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\S 1. Introduction.

In this paper we study problems concerning the following two questions:

QUESTION 1. Which 3-manifold (or lens space) can be obtained from $S^{3}$ by
integer surgery on a knot ?

QUESTION 2. Which 3-manifold (or lens space) bounds a compact 4-manifold
that is a homology $S^{2}$ ?

These two questions are related each other. In fact, if a 3-manifold $M$ is
obtained from $S^{3}$ by integer surgery on some knot $k$ , then $M$ bounds a compact

4-manifold $W$ which is homotopy equivalent to $S^{2}$ .

$\}W\simeq S^{2}$

Concerning Question 2, Fintushel-Stern [F-S] observed that a lens space
$L(p, q)$ bounds a homology $S^{2}$ only if $q$ is a quadratic residue mod $p$ . They
and N. Maruyama showed that, in some special but non-trivial cases of $p$ and
$q,$ $L(P, q)$ is obtained from $S^{3}$ by integer surgery on a knot. To the best of
our knowledge, these are all known results for Questions 1 and 2.

We study the above questions for the 3-manifolds which have the same
homology type as $L(p, 1)$ . In \S 5 a certain new invariant is defined for some
class of 3-manifolds and it is proved that vanishing of the invariant is necessary
for such manifold to bound a homology $S^{2}$ . In \S 6 we calculate the invariant
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for lens spaces and show that there are infinitely many lens spaces $L(p, q)$

which cannot bound any homology $S^{2}$, though each $q$ is a quadratic residue
mod $p$ .

In \S 7, we shall show that $L(p, q)$ and $L(p, 1)$ bound simply connected 4-
manifolds which are homotopy equivalent relative to boundaries when $q$ is
a quadratic residue mod $p$ . As a corollary we obtain many examples of compact
simply connected 4-manifolds which are homotopy equivalent relative to boundaries
but not homeomorphic.

REMARK. The term ‘integer surgery’ means Dehn surgery with an integral
coefficient. But, in the following sections, we use the term ‘surgery’ instead of
‘integer surgery’ for brevity.

\S 2. Notations and conventions.

Throughout this paper, we use the following notations and conventions.
A 3-manifold always means a closed, connected and oriented 3-manifold while

a 4-manifold is always assumed to be compact, connected and oriented. When
$W$ is a 4-manifold and $x\in H_{2}(W, \partial W)$ , $y\in H_{2}(W)$ , then $(x, y)$ means the inter-
section number of $x$ and $y$ . For 2-chains $c_{1}$ and $c_{2}$ , we also use $(c_{1}, c_{2})$ as their
intersection number. Let $M$ be a 3-manifold and $x,$ $y$ be torsion elements of
$H_{1}(M),$ $lk(x, y)$ means the linking number of $x$ and $y$ . For a l-chain $c_{1}$ and a
2-chain $c_{2}$ in $M$, their intersection number is denoted by $\langle c_{1}, c_{2}\rangle$ .

$W$ is called a 2-handle body if $W$ is constructed from $D^{4}$ by attaching a
finite number of 2-handles. Suppose that a 2-handle $h$ is attached to a 4-manifold
$V_{0}$ on a component of $\partial V_{0}$ . Let $V$ denote the resulting manifold.

Then we abuse the notation $h$ for the core of $h$ . Also, by $\partial h$ , we denote the
boundary of the core of $h$ . Let $h^{*}$ denote the core of the dual handle for $h$

and $\partial h^{*}$ denote its boundary. Let $M$ be a component of $\partial V$ such that $M\supset\partial h^{*}$ .
Then $h^{*}$ can be regarded as a relative cycle of (V, $M$). By $[h^{*}]$ we denote an
element of $H_{2}(V, M)$ represented by it. Also we denote by $[h]$ the element of
$H_{2}(V, V_{0})$ represented by $h$ . When there is a natural isomorphism $j:H_{2}(V)arrow$
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$H_{2}(V, V_{0})$ , for example, in the case of $V_{0}=D^{4}$ , we abuse the notation $[h]$ for
$j^{-1}([h])$ .

Let $CP(2)$ and $\overline{CP}(2)$ denote complex projective planes. We assume that
the intersection form on $H_{2}(CP(2))$ is (1) while the intersection form on $H_{2}(\overline{CP}(2))$

is $(-1)$ . Let deg $(f)$ denote a degree of a map $f$ .
Let $N$ denote the natural numbers $\{0,1, 2, \}$ and $Z$ denote the integers.

Let $E_{n}$ be a unit matrix of degree $n$ .
We work in the smooth category. The notation $\approx$ stands for ’diffeomorphic

to (preserving orientations, if necessary)’.

\S 3. Algebraic lemmas.

In this section we present three algebraic lemmas.
Let $A=(a_{ij})$ be a symmetric integer matrix of degree $n$ . By $T_{A}$ we denote

the linear transformation from $Z^{n}$ to itself associated with $A$ . Further, since
$A$ is symmetric, we can define a symmetric bilinear form $S_{A}$ : $Z^{n}\cross Z^{n}arrow Z$ by

$S_{A}(e_{i}, e_{j})=a_{ij}$ where $e_{i}=(0, \cdots , \vee 1i\ldots , 0)$ . Suppose that $A$ is non-degenerate,
that is, det $(A)\neq 0$ . Then Cok $(T_{A})=Z^{n}/T_{A}(Z^{n})$ is a torsion group. Let $\pi$ denote
the canonical epimorphism from $Z^{n}$ to Cok $(T_{A})$ . A symmetric bilinear form
$L_{A^{-1}}$ : Cok $(T_{A})\cross Cok(T_{A})arrow Q/Z$ is dePned by $L_{A-1}(\pi(e_{i}), \pi(e_{j}))=\tilde{a}_{ij}$ , where $(\tilde{a}_{ij})$

means the inverse matrix of $A$ , and $\tilde{a}_{if}$ is regarded as an element of $Q/Z$ .
We need the following lemma which shows that the linking form of a 3-

manifold is derived from the intersection form of its bounding 4-manifold. (Refer

to Wall [$W$, p. 286].)

LEMMA 1. Let $W$ be a 4-manifold and $M=\partial W$ be a connected 3-manifold.
SuPpose that $H_{2}(W)$ is free, $H_{1}(W)=0$ and $H_{1}(M)$ is a torsion group. Then, if
the intersection form on $H_{2}(W)$ is represented by $S_{A}$ for some matrix $A$ , then the
linking form on $H_{1}(M)$ is represented by $L_{A}-1$ .

PROOF. Since $H_{1}(M)$ is a torsion group, $H_{2}(M)=0$ follows from Poincar\’e
duality theorem and the universal coefficient theorem. Thus we obtain the follow-
ing exact sequence:

$h$ $\partial$

$0arrow H_{2}(W)arrow H_{2}(W, M)arrow H_{1}(M)arrow 0$ .

Let $e_{1},$
$\cdots$ , $e_{n}$ be a basis for $H_{2}(W)$ . Then, by Poincare duality theorem, there

is a basis $e_{1}^{*},$ $\cdots$ , $e_{n}^{*}$ for $H_{2}(W, M)$ such that $(e_{i}^{*}, e_{j})=\delta_{ij}$ . We determine a matrix
$A=(a_{ij})$ by the expression

$h(e_{i})= \sum_{j=1}^{n}$ a $ij^{Cf}$ .
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Since

$(e_{\ell}, e_{j})=(h(e_{i}), e_{j})=(\delta_{=1}^{n}a_{ik}e\S,$ $e_{j})=a_{ij}$ ,

the intersection form on $H_{2}(W)$ is represented by $S_{A}$ .
Next we show that the linking form on $H_{1}(M)$ is represented by $L_{A^{-1}}$ .

For $e_{i}^{*},$ $e_{j}^{*}$ , there are relative chains $c_{1},$ $c_{2}$ which represent $e_{i}^{*},$ $e_{j}^{*}$ . Since $\partial e_{j}^{*}=[\partial c_{2}]$

is a torsion element, for some integer $m,$
$m(\partial c_{2})$ is a boundary of some chain $c$

in $M$. Then $m(c_{2})\cup(-c)$ is a cycle in $W$ and represents an element, say $z$ , of
$H_{2}(W)$ . Note that $h(z)=m[c_{2}]=me_{j}^{*}$ . On the other hand,

$h( \sum_{k=1}^{n}\tilde{a}_{jk}e_{k})=\sum_{k.t=1}^{n}a_{jk}a_{kl}e_{t}^{*}=e_{j}^{*}$

holds (where we regard coefficients of the homology groups as rational numbers).

Thus we obtain

$z=m( \sum_{k=1}^{n}\tilde{a}_{jk}e_{k})$ .

Now, since $(c_{1}, z)=m(c_{1}, c_{2})-\langle\partial c_{1}, c\rangle$ ,

$(1/m)(c_{1}, z)\equiv-(1/m)\langle\partial c_{1}, c\rangle$ mod $Z$ .

But, by definition of the linking number,

$-(1/m)\langle\partial c_{1}, c\rangle=lk([\partial c_{1}], [\partial c_{2}])=lk(\partial ef, \partial ef)$ .

(Here we adopt the convention that the sign of linking number is compatible
with the equation $-(1/m)\langle\partial c_{1}, c\rangle=lk([\partial c_{1}], [\partial c_{2}]).)$

From $z=m( \sum_{k=1}^{n}\tilde{a}_{jk}e_{k})$, we obtain

$(1/m)(c_{1}, z)= \sum_{k\Rightarrow 1}^{n}a_{jk}(e_{i}^{*}e_{k})=a_{ji}=\tilde{a}_{ij}$ .

From these we obtain
$lk(\partial ef, \partial e_{j}^{*})=a_{if}$ .

This completes the proof.
Let $A,$ $B$ be symmetric integer matrices. We denote $A\sim B$ when there is

a unimodular matrix $P$ such that ${}^{t}PAP=B$ . Hereafter we do not distinguish
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matrices and bilinear forms associated with them. For torsion group $T_{i}(i=1,2)$ ,
two bilinear forms $L_{i}$ : $T_{i}\cross T_{i}arrow Q/Z$ are called isomorphic and denoted by
$L_{1}\sim L_{2}$ when there is an isomorphism $\phi:T_{1}arrow T_{2}$ such that $L_{2}(\phi(x), \phi(y))=L_{1}(x, y)$

for any $x,$ $y\in T_{1}$ .
We shall use the following important bilinear forms $(1/p)$ and $(p)$ . The

bilinear form $(1/p):Z_{p}\cross Z_{p}arrow Q/Z$ is defined by $(1/p)(1,1)=1/p$ . The bilinear
form $(p):Z\cross Zarrow Z$ is defined by $(P)(1,1)=P$ .

The following was first proved by Kneser-Puppe [K-P] and then more
generalized version was obtained by Durfee [D].

LEMMA 2. Let $A,$ $B$ be symmetric integer matrices such that $L_{A-1}\sim L_{B^{-1}}$ .
Then there are $r,$ $s,$ $r’,$ $s’\in N$ such that $A\oplus E_{r}\oplus(-E_{s})\sim B\oplus E_{t}\oplus(-E_{S’})$ .

The following lemma is concerned with an automorphism of the bilinear
form $(p)\oplus E_{t}\oplus(-E_{m})$ .

LEMMA 3. Let $\epsilon=1$ or $-1$ . SuPpose that $p,$ $s\in Z(p>0)$ satisfy $s^{2}\equiv\epsilon(p)$ .
Then there are $m\in N$ and a unimodular matrix $Q$ which satisfy the following:

(1) ${}^{t}Q((p)\oplus(-E_{m})\oplus E_{m}\oplus(-1))Q=(\epsilon p)\oplus(-E_{m})\oplus E_{m}\oplus(-\epsilon)$ ,
(2) let $Q=(q_{ij})$ and $Q^{-1}=(\tilde{q}_{if})$ , then $q_{11}=s$ and $q_{11}\tilde{q}_{11}\equiv 1(p)$ hold.
PROOF. There is $n\in N$ such that $s^{2}-\epsilon=np$ . Let $C=(p)\oplus(-E_{n})$ and

By easy computation, it can be shown that $Q_{0}$ is a unimodular matrix. Con-
sider the following equality

${}^{t}Q{}_{0}CQ_{0}=( \frac{s}{{}^{t}I}|_{t}\frac{{}^{t}R}{T})(\frac{p}{0}||\frac{0}{-E_{n}})(\frac{s1I}{R1T})=(\begin{array}{ll}p_{S^{2t}}-RR spI-tRTsp^{t}I-{}^{t}TR p^{t}II-{}^{t}TT\end{array})$ .

Since $ps^{2}-{}^{t}RR=ps^{2}-np^{2}=\epsilon p$ and $spI-{}^{t}RT=0$ ,

${}^{t}Q_{0}CQ_{0}=( \frac{\epsilon p|0}{0|D})$
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where $D$ is a certain symmetric unimodular matrix. As is well known (See, for
example, Milnor-Husemoller [M-H], Theorem 4.3, Corollary 4.4, pp. 22-23) any
integral non-singular quadratic form is stably equivalent. Thus there is $m\in N$

and a unimodular matrix $Q_{1}$ such that

${}^{t}Q_{1}(D\oplus(-E_{m- n})\oplus E_{m}\oplus(-1))Q_{1}=(-E_{m})\oplus E_{m}\oplus(-\epsilon)$ .
Let $Q=(Q_{0}\oplus E_{2m-n+1})((1)\oplus Q_{1})$ . Then $Q$ satisfies the condition (2) and the
following holds:

$((1)\oplus^{t}Q_{1})({}^{t}Q_{0}\oplus E_{2m- n+1})((p)\oplus(-E_{m})\oplus E_{m}(-1))(Q_{0}\oplus E_{2m-n+1})((1)\oplus Q_{1})$

$=(\epsilon p)\oplus(-E_{m})\oplus E_{m}\oplus(-\epsilon)$ .
This completes the proof.

\S 4. A homology $L(P, 1)$ .
From the homological view point, one of the most simple classes of 3-mani-

folds is the following homology $L(p, 1)$ . We shall study this class in the
succeeding sections.

DEFINITION 1. A 3-manifold is called a homology $L(p, 1)$ when its linking
form is isomorphic to the linking form of lens space $L(p, 1)$ for a positive
integer $p$ .

This dePnition means that a homology $L(p, 1)$ has $Z_{p}$ as the l-dimensional
homology group and, for some generator $x$ of it, $lk(x, x)=\pm 1/p$ .

REMARK 1. If a 3-manifold $M$ bounds a 4-manifold $W$ with $H_{*}(W)=H_{*}(S^{2})$ ,
then the intersection form on $H_{2}(W)$ is isomorphic to $(p)$ for some $p\in Z$ .
Hence, by Lemma 1, the linking form on $H_{1}(M)$ is isomorphic to $(1/p)$ . This
means that $M$ is a homology $L(p, 1)$ .

REMARK 2. A lens space $L(p, q)$ is a homology $L(p, 1)$ if and only if $\pm q$

is a quadratic residue mod $p$ . This is equivalent to that $L(p, q)$ is homotopy
equivalent to $L(p, 1)$ .

We show certain characterization of homology $L(P1)$ .

THEOREM 1. A 3-manifold $M$ is a homology $L(p, 1)$ if and only if $M$ is
obtained from a homology sphere by surgery on a knot with p-framing.

To prove the theorem, we need the following lemma. Our lemma is some
special case of Smale’s theory (Refer to Milnor [Mil], Theorem 7.6, pp. 92-93).

LEMMA 4. SuppOse that $W$ be a 2-handle body with $W=D^{4}\cup h_{1}\cup\cdots\cup h_{n}$

and the intersection form on $H_{2}(W)$ is rePresented by a matrix $A$ with resPect to
the basis $[h_{1}],$ $\cdots$ , $[h_{n}]$ . Let $Q$ be a unimodular matrix and $B={}^{t}QAQ$ . Then
we can find the other handle decompOsjtjOn $D^{4}\cup\overline{h}_{1}\cup\cdots\cup\overline{h}_{n}$ of $W$ such that the
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intersection form is represented by $B$ with respect to the basis $[\overline{h}_{1}],$ $\cdots$ , $[\overline{h}_{n}]$ .
PROOF OF LEMMA 4. Since, for the case of $n=1$ , the statement is obviously

true, we assume $n\geqq 2$ . As is well known, a unimodular matrix $Q$ is a product
of the following $Q_{1},$ $Q_{2},$ $Q_{3}$ and their inverses:

$Q_{1}=(0 \frac{\dot{0}}{1}|_{\frac{0\ldots..1}{0\cdots\cdots\cdot 0}}^{1}0)$ ,

$Q_{3}=[$ $]$ .

$Q_{2}=[0| \frac{0}{100_{1}})$ ,

Whenever $Q_{1},$ $Q_{2}$ and $Q_{3}$ appear in the product, by
(1) renumbering the indices of $h_{1},$ $\cdots$ , $h_{n}$ ,
(2) giving the opposite orientation to some $h_{i}$ , or
(3) adding a handle $h_{i}$ to another handle $h_{j}$,

we obtain the new handles $\overline{h}_{1},$
$\cdots$ , $\overline{h}_{n}$ satisfying the required condition.

PROOF OF THEOREM 1. Suppose that $M$ is a homology $L(p, 1)$ . Let $W$ be
a 2-handle body with $\partial W=M$ and $A$ be the intersection form on $H_{2}(W)$ . Then, by
Lemmas 1 and 2, we obtain $A\oplus E_{r}\oplus(-E_{s})\sim(p)\oplus E_{r’}\oplus(-E_{s’})$ for some $r,$ $s,$ $r’,$ $s’\in N$

Let $W’=W\# rCP(2)\# s\overline{CP}(2)$ . Then $W’$ is also a 2-handle body with $\partial W’=M$ and
the intersection form on $H_{2}(W’)$ is represented by $A\oplus E_{r}\oplus(-E_{s})$ . Applying
Lemma 4, we obtain the handle decomposition $D^{4}\cup\overline{h}_{1}\cup\cdots\cup\overline{h}_{m}$ of $W’$ such that
the intersection form on $H_{2}(W’)$ is represented by $(p)\oplus E_{r^{J}}\oplus(-E_{S’})$ with respect
to the basis $[\overline{h}_{1}],$ $\cdots$ , $[\overline{h}_{m}]$ . Let $V=D^{4}\cup\overline{h}_{2}\cup\cdots\cup\overline{h}_{m}$ . Then $V$ satisPes the
following conditions:

(1) $V$ is a 2-handle body with the intersection form isomorphic to $E_{r’}\oplus(-E_{S’})$ ,
(2) $W’$ is obtained from $V$ by attaching the handle $\overline{h}_{1}$ .

By (2), we know that $\partial W’=M$ is obtained from $\partial V$ by surgery on a knot. By
(1), we know that $\partial V$ is a homology sphere. Thus we can conclude that $M$ is
obtained from a homology sphere by surgery on a knot. Other parts of the
theorem is obvious and we omit to prove them.
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\S 5. Some new invariant.

The $\mu$-invariant plays a crucial role in low dimensional topology. But it is
not defined to a manifold which is not a $Z_{2}$-homology sphere. We try to define
some invariant which can be regarded as an extended $\mu$-invariant for a certain
class of homology $L(P, 1)$ .

DEFINITION 2. A positive integer $P$ is called having property $(*)$ if $P$ satis-
Pes the following two conditions:

$(*)$ $\{\begin{array}{l}(1) p is even and p\geqq 4,(2) if s^{2}\equiv\pm 1(p) for s\in Z, then s\equiv\pm 1(p).\end{array}$

These conditions can be restated as follows.

REMARK 3. N. Maruyama showed that, for $p>4,$ $P$ has the property $(*)$ if and
only if $p$ has the form $p=2q^{n}$ where $q$ is a prime number such that $q\equiv 3(4)$ and
$n$ is a positive integer. For the proof of Theorem 4, we need only the fact
that if $t$ is a prime number such that $t\equiv 3_{-}^{:}(4)$ then $2t$ has the property $(*)$ .
Here we demonstrate it.

Suppose that $t$ is a prime number such that $t\equiv 3(4)$ and $s$ satisfies $s^{2}\equiv\pm 1(2t)$ .
By well known property of Legendre’s symbol, we obtain $( \frac{-1}{t})=(-1)^{(t-1)/2}=-1$ .
This means there is no such $s$ that $s^{2}\equiv-1(t)$ . Next consider the equation
$s^{2}\equiv 1(2t)$ . Since $t$ is an odd prime and $s^{2}-1$ is a degree 2 polynomial, $s^{2}-1\equiv 0(t)$

has just two solutions, that is, $s\equiv 1(t)$ and $s\equiv-1(t)$ . Hence, if $s$ satisfies
$s^{2}\equiv 1(2t)$ , $s\equiv\pm 1$ or $s\equiv\pm 1+t$ should hold. But, since $(\pm 1+t)^{2}\not\equiv 1(2t)$ , the
equation $s^{2}\equiv 1(2t)$ has just two solutions $s\equiv 1(2t)$ and $s\equiv-1(2t)$ . This means
that, if $t$ is a prime number such that $t\equiv 3(4)$ , then $2t$ has the property $(*)$ .

One of our main theorems is:

THEOREM 2. SuPpose that $M$ is a homology $L(P, 1)$ and $P$ has the Property
$(*)$ . SuppOse that $M$ is obtained in two ways from homology spheres $H_{1}$ and $H_{z}$

by surgery on knots. Then $\mu(H_{1})=\mu(H_{2})$ holds.
PROOF. Let $W$ be a 4-dimensional cobordism constructed from $M\cross[1,2]$ by

attaching 2-handles $h(i)(i=1,2)$ on $M\cross\{i\}$ to result $H_{1}$ and $H_{2}$ as its boundary
components.
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As is mentioned in \S 2, we abuse the notation $h(i)$ for the core of the 2-
handle $h(i)$ . Then $[\partial h(i)]$ is regarded as an element of $H_{1}(M\cross\{i\})$ . Let

$J_{i}$ : $H_{1}(M\cross\{i\})arrow H_{1}(M\cross[1,2])$ $(i=1,2)$

be homomorphisms induced from inclusion maps. Then

$j_{1}[\partial h(1)]=sj_{2}[\partial h(2)]$

holds for some $s\in Z$ . Since $lk([\partial h(i)], [\partial h(i)])=\pm 1/p$ , we obtain $s^{2}/p=\pm 1/p$ .
This means $s^{2}\equiv\pm 1(p)$ . But, since $P$ has the property $(*),$ $s\equiv\pm 1(p)$ holds.
Hence we obtain

$j_{1}[\partial h(1)]=\pm j_{2}[\partial h(2)]$ .
This means that there is a 2-chain $c$ in $M\cross[1,2]$ such that $\partial c=\partial h(1)\cup\pm\partial h(2)$ .
Let $e$ be an element of $H_{2}(W)$ which is represented by $h(1)\cup c\cup\pm h(2)$ . Let
$f_{i}(i=1,2)$ denote elements of $H_{2}(W)$ represented by the cores of dual 2-handles
with respect to $h(i)$ .

Here we calculate the intersection form on $H_{2}(W)$ using $e$ and $f_{i}$ . First we
obtain $(e, f_{i})=1$ for the appropriate orientations of $f_{i}$ , and $(f_{i}, f_{i})=\pm p$ ,
$(f_{1}, f_{2})=0$. Next $(e, e)$ is calculated as follows. Since $pe=[ph(1)\cup pc\cup ph(2)]$

$=f_{1}\pm f_{2},$ $(e, e)=(1/p^{2})(f_{1}\pm f_{2}, f_{1}\pm f_{2})=(1/p^{2})(\pm p\pm p)$ holds. But, since $p\neq 2$ and
$(1/p^{2})(\pm p\pm p)$ should be an integer, it is necessary that $(e, e)=0$ . Thus the inter-

section form is represented by the matrix $(\begin{array}{ll}0 11 p\end{array})$ with respect to the basis

$e,$ $f_{1}$ . Since $p$ is even, this matrix is of even type. Thus we have proved that
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$W$ is a spin manifold and its signature is zero. This means that $\mu(H_{1})=\mu(H_{2})$ .
We present two examples. From these we know the condition that $P$ has

the property $(*)$ is essential in Theorem 2.

EXAMPLE 1. Let $P(E_{8})$ and $P(A_{7})$ denote plumbing 4-manifolds associated
with the following diagrams $E_{8}$ and $A_{7}$ respectively:

$E_{8}$ ,

$22.22222\ovalbox{\tt\small REJECT}$
$A_{7}$ .

Then $\partial P(E_{8})$ is the famous Poincar\’e homology sphere and $\mu(\partial P(E_{8}))=1$ . Since
$P(E_{8})$ is obtained from $P(A_{7})$ by attaching a 2-handle, we can regard that $\partial P(A_{7})$

is obtained from $\partial P(E_{8})$ by surgery on a knot. On the other hand, since
$\partial P(A_{7})\approx L(8,1)$ , it is obtained from $S^{3}$ by surgery. Thus $L(8,1)$ is obtained
both from $\partial P(E_{8})$ and $S^{3}$ , but $\mu(\partial P(E_{8}))\neq\mu(S^{3})$ .

In this case of $p=8,$ $p$ has not the property $(*)$ . In fact, for $s=3,$ $s^{2}\equiv 1(p)$

holds.

EXAMPLE 2. Like example 1, consider $P(E_{10})$ and $P(A_{9})$ .

$E_{10}$ ,

$222222222\ovalbox{\tt\small REJECT}$
$A_{9}$ .

Then it is observed that $L(10,1)$ is obtained both from $\partial P(E_{10})$ and $S^{3}$ , but
$\partial P(E_{10})$ is a homology sphere and $\mu(\partial P(E_{10}))\neq\mu(S^{3})$ . In this case of $p=10$ , for
$s=3,$ $s^{2}\equiv-1(p)$ holds.

As an application of Theorems 1 and 2, we obtain the following:

DEFINITION 3. Let $M$ be a homology $L(p, 1)$ where $p$ has the property $(*)$ .
Then, by Theorem 1, there is a homology sphere $H$ from which $M$ is obtained
by surgery on a knot. DePne $\tilde{\mu}(M)=\mu(H)$ . Then, by Theorem 2, $\tilde{\mu}($ $)$ is well
defined and has a value in $Z_{2}=\{0,1\}$ .

\S 6. Bounding a homology $S^{2}$ .
By a homology $S^{2}$ , we denote a compact 4-manifold with the same homology
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group as $S^{2}$ . As for a homology $L(p, 1)$ for $p$ having the property $(*),\tilde{\mu}$-invariant
gives us a tool to study whether this manifold bounds a homology $S^{2}$ or not.

THEOREM 3. SuPpose that $M$ is a homology $L(p, 1)$ and $P$ has the Property
$(*)$ . Then $M$ bounds a homology $S^{2}$ only if $\tilde{\mu}(M)=0$ .

PROOF. This theorem is proved by the argument similar to that of Theo-
rem 2. Suppose that $M$ is obtained from a homology sphere $H$ by surgery on a
knot. Let $W$ be a cobordism between $M$ and $H$ constructed from $M\cross[0,1]$ by
attaching a 2-handle on $M\cross\{1\}$ . Let $V$ be a homology $S^{2}$ which $M$ bounds.

Let $X$ be a 4-manifold constructed from $W$ and $V$ by gluing along $\partial V$ and
$M\cross\{0\}\subset W$. Then the argument similar to the proof of Theorem 2 is valid
and we can show that $X$ is a spin manifold and its signature is zero. Hence

$\overline{\mu}(M)=\mu(H)=0$ .
Next we show that there are many lens spaces having non-vanishing $\tilde{\mu}$-invariant.
Our calculation of $\tilde{\mu}$ depends on the following lemma.

LEMMA 5. SuppOse that $L(p, q)$ is a lens space and $px-r^{2}q=\pm 1$ holds for
some $x,$ $r\in Z$ . Then $L(p, q)$ is obtained from Brieskorn homology sphere
$\Sigma(|r|, |x-r|, |p-rq|)$ by surgery on a knot.

PROOF. Consider the following framed link picture:

stands for $r$ times full twist.

The condition $px-r^{2}q=\pm 1$ implies that the 3-manifold associated with this link
is a homology sphere. We apply Kirby-Rolfsen calculus as follows:
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The last picture shows that our homology sphere is just Brieskorn homology
sphere $\Sigma(|r|, |x-r|, |p-rq|)$ (Refer to Matsumoto [Mat]). The first picture
shows that $L(p, q)$ is obtained from this homology sphere by surgery on a knot.

$THEOR+M4$ . There are infinitely many lens spaces $L(p, q)$ which, though
each $q$ is a quadratic residue mod $p$ , cannot bound a homology $S^{2}$ .

PROOF. Let $p=72m+62$ and $q=8m+7$ for $m\in N$ Let $x=1$ and $r=3$ . Then
$px-r^{2}q=-1$ holds. By Lemma 5, $L(p, q)$ is obtained from $\Sigma(3,2,48m+41)$ by
surgery on a knot. By easy computation, we can show

$\mu(\Sigma(3,2,48m+41))=1$ (See Neumann-Raymond [N-R]).

Next we show that there are inPnitely many such $P$ having the property $(*)$ .
Let $t=p/2$ . Then $t=36m+31$ and $t\equiv 3(4)$ . By Dirichlet’s Theorem, there are
infinitely many prime numbers among 36+31, $36\cross 2+31,$ $\cdots$ , $36m+31,$ $\cdots$ , because
36 and 31 are relatively prime. Since, if $t$ is a prime number such that $t\equiv 3(4)$ ,
$p=2t$ has the property $(*)$ by Remark 3, there are infinitely many $P$ such that
$p=72m+62$ for some $m\in N$ and $p$ has the property $(*)$ .

Hence we obtain infinitely many lens spaces $L(p, q)$ which satisfy $\overline{\mu}(L(p, q))$

$=1$ and thus cannot bound a homology $S^{2}$ .
Here we present other examples of lens spaces which cannot bound a homology

$S^{2}$ . For $p\leqq 100$, there are 12 lens spaces up to diffeomorphism which have non-
trivial $\tilde{\mu}$-invariant. They are $L(22,3)$ , $L(38,7)$ , $L(46,5)$ , $L(54,5)$ , $L(54,7)$ ,
$L(62,7),$ $L(86,11),$ $L(86,15),$ $L(86,27),$ $L(94,13),$ $L(98,9)$ and $L(98,19)$ which
are obtained from $\Sigma(2,9,5),$ $\Sigma(2,7,11),$ $\Sigma(2,3,31),$ $\Sigma(26,23,61),$ $\Sigma(56,25,121)$ ,
$\Sigma(2,3,41)$ , $\Sigma(174,41,365)$ , $\Sigma(84,25,289)$ , $\Sigma(27,11,211)$ , $\Sigma(40,21,179)$ , $\Sigma(67$,
33, 199) and $\Sigma(51,19,263)$ respectively by surgery on knots. For $p\leqq 500$, there
are 273 such lens spaces $L(P, q)$ as $\tilde{\mu}(L(P, q))=1$ and thus cannot bound a homology
$S^{2}$ .

As a corollary to Theorem 4, we obtain:

COROLLARY 1. There are infinitely many lens spaces $L(p, q)$ which, though
each $q$ is a quadratic residue mod $p$ , cannot be obfained from $S^{3}$ by surgery on
knots.
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It is of interest to compare this corollary with the results of Fintushel-Stern
and N. Maruyama. They discovered many examples which are obtained from
$S^{3}$ by surgery on knots (Fintushel-Stern [F-S], N. Maruyama (unpublished)).

The following are the examples which are obtained from $S^{3}$ by surgery:

$L(pq+1, q^{2})$ ,

$L(4pq+1,4q^{2})$ , (due to Moser, Fintushel-Stern, Gordon)

$L(9n, 3n+1)$ ,

$L(16n-2,6n-1)$ ,

$L(4n^{2},4n+1)$ ,

$L(m(2n+1)^{2},2m(2n+1)+1)$ .

$\}$ (due to N. Maruyama)
$L(4n^{2},4n-1)$ ,

\S 7. A homology $L(p, 1)$ and a 2-handle body.

There is close relation between a 3-manifold and its bounding 4-manifold.
The following was obtained (in implicit form) by Kirby [K] and Melvin [Mel].

THEOREM (K-M). Let $f:Marrow N$ be a diffeomorphism between 3-manifolds $M$

and N. Let $V$ and $W$ be 2-handle bodies such that $\partial V=M$ and $\partial W=N$. Then
there is a diffeomorphism $h$ : $V\# pCP(2)\# q\overline{CP}(2)arrow W\# rCP(2)\# s\overline{CP}(2)$ for some
$p,$ $q,$ $r,$ $s\in N$ such that $h|\partial=f$ .

Is the statement true when $f$ is replaced by a homotopy equivalence and $h$

is replaced by a homotopy equivalence relative to boundary ? We propose the
following conjecture which is regarded as a homotopy equivalence version of
Theorem (K-M).

CONJECTURE. Let $f:Marrow N$ be a homotopy equivalence between 3-manifolds
$M$ and $N$. Then there are 2-handle bodies $V,$ $W$ and a homotopy equivalence
as pairs $h:(V, \partial V)arrow(W, \partial W)$ such that $\partial V=M,$ $\partial W=N$ and $h|\partial V=f$ .

In Theorem 5 we show that the conjecture is true under the assumption
that $M$ and $N$ are homotopy $L(p, 1)$ . We need several lemmas to obtain it.

LEMMA 6. Let $M$ be a homology $L(p, 1)$ . Then there are 2-handle bodies
$V,$ $W$ and a map $g:(V, \partial V)arrow(W, \partial W)$ which satisfy the following conditions:

(1) $\partial V=M$, and $W$ is a 2-handle body associated with the following framed
link Picture

$p$

$O$
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for some $r,$ $s\in N$,
(2) deg $(g)=\pm 1$ and $g$ induces an isomorphism

$g_{*}:$ $H_{2}(V)arrow H_{2}(W)$ .

SUBLEMMA 1. Let $k$ be a knot in a homology sphere H. Let $k_{0}$ be an unknot
in a 3-sphere $S^{3}$ . Let $N(k)$ and $N(k_{0})$ be tubular neighbourhoods of $k$ and $k_{0}$

respectjvely. Then there is a map $f:Harrow S^{3}$ which satisfies the following:
(1) deg $(f)=\pm 1$ ,
(2) $f^{-1}(N(k_{0}))=N(k)$ and $f|N(k):N(k)arrow N(k_{0})$ is a bundle isomorphism which

Preserves O-framing.
This sublemma follows from elementary obstruction theory and we omit the

proof.

SUBLEMMA 2. Suppose that $H$ is a homology sphere and $k$ is a knot in H. Let
$V$ be a 4-manifold constructed from $H\cross[0,1]$ by attaching a 2-handle along
$N(k)\cross\{1\}\subset H\cross\{1\}$ with $P$-framing. Let $k_{0}$ be an unknot in $S^{3}$ and $W$ be a 4-
manifold constructed from $S^{3}\cross[0,1]$ by attaching a 2-handle along $N(k_{0})\cross\{1\}$

$\subset S^{3}\cross\{1\}$ with $P$-framing. Then there is a map

$g$ : (V ; $H\cross\{0\},$ $\partial V-H\cross\{0\}$ ) $arrow(W;S^{3}\cross\{0\}, \partial W-S^{3}\cross\{0\})$

such that $g$ induces an isomorphism $g_{*};$ $H_{2}(V)arrow H_{2}(W)$ .
PROOF OF SUBLEMMA 2. Let $f:Harrow S^{3}$ be a map which satisfies the con-

ditions (1) and (2) in Sublemma 1. Then $f\cross id_{[0,1]}$ : $H\cross[0,1]arrow S^{3}\cross[0,1]$ can be
extended naturally to $g:Varrow W$ so as to satisfy the required conditions.

SUBLEMMA 3. Let $M$ be a 3-manifold and $f,$ $g:Marrow S^{s}$ be maps. Then $f$ is
homotopic to $g$ if and only if deg $(f)=\deg(g)$ .

This also follows from elementary obstruction theory. To construct a homo-
topy between $f$ and $g$ , the only obstruction lies in $H^{4}(M\cross I, M\cross\partial I;\pi_{3}(S^{3}))\approx Z$

and it corresponds to deg $(f)-\deg(g)$ .
PROOF OF LEMMA 6. Since $M$ is a homology $L(p, 1),$ $M$ bounds a 2-handle

body

$V=D^{4}\cup h_{0}\cup h_{1}\cup\cdots\cup h_{r}\cup h_{r+1}\cup\cdots\cup h_{r+s}$

such that the intersection form on $H^{2}(V)$ is represented by $(p)\oplus E_{r}\oplus(-E_{s})$ with
respect to the basis $[h_{0}],$ $[h_{1}],$ $\cdots$ , $[h_{r}],$ $[h_{r+1}],$ $\cdots$ , $[h_{r+s}]$ . We decompose $V$ as

$V=V_{0}\cup V_{1}\cup\cdots\cup V_{r}\cup V_{r+1}\cup\cdots\cup V_{r+s}\cup D^{4}$ .
This decomposition is assumed to correspond to the above handle decomposition
and to satisfy the following conditions:

(1) each $V_{i}$ has two components in $\partial V_{i}$ , say $\partial_{+}V_{i}$ and $\partial_{-}V_{i}$ ,
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(2) $\partial_{-}V_{i}$ and $\partial_{+}V_{i+1}$ are identified in $V$ , also $\partial_{-}V_{r+s}$ and $\partial D^{4}$ are identified
in $V$ ,

(3) $\partial_{-}V_{i}$ is a homology sphere and $V_{i}$ is constructed from $(\partial_{-}V_{i})\cross[0,1]$ by
attaching a 2-handle along some knot in $(\partial_{-}V_{i})\cross\{1\}$ with l-framing $(1\leqq i\leqq r)$ or
with (–1)-framing $(r+1\leqq i\leqq r+s)$ or with $P$-framing $(i=0)$ respectively.

Similarly we consider $W_{i}$ $(i=0, \cdots , r+s)$ and $W=W_{0}\cup\cdots\cup W_{r+s}\cup D^{4}$ . But,
this time, we assume the following instead of (3):

(3) $W_{i}$ is constructed from $s^{3}\cross[0,1]$ by attaching a 2-handle along an
unknot in $S^{3}\cross\{1\}$ with l-framing $(1\leqq i\leqq r)$ or with (–1)-framing $(r+1\leqq i\leqq r+s)$

or with p-framing $(i=0)$ .
Note that $\partial W=L(P, 1),$ $\partial_{+}W_{i}=S^{3}$ for $i=1,$ $\cdots$ , $r+s$ and $\partial_{-}W_{0}=S^{3}$ .
Now we construct a map $g$ . By Sublemma 2, we obtain a map

$g_{i}$ : $(V_{i} ; \partial_{+}V_{i}, \partial_{-}V_{i})arrow(W_{i} ; \partial_{+}W_{i}, \partial_{-}W_{i})$

such that $g_{i}$ induces an isomorphism $(g_{i})_{*}:$ $H_{2}(V_{i})arrow H_{2}(W_{i})$ . Note that $\partial_{-}V_{i}$

$=\partial_{+}V_{i+1}$ and, by Sublemma 3, $g_{i}|\partial_{-}V_{i}$ : $\partial_{-}V_{i}arrow S^{8}$ and $g_{i+1}|\partial_{+}V_{l+1}$ : $\partial_{+}V_{i+1}arrow S^{3}$

are homotopic. Further, since $g_{r+s}|\partial_{-}V_{r+s}$ : $\partial_{-}V_{r+s}arrow\partial_{-}W_{r+s}$ can be extended to
a map from $D^{4}$ to $D^{4}$, by pasting $g_{i}$ for $i=0,$ $\cdots$ , $r+s$, we obtain a map
$g:(V, \partial V)arrow(W, \partial W)$ such that $g$ induces an isomorphism $g_{*}:$ $H_{2}(V)arrow H_{2}(W)$ .
This completes the proof.

REMARK 4. In Lemma 6 the fact that $g(\partial V)\subset\partial W$ is significant. If it is
removed, the lemma will be trivial.

The following lemma might be interesting in itself.

LEMMA 7. Let $f:L(p, 1)arrow L(P, 1)$ be a homotopy equivalence. Then there
are a 2-handle body $V$ and a map $g:Varrow V$ which satisfies the following:

(1) $\partial V=L(P, 1)$ and $g|\partial V=f$,
(2) $g$ induces an isomorphism $g_{*}:$ $H_{2}(V)arrow H_{2}(V)$ .
PROOF. We use Olum’s result $[0]$ about homotopy equivalences of lens

spaces. It asserts that homotopy classes of self homotopy equivalences of $L(p, 1)$

correspond to $x\in Z_{p}$ such as $x^{2}\equiv\pm 1(p)$ bijectively.
For a homotopy equivalence $h,$ $h$ corresponds to $x$ when $h_{*}:$ $H_{1}(L(p, 1))$

$arrow H_{1}(L(p, 1))$ is a multiplication by $x$ .
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Now suppose that $f_{*}:$ $H_{1}(L(p, 1))arrow H_{1}(L(p, 1))$ is a multiplication by $s$ . Then
$s^{2}\equiv\epsilon(p)$ holds where $\epsilon=1$ or $-1$ . By Lemma 3, for such $s$ , there is a uni-
modular matrix $Q$ such that, for $Q^{-1}=(\tilde{q}_{ij}),$ $s\tilde{q}_{11}\equiv 1(p)$ and

$(**)$ ${}^{t}Q((p)\oplus(-E_{m})\oplus E_{m}\oplus(-1))Q=(\epsilon p)\oplus(-E_{m})\oplus E_{m}\oplus(-\epsilon)$ .

Let $V$ be the 2-handle body which is associated with the framed link picture

$o^{p}$ $0^{1}-$

$7n$ tImes

Let $h_{0},$ $h_{1},$ $\cdots$ , $h_{m},$ $h_{m+1},$ $\cdots$ , $h_{2m},$ $h_{2m+1}$ be corresponding 2-handles. Here we
apply Lemma 4 for $V=D^{4}\cup h_{0}\cup\cdots\cup h_{2m+1}$ and $Q$ . Then we obtain the second
handle decomposition $V=D^{4}\cup\overline{h}_{0}\cup\cdots\cup\overline{h}_{2m+1}$ .

Let $[h_{i}],$ $[\overline{h}_{i}]\in H_{2}(V)$ denote the homology classes represented by the cores
of the 2-handles $h_{i},\overline{h}_{i}$ . Let $[h_{i}^{*}],$ $[\overline{h}_{i}^{*}]\in H_{2}(V, \partial V)$ denote the homology classes
represented by the cores of the dual 2-handles of $h_{l},\overline{h}_{i}$ . For $Q=(q_{ij})$ and
$Q^{-1}=(\tilde{q}_{ij})(i, j=1, \cdots , 2m+2)$ , the following holds by the construction of
$\overline{h}_{0},$

$\cdots$ $\overline{h}_{2m+1}$ :

$[ \overline{h}_{i- 1}]=\sum_{j=1}^{2m+2}q_{ji}[h_{j- 1}]$ .

Let $[ \overline{h}f_{-1}]=\sum_{j=1}^{2m+2}\alpha_{jt}[h_{j-1}^{*}]$ and $A=(\alpha_{ij})$ . Then

$\delta_{ij}=([\overline{h}_{i- 1}], [\overline{h}_{j-1}^{*}])=(\delta_{=1}^{q_{ki}[h_{k- 1}]},\sum_{n=1}^{2m+2}\alpha_{nj}[h_{n-1}^{*}])=\sum_{k=1}^{2m+2}q_{ki}\alpha_{kj}$

holds. Thus $A$ is the inverse matrix of ${}^{t}Q$ . Hence

$[ \overline{h}f_{-1}]=\sum_{j=1}^{2m+2}\tilde{q}_{ij}[h_{j-1}^{*}]$ .

In paticular,
$[\overline{h}_{0}^{*}]=\tilde{q}_{11}[h_{0}^{*}]+\overline{q}_{12}[h_{1}^{*}]+\cdots+\tilde{q}_{12m+2}[h_{2m+1}^{*}]$

holds. Since $s\tilde{q}_{11}\equiv 1(p)$ and $[\partial h_{i}^{*}]=0$ for $i=1,$ $\cdots$ , $2m+1$ , we obtain the following:

$(***)$ $s[\partial\overline{h}_{0}^{*}]=[\partial h_{0}^{*}]$ .
Note that the intersection form on $H_{2}(V)$ represented by the basis

$[\overline{h}_{0}],$ $\cdots$ , $[\overline{h}_{2m+1}]$ equals $(\epsilon p)\oplus(-E_{m})\oplus E_{m}\oplus(-\epsilon)$ because of $(**)$ . As in the
proof of Lemma 6, we consider the decompositions of $V$ in two ways. For the
first, $V=V_{0}\cup V_{1}\cup\cdots\cup V_{2m+1}\cup D^{4}$ which corresponds to the handle decomposition
$V=D^{4}\cup\overline{h}_{0}\cup\cdots\cup\overline{h}_{2m+1}$ , and for the second, $V=W_{0}\cup W_{1}\cup\cdots\cup W_{2m+1}\cup D^{4}$ which
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corresponds to the handle decomposition $V=D^{4}\cup h_{0}\cup\cdots\cup h_{2m+1}$ . When $\epsilon=1$ ,
just as in the proof of Lemma 6, we obtain a map $g:Varrow V$ such that $g(V_{i})\subset W_{i}$

for each $i$ and $g$ induces an isomorphism $g_{*}:$ $H_{2}(V)arrow H_{2}(V)$ . When $\epsilon=-1$ , let
consider the 2-handle body $V’$ associated with the following framed link picture:

$O-p$
$-1$ $-1$ $-1$

$0^{1}+$

Let $h_{0}’,$ $h_{1}’,$ $\cdots$ , $h_{m}’,$ $h_{m+1}’,$ $\cdots$ , $h_{2m}’,$ $h_{2m+1}’$ be corresponding 2-handles and $V’=$

$W_{0}’\cup W_{1}’\cup\cdots\cup W_{2m+1}’\cup D^{4}$ be the decomposition of $V’$ as in the proof of Lemma
6. But there is the natural (orientation reversing) diffeomorphism $h:V’arrow V$

such that $h(h_{0}’)=h_{0},$ $h(h_{i}’)=h_{i+m}$ and $h(h_{i+m}’)=h_{i}$ for $i=1,$ $\cdots$ , $m,$ $h(h_{2m+1}’)=h_{2m+1}$ .
Then, composing a map from $V$ to $V’$ as in the proof of Lemma 6 and $h$, we
obtain a map $g:Varrow V$ such that deg $(g)=-1$ and $g$ induces an isomorphism
$g_{*}:$ $H_{2}(V)arrow H_{2}(V)$ .

Next we shall see that the homomorphism

$(g|\partial V)_{*}:$ $H_{1}(\partial V)arrow H_{1}(\partial V)=Z_{p}$

is a multiplication by $s$ . By definition of $V_{0}$ and $W_{0},$ $V_{0}$ (respectively $W_{0}$ ) is
constructed from $(\partial_{-}V_{0})\cross[O, 1]$ (resPectively $(\partial_{-}W_{0})\cross[0,1]$ ) by attaching a 2-handle,
say $\overline{h}$ (respectively $h$ ). Let $\overline{h}^{*}$ (respectively $h^{*}$ ) be the core of the dual 2-handle
for $\overline{h}$ (respectively $h$ ). Note that, as homology classes, $[\overline{h}^{*}]=[\overline{h}_{0}^{*}]$ and $[h^{*}]=[h_{0}^{*}]$

hold.

Hence we obtain
$(****)$ $[\partial\overline{h}^{*}]=[\partial\overline{h}_{0}^{*}]$ and $[\partial h^{*}]=[\partial h_{0}^{*}]$ .

By the construction of $g$ (in the proof of Lemma 6), $g|h:harrow h$ is a homeo-
morphism. Hence we obtain $(g|\partial V)_{*}[\partial\overline{h}^{*}]=[\partial h^{*}]$ . On the other hand, by
$(***)$ and $(****)$ , we obtain $s[\partial\overline{h}^{*}]=[\partial h^{*}]$ . This means that $(g^{I}\partial V)_{*}$ is a multi-
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plication by $s$ . Finally, by Olum’s result, $g|\partial V$ is homotopic to $f$, thus $f$ itself
has such an extension as $g$ . This completes the proof of Lemma 7.

Now we can prove the following theorem by the aid of the above lemmas.

THEOREM 5. Let $f:Marrow N$ be a homotoPy equivalence between $M$ and $N$

which are homotoPy $L(p, 1)$ . Then there are 2-handle bodies $V$ and $W$ , and a map
$h:Varrow W$ such that:

(1) $\partial V=M$ and $\partial W=N$,
(2) $h:(V, \partial V)arrow(W, \partial W)$ is a homotopy equivalence as pairs.
We mean that a homotopy $L(p, 1)$ is a 3-manifold which is homotopy

equivalent to $L(p, 1)$ .
PROOF. It is sufficient to prove this theorem in the case of $N=L(p, 1)$ . By

Lemma 6, there are 2-handle bodies $V$ and $W$, and a map $g:Varrow W$ such that:
(1) $\partial V=M$ and $\partial W=N$,
(2) $g$ induces an isomorphism $g_{*}:$ $H_{2}(V)arrow H_{2}(W)$ .

Let $(g|\partial V)^{-1}$ denote a homotopy inverse of $g|\partial V$ . For $f\circ(g|\partial V)^{-1}$ , we apply
Lemma 7. Then we obtain a 2-handle body $W_{0}$ and a map $g_{0}$ : $W_{0}arrow W_{0}$ such
that:

(1) $\partial W_{0}=N$ and $g_{0}|\partial W_{0}=f\circ(g|\partial V)^{-1}$,
(2) go induces an isomorphism $(g_{0})_{*}:$ $H_{2}(W_{0})arrow H_{2}(W_{0})$ .

But, by Theorem (K-M), we can assume that $W=W_{0}$ without loss of generality.
Let $h=g_{0^{\circ}}g:(V, \partial V)arrow(W, \partial W)$ . Then $h$ satisfies the following:

(1) $h|\partial V$ is homotopic to $f$,
(2) $h$ induces an isomorphism $h_{*}:$ $H_{2}(V)arrow H_{2}(W)$ .

Since $V$ and $W$ are homotopy equivalent to a bouquet of $S^{2},$ $h$ is a homotopy
equivalence by well known Whitehead’s Theorem. Furthermore, since $h|\partial V$ is
also a homotopy equivalence, $h:(V, \partial V)arrow(W, \partial W)$ is a week homotopy equivalence
as pairs and thus a homotopy equivalence as pairs. This means Theorem 5.
We finish this paper by presenting the following theorem which is an application
of Theorem 5.

THEOREM 6. For any $n\in N$ there are $n$ compact simply connected 4-manifolds
with boundaries which are homotopy equivalent relative to boundaries, but not
homeomorphic. In fact therr boundaries are not homeomorphic.

PROOF. For given $n\in N$, choose a sufficiently large number $p$ so as to obtain
$n$ numbers $q_{1},$

$\cdots$ , $q_{n}$ which are quadratic residues mod $p$ and $q_{i}\not\equiv\pm q_{j}^{\pm 1}(p)$ for $i\neq j$ .
By using Theorem 5 and Theorem (K-M) repeatedly, we obtain simply connected
4-manifolds $V_{i}$ ($i=1,$ $\cdots$ , n) such that $\partial V_{i}=L(p, q_{i})$ , and $(V_{i}, \partial V_{i})$ are homotopy
equivalent to $(V_{j}, \partial V_{j})$ as pairs $(i, j=1, \cdots , n)$ . But, as is well known, $L(p, q_{i})$

is not homeomorphic to $L(p, q_{j})$ if $q_{i}\not\equiv\pm q_{j}^{\pm 1}(p)$ . This completes the proof.
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