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Introduction.

The problem we want to discuss in the present paper is that of the asymp-
totic number of bound state energies (negative eigenvalues) of the Schrodinger
operator —A+4-1V, 2>0, in the strong coupling limit A—oco. This problem has
been already discussed by many authors. See, for example, Birman-Borzov [5],
Kac [10], Lieb [13], Martin [14], Reed-Simon [17], Rosenbljum and the
references quoted there. Roughly speaking, in the case of 3-dimensional space
R:, the result obtained by these authors can be formulated as follows: Assume
that V(x) is real and V(x)e L**R2), LP(R}) being the Lebesgue space, and
denote by N(A) the number of bound state energies of —A-+AV. Then N(4)
obeys the asymptotic formula

N(2)=(6ﬂ2)’1SIV-(x)|3’2dx A%(1+0(1),  A—oo,

where V _(x) denotes the attractive part of V(x); V_(x)=min(0, V(x)), and the
integration is taken over the whole space R;. (Here and in what follows, in-
tegration with no domain attached is taken over the whole space.) For the proof,
5], and use the min-max principle combined with a technique of Diri-
chlet-Neumann bracketing, while [10], and use the Feynman-Kac
formula. The aim of the present paper is to derive a similar asymptotic formula
with the improved remainder estimate O(4-*/%) under rather restrictive assump-
tions on V(x).

We shall formulate the main theorem precisely. We work in the 3-dimen-
sional space and consider only a class of attractive potentials, so it is convenient
in the discussion below to write the Schrédinger operator as —A—AiV, V>0,
without using the standard notation —A-+AV. Furthermore, the class of poten-
tials we consider admits finite singularities. For brevity, we confine ourselves
to potentials having singularities at the origin only. Such potentials are impor-
tant in a physical application.

First, we make the assumptions on V(x), which specify the behavior of V(x)
as |x|—0 and as | x|—co. To describe these assumptions, we follow the standard
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multi-index notations and write {x>=(14|x %% We also use the notation f~g
for positive functions f and g defined over the same region when both f/g and
g/f are uniformly bounded.

ASSUMPTION (V). (V.0) V(x)>0 and V(x) is C*-smooth in R\ {0}.
(V.1) For |x|=1, V(x)~]|x|"2 for some d, 0=d <2, and

|02V ()| =C,V(x)| x| '™ for all a.

(V.2) For |x]|=1, V(x)=C{x)>~™ for some m, m>2, and there exists a constant
!, 1=!>3—m, such that

102V (x)| SC,V(x){xy-t«  for all a.

One of typical examples is the Yukawa potential exp(—kr)/r (r=|x|), k>0,
for which we can take d=1, m>1 (large enough) and /=0. Throughout the
entire discussion we fix the constants d, m and [ with the meanings ascribed in
Assumption (V). The choice for /, which seems to be rather peculiar, requires
an explanation. The motivation will be made clear in section 2 where we define
a class of pseudodifferential operators. The choice for [ is closely related to
a pair of weight functions which defines a symbol class of pseudodifferential
operators.

Now, we can state the main theorem. Under Assumption (V), Ve L3 R})
and the operator —A—AV admits a unique self-adjoint realization in L*(R). We
denote it by H(A; V).

THEOREM. Assume Assumption (V) and denote by N(A; V) the number of
bound state energies of H(A; V). Then

1) NQ; V):(Gn.-z)’lgV(x)‘”"zdx LA2140(71), A— 00,

The theorem above gives the semi-classical asymptotic formula for the number
of bound state energies of —h2A—V, 0<h<1. We denote by n(h ; V) this number.
Then n(h; V)=N(h"%; V) and hence

2) n(h; V)=(67r2)"SV(X)3’2dx h=*1+40(h),  h—0,

if the potential V(x) satisfies Assumption (V).

A semi-classical asymptotic formula similar to (2) has been obtained by Colin
de Verdiére and Helffer-Robert for general elliptic (pseudo) differential
operators. The results in these works, for example, apply to the number of
bound state energies less than —& of —h2A—V, k>0 being fixed, if V(x) is
smooth and if x is not a critical value of V(x). However, they do not apply to
the case x=0, because the energy level {(x, & : |&|2=V(x)} has (co, 0) as a
critical point.
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Finally we note that the theorem has one interesting aspect from a stand-
point of the spectral asymptotics. The leading term in formula (1) is associated
to the phase space volume of the region {(x, &) : |£]2<AV(x)}. This region is
of finite volume but is not bounded, which is related to the above-mentioned
fact that the energy level has (oo, 0) as a critical point. In the usual problems
such as those for elliptic operators with coefficients growing unboundedly as
| x|—oo (for example, the Schriodinger operator with growing potentials), the
corresponding regions in the phase space are bounded. This makes it difficult
to apply directly the existing methods (the min-max principle or the tauberian
arguments). In the final section we will make further comments on the main
theorem.

§1. Sketch of proof.

The proof of the main theorem is rather long. We first give a sketch for
the proof.
Let 6=5/(12—6d)>0, and define

(LD ¢(x; H=p(x; <O,

where p(x; )=(|x|*+2172%)"2 The first step toward the proof is to approximate
V(x) by a smooth potential behaving like p(x; 2)~* in a neighborhood of the
origin. By Assumption (V), we can decompose V(x)=V,(x; )+V.(x; 2), where
Vi(x; A) has the following properties:

(V:-0) Vi(x; H>0  is smooth in RZ;

(V1) Vy~p(x; 7% for |x|<1 and V,=0(x>"™) for |x|>1;

(Va-2) [05Vi(x; DI=CaVilx; Dlx; D)™

for C, independent of A>>1, while Vy(x; 4)=0 has support in [x| <477, so that
1.2) [vatx; prmax=06-.

We also have by the Holder inequality that

(1.3) Svl(x; 2)3/2dxzSV(X)Q'/ZG.'X—}-O(Z‘E/S)_

The main theorem follows from the next result.

PROPOSITION 1. Assume that V(x; A) satisfies (V;-0)-(V;-2), and denovte by
N(A; V) the number of bound state energies of —A—2AV(x; 2). Then

N ; V1)=(67r2)‘1SV(x; D x £(1+0(A71?), A— 00,
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If, in addition, a family of potentials V(x; 2, €) with parameter ¢ satisfies (V ;-0)
-(V;-2) uniformly in e, then the remainder estimate above is uniform in e.

We shall complete the proof of the main theorem, accepting
as proved.

PrROOF OF THEOREM. Recall the decomposition V=V (x; )+ V.x; ). For
£=0, let NJ(2; V) be the number of bound state energies less than —x of
HQ; V); No(2; V)=NA; V). We use a similar notation N.(4; V;2), 15752,
for the potential V;(x; A).

Since V(x)=Vy(x; A),

(1.4) N@; V)ZN@; V).
This gives a lower bound for N(2; V). By the Birman-Schwinger principle

(Birman [4], Schwinger [20]), N.(A; V), £>0, coincides with the number of
positive eigenvalues greater than 1 of

T (A=A—A+r)"V(=A+r)712.
We decompose T, (A)=T,(A)+T,.(1), where
T (A=A—A+8)2V j(x ; N(—A+r)"?2,
and use the Weyl inequality or the Fan inequality ([17], p. 383). Then we have
(1.5) Ne(2; VISNLA; (1—26)7 V1) +Ne4; e7Ver)+1

for any ¢, 0<e<1. (A similar argument to obtain can be found in Tamura
[22], pp. 178-181.) By the Cwikel-Lieb-Rosenbljum bound ([17], XIII. 12)
and by (1.2),

(1.6) N(A; eV )=e720"*)

uniformly in x. We now let k—0 and take e=A"*% Then [Proposition 1|, toge-
ther with [1.3), (1.4] and [1.6), proves the theorem. O

The remainder of the paper is devoted to the proof of [Proposition 1. Let
V(x; 2) be as in and let N.(A; V), >0, be the number of bound
state energies less than —x of —A—AV(x; 2). The proof is done by taking the
limit k—0 of N (2; V;). For technical reasons, we consider —A-+x rather than
—A itself, because (—A)™! is not well-defined as a bounded operator on L2(R3).
The choice for £ made actually in the proof is a little more technical.

Now, we define the operator A.4) by

(L.7) AD=V(x; HVH=A+e)V(x; H7VE

A.(4) is a positive self-adjoint operator with a compact inverse. We denote by
Md(p; V) the number of eigenvalues less than g of A.(2). By the Birman-
Schwinger principle, M (2; V;)=N4; V). Thus the proof of is
reduced to the study on the asymptotic distribution of eigenvalues of A.(R).
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Let {g}51, py=p;4, k), be a system of eigenvalues of A,(2) and let {u;}o,, u;
=u;(x; 4 k), be an orthonormal system of the corresponding eigenfunctions.
For given symbol w(x, &), we define M (u; V;, w) by

M{y; Vi, 0)= 3 |o(x, Do)u;|?,
#i<e
where || | denotes the L? norm. is verified by combining the two
lemmas below.

LEMMA 1.1. Fix 8, [>0>3—m, close enough to 3—m, and take 9, 6>0, so
small that 6(m—260)<m+60—3. Let w(x; A) be a real symbol (independent of &)
with support in

RoD)={(x, &) : 1-UxD*V(x; <2},
and assume that
(1.8 [05w(x ; DISCop(x; )7,

¢ being as in (1.1). Then there exists ko(A) such that MJA; V;, @)=0() uni-
formly in g, 0<g<rkok).

LEMMA 1.2. Let 6, 0 and k,(A) be as in Lemma 1.1. Let w(x; A) be a real
symbol with support in

Zo)={(x, &) : 27DV (x; H>1},

and assume that w(x; A) satisfies (1.8). Then
M2; Vs, w)=(6ﬂ2)'lggw(x; DV (x; Ddx 240

uniformly in g, 0<k<ko(4).

is a key lemma which controls the contribution from the critical
point x=oco. The proof uses the Feynman-Kac formula. This idea is due to
Lieb [13]. On the other hand, the proof of is standard and it uses
the tauberian argument and the theory of oscillatory integral operators.

§2. Class of oscillatory integral operators.

We begin by fixing a pair of weight functions. Let V(x; 4) be as in Prop-
osition and let ¢(x; 2) be as in [1.I}. We define

F(x; D=AV(x; D+1x>"%
for 6 and ¢ as in [Lemma 1.1, and fix the pair of weight functions {®, ¢} as
O=0(x, &; V=UEI*+F(x; )'*,  ¢=¢(x; A).
By definition and by (V;-1)
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F(x, 2)1/2¢(x; 2)N21/2‘0(x; Z)(2—d)/2N21/2—a'(2—d)/2N21/12
for [x| <1, and
F(x; DY2¢(x; =202 x)t-0

for |x|>1. By assumption, {>>3—m and hence there exists ¢ >0 small enough
such that

(2.1) D(x, §; DP(x; HZAKx>HES.

This is required in order that classes of pseudodifferential operators with weight
pair {®, ¢} are closed under calculus of composition and adjunction, and also
this is the motivation by which we take the constant [/ as in (V.2). For later
references, we further note that

(2.2) (€12 4AV(x; ANV~ D(x, &5 A)
and
2.3) V(x; DTMUEPHAV (x5 D)= CALx)KE°

with another ¢, if (x, £)e2(1), 24(2) being as in is proved in
a way similar to [2.1).

2.1. Class of pseudodifferential operators.

DEFINITION 2.1. We denote by L, (1), 2>1, the set of all a(x, &; 1) such
that

|0g08a(x, &; D ZCap@(x, &; A2 g(x; A)~1A

for C,s independent of 2. We also say that a family of symbols a(x, &; 4, ¢)
with parameter ¢ belongs to L, ,(4) uniformly in ¢ if the constants C,; above
are taken independently of e. _

A pseudodifferential operator a(x, D,; A) with symbol a(x, &; 1) of class
L, o(2) is defined as

a(x, D,; l)f(x):geix.fa(x, £: N&)dE, dE=Q2r)¥2dE,

where f(&) is the Fourier transform of f; f= Se‘”'é f(x)dx. We denote by

OPL,, ,(4) the class of such operators. By the standard arguments (Beals [3],
Kumano-go [12], Treves [24]), we can prove that the classes OPL,, ,(2) are closed
under calculus of composition and adjunction. We omit the detailed statements
on such a calculus. (For the details, see, for example, Theorems 4.1 and 4.2 in
[3].) We can also prove that operators of class OPL, (1) are L2bounded uni-
formly in 4. The proof is done in exactly the same way as the L2-boundedness
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of the Hérmander class S5 ;, 0=0<p=1, is proved.

LEMMA 2.1. For k=0 integer, there exists N=N(k) such that a(x, D;; A)
of class OPLy,x(2): LXR3)—H**(R3) is bounded uniformly in 2, where H*(R2)
denotes the Sobolev space of order s.

PROOF. Since £ is an integer, (—A)*<OPL_,; o(4), and hence (—A)*a(x, D, ; 2)
€O0PL, 4(4) by [2.1), if N is large enough. This proves the lemma. m|

2.2. Class of Fourier integral operators. The proof of uses
the theory of Fourier integral operators. We here introduce a class of such
operators.

DEFINITION 2.2. We denote by A, ,(4), A>1, the set of all a(x, § y; A)
such that

|0g080y a(x, &, v; A SCupy@(x, &; PG (x; )" Pig(y; A)~

for C.g, independent of A.
Next, we describe the conditions to be imposed on a phase function (cf.
Kumano-go [11]).

ConpITION (¥). We say that a real-valued smooth function ¢(x, &, y; ),
A>1, satisfies (¥), if

T.0) P=¢—(x—y)-E=0(|¢&||x—y|?) as |&|—oc and x—y;
1) 10808071 | =Capy|E1D(x, &5 DT p(x; DWPG(y; D)~

for C,s; independent of 4;

@.2) |V:¢4:|<|€]/100 and ||V, Vey| <1/100,

where V.V, is the 3X3 matrix with components (0%/0x,;05)¢;, 1=7, #=3, and
|l 11% is the matrix norm defined by taking the square summation of all components.
(The numerical constant 1/100 above has no special meaning, and it means only
that the quantities in (¥'.2) are sufficiently small.)

For later reference, we here introduce the notation

2.4 Tax, &, 5 D= Vg’ +sx—2, & 33 Dds.

Now, we define Fourier integral operators. Let a(x, & y; A) be of class
Ap,o(A) and let ¢(x, & y; A) satisfy (¥). Furthermore, let H(&, y) be a smooth
function (independent of x) with compact support. Then our Fourier integral
operator is defined as

1¢(aH)f(x)=Sge"W'f’“ Va(x, & y; DHE, ) f(y)dyds.

It is not hard to see that I,(aH) is well-defined as an operator from & into itself,
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S being the Schwartz space. As is seen from Condition (¥'), the phase function
¢ takes the form perturbed from (x—y)-§ and hence the operator I,(aH) has
many properties similar to those of pseudodifferential operators. For example,
the following composition formula can be proved in almost the same way as in

the case of pseudodifferential operators ([3], [11], [24].

LEMMA 2.2. Let b(x, &; 2) be of class Ly, q,(A) and let a(x, &, y; A) be of
class Ap,, q,(A). Then:

(i) The composition b(x, D, ; N)I,(aH) is represented as I4(cH) with c(x, &,
y; A) of class Ay, oA), where p=7p,+p, and ¢=q;+q..

(ii) The amplitude function ¢ admits the following asymptotic expansion: For
any N

¢= 3 La(x, Vagp; D)atry

lal=

with vy of class Lyin,qin(A), where Lo Ay o(A)—>Ap, q,(A) (pa=p+lal, ga=q+
la|) is the mapping defined by

Lo(x, Vo5 b)a=(a)' D {0gb(x, Vap; Dalx+u, & 35 D}u=o,
Vo=V, (x, x+u, & y; A) being as in (2.4).

§3. Parametrices of resolvents.

Let A,(2) be the self-adjoint operator defined by [1.7) The aim in the
present section is to construct microlocal parametrices of the resolvents of A.(4)
by use of pseudodifferential operators of class OPL, ,(4).

We begin by specifying the constant x. Let Y,(2) be as in and
define

k(A= inf O(x, &; D/g(x; D).

(x,56)e3y(d)

Roughly speaking, as A1—oo, k,(2)>0 behaves like k,(A)—0 for m<3 and like
ko(A)—co for m>3. This will be easily seen, if V(x)~<{(x>-™. From now on we
assume that & ranges over the interval (0, x,(1)). If & is as above, then by

3.1 ‘ (|E1PHAV(x; N=CO(x, &; D7'(x; A7
in Y,(2). We now write the total symbol of A/ (2)-+1 as
(Ao(x, &; D+DA+Bo(x, &; 2, )

where Ao(x, &; D)=V (x; )7E|% If w(x, &; A) (€ L, (A) has support in 2o(2),
then it follows from and that w(x, &; 2)B(x, &; 2, k) belongs to L, 1(4)
uniformly in «.

Now, let w(x, &; 2) be as above. We construct a parametrix of (A, (A)+21)?
w(x, D,; A). We formally set
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A+ 0(x, Dy = i ps(x, Das 2.

For notational brevity, we occasionally drop the parameter «, the dependence
on r being always uniform. The symbols p; are determined in the usual way
and a simple inductive argument shows that p; is supported in X(1) and takes
the form

pi=(Ao(x, &; D+ a;x, §; A)
with a;eL; ;). We fix N large enough and define

Pix, €5 D=3 pilx, &3 .
Then by construction
(A D)+ D' 0=Py+(ALD)+ARy
with some Ry=OPLy n(4). The symbol Ry(x, &; 2) has support in 24(2). This
follows from the fact that the operator A,(1) under consideration is a differential

(not pseudodifferential) operator.
The same reasoning as above applies to the iterated power A,(1)*. We have

(3.2) (A 25 =Pyo+(AAD)*+1%)Ry,
where Ry<=OPLy, (1), and

Puolx, £ D=(Au(x, &; z>k+zk>-1f§aj<x, £; 0

with another a;& L; ;(4).
The next lemma is used together with the Agmon kernel theorem (Agmon
[1], Theorem 3.1), when we estimate kernel functions of integral operators.

LEMMA 3.1. Let w(x, &; A) be of class L, 2) and be supported in 2,(A).
Define
GA)=w(x, Dy ; D¥(AL)F+A5).

If k is taken large enough, then G(A): L*R3)—H*(R2) is bounded uniformly in
£k and A.

PROOF. The proof uses the relation (3.2). If & is large enough, then by
P, is of class OPLy. y:(4) for N’ large enough, and hence so is P%. Thus,
taking the adjoint of and using prove the lemma. 0

Let £ and w(x, &; A) be as in Lemma 3.1I. For example, [Lemma 3.1 is ap-

plied to estimate a kernel of an operator of the following form:
SA)=w(x, D;; V(A +2*)"'Ry(x, Dz 2),

where Ry(x, &; A) is assumed to be supported in X,(4) and to be of class Ly, x(1)
for N large enough.
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LEMMA 3.2. Let S(A) be‘as above and denote by Kg(x, y; 2) the kernel of S(A).
If N is taken large enough, then '

| Ks(x, x; HI=CA ¥ x>
PROOF. Take wy(x; 2) (€ Lo o(2) with support in 3¢(2) in such a way that
wo(x; ARN(x, &5 D=Rn(x, &5 A)
and decompose S(4) as
SQ) =[x, Dy; V*(A*+2*) 0 ]Ry(x, Dy; A).

We denote by T(2) the operator in bracket and by Kr(x, y; A) the kernel of
T(A). Then Agmon’s kernel theorem combined with [Lemma 31 proves that
Kr(x, y; A)=0(1). On the other hand, if N is large enough, then the kernel
K{M(x, y; A) of Ry is estimated as

| KV (x, v; AISCA x> x—yy*

by making use of and by integrating by parts. Hence the composite kernel
K obeys the estimate in the lemma. O

§4. Proof of Lemma 1.1.
The present section is devoted to the proof of Lemma 1.1l

LEMMA 4.1. Under the same assumptions as in Lemma 1.1,
M35 Vi, =G, ((@lx; DV (x5 2)dx 27+C:2

for C;, 1=7=<2, independent of £ and A.
We first complete the proof of Lemma 1.1, accepting the lemma above as
proved.

PrROOF OF LEMMA 1.1. We may assume that 0=w=1. Hence, for the proof,
it is sufficient to prove that

Vix; *2dx=02"1?).

Sll-5<x>20V(x; H<e

Recall that 4, 1>60>3—m, is close enough to 3—m and that

0<o<(im+6—-3)/(im—20)<1.
Set

co=m+0—3—(m—26)0/(2—20), 0<eekl,
and v=g,/(m—20)+1/(2—20), v>0. We write
Vix; D=[Kx>?V(x; DPUx; 2,
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where U(x ; )=<{x)> "V (x; 2)*** and we apply the Holder inequality with
(p, 9)=(3/¢eq, 3/(3—¢,)) to the decomposition above. By (V;—1), we can assume
that V(x; )=0(x> ™) in the integral domain, and hence U(x; A)?=0(Kx>%9),
g>1, is integrable. Thus the integral under consideration is estimated by

50/3
A.1) x>0V (x 2))3’“/50dx] .

I:Sll—auﬂﬁV(r; nH<e
We now define
m(s; A)=meas({x: x>V (x; )'<s}).

Then, by (V;—1), m(s; )=0(s*™29) s—oco, and the integral [4.1) is estimated
as

[S‘” s eodm(s ; 2)]50/3:0(2_1/2).

a1-9/2

This proves the lemma. O

ProOOF OF LEMMA 4.1. We again drop the parameter £ in the proof, and
assume that 0<w=<1. We further assume that w=1 on R}XxXRi\XY,(1), which
loses no generality. Estimate implies that we L, ,(A). We denote by V),
the multiplication by V(x; 2). Set QA)=(—A-+x+AV;)"%, so that

(4.2) (AdD+AI=VPQ@V 2.

Furthermore, recall the notations {g;}7; and {u;}7-, (see section 1), and denote
by (, ) the scalar product in L*(R32).
We start with the following inequality :

MZ; V3, w)§422§1(T(2)u,~, u;)=4Trace(2*T(4)),
where T(A)=VY2QQw®*V ;Q(A)VY2 This inequality can be easily obtained by
making use of the trivial estimate yp;+2<24 for ux;<2 and of the relation
u;=(;+AVIPQAV i ?u;,
and also it is easy to see that T'(1) is of trace class. We write
QWo=wQ)+Qr)Q4),

where r(A)=w(—A)—(—A)w, and use the cyclicity of trace. Then Trace (42T (1))
can be decomposed into two terms;

I,(2)="Trace (AW Q(A)AW 1)Q(4),
I,(A)=A*Trace (V}*QQr(H)QRwV :QAV ),
where Wi;=wV; W(x,; HD=w(x; HV(x; H=V(x; A)). We assert that:

4.3) 11<x>§cg<w<x L DV(x; D)dx 2,
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4.4) I,(A)=0Q).

The assertions above complete the proof at once. O

Proor OF [4.3). The proof uses the idea in the proof of XIIL12,
Reed-Simon [17], to which the Feynman-Kac formula is elegantly applied. Set
PA)=(—A+k+AW ;) ' and denote by Ky(x, y; 1) and Kp(x, y; 4) the kernels
of Q1) and P(Q), respectively. Then, by the maximum principle for elliptic
operators of second order, 0=Ky(x, y; )=Kp(x, y; 4), and hence

T, (A)ZTrace (AW P,(AW )P (4)),

where Py=(—A-+k)"!. The term on the right side can be estimated in exactly
the same way as in the proof of XIII.12, and we obtain [4.3). O

PrROOF OF [4.4). The proof is based on the theory of pseudodifferential
operators of class OPL, ,(2). By [4.2)

12(2):222((&(2)-#2)‘1%;, gAALA+uy),

where ¢(A)=w(AA)+A) V2 )*V7% Since w=1 on R} X R} 2Y(4) by assump-
tion, the symbol of the differential operator p(2)=V7'/*»(A)*V7"* has support in
2(2). We follow the arguments in section 3 to construct a parametrix of ¢(4).
More precisely, the arguments there should be slightly modified, because p(4) is
not of class OPL, ,(2) but of class OPL_y _»(4) for N large enough. However,
such a modification can be easily justified. In any case, ¢(4) is represented in
the form

g A=a,+o(A)+D)ay,

where ay=OPLy, y(4) for N large enough, while a,;=O0PL, (1) and its symbol
is supported in 2,(A).

LEMMA 4.2. Let B(A): L¥R3)—L*R3) be bounded uniformly in 2 and let
wy(x,&; A) be of class Ly y(A). If N is taken large enough, then

3 lxuy, BOu)|=0(),  2-eo.
LEMMA 4.3. Let w(x, &; 2) be of class L, () with support in Xy(A). Then
é [((AeD)+ D) uj, 01(AD)+2D) " uy) [ =047,

COMPLETION OF PROOF OF [4.4). We use with B(A)=(A4,A)+2) .
Then Lemmas [4.2 and complete the proof of at once. O
ProOOF OF LEMMA 4.2. We decompose wy(x, D,; 2) as

oy =Lx>" D> (D> x)'wy].

The operator {x)>~*D,>"* is of Hilbert-Schmidt class and so is the operator in
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bracket, if N is large enough. This proves the lemma. O
PrROOF OF LEMMA 4.3. By assumption, there exists a non-negative symbol
wy12(x, §; A) (€ Lyjz,1/2(4) with support in 24(4) such that

wi(x, &; D=wyx, §; Dox, §; 2)
with w,e L, 4(4). Hence we can write
wy(x, Dz; A=wye(x, Dz Dwww,o(x, Dy H¥+oy

with another w,=OPL, ,(4), where wy=OPLy y(2) for N>1. Thus we have only
to prove that

AL+ 012l ns=0@7),

where || ||u.s denotes the norm of Hilbert-Schmidt class. We again follow the

arguments in section 3 to construct a parametrix of (A.()+4)wy, and we
obtain

(A D)+ 'wy2=po(x, Dy ; DAL+ 0N
with another wy=OPLy y(4), where po(x, &; A) takes the form
Po=(A(x, &; A+ ay(x, &; ), A1/2€ Lyjs 1/9(A),

and we have again written Ay(x, &; 2)=1&[|?V(x; )~ It can be easily verified
that :

1AL+ oy lasSEA oy lus=00A1);
npollf{.éCSS(Ao(x, £ DD aus(x, &; D*dEdx=0Q"Y).

This completes the proof. O
As an immediate consequence of Lemma 4.3, we obtain

LEMMA 4.4. Let wy(x,&; 2) be as in Lemma 4.3. Then
#]zéll(wluj; u;)|=0Q).
This lemma is used for the proof of

§5. Proof of Lemma 1.2.

The present and next sections are devoted to the proof of We
first break up 2,(4) into two regions;

Q:0={x, HeZo) : |§1°<AV(x; /2 or |§]*>22V(x; D},
Q0= A{(x, e Zo(A): AV(x; D/3<IEIP<3AV (x; D} .

LEMMA 5.1. Let a real symbol w(x, &; A) be of class L, o(A) and be supported
in 2,0). Then
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6.1) M; Vi o=a ([ ot & 2dEds+0).

We should note that the symbol @ specified above really exists. The lemma
above estimates the contribution from the outside of the energy level {(x, &):
|E]2=AV(x; A)}. The proof is based on the “resolvent method”, which is more
or less standard in the study on the spectral asymptotics (Agmon [2], Robert
[18]). So we give only a sketch for the proof. (For the details, see the proof

of Theorem 1.1, [227].)
SKETCH OF PROOF OF LEMMA 5.1. (1) First, fix an integer 2 so large that

AA)"F is of trace class. Let {,=2*(1+:41""2), and introduce an oriented curve
c() from &, to &, not intersecting the positive axis, such that: (i) the length
of ¢(C,) is bounded by CA*; (ii)

(5.2) | Ag(x, &5 D*—=L1=C(Ao(x, §; DF+2%)
for (x, §)e2,(A) and {=c(A,). Let w(x, &; A) be as in the lemma. We define
E@, A=A -0

and denote by Kgz(x, y; {, A) its kernel.
(2) Trace[E(, 2] can be represented as the Stieltjes transform of M(y;
Vi, 0%);

Trace (B, 21=| (u—0dM (a1 Vs, w9).
Hence, by the inversion formula due to Pleijel [16],
IMi(2; V3, w*)—-(Zm')"S « [Trace[E(, A)1dl| =Ca**| Trace[ E(Co, D] .
€Go

3) enables us to construct a parametrix of E({, ) by the arguments
in section 3 and hence we can approximate Kg(x, x; {, A) with the error estimate
O ¥ xy~*. (For the proof, is used.) We can prove

Trace[E(, A)]J=0(1" %32
and by a simple application of Cauchy’s integral formula
(27ri)"lg < )’I‘race LEE, A1dC=Fko(N)+0Q),
¢Go
where k,(4) denotes the leading term in formula (5.1). Thus
M{Z; Vi, ®)=ko(A)+0(),
from which formula (5.1) follows by Lemmas and O
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§6. Completion of proof of Lemma 1.2.

In this section we work in a neighborhood of the energy level {(x, &): |&|2
=AV(x; A)}.

LEMMA 6.1. Let £2,(2) be as in section 5. Let a real symbol w(x, &; ) be
of class Lo o(A) and be supported in 2,(R). Then MJA; Vi, w) obeys the same
asymptotic formula as in (5.1).

The lemma above can be also verified in almost the same way as in the
proof of Theorem 4.1, Tamura [23] So we give only a sketch for the proof.
The proof is based on the construction of microlocal parametrices of exp (—itA.(1))
and on the tauberian arguments due to Hérmander [8].

SKETCH OF PROOF. (0) We begin by fixing several notations. We define

Golz, &, H={x: |x—z[<eg(z; D}
for z such that A'"%¢z>*V(z; A)>1, and
II(h=1{S: |E—&]|<h}

for fixed &,=5? S? being the unit sphere. We denote by X the pair (S, A), S>1.
and further define

Iz, X, D=1{6: AV(z; D/S<|E|*<SAV(z; A), &/1&1ell(h)}, -
Oz, &, X, )=G.(z, ¢, )Xz, X, hXG,(z, ¢, A).

Throughout the proof z is assumed to be fixed as above.
(1) Let w(x, &; 2) be as in the lemma. For the moment we assume that
w is supported in

{(x, €2 : &/1&1€ll(ho)}

for h, small enough. We set w(; 4, z)=w|,-,, so that w(§; A, z) has support
in Ii(z, X5, 2) with X,=(3, hy). Let X(x; 4, 2) (€L, X)) be a cut-off function
with support in G.(z, &, A), ¢, being fixed small enough, such that X=1 and
02X=0, |a|=1, at x=z. We define

bo(x, &; 4, 2)=X(x; 4, 2w§; 4, 2).

By definition, b, is supported in G.(z, &, A) X1z, X5, ) and we may assume
that b, belongs to L, o(4) uniformly in z.
We now construct a parametrix of

Ut; z, H=exp(—itAdA)b(x, D ; 2, 2)
by the usual3W.K.B. method. We formally set

Ut; =, 2)-_—‘;[(/,(1)1'1{5);
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where H,=H,(&, y; )=exp(—itA,(y, &; A)). As is seen from the discussion
below, all the amplitude functions p; has compact support. Thus we may assume
that H, is compactly supported by multiplying a cut-off function, if necessary.

(2) First, we have to determine a phase function ¢. Let X,=(4, 2h,) be
fixed. Then there exists ¢(x, & y; 4, z) such that: (i) ¢ satisfies Condition
@) ; (il) ¢ solves the time-independent Hamilton-Jacobi equation

AO(X) v$¢; Z)ZAO(y) E’ 2)7
¢=0 when (x—y)-§=0 and V,¢=§& at x=y

(6.1)

in O(z, 2¢,, X, A). This is proved by exactly the same way as in the proof of
Theorem 3.1, [237]

Let b, be as in step (1) and let ¢ be as above. Then there exists
aox, & y; 4, z) of class A, o(4) such that: (i) a, has support in O(z, &, X,, 4);
(i) @o|z=y=r=w(z, §; A); (iil) for f(x) with support in G.(z, /2, 2)

bo(x, Dz; 4, 2) f(x)=Iy(ao)f(x).

(For the proof, see Lemma 4.1, [23].) We take a, to be an initial condition of
the transport equation for p,.

(3) Next, we have to determine the amplitude functions p;{t, x, &, v; 4, 2)
by solving the transport equations. The phase function ¢ solves (6.1) in
Oz, 280, X4y ). If x€G,(z, 260, ) and E=li(z, X, 2), then [VeAo(x, &; |~
ARV (z; A)7Y% which implies that a classical particle starting from z at t=0
moves at a speed proportional to 2}/2V(z; 2)~¥%2. Hence it remains in G,(z, 2¢,, 4)
for [t| <pto(z; A), p<K1, where 7,=2"Y2V(z; )'%*p(z; A). Thus, itis convenient
to introduce the following class of functions with values in A, ,(4).

DEFINITION. Let I(z, A)={t: |t| <pzo(z; A)}. We denote by S(I(z; 2); 4, ,(A)
the set of all a(t, x, & y; 4, 2z) such that for all j, 7,(z; 2)/0las A,, (1) uniformly
in z and tei(z, A).

The transport equations for p; are given inductively by use of the composi-
tion formula in Lemma 2.2, and the initial conditions for p; are chosen as pq| ;-
=a, and p;|;-0=0, j=1. Then, for N, N>1, there exists an interval I,(z, 2)
such that we can determine p; 0<7<N—1, with the following properties: (i)
p;,€SU(z, A); Aj ;A); (i) p,; has support in O(z, 2¢,, X,, 2) for t€ly(z, 2). (For
the detailed discussion, see pp. 95-96, [23].) Thus we can construct parametrices
of Ut; z, A) for t€ly(z, A).

(4) Let E(@; z, H)=b§U(t; z, 4) and denote by Kz(t, x, y; z, 2) its kernel.
By making use of Lemma 2.2 again and of the Duhamel principle, we have

E@; 2z, Of=I,(qH)[+Tx; 2, Df

for f as in step (2), where
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TN:S:b;v; exp (—i(t— ) A y(r yHy)d's

and ryeSU(z, 4); An,~¥(A), N>1, has support in O(z, 2¢, X4, ), while g
Sz, A); Ao o(4) takes the form

q:bo(x, vx¢; 2; Z)pO(t) x: S, y; 2) Z)+41
with ¢,€SU,(z, 2); A;1(4). In particular, at t=0 and x=y=gz,

g=w(z, &; D*+0D(z, &; N 'd(z; H™).
We have to estimate the kernel Kf¥(t, x, y; z, A) of Ty. Set KM, z; )=
K" |4oy—,. Then

|0IK#Y (@, z; | =0Q" %2>, k>1, 0=5=2.

This is proved by making use of Indeed, take wo(x; 2) (€ Lq o(2)
with support in G.(z, 2¢,, 4) in such a way that w,» y=7y, and decompose T y as

TN=S:F(1‘, s: 2, DSx(s; z, ds,

where
F=b%exp (—i(t—s) A )AL+ *w, ,

Sy=(AQ)+* 1 4(ryH;).

Then the argument in the proof of Lemma 3.2 is applied to the decomposition
above. Thus we can approximate Kg(t, z; A)=Kg|z—,-. With the error estimate
O~ ¥ z>™*).

(5) We represent Kx(t, z; A) as the Fourier transform of the spectral func-
tion. Set vj(z; A)=0b%u,;)(x; A)|,-, for the normalized eigenfunction u; and
define

ep; z, A= 2 |vi(z; A
#<u
Then
Kilt, 2 2)=Se‘“”de(p; 2, 2).
By exactly the same tauberian arguments as in [8], we obtain

62 ez H=Cx)*| 0@ &5 DHEA+0Galz; 7).

1812<AV (23

For the derivation, we must carefully look at the contribution which the time
interval Io(z, A) makes to the remainder estimate.

(6) We now recall the definition of b,. The symbol bf of b} is written in
the form b§=b,+b, with by L, ,(2). If we set wy(z, &; )=b,],-,, regarding z
as variables, then wy < Ly, y(A) for N> 1, because 0%b¢|-,=0 for |a|=1. Thus
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we can write
vi{z; A={o(z, D,; A+oy(z, D,;; Dluiz; 4).

Hence, we integrate with respect to z and use to obtain the

desired formula for o specified in step (1). A partition of unity, together with

gives the formula for @ as in the lemma. m|
Proor oF LEMMA 1.2. Once Lemmas and are established, the proof

is easy. Indeed, by a partition of unity, the lemma follows immediately from
O

§7. Proof of Proposition 1.
PROOF OF PROPOSITION 1. In the proof of Lemma 1.1, we have proved that

V(x; AD¥dx=0@""%).

Sll—5<x>20V(x; <t

Combining this with Lemmas [.1 and and taking the limit x—0 give the
asymptotic formula for N(A; V;), and also the second assertion is clear from
the proof. O

§ 8. Concluding remarks.

We shall make several comments.

(1) The restriction that the space dimension n=3 is not essential. The
result can be extended to the case n=3. (See XIIL. 12, [17].)

(2) The assumption that V(x) is strictly positive is also not essential. Indeed,
the proof of does not use this assumption essentially, and in the
proof of Lemma 1.2 we work exclusively in X,(4) where V(x)>0. The proof
for general V(x) depends on the choice for a nice pair of weight functions.
Let @={x: V(x)>0} and let d(x, 02) be the distance from x to the boundary
0f2. Such a pair will be determined using the distance function d(x, 02). Thus
several assumptions should be made on the behavior of V(x) in a neighborhood
of 08. :

(3) The result is closely related to the works of Seeley [21], Merlose
and lvrii on the asymptotic distribution of eigenvalues of —A in bounded
domains. Let £ be a bounded domain in R} with smooth boundary and let
V(x)=¥o(x) the characteristic function of 2. (Such a V(x) is called a square-
well potential.) Then, by the min-max principle

N@; V)=(6zx")"vol (2)2*(14+0(27"%)).

Unfortunately, our result cannot cover this important case.
(4) The author does not know whether or not it is possible to determine
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the second term in formula (1). As is well known, the second term problem
requires the information on exp(—:tA,(1)) for ¢ large and hence the information
on the global behavior in ¢ of the Hamilton phase trajectory plays an essential
role. In the present problem, the phase trajectory is defined as solutions to the
Hamilton equation

2=VeAo(x, &; 1), E=—V,Alx, &; ).

This trajectory goes to infinity (|x(t)|—c0) in a finite time, which will be easily
seen, for example, in the one dimensional case. This makes the second term
problem very difficult.
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