag{3.11}
\end{equation*}
$$

which with (3.9) gives

$$
\begin{equation*}
\|\operatorname{grad} S\|^{2}=-2\left(2+\frac{K^{*}}{K^{\nu}}\right) S^{3}+4 C S^{2}+2 K^{\nu}\left(2 K^{\nu}+K^{*}\right) S-4 C\left(K^{\nu}\right)^{2} . \tag{3.12}
\end{equation*}
$$

Also, by a simple calculation using (3.4) and (3.6), we have

$$
\begin{align*}
& \Delta \lambda=4\left(\frac{\lambda\left(K^{\nu}\right)^{2}}{S^{2}}-\frac{2 \mu K^{\nu}}{S}+\lambda\right)\left\|w_{12}\right\|^{2}-\mu K^{*}+2 \lambda K, \\
& \Delta \mu=4\left(\frac{\mu\left(K^{\nu}\right)^{2}}{S^{2}}-\frac{2 \lambda K^{\nu}}{S}+\mu\right)\left\|w_{12}\right\|^{2}-\lambda K^{*}+2 \mu K \tag{3.13}
\end{align*}
$$

Then

$$
\frac{1}{2} \Delta S=\frac{8\left(S^{2}-\left(K^{\nu}\right)^{2}\right)}{S}\left\|w_{12}\right\|^{2}+2 K S-K^{\nu} K^{*}
$$

By applying (3.9) to the last equation in two different ways we get

$$
\begin{align*}
& \frac{1}{4} \Delta S=\frac{4\left(S^{4}-\left(K^{\nu}\right)^{4}\right)}{S^{3}}\left\|w_{12}\right\|^{2}+\frac{\left(S^{2}-\left(K^{\nu}\right)^{2}\right)}{S} K, \\
& \Delta S=-2\left(4+\frac{K^{*}}{K^{\nu}}\right) S^{2}+8 C S-2 K^{\nu} K^{*} \tag{3.14}
\end{align*}
$$

(3.15) Proof of Theorem 1. Suppose first that M is complete and that $K^{*} \geqq 0$. Then $K \geqq 0$ on M by (3.10), which jointly with (3.2) imply that $0<S \leqq C$ on M. This also implies, by (3.14), that $\Delta S \geqq 0$ on M. In summary, S is a bounded subharmonic function defined in a complete surface of nonnegative curvature. It is well known that such a function must be constant, that is, $K=C-S$ is constant. It also follows that λ and μ are constant and then $M=A$ or $M=F$. If $M=F$, from (3.9) we have $2 K=K^{*}$. If $M=A$ we cannot have $w_{12} \neq 0$ otherwise from (3.11) we obtain $0=S^{2}-\left(K^{2}\right)^{2}=\left(\lambda^{2}-\mu^{2}\right)^{2}$, which is impossible in A. So $w_{12}=0, K=0$ and $K^{*}=0$ in this case. This completes the proof of part (a). To prove part (b), we follow closely Wong [13], p. 486. We claim that if K^{ν} and K^{*} are constant then $d S=0$, that is, S is constant. It is clear,
by (3.11), that $d S=0 \operatorname{in} \operatorname{Int}(F)$. If we are in A, by (3.12) and (3.14) we know that $\|\operatorname{grad} S\|^{2}=g(S), \Delta S=h(S)$, where $g(S)$ and $h(S)$ are polynomials in S with constant coefficients. If S is not constant it is known (cf. [13], [9]) that there exist local coordinates (S, T) in A such that the first fundamental form of M is given locally by

$$
d s^{2}=\frac{1}{g(S)}\left(d S^{2}+\exp \left(2 \int \frac{h}{g} d S\right) d T^{2}\right)
$$

Then the Gaussian curvature K of M satisfies

$$
2 g K+\left(h-\frac{d g}{d S}\right)\left(2 h-\frac{d g}{d S}\right)+g\left(2 \frac{d h}{d S}-\frac{d^{2} g}{d S^{2}}\right)=0
$$

which is equivalent to

$$
\begin{aligned}
& \left(6 K^{\nu}-K^{*}\right) S^{4}+C\left(7 K^{*}-12 K^{\nu}\right) S^{3}+K^{\nu}\left(10 C^{2}-10\left(K^{\nu}\right)^{2}-9 K^{\nu} K^{*}-6\left(K^{*}\right)^{2}\right) S^{2} \\
& \quad+C\left(K^{\nu}\right)^{2}\left(12 K^{\nu}-7 K^{*}\right) S+2\left(K^{\nu}\right)^{3}\left(-5 C^{2}+2\left(K^{\nu}\right)^{2}+5 K^{\nu} K^{*}+3\left(K^{*}\right)^{2}\right)=0 .
\end{aligned}
$$

This is a polynomial equation in S with constant coefficients. Therefore S must be constant, which is a contradiction. This proves our claim and an argument as in part (a) shows that $K^{*}=2 K$. So Theorem 1 is proved.
(3.16) Proof of Theorem 2. To prove part (a), we observe that if M is minimal in $Q^{n}(c)$ with $c \leqq 0$, then $K<0$. Therefore we cannot have K^{ν} constant and $K^{*} \geqq 0$, by (3.10). For the second part, we note that in view of Theorem 1-(b), f is now a minimal immersion of a surface with constant positive Gaussian curvature $K=K^{*} / 2$. By a theorem of Wallach [12], f can be extended to a minimal immersion of the whole 2 -sphere $S^{2}(K)$ into S^{n}. This completes the proof of Theorem 2.
(3.17) Proof of Corollary 1. We have $H \equiv 0$, otherwise from Theorem 4 of [14], M is contained in a 3-dimensional umbilic submanifold of $Q^{4}(c)$, which is impossible because R^{\perp} never vanishes. The corollary then follows from part (b) of Theorem 2,
(3.18) Remarks. (1) If M is minimal in $Q^{n}(c)$ with $K^{\nu} \equiv 0$, then either M is totally geodesic in $Q^{n}(c)$ and $K=c$ is constant, or the first normal space N_{1} of the immersion has constant dimension 1. In the later case, using a theorem on reduction of codimension of [5], we can say that M is minimal in a totally geodesic 3 -dimensional submanifold of $Q^{n}(c)$. By Lemma 1 of [9] the only constant curved minimal surfaces in $Q^{3}(c)$ with $\operatorname{dim} N_{1}=1$ are locally Clifford surfaces, for which $K=0$ and $c>0$.
(2) The arguments used in this section can be easily adapted to prove the following. Let $f: M \rightarrow Q^{n}(c)$ be an immersion under the same hypothesis of Theorem 1 but without assuming that K^{ν} is constant. We have
(a) if M is complete and K is a nonnegative constant, then K^{ν} and K^{*} are constant and $K^{*}=2 K$;
(b) if K and K^{*} are constant, then K^{ν} is also constant and $K^{*}=2 K$. When we assume further that M is minimal in S^{n} and K is a positive constant, we can use again the result of [12] to see that we do not need completeness in (a) (or the constancy of K^{*} in (b)) to get the same conclusions. This fact leads us to conjecture that Theorem 1-(a) still holds without any global assumption on M, at least in the case $K^{*}>0$.

4. Minimal surfaces with constant Gaussian and normal curvatures.

Through this section we assume that M is minimal in $Q^{n}(c)$ with K constant and $K^{\nu}>0$. If K^{ν} is also constant, equations (3.2) and (3.3) imply that λ and μ are constant. Choosing an adapted frame as in (3.1), it follows from (2.2) and (3.5) that

$$
\begin{equation*}
h_{i j k}^{3}=h_{i j k}^{4}=0 . \tag{4.1}
\end{equation*}
$$

Sometimes we will have to rotate (e_{1}, e_{2}) and (e_{3}, e_{4}) but we still want (4.1) to hold in the new frame. This will cause no problem when $\lambda=\mu$. In case that $\lambda>\mu$ we have
(4.2) Lemma. Let M be a minimal surface in $Q^{n}(c)$ with K and K^{ν} constant and let $\left(e_{1}, \cdots, e_{n}\right)$ be any local adapted frame field such that (e_{3}, e_{4}) spans ν^{*}. Then $h_{i j k}^{3}=h_{i j k}^{4}=0$ in such a frame, provided that $\lambda>\mu$.

Proof. Since $h_{i j}^{\gamma}=0$ for $\gamma \geqq 5$,
and

$$
c-K=\left(h_{11}^{3}\right)^{2}+\left(h_{12}^{3}\right)^{2}+\left(h_{11}^{4}\right)^{2}+\left(h_{12}^{4}\right)^{2}
$$

$$
K^{\nu} / 2=h_{11}^{3} \cdot h_{12}^{4}-h_{12}^{3} \cdot h_{11}^{4}
$$

are constant functions on M. Differentiating them and using (2.2) and (2.3), gives $L \cdot\left(h_{111}^{3}, h_{12}^{3}, h_{111}^{4}, h_{112}^{4}\right)=0$, where L is a certain 4×4 matrix whose entries are $\pm h_{i j}^{\alpha}, 1 \leqq i, j \leqq 2,3 \leqq \alpha \leqq 4$. The determinant of L is $\left(\lambda^{2}-\mu^{2}\right)^{2}$ and this proves the lemma.
Q.E.D.

For any unit vector $X=\cos \theta \cdot e_{1}+\sin \theta \cdot e_{2}$ tangent to M, let us denote by $\tilde{B}(\theta)$ the normal vector $\tilde{B}(X, X, X)$. Then

$$
\begin{aligned}
\tilde{B}(\theta) & =\left(\nabla \frac{1}{X} B\right)(X, X)=\cos 3 \theta \cdot \tilde{B}_{111}+\sin 3 \theta \cdot \tilde{B}_{112} \\
& =A \cdot(\cos 3 \theta, \sin 3 \theta),
\end{aligned}
$$

where $A: T M \rightarrow \nu$ is the operator given in the bases $\left(e_{1}, e_{2}\right)$ and $\left(e_{3}, \cdots, e_{n}\right)$ by the $(n-2) \times 2$ matrix

$$
A=\left(\begin{array}{cc}
h_{11}^{3} & h_{112}^{3} \\
\vdots & \vdots \\
h_{111}^{n} & h_{112}^{n}
\end{array}\right) .
$$

It follows that the image of S_{p}^{1} under \tilde{B} is an ellipse $\tilde{\varepsilon}_{p}$ in ν_{p} with area given by

$$
\operatorname{Area}\left(\tilde{\varepsilon}_{p}\right)=\left(\sum_{\alpha, \beta}\left(h_{111}^{\alpha} h_{112}^{\beta}-h_{112}^{\alpha} h_{111}^{\beta}\right)^{2}\right)^{1 / 2} \cdot \pi / 2 .
$$

We list below some properties of $\tilde{B}(\theta)$ and $\tilde{\varepsilon}_{p}$.
(4.3) Lemma. (i) $\tilde{B}(\theta+(2 k+1) \pi / 3)=-\tilde{B}(\theta), \tilde{B}(\theta+2 k \pi / 3)=\tilde{B}(\theta)$, for all $k \in \boldsymbol{Z}$.
(ii) The line tangent to $\tilde{\varepsilon}_{p}$ by the point $\tilde{B}(\theta+\pi / 6)$ is parallel to the vactor $\tilde{B}(\theta)$.
(iii) If K and K^{ν} are constant, then $\tilde{\varepsilon}_{p}$ is contained in the normal space $\nu_{p}^{* \perp}$ of ν_{p}^{*} in ν_{p}. Moreover, if $\tilde{\varepsilon}_{p}$ is nondegenerate we can choose the adapted frame in a way that $\left(e_{3}, e_{4}\right)$ spans ν^{*} and that

$$
\tilde{B}_{111}=\tilde{\lambda} e_{5}, \quad \tilde{B}_{112}=\tilde{\mu} e_{6},
$$

where $\tilde{\lambda} \geqq \tilde{\mu}$ are the length of the semi-axes of $\tilde{\varepsilon}_{p}$.
Proof. The verification of (i) is routine. To verify (ii), define a curve $c(\theta)=A \cdot(\cos 3 \theta, \sin 3 \theta)$ and observe that $(d c / d \theta)(\theta+\pi / 6)=-3 \tilde{B}(\theta)$. To verify the first half of (iii), it is sufficient to note that $\tilde{B}_{i j k}=\sum_{\gamma=5} h_{i j k}^{\gamma} e_{\gamma}$ for a frame as in Lemma (4.2). For the second half of (iii), it is clear that we can choose the frame such that e_{5} and e_{6} give the directions of the semi-axes of $\tilde{\varepsilon}_{p}$. We can also rotate $\left(e_{1}, e_{2}\right)$ so that the frame satisfies $\tilde{B}_{111}=\tilde{\lambda}_{\gamma}, \gamma=5$ or 6 . Then $\tilde{B}_{112}=$ $\tilde{B}(\pi / 2)$ is normal to \tilde{B}_{111} by (ii). To conclude the proof we only have to change (if necessary) e_{5} by e_{6} or $-e_{6}$. Q.E.D.

Assume that p is a point where $\tilde{\varepsilon}_{p}$ is nondegenerate, for a minimal immersion with K and K^{ν} constant. We believe that the following is now clear: if $\tilde{\varepsilon}_{p}$ is not a circle, or if $\tilde{\varepsilon}$ is a circle on a neighborhood of p, then we can always choose a local adapted frame field around p such that (e_{3}, e_{4}) spans ν^{*}, (e_{5}, e_{6}) spans the bundle generated by $\tilde{\varepsilon}$ and that

$$
\tilde{B}_{111}=\tilde{\lambda} e_{5}, \quad \tilde{B}_{112}=\tilde{\mu} e_{6} .
$$

In such a frame we have $h_{111}^{5}=\tilde{\lambda}, h_{112}^{6}=\tilde{\mu}$ and $h_{112}^{5}=h_{111}^{6}=h_{i j k}^{\gamma}=0$ for $\gamma \neq 5,6$. We are in a position to state the following proposition, whose proof is similar to that of Theorem 1-(b).
(4.4) Proposition. Let $f: M \rightarrow Q^{6}(c)$ be a minimal immersion of a surface with constant Gaussian and normal curvatures. Assume that there exists a point p in M such that $\tilde{\varepsilon}_{p}$ is nondegenerate. Then $c>0, K>0$ and M is locally a Veronese surface $S^{2}(c / 6)$ in $S^{6}(c)$.

Proof. Let (e_{1}, \cdots, e_{6}) be an adapted frame field around p as above. From the minimality of M and from (2.6) we have

$$
\begin{aligned}
e_{1}(\tilde{\lambda}) & =-e_{1}\left\langle\tilde{B}_{221}, e_{5}\right\rangle=-\left\langle\nabla_{e_{1}}^{\perp} \tilde{B}_{221}, e_{5}\right\rangle \\
& =-\left\langle\left(\nabla_{e_{1}}^{\perp} \tilde{B}\right)\left(e_{2}, e_{2}, e_{1}\right), e_{5}\right\rangle=-\left\langle\left(\nabla_{e_{2}}^{\perp} \tilde{B}\right)\left(e_{1}, e_{2}, e_{1}\right), e_{5}\right\rangle \\
& =-\left\langle\nabla_{e_{2}}^{\perp} \tilde{B}_{112}-2 \tilde{B}\left(\nabla_{e_{2}} e_{1}, e_{2}, e_{1}\right)-\tilde{B}\left(e_{1}, e_{1}, \nabla_{e_{2}} e_{2}\right), e_{5}\right\rangle \\
& =\left(\tilde{\mu} w_{56}-3 \tilde{\lambda} w_{12}\right) \circ J\left(e_{1}\right) .
\end{aligned}
$$

Analogously we determine $e_{2}(\tilde{\lambda})$ and $e_{i}(\tilde{\mu}), i=1,2$. The conclusion is

$$
d \tilde{\lambda}=\left(\tilde{\mu} w_{56}-3 \tilde{\lambda} w_{12}\right) \circ J \quad d \tilde{\mu}=\left(\tilde{\lambda} w_{56}-3 \tilde{\mu} w_{12}\right) \circ J
$$

Since K and K^{ν} are constant, K^{*} is obviously constant. Using (2.4) we see that $\widetilde{S}=\tilde{\lambda}^{2}+\tilde{\mu}^{2}$ is also constant and then $d \widetilde{S}=0$ gives

$$
\begin{equation*}
2 \tilde{\lambda} \tilde{\mu} w_{56}=3 \tilde{S} w_{12} \tag{4.5}
\end{equation*}
$$

So we can write

$$
\begin{gather*}
d \tilde{\lambda}=-\frac{3\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)}{2 \tilde{\lambda}} w_{12} \circ J, \quad d \tilde{\mu}=\frac{3\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)}{2 \tilde{\mu}} w_{12} \circ J \\
d(\tilde{\lambda} \tilde{\mu})=\frac{3\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)^{2}}{2 \tilde{\lambda} \tilde{\mu}} w_{12} \circ J \tag{4.6}
\end{gather*}
$$

Let us call $\tilde{\lambda} \tilde{\mu}=X$ for simplicity. Then (4.6) gives

$$
\begin{align*}
\langle\operatorname{grad} \tilde{\lambda}, \operatorname{grad} \tilde{\mu}\rangle & =-\frac{9\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)^{2}}{4 X}\left\|w_{12}\right\|^{2} \\
\|\operatorname{grad} X\|^{2} & =\frac{9\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)^{4}}{4 X^{2}}\left\|w_{12}\right\|^{2} \tag{4.7}
\end{align*}
$$

Now a long but simple calculation using (4.6) and (4.7) shows that

$$
\begin{equation*}
\Delta X=-\frac{9\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)^{2}\left(\widetilde{S}^{2}+4 X^{2}\right)}{4 X^{3}}\left\|w_{12}\right\|^{2}-\frac{3\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)^{2}}{2 X} K \tag{4.8}
\end{equation*}
$$

On the other hand, by differentiating (4.5) and using (2.2) and (2.3) we obtain

$$
\begin{equation*}
\frac{9 \widetilde{S}\left(\tilde{\lambda}^{2}-\tilde{\mu}^{2}\right)^{2}}{2 X^{2}}\left\|w_{12}\right\|^{2}=\frac{8 S X^{2}}{\left(K^{\nu}\right)^{2}}-3 \widetilde{S} K \tag{4.9}
\end{equation*}
$$

Bringing (4.9) into (4.7) and (4.8) gives

$$
\begin{align*}
\|\operatorname{grad} X\|^{2} & =-\frac{16 S}{\left(K^{\nu}\right)^{2} \widetilde{S}} \widetilde{-} X^{4}+\left(6 K+\frac{4 S \widetilde{S}}{\left(K^{\nu}\right)^{2}}\right) X^{2}-\frac{3 \widetilde{S} K}{2} \\
\Delta X & =-\frac{16 S}{\left(K^{\nu}\right)^{2} \widetilde{S}} X^{3}+\left(12 K-\frac{4 S \widetilde{S}}{\left(K^{\nu}\right)^{2}}\right) X \tag{4.10}
\end{align*}
$$

As in the proof of part (b) of Theorem 1, it follows from (4.10) that X must be constant. Then $\tilde{\lambda}$ and $\tilde{\mu}$ are constant around p and we conclude that they are constant all over M. With this we differentiate (4.5) to obtain

$$
\frac{8 S X^{2}}{\left(K^{\nu}\right)^{2}}=3 \tilde{S} K
$$

Therefore $K>0$ and then $c>0$. The proposition is now a consequence of Theorem 2 and of the fact that, according to Theorem 5.6 of Calabi [2], the curvature of a full minimal sphere $S^{2}(K)$ in $S^{2 k}(c)$ must satisfy $K=\frac{2 c}{k(k+1)}$. Q.E.D.
(4.11) Proof of Theorem 3. Choose an adapted frame (e_{1}, \cdots, e_{6}) in $Q^{6}(c)$ such that $\left(e_{3}, e_{4}\right)$ spans ν^{*} and $h_{i j k}^{\alpha}=0$ for $\alpha=3$, 4. By (2.4) we know that $h=\sum_{r \geq 5}\left(h_{i j k}^{\gamma}\right)^{2}$ is constant. If $h=0$, then $2 K=K^{*}=K^{\nu}>0$ and $c>0$. Also by a lemma of \bar{O} tsuki [10], p. 96, M is contained in a 4-dimensional totally geodesic submanifold $Q^{4}(c)$ of $Q^{6}(c)$. Hence M must be locally a Veronese surface $S^{2}(c / 3)$ in $S^{4}(c)$, thus giving (a). Now $h \neq 0$ means that $\tilde{\varepsilon}$ is never a point. If $\tilde{\varepsilon}_{p}$ is nondegenerate for some p in M, then Proposition (4.4) gives (c). The only possibility left is when $\tilde{\varepsilon}$ is a line segment of constant length $2 \tilde{\lambda}$. In this case we choose the frame so that $\tilde{B}_{111}=\tilde{\lambda} e_{5}$ and of course $\tilde{B}_{112}=0$. Then $0=d \tilde{\lambda}=$ $-3 \tilde{\lambda} w_{12}{ }^{\circ} J$ and this immediately implies that $w_{12}=0, K=0$ and $c>0$. Again by the above lemma of \bar{O} tsuki, we see that M is contained in a totally geodesic $Q^{5}(c)$ of $Q^{6}(c)$. This gives (b) and completes the proof of the Theorem.

Bibliography

L1] A. C. Asperti, D. Ferus and L. Rodriquez, Surfaces with non-zero normal curvature tensor, Atti Accad. Naz. Lincei, 73 (1982), 109-115.
[2] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Diff. Geom., 1 (1967), 111-125.
[3] M. do Carmo and N. Wallach, Representations of compact groups and minimal immersions of spheres into spheres, J. Diff. Geom., 4 (1970), 91-104.
[4] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of a constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, 59-75.
[5] A. G. Colares and M. do Carmo, On minimal immersions with parallel normal curvature tensor, Lecture Notes in Math., 597, Springer-Verlag, 1977, 104-113.
[6] T. Itoh, Minimal surfaces in 4-dimensional Riemannian manifolds of constant curvature, Kōdai Math. Sem. Rep., 22 (1971), 451-458.
[7] K. Kenmotsu, On a parametrization of minimal immersions of \boldsymbol{R}^{2} into S^{5}, Tôhoku Math. J., 27 (1975), 83-90.
[8] K. Kenmotsu, On minimal immersions of \boldsymbol{R}^{2} into S^{n}, J. Math. Soc. Japan, 28 (1976), 182-191.
[9] K. Kenmotsu, Minimal surfaces with constant curvature in 4-dimensional space forms, Preprint, 1981.
[10] T. Ōtsuki, Minimal submanifolds with m-index 2 and generalized Veronese surfaces, J. Math. Soc. Japan, 24 (1972), 89-122.
[11] L. Rodriquez and I. V. Guadalupe, Normal curvature of surfaces in space forms, Pacific J. Math., 106 (1983), 95-103.
[12] N. Wallach, Extensions of locally defined minimal immersions into spheres, Arch. Math., 21 (1970), 210-213.
[13] Y. C. Wong, Contributions to the theory of surfaces in a 4 -space of constant curvature, Trans. Amer. Math. Soc., 59 (1946), 467-507.
[14] S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math., 96 (1974), 346-366.

Antonio Carlos Asperti
Instituto de Matematica e Estatistica
Universidade de Sao Paulo
Caixa Postal 20570 (Agencia Iguatemi)
05508 - Sao Paulo - SP - Brazil

[^0]: * Work done under partial support by $\mathrm{CNP}_{\mathrm{q}}$, Brazil.

