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\S 1. Introduction.

We shall discuss A. Morimoto’s problem ([10]) concerned with the tolerance
stability conjecture of E. C. Zeeman mentioned in F. Takens ([15]).

Let $\varphi$ be a (self-) homeomorphism of a compact metric space $X$ with a metric
$d$ . A sequence of points $\{x_{i}\}_{i\in Z}$ is called a $\delta$-pseudo-orbit of $\varphi$ if $d(\varphi(x_{t}), x_{i+1})$

$<\delta$ for $i\in Z$. A sequence $\{x_{i}\}_{i\in Z}$ is called to be $\epsilon$ -traced by $x\in X$ if $d(\varphi^{i}(x), x_{i})$

$<\epsilon$ holds for $i\in Z$ . We say that (X, $\varphi$ ) has the pseudo-orbit tracing property
(abbrev. P. O. T. P.) if for every $\epsilon>0$ there is $\delta>0$ such that every $\delta$-pseudo-orbit
of $\varphi$ can be $\epsilon$ -traced by some point $x\in X$. We know (see A. Morimoto [11] or
N. Aoki [2]) that a toral automorphism has P. O. T. P. iff it is hyperbolic.

The set $C(X)$ of all closed non-empty subsets of $X$ will be a compact metric
space by the Hausdorff metric $\overline{d}$ defined by

$\overline{d}(A, B)=\max\{\max_{b\in B}\min_{a\in A}d(a, b), \max_{a\in A}\min_{b\in B}d(a, b)\}$

for $A,$ $B\in C(X)$ (cf. C. Kuratowski [8]). We denote by $Orb^{\delta}((X, \varphi))$ the set of
all $\delta$-pseudo-orbit of $\varphi$ and by $orb^{\delta}((X\sim, \varphi))$ the set of all $A\in C(X)$ , for which
there is $\{x_{i}\}\in Orb^{\delta}((X, \varphi))$ such that $A=c1\{x_{i} ; i\in Z\}$ , cl denoting the closure.
Let $E(\varphi)$ denote the set of all $A\in C(X)$ such that for every $\epsilon>0$ there is $A_{\epsilon}\in$

$Orb^{\epsilon}((X\sim, \varphi))$ with $\overline{d}(A, A_{\epsilon})<\epsilon$ . Obviously $E(\varphi)$ is closed in $C(X)$ . On the other
hand, we define $O(\varphi)=c1\{O_{\varphi}(x):x\in X\}$ where $O_{\varphi}(x)=c1\{\varphi^{i}(x):i\in Z\}$ . It is
clear that $O(\varphi)\subset E(\varphi)$ . We call $\varphi$ to have $OE$-Property if $E(\varphi)=O(\varphi)$ . It is easy
to check that $\varphi$ has OE-property whenever $\varphi$ has P. O. T. P.

The question whether every toral automorphism with OE-property could be
hyperbolic was raised by A. Morimoto ([10]). For this question we can give an
answer as follows.

THEOREM. Let $X$ be a compact metric group and $\sigma$ be an automorphism of
X. If $\sigma$ has OE-property, then $\sigma$ has P. O. T. $P$.

An easy consequence is the following

COROLLARY. Every toral automorphism with OE-property is hyperbolic.
For 2 and 3 dimensional toral automorphisms, the corollary was proved in
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T. Sasaki ([13]).

We denote by $\mathcal{H}(X)$ the group of all homeomorphisms of $X$. Then $\mathcal{H}(X)$

becomes a complete metric group with the metric defined by $d(f, g)= \max\{d(f(x)$ ,
$g(x)),$ $d(f^{-1}(x), g^{-1}(x)):x\in X$ } where $f,$ $g\in \mathcal{H}(X)$ . We recall that (X, f) is topol-
ogically stable iff for every $\epsilon>0$ there is $\delta>0$ such that for every $g\in \mathcal{H}(X)$ with
$d(f, g)<\delta$ there is a continuous map $h:X\supset$ such that $h\circ g=f\circ h$ and $d(h(x)$ ,
$x)<\epsilon(x\in X)$ . For an automorphism $\sigma$ of a compact metric abelian group $X$, it
is well known that if (X, a) is ergodic under the normalized Haar measure $\mu$

then it is Bernoullian under $\mu$ , and that (X, a) is ergodic iff it is topologically
mixing. In this case we remark that topological transitivity implies topological
mixing.

From A. Morimoto [10, 11, 12], N. Aoki $[2, 3]$ and the present paper, the
relation among the notions of OE-property, P. O. T. P., topological stability and
topological mixing for (X, a) will be characterized as follows. In the case $X$ is
connected, OE-property is equivalent to P. $0$ . T. P. (by Theorem), and it further
implies topological mixing (by Lemma 3). However topological mixing does not
imply P. O. T. P. in general (see [11]). If $X$ is solenoidal, then OE-property is
equivalent to topological stability (see [2]). When $X$ is connected, the authors
do not know whether this statement is true. In the case $X$ is totally discon-
nected, every automorphism has P. O. T. P. ([2]) (and hence OE-property). This
means that OE-property has nothing to do with topological transitivity for totally
disconnected case.

The authors wish to thank the referee for many suggestions which were
helpful in proving the results given here.

In order to show the theorem we prepare the following section.

\S 2. The P. O. T. P. and the OE-property of automorphisms.

Throughout this paper, we shall deal with a compact metric group $X$ with
the invariant metric $d$ , and write the group operation by multiplicative form.
Subgroups of $X$ which we deal with will be closed. Let $K$ be a subgroup of $X$

and $X/K$ denote a left coset space. The metric $d$ of $X$ induces the metric $d_{X/K}$

of $X/K$ by $d_{X/K}(xK, yK)= \min_{k\in K}d(xk, y)(x, y\in X)$ . Let $a$ be an automorphism

of $X$. Its restriction and its factor will be denoted by the same symbols $a$ if
there is no confusion.

LEMMA 1. Let $K$ be a completely a-invariant subgroup of $X(a(K)=K)$ . Then
(i) if (X, a) has P. O. T. P. then $(X/K, \sigma)$ also has P. O. T. P., (ii) if (X, a) has
$OE$-Property then $(X/K, \sigma)$ also has OE-Property.

PROOF. Denote by $\pi$ the natural projection from $X$ onto $X/K$. If $\{x_{i}K\}_{i\in Z}$

$\in Orb^{\delta}((X/K, a))$ , then there is $\{y_{i}\}\in Orb^{\delta}((X, a))$ such that $\pi(y_{i})=x_{i}K(i\in Z)$ .
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To prove (i), let $\epsilon>0$ . Then there is $\delta>0$ such that $\{y_{i}\}\in Orb^{\delta}((X, \sigma))$ implies
$d(y_{i}, a^{i}(y))<\epsilon(i\in Z)$ by some $y\in X$. Since $y_{i}K=x_{i}K(i\in Z)$ , we get $d_{X/K}(x_{i}K$,
$\sigma^{i}(yK))<\epsilon(i\in Z)$ .

Take $E\in E(\sigma_{X/K})$ , then there is $E_{n}=\{x_{i}^{(n)}\}\in Orb^{1/n}((X, a))$ such that $\overline{d}_{X/K}$

($E$ , cl $\{x_{i}^{(n)}K\}$ ) $<1/n$ where $\overline{d}_{X/K}$ is the Hausdorff metric of $C(X/K)$ . Since $C(X)$

is compact, we can find $E’\in E(a)$ such that $\overline{d}(c1E_{n_{j}}, E’)arrow 0$ (as $jarrow\infty$ ) by taking
a subsequence $\{E_{n_{j}}\}$ suitably. Since $O(\sigma)=E(a)$ , we have $E=\pi(E’)\in O(\sigma_{X/K})$ ,
thus proving (ii).

Let $X$ split into a direct product $X=\cross\sigma^{i}(H)-\infty\infty$ of normal subgroups $a^{i}(H)$ .
$\tilde{X}=\cross H-\infty\infty$ is the space of bilateral sequence of points in $H$, topologized as a com-

pact metric space in the Tychonoff topology. A metric $\tilde{d}$ is given by

$ff(x, y)= \max_{i\in Z}d(x_{i}, y_{i})/2^{|i1}$ .

The shift map $\beta:\tilde{X}\supset$) is defined as usual by $\beta(x_{i})=(y_{i})$ where $y_{i}=x_{i+1}$ for all
$i\in Z$ . $\beta$ is a homeomorphism. It is easily checked that (X, a) is conjugate to
(X, $\beta$ ). We call such an automorphism $\sigma$ a shift automorphism.

LEMMA 2. If $\sigma$ is a shift automorphism, then (X, a) has P. $0$ . T. $P$.
PROOF. Since (X, $\sigma$ ) is conjugate to (X, $\beta$), it is enough to prove that (X, $\beta$ )

has P. $0$ . T. P. Take $\epsilon>0$ . For $\delta>0$ with $2\delta<\epsilon$ and for $\{x^{i}\}\in Orb^{\delta}((\tilde{X}, \beta))$ , we
have for $i\in Z$

$d(\beta(x^{i}), x^{i+1})\geqq d((\beta x^{i})_{k}, x_{k}^{i+1})/2^{tk|}$

$=d(x_{k+1}^{i}, x_{k}^{i+1})/2^{|k|}$ $(k\in Z)$ ,

and so $d(x_{k+1}^{i}, x_{k}^{i+1})<2^{|k|}\delta(i, k\in Z)$ . Put
$x=(\cdots, x_{0}^{-1}, x_{0}^{0}, x_{0}^{1}, )\in\tilde{X}$ .

Obviously $(\beta^{i}x)_{k}=x_{0}^{i+k}$ for all $i,$ $k\in Z$ . It follows that for $k\geqq 0$

$d(x_{k}^{i}, x_{0}^{i+k}) \leqq\sum_{j=0}^{k- 1}d(x_{k-j}^{i+j}, x_{k-j-1}^{i+j+1})\leqq 2^{k+1}\delta$

and similarly $d(x_{k}^{i}, x_{0}^{i+k})\leqq 2^{|k|+1}\delta$ for $k<0$ . Hence we have for $i\in Z$

$\tilde{d}(x^{i}, \beta^{i}x)=\max_{k\in Z}d(x_{k}^{i}, (\beta^{i}x)_{k})/2^{|k|}\leqq 2\delta<\epsilon$ .
The proof is completed.

LEMMA 3. Assume that $X$ is connected. If (X, a) has OE-Property, then
(X, a) is topologically transitive.

PROOF. Let $\delta>0$ be given. Cover $X$ by a finite family $\{U(x_{i}, \delta)\}_{i=1}^{k}$ of $\delta-$

neighborhoods such that $d(x_{i}, x_{i+1})<\delta$ for $1\leqq i\leqq k-1$ . Since $X$ itself is the
nonwandering set of $a$ , for $1\leqq i\leqq k-1$ there is $n_{i}>0$ such that
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$\sigma^{n_{i}}U(x_{i}, \delta)\cap U(x_{i}, \delta)\neq\emptyset$ .
Take $z_{i}\in\sigma^{n_{i}}U(x_{i}, \delta)\cap U(x_{i+1},2\delta)$ and set

$y_{j}=\{\begin{array}{l}a^{j}(x_{1}) (]<0)a^{j- n_{1}}(z_{1})...a^{j-(n_{1}+\cdots+n_{i})}(z_{i})...a^{j-(n_{1}+\cdots+n_{k-1})}(z_{k- 1})\sigma^{j-(n_{1}+\cdots+n_{k})}(x_{k})\end{array}$

$(0\leqq]<n_{1})$

$(n_{1}+\cdots+n_{i-1}\leqq j<n_{1}+\cdots+n_{t})$

$(n_{1}+\cdots+n_{k-2}\leqq j<n_{1}+\cdots+n_{k- 1})$

$(]\geqq n_{1}+\cdots+n_{k})$ .

Then $\{y_{j}\}_{j\in Z}\in Orb^{3\delta}((X, \sigma))$ and so $\overline{d}$ ( $X$, cl $\{y_{j}\}$ ) $<3\delta$ . Since $\delta$ is arbitrary, we
get $X\in E(\sigma)$ and by assumption $X\in O(\sigma)$ . This implies that (X, a) is topologi-
cally transitive.

Let $X$ be a compact metric abelian group and $G$ be the dual group of $X$.
It is known that $G$ is countable, discrete and torsion free. The group operation
of $G$ will be written by additive form. We define the dual automorphism $\gamma$ :
$G\supset$ by $(\gamma g)(x)=g(\sigma x)$ , $g\in G$ and $x\in X$.

We say that (X, $\sigma$ ) satisfies condition (A) if for every $g\in G$ there is $0\neq p(\xi)$

$\in Z[\xi]$ (denoting the ring of all polynomials with integer coefficients) such that
$p(\gamma)g=0$ , and that (X, $\sigma$ ) satisfies condition (B) if every $0\neq g\in G$ has the condi-
tion that $p(\gamma)g\neq 0$ for all $0\neq p(\xi)\in Z[\xi]$ .

LEMMA 4 ([1], Theorem 1). Let $X_{0}$ be the connected component of $e$ in $X$.
If $X$ is abelian, then there exists a completely $\sigma\triangleleft nvariant$ totally disconnected subgroup
$X_{t}(\sigma(X_{t})=X_{t})$ such that $X=X_{0}X_{t}$ , and further $X_{0}$ splits into a product $X_{0}=X_{a}X_{b}$

of comPletely $\sigma$ -invariant subgroups such that
(i) $X_{a}$ is connected and satisfies condition (A),
(ii) $X_{b}$ is connected and satisfies condition (B).

We call $X$ to be solenoidal if $X$ is a finite-dimensional connected abelian
group. Remark that a finite-dimensional torus is solenoidal.

LEMMA 5. Let $X_{a}$ be a connected abelian group with condition (A). Then
$X_{a}$ contains a sequence $X_{a}\supset X_{a.1}\supset X_{a,2}\supset\cdots$ of subgroups such that $\bigcap_{n}X_{a,n}=\{e\}$

and for every $n\geqq 1,$ $a(X_{a,n})=X_{a.n}$ and $X_{a}/X_{a.n}$ is solenoidal.
PROOF. This follows from the proof of Lemma 9 in N. Aoki [1].

LEMMA 6. Let $X_{b}$ be a connected abelian group with condition (B). Then
$(X_{b}, \sigma)$ has P. O. T. $P$.

PROOF. This follows from the proof of (p. 196, [1]) and the following Lemma
7. But we shall give here a proof for completeness. Let $(G, \gamma)$ be the dual of
$(X_{b}, a)$ and define $K_{g}= \sum_{-\infty}^{\infty}\gamma^{j}\langle g\rangle$ for $g\in G$ as before. Since $G$ is countable, there
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is a sequence $G_{1}\subset G_{2}\subset\cdots\subset\cup G_{n}=G$ of completely $\gamma$-invariant subgroups $G_{n}$ such

that $c_{n^{=\sum K_{f_{i}}}}^{n}$ . Let $X_{n}$ be the annihilator of $G_{n}$ in $X_{b}$ for $n\geqq 1$ , then $X_{n}\backslash \{e\}$

$i=1$

and $X_{b}/X_{n}$ has the dual group $G_{n}$ . It is known (p. 167, [9]) that there is the
minimal divisible extension $(G_{n}, \gamma)$ of $(G_{n}, \gamma)$ . Let $Q[\xi, \xi^{-1}]$ be the ring of all
polynomials of $\xi$ and $\xi^{-1}$ with coefficients in $Q$ . Since $G_{n}$ is divisible and torsion
free, we can consider $G_{n}$ to be a $Q[\xi, \xi^{-1}]$-module. Since $Q[\xi, \xi^{-1}]$ is a principal

ideal domain, there are $g_{1},$
$\cdots$ , $g_{p}\in G_{n}$ such that $\overline{G}_{n}=\bigoplus_{i=1}^{p}Q[\gamma, \gamma^{-1}]g_{i}$ (cf. p. 85,

Theorem 2 in Chapter 7 of [4]). Hence $G_{n}$ is expressed as $\overline{G}_{n}=\bigoplus_{i=1}^{p}\{\bigoplus_{-\infty}^{\infty}\gamma^{j}\langle g_{i}\rangle\}$

and so the dual of $(G_{n}, \gamma)$ has P. $0$ . T. P. by Lemma 2, so that $(X_{b}/X_{n}, a)$ does
so (by Lemma 1 $(i)$). Since $n$ is arbitrary, we get the conclusion by using the
following Lemma 7.

LEMMA 7. If $X$ contains a sequence $X\supset K_{1}\supset\cdots$ of completely $\sigma$ -invariant
subgroups such that $\cap K_{n}=\{e\}$ and for every $n\geqq 1,$ $(X/K_{n}, a)$ has P. $0$ . T. P., then
(X, a) also has P. O. T. $P$.

PROOF. Let $\epsilon>0$ be given. Choose $m$ so large that diam $(K_{m})<\epsilon/2$ . Since
$(X/K_{m}, \sigma)$ has P. O. T. P., there is $\delta>0$ such that for every $\delta$-pseudo-orbit $\{x_{i}\}_{i\in Z}$

in $X$ there is a point $xK_{m}\in X/K_{m}$ with $d_{X’ K_{m}}(\sigma^{i}(xK_{m}), x_{i}K_{m})<\epsilon/2(i\in Z)$ . Since
diam $(K_{m})<\epsilon/2$ , it follows that $d(a^{i}(x), x_{i})<\epsilon$ for $i\in Z$ .

LEMMA 8 ([3]). Let $K$ be as in Lemma 1. If $(X/K, \sigma)$ and $(K, \sigma)$ have
P. O. T. P., then (X, $\sigma$ ) also has P. O. T. $P$.

LEMMA 9 ([3]). Assume that $X$ is totally disconnected. Then every automor-
phism has P. O. T. $P$.

LEMMA 10. Let $K$ be a completely a-invariant open subgroup of X. Then
(X, $\sigma$ ) has P. $0$ . T. P. iff $(K, \sigma)$ has P. O. T. P. If (X, $\sigma$ ) has OE-Property, then
so does $(K, a)$ .

PROOF. Since $K$ is open and closed, it is easily seen that $(K, \sigma)$ has P. O. T. P.
[OE-property] whenever (X, $\sigma$ ) has P. $0$ . T. P. [OE-property]. If $(K, \sigma)$ has
P. O. T. P., then (X, $\sigma$ ) has the same property since $X/K$ is discrete by Lemmas
8 and 9.

\S 3. Proof of Theorem.

The proof will be divided into five parts.

[I] Solenoidal case.
Throughout this part, $X$ will be an r-dimensional solenoidal group with the

invariant metric $d$ and $a$ will be an automorphism of $X$. As before let $(G, \gamma)$

be the dual of (X, $a$ ). Since rank $(G)=r<\infty$ and $G$ is torsion free, an into
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isomorphism $\varphi:Garrow Q^{r}$ exists ( $Q^{r}$ denotes the vector space over $Q$), so that $\overline{\gamma}=$

$\varphi^{Q}r^{Q}\varphi^{-1}$ is an automorphism of $\varphi(G)$ . Since rank $((G))=rank(Q^{r})=r,\overline{\gamma}$ is extended
on $Q^{r}$ and further on $R^{r}$. We shall denote again by $\gamma$ the extension on $R^{r}$.

The following Lemmas 11 and 12 are known (see \S 1, [2]).

LEMMA 11. Uuder the above notations, there exist a homomorphism $\psi:R^{r}arrow$

$X$ and a totally disconnected subgroup $F$ of $X$ such that
(i) $\psi\circ\gamma=\sigma\circ\psi$ ,
(ii) $X=\psi(R^{r})F$,
(iii) there is a closed neighborhood $U$ of $0$ in $R^{r}$ so that $\psi:Uarrow X$ is an into

homeomorphism, $\psi(U)\cap F=\{e\}$ and $\psi(U)F$ is a closed neighborhood of $e$ in $X$ (we

shall write $\psi(U)\cross F$ such a neighborhood $\psi(U)F)$ .
LEMMA 12. Let $F$ be as in Lemma 11. Then $F$ contains subgroups $F^{+},$ $F^{-}and$

$H$ such that
(i) $a(H)=H$,
(ii) $F^{+}\supset\sigma(F^{+})\supset--$ $\supset\bigcap_{0}^{\infty}a^{n}(F)=\{e\}$ ,

(iii) $F^{-} \supset\sigma^{-1}(F^{-})\supset\cdots\supset\bigcap_{0}^{\infty}\sigma^{-n}(F)=\{e\}$ ,
(iv) $F=F^{+}\cross F^{-}\cross H$ .
If in partjcular $G$ is finitely generated under $\gamma(i.e$ . $G$ is the group generated

by $\bigcup_{-\infty}^{\infty}\gamma^{i}(\Lambda)$ for some finite subset $\Lambda$ ), then one has $H=\{e\}$ .
MAIN LEMMA 13. Assume that $X$ is solenoidal. If (X, $\sigma$ ) has OE-Property,

then it has P. O. T. $P$.
PROOF. If $(R^{r}, \gamma)$ is hyperbolic, then (X, $\sigma$ ) has P. O. T. P. (see Theorem 2,

[2]). Assuming that $(R^{r}, \gamma)$ is not hyperbolic, we shall derive a contradiction.
By the assumption there are $0\neq g_{0}\in G(\subset R^{r})$ and an irreducible polynomial

$p(\xi)$ over $Q$ such that $p(\gamma)g_{0}=0$ and $p(\xi)$ has some roots of modulus one. Let
$G_{0}$ denote the subgroup generated by $\{\gamma^{j}(g_{0}):j\in Z\}$ , and denote by $K$ the an-
nihilator of $G_{0}$ in $X$. Obviously $\sigma(K)=K$ and $G_{0}$ is the dual of $X/K$. By Lemma
1 (ii), $(X/K, \sigma)$ has OE-property. We shall prove that this can not happen
because $(G_{0}, \gamma)$ is not hyperbolic.

For convenience we replace $X/K$ by $X$ and so $G_{0}$ by $G$ (remark that $G=G_{0}$

is finitely generated under $\gamma$). Then $F=F^{+}\cross F^{-}$ by Lemma 12. As usual $R^{r}=$

$E^{s}\oplus E^{c}\oplus E^{u}$ where $E^{S},$ $E^{C}$ and $E^{u}$ are the subspaces corresponding to the eigen-
values of $\gamma$ with modulus less than one, equal to one and greater than one,
respectively. Now $r_{Es}$ is essentially a contraction. So we shall use a norm on
$E^{s}$ relative to which $r_{E^{s}}$ is actually a contraction. Similarly, we shall use a
norm on $E^{u}$ relative to which $\gamma_{Eu}$ is an expansion. With these norms, there is
$\lambda\in(0,1)$ such that

$|\gamma(v^{s})|\leqq\lambda|v^{s}|(v^{s}\in E^{s})$ and $|\gamma(v^{u})|\geqq\lambda^{-1}|v^{u}|(v^{u}\in E^{u})$ .
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Since $p(\xi)$ is irreducible over $Q,$ $\gamma_{E^{C}}$ is an isometry: $i.e$ . with some norm

$|\gamma(v^{c})|=|v^{c}|(v^{c}\in E^{c})$ .
This follows from the fact that by Jordan normal form in the real field, $\gamma_{Ec}$ is
expressed as the matrix

$\{\begin{array}{lll}\gamma_{1} \ddots 00 \gamma_{m}\end{array}\}$

where $\gamma_{i}=[\pm 1]$ or $\gamma_{i}=\{\begin{array}{ll}\cos\theta_{i} -\sin\theta_{t}\sin\theta_{t} \cos\theta_{l}\end{array}\}$ for some $\theta_{l}$ with $0<\theta_{i}<2\pi$ .
Clearly $\Vert v\Vert=\max\{|v^{s}|, |v^{c}|, |v^{u}|\}$ is equivalent to the usual norm of $R^{r}$ .

If $B(\alpha)=\{v\in R^{r} : \Vert v\Vert<\alpha\}$ for $\alpha>0$ , then there is $\alpha_{1}>0$ such that $\psi(B(\alpha_{1}))\cross F$ is
a closed neighborhood of $e$ in $X$ (by Lemma 11 (iii)). For $x=x_{1}x_{2}$ with $x_{1}\in$

$\psi(B(\alpha_{1}))$ and $x_{2}\in F$, put $\rho(x)=\min$ { $\alpha_{1}$ , max $\{\Vert\psi^{-1}(x_{1})\Vert,$ $d(x_{2},0)\}$ } and define a
metric $d_{1}$ of $X$ by

$d_{1}(x, y)=\{\begin{array}{ll}\rho(x-y) if x-y\in\psi(B(\alpha_{1}))\cross F\alpha_{1} otherwise.\end{array}$

The metric $d_{1}$ is compatible with the original topology of $X$, and in particular
$d_{1}(\psi(v), O)=\Vert v\Vert$ for $v\in B(\alpha_{1})$ . Denote

$B^{s}(\alpha_{1})=B(\alpha_{1})\cap E^{s},$ $B^{c}(\alpha_{1})=B(\alpha_{1})\cap E^{c}$ and $B^{u}(\alpha_{1})=B(\alpha_{1})\cap E^{u}$ .
Then the choice of the norm yields

$\psi(B(\alpha_{1}))\cross F=\psi(B(\alpha_{1}))\cross F^{+}\cross F^{-}$

$=\psi(B^{s}(\alpha_{1}))\cross\psi(B^{c}(\alpha_{1}))\cross\psi(B^{u}(\alpha_{1}))\cross F^{+}\cross F^{-}$

For $\alpha\in(0, \alpha_{1}$], we define $F^{\pm}(\alpha)=\{x\in F^{\pm} : d_{1}(x, 0)\leqq\alpha\}$ . Clearly $F^{\pm}(\alpha)$ is a closed
neighborhood of the identity in $F^{\pm}$ . Choose and fix $\alpha\in(0, \alpha_{1})$ such that

$\gamma^{-1}(B^{s}(\alpha))\subset B^{s}(\alpha_{1})$ , $\gamma(B^{u}(\alpha))\subset B^{u}(\alpha_{1})$ ,
$(*)$

$\sigma^{-1}(F^{+}(\alpha))\subset F^{+}$ , $a(F^{-}(\alpha))\subset F^{-}$

Take $v_{0}\in B^{c}(\alpha/2)\backslash B^{c}(\alpha/4)$ . For every $n\geqq 1$ we set a sequence $\{v_{n.i}\}_{i\in Z}\in$

$B^{c}(\alpha/2)$ by

$v_{n,i}=\{\begin{array}{ll}0 (i\leqq 0)i\gamma^{i}(v_{0})/n (0<i<n)\gamma^{i}(v_{0}) (n\leqq i).\end{array}$

It follows easily that $\{v_{n.i}\}_{i\in Z}\in Orb^{1/n}((B^{c}(\alpha_{1}), \gamma))$ for $n\geqq 1$ . Put $E_{n}=c1\{v_{n.i} : i\in Z\}$
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for $n\geqq 1$ . Since $(B^{c}(\alpha_{1}), d_{1})$ is a compact metric space, as before the Hausdorff
metric $\overline{d}_{1}$ is defined on $C(B^{c}(\alpha_{1}))$ . Then $C(B^{c}(\alpha_{1}))$ is compact under $\overline{d}_{1}$ . Hence
$\overline{d}_{1}(E_{n}, E)arrow 0$ (as $narrow\infty$ ) for some $E\in C(B^{c}(\alpha_{1}))$ (choosing a subsequence if ne-
cessary), so that $E\in E(\gamma_{Bc(\alpha_{1})})$ . On the other hand, $E$ contains the zero element
$0$ of $B^{c}(\alpha_{1})$ and $E\cap\{B^{c}(\alpha/2)\backslash B^{c}(\alpha/4)\}\neq\emptyset$ holds. Since $\gamma_{Bc(a_{1})}$ is an isometry,
we have $E\not\in O(\gamma_{Bt(\alpha_{1})})$ .

Since $\psi:B(\alpha_{1})arrow X$ is an into homeomorphism, we get easily $\overline{d}(\psi(E_{n}), \psi(E))$

$arrow 0$ as $narrow\infty$ where $\overline{d}$ is the Hausdorff metric of $C(X)$ . Therefore $\psi(E)\in E(\sigma)$ .
However it is checked that $\psi(E)\not\in O(\sigma)$ . Indeed, if $\psi(E)\in O(\sigma)$ then for $n\geqq 1$

there is $y_{n}\in X$ such that

$(**)$ $\overline{d}(\psi(E), O_{\sigma}(y_{n}))<1/n$ .

Since $\overline{d}(\psi(E_{n}), \psi(E))arrow 0$ as $narrow\infty$ , we have $\overline{d}(\psi(E_{m}), O_{\sigma}(y_{m}))<\alpha/2$ for $m$ suf-
ficiently large. By the definition of $\overline{d}$ , for every $j\in Z$ there is $i\in Z$ such that

$d(\psi(v_{m,i}), \sigma^{j}(y_{m}))<\alpha/2$ .
Hence for every $j\in Z$

$d(0, \sigma^{j}(y_{m}))\leqq d(0, \psi(v_{m.i}))+d(\psi(v_{m,i}), \sigma^{j}(y_{m}))<\alpha$ .

Using $(*)$ , we have for every $J>0$

$y_{m} \in\{\bigcap_{-j=J}^{J}\sigma^{j}\psi(B^{s}(\alpha_{1}))\}\cross\psi(B^{c}(\alpha_{1}))\cross\{\bigcap_{j=-J}^{J}\sigma^{j}\psi(B^{u}(\alpha_{1}))\}$

$\cross\{\bigcap_{j=-J}^{J}\sigma^{j}(F^{+})\}\cross\{\bigcap_{j=- J}^{J}\sigma^{j}(F^{-})\}$ ,

which implies $O_{\sigma}(y_{m})\subset\psi(B^{c}(\alpha_{1}))$ (by the dePnition of the metric $d_{1}$ and Lemma
12 (ii), (iii)). It is clear that $\psi^{-1}(O_{\sigma}(y_{m}))=O_{\gamma}(\psi^{-1}(y_{m}))$ . From $(**)$ , we have
$\overline{d}_{1}(O_{\gamma}(\psi^{-1}(y_{n})), E)arrow 0$ as $narrow\infty$ , thus contradicting $E\not\in O(\gamma_{Bc(\alpha_{1})})$ .

[II] Connected abelian case.
MAIN LEMMA 14. Assume that $X$ is connected and abelian. If (X, $\sigma$ ) has

$OE$-property, then (X, $\sigma$ ) has P. O. T. $P$.
PROOF. Note that $X$ splits into a direct product $X=X_{a}X_{b}$ of subgroups as

in Lemma 4. Let $\{X_{a,n}\}$ be a sequence of subgroups of $X_{a}$ as in Lemma 5.
Since $X_{a}/X_{a.n}(n\geqq 1)$ is solenoidal and $X/X_{b}X_{a.n}$ is a factor of $X_{a}/X_{a.n},$ $X/X_{b}X_{a,n}$

is clearly solenoidal. By Main Lemma 13, $(X/X_{b}X_{a,n}, \sigma)$ has P. O. T. P. and hence
$(X/X_{b}, \sigma)$ also has P. O. T. P. by Lemma 7. Therefore we get that (X, a) has
P. O. T. P. using Lemmas 6 and 8.

[III] Abelian case.
MAIN LEMMA 15. Assume that $X$ is abelian. If (X, $\sigma$ ) has $OE$-property,

then (X, $\sigma$ ) has P. $0$ . T. $P$.
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PROOF. Let $X_{t}$ be as in Lemma 4. Since $X_{t}$ is totally disconnected, $(X_{t}, \sigma)$

has P. $0$ . T. P. by Lemma 9. Since $X/X_{t}$ is connected, $(X/X_{t}, \sigma)$ has P. $0$ . T. P.
by Main Lemma 14, and therefore the conclusion is obtained by Lemma 8.

[IV] Connected non-abelian case.
MAIN LEMMA 16. Assume that $X$ is connected and non-abelian. If (X, $\sigma$ )

has OE-property, then (X, $\sigma$ ) has P. $0$ . T. $P$.
First we shall prepare some useful lemmas.
LEMMA 17 (3.4, [18]). Let $X$ be as in Main Lemma 16. If $X$ splits into a

direct product $i\in I\cross D_{i}$ of algebraically simple non-abelian groups $D_{i}$ , then this

spljttjng is unique, and every normal subgroup of $X$ is equal to the product of
some collection of the grouPs $D_{t}$ .

LEMMA 18 (pp. $\mathfrak{B}-93,$ $[16]$ ). Let $X$ be as in Main Lemma 16. Then there
exist in $X$ normal subgroupsA and $B$ such that

(i) $A$ is the connected component of $e$ in the center $Z_{X}$ of $X$,
(ii) $B$ is isomorphjc to $B’/Z=(\cross L_{i}’)/Zi\in I$ where $L_{i}’(i\in I)$ is simply connected

compact simple Lie grouPs and $Z$ is a subgroup of the center $Z_{B’}$ of $B’$ , and
(iii) $X=AB$ .
The following is an easy consequence of Lemma 18.
LEMMA 19. Under the assumption and the notations of Lemma 18, if $Z_{B}$ is

the center of $B$, then
(i) $B/Z_{B}$ is isomorphic to $B’/Z_{B’}=\cross(L_{i}’Z_{B’}/Z_{B’})i\in I$

(ii) $B/Z_{B}$ splits into a direct product $B/z_{B}--\cross L^{(i)}i\in I$ of $L^{(i)}=L_{i}Z_{B}/Z_{B}$

where $L_{i}(i\in I)$ is a simPly connected compact simple Lie subgroup of $B$ , and
$B/Z_{B}$ is a group without center,

(iii) $Z_{B}$ is totally disconnected and normal in $X$,
(iv) $Z_{B}$ can be expressed as $z_{B}-- \prod_{i\in I}Z_{i}$ where $Z_{i}(i\in I)$ is the center of $L_{i}$ ,

and it is central in $X$,
(v) $X/AZ_{B}$ is isomorphic to $B/Z_{B}$ , and $Az_{B}--Z_{X}$ .
We remark that $\sigma(A)=A$ for every automorphism $a$ (by Lemma 18 $(i)$).

LEMMA 20. Under the notations of Lemma 18, let $\varphi$ be an isomorphism from
$B/Z_{B}$ onto $X/Z_{X}$ defined by $\varphi(xZ_{B})=xZ_{X},$ $x\in B$ . Then for every automorphism
$a,$ $\sigma(B)=B$ and $(X/Z_{X}, \sigma)$ is isomorphic to $(B/Z_{B}, a)$ under $\varphi$ .

PROOF. Define $\psi(xZ_{B})=\sigma(x)\sigma(Z_{B})$ for $x\in B$ , then $\psi:B/Z_{B}arrow\sigma(B)/\sigma(Z_{B})$

is an isomorphism. Since $B$ is normal in $X,$ $\sigma(Z_{B})(\sigma(B)\cap B)/a(Z_{B})$ is a normal
subgroup of $a(B)/a(Z_{B})$ . Since $B/Z_{B}--\cross L^{(i)}i\in I$ by Lemma 19 (ii), we have

$a(B)/a(Z_{B})=_{i\in I}\cross\psi(L^{(t)})$

and hence by Lemma 17
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$\sigma(Z_{B})(\sigma(B)\cap B)/\sigma(Z_{B})=\cross\psi(L^{(i)})i\in I_{0}$

where $I_{0}$ is some subset of $I$ . Since

$\sigma(B)/\sigma(Z_{B})=\{\cross\psi(L^{(i)})\}\cross\{\cross\psi(L^{(i)})\}i\in I_{0}i\not\in I_{0}$

we have

$\sigma(B)B/\sigma(Z_{B})B\cong a(B)/\sigma(Z_{B})(\sigma(B)\cap B)$

$\cong\{\sigma(B)/\sigma(Z_{B})\}/\{\sigma(Z_{B})(\sigma(B)\cap B)/\sigma(Z_{B})\}$

$\cong\cross\psi(L^{(t)})i\xi I_{0}$

(the notation $"\cong$ means that two topological groups are isomorphic).
To complete the proof, we denote by $D$ the kernel of the projection from

$A\cross B$ onto $X$. Then there is an isomorphism $\varphi_{1}$ : $(A\cross B)/Darrow X$. Let $\pi_{0},$ $\pi_{1}$

and $\pi_{2}$ be the projections in the following diagram

$A\cross Barrow^{\pi_{0}}A$

$\pi\sqrt{}$ $\downarrow\pi_{2}$

$(A\cross B)/D\overline{F}A/\pi_{0}(D)$

where $F$ is defined by $F\circ\pi_{1}(a, b)=\pi_{2}\circ\pi_{0}(a, b),$ $a\in A$ and $b\in B$ . It is clear that
$F$ is a continuous homomorphism. Now dePne by $\sigma’=\varphi_{1}^{-1}\circ\sigma\circ\varphi$ an automorphism
of $(A\cross B)/D$ . Since $F(\sigma’(\{e\}\chi B)D/D)$ is abelian and the kernel of $F$ is a sub-
group $(\{e\}\cross B)D/D$ ,

$\sigma’[(\{e\}\cross B)D/D][(\{e\}\cross B)D/D]/[(\{e\}\cross B)D/D]$

is abelian. Hence $\sigma(B)B/B$ is abelian and $\sigma(B)B/\sigma(Z_{B})B$ must be trivial, and
so $a(B)\subset a(Z_{B})B$ . Taking the connected component of the identity of $a(Z_{B})B$ ,

we get $a(B)\subset B$ since $\sigma(B)$ is connected and $\sigma(Z_{B})$ is totally disconnected. By
symmetry we have $\sigma(B)=B$ . The second statement is obtained easily from the
definition of the map $\varphi$ .

PROOF OF MAIN LEMMA 16.
Since $a(B)=B$ (by Lemma 20), $\sigma(Z_{B})=Z_{B}$ and $Z_{B}$ is totally disconnected.

To get the conclusion, it will be enough to prove that $(X/Z_{B}, \sigma)$ has P. O. T. P.
By Lemmas 18 (iii) and 19 (v), we have $X/Z_{B}=AZ_{B}/Z_{B}\cross B/Z_{B}$ . Since

$AZ_{B}/Z_{B}$ is connected and abelian, Main Lemma 14 ensures that $(AZ_{B}/Z_{B}, \sigma)$ has
P. $0$ . T. P. On the other hand, by Lemma 19 (ii), $B/Z_{B}$ is expressed as $B/Z_{B}$

$=\cross L^{(i)}i\in I$ where $L^{(i)}(i\in I)$ is algebraically simple. Let us put
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$M_{1}=\cross$ { $L^{(i)}$ : $\sigma^{n}(L^{(t)})\neq L^{(i)}$ for all $n\neq 0$ } and
$(***)$

$M_{2}=\cross$ { $L^{(i)}$ : $a^{n}(L^{(i)})=L^{(i)}$ for some $n\neq 0$}.

By Lemma 17, $B/Z_{B}$ is expressed as the direct product splitting

$B/z_{B}--M_{1}\cross M_{2}$ .

Since, for $i\in I$ there is $i’\in I$ such that $a(L^{(i)})=L^{(i’)}$ (by Lemma 17), we have

$M_{1}=\cross\sigma^{n}\{\cross L^{(i)}\}n=-\infty i\in I_{1}$

where $I_{1}$ is a suitable subset of $I$ . Hence $(M_{1}, \sigma)$ has P. $0$ . T. P. by Lemma 2.
$M_{2}$ is expressed as

$M_{2}=\cross U_{i}i$

where each $U_{i}$ is a $\sigma$ -invariant semi-simple Lie group. Since $a_{U_{i}}$ is an automor-
phism of $U_{i},$

$\sigma_{U_{i}}$ leaves invariant the Killing form $B$ of $U_{i}$ , which is negative
definite. Hence $a_{U_{i}}$ is an isometry under the invariant Riemannian metric on $U_{i}$

induced by $-B$, so that $\sigma_{M_{2}}$ is an isometry under some metric. Since $(M_{2}, \sigma)$

has OE-property, it is topologically transitive by Lemma 3. Hence $(M_{2}, \sigma)$ is
minimal (cf. see p. 121, [17]), so that $M_{2}=\{e\}$ . Hence $(B/Z_{B}, \sigma)=(M_{1}, \sigma)$ has
P. O. T. P.

[V] General case.
MAIN LEMMA 21. Let $X$ be a comPact metric group. If (X, $\sigma$ ) has OE-

Property, then (X, $\sigma$ ) has P. $0$ . T. $P$.
For the proof we need the following

LEMMA 22. Let $X_{0}$ denote the connected compOnent of $e$ in X. Assume that
the dimension of $X_{0}$ is finite. Then there exis $ts$ in $X$ a totally disconnected normal
subgroup $H$ such that $X_{0}H$ is open in $X$ and $a(X_{0}H)=X_{0}H$ holds.

PROOF. We denote by $X^{*}$ the set of equivalence classes of irreducible unitary
representations of $X$. If $X_{0}\neq\{e\}$ , then we can take $g\in X^{*}$ such that $g(X_{0})\neq\{e\}$

(the existence of such a representation $g$ is a consequence of Peter-Weyl’s theo-
rem). Let $H^{(1)}$ denote the kernel of $g$ , then it is normal in $X$ and $X_{0}H^{(1)}=$

$g^{-1}(g(X_{0}))$ holds. Denote by $g(X)_{0}$ the connected component of $e$ in $g(X)$ . Then
$g(X_{0})\subset g(X)_{0}$ and $g(X)_{0}/g(X_{0})$ is connected. It is clear that $g(X)_{0}/g(X_{0})$ is a
factor group of $g^{-1}g(X)_{0}/X_{0}$ . Hence $g(X)_{0}/g(X_{0})$ is totally disconnected: $i.e$ .
$g(X_{0})=g(X)_{0}$ . Since $g(X)$ is a Lie group, $g(X_{0})$ is open in $g(X)$ .

Therefore $X_{0}H^{(1)}$ is also open in $X$. Let $H_{0}^{(1)}$ be the connected component
of the identity $e$ in $H^{(1)}$ , then we get $H_{0}^{(1)}\subsetneqq X_{0}$ and hence dim $(H_{0}^{(1)})<\dim(X_{0})$ .
Again, take $f\in X^{*}$ such that $f(H_{0}^{(1)})\neq\{e\}$ and denote by $f’$ the restriction on
$H^{(1)}$ of $f$ . Then the kernel $H^{(2)}$ of $f’$ is a normal subgroup of $X$. Indeed, it
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is obvious that $H^{(2)}$ is a subgroup. The normality of it follows from the fact
that for every $x\in X,$ $xH^{(1)}x^{-1}=H^{(1)}$ and $f’(xhx^{-1})=f(x)f(h)f(x^{-1})=e$ for every
$h\in H^{(2)}$ . Since $f’(H_{0}^{(1)})$ is open in $f’(H^{(1)}),$ $H_{0}^{(1)}H^{(2)}=f^{\prime-1}(f’(H_{0}^{(1)}))$ is also open
in $H^{(1)}$ , so that $H^{(1)}/H_{0}^{(1)}H^{(2)}$ is finite. It is easy to see that $X_{0}H^{(1)}/X_{0}H^{(2)}$ is
a factor group of $H^{(1)}/H_{0}^{(1)}H^{(2)}$ . Hence $X_{0}H^{\langle 2)}$ is open in $X_{0}H^{(1)}$ and so in $X$.
Let $H_{0}^{(2)}$ be the connected component of $e$ in $H^{(2)}$ , then dim $(H_{0}^{(2)})<\dim(H_{0}^{(1)})$ .

Repeating the above argument, we see that $X$ contains a sequence $\{H_{0}^{(k)}\}$ of
normal subgroups such that

dim $(X_{0})>\dim(H_{0}^{(1)})>\dim(H_{0}^{(2)})>\cdots$

and for every $k,$ $X_{0}H^{(k)}$ is open in $X$. Since dim $(X_{0})<\infty$ , there is $n\geqq 1$ such
that $H^{(n)}$ is totally disconnected. We write

$D=H^{(n)}$ and $A_{m}=D\sigma(D)\cdots a^{m}(D)$ $(m\geqq 1)$ .

Let $\pi;Xarrow X/X_{0}$ be the natural projection, then $\pi$ is an open map and so
$\{\pi(A_{m})\}_{m\geqq 1}$ is an increasing sequence of open subgroups of $X/X_{0}$ (because each
$A_{m}X_{0}$ is open in $X$ ). Put $\dot{K}=\bigcup_{m\geqq 1}\pi(A_{m})$ . Then $\dot{K}$ is compact. Hence there is

$M>0$ such that $\dot{K}=\pi(A_{M})$ . Since $D$ is totally disconnected, so is $A_{M}$ . We get
that $a(\dot{K})=\dot{K}$ : $i.e$ . $\sigma(X_{0}A_{M})=X_{0}A_{M}$ . For, let $\mu$ be the normalized Haar meas-
ure of $X/X_{0}$ . Then $\mu(\bigcup_{j\geqq 1}\sigma^{j}(\dot{K}\backslash \sigma(\dot{K})))=\sum_{j\geqq 1}\mu(\dot{K}\backslash a(\dot{K}))=\infty$ unless $a(\dot{K})=\dot{K}$ since
$\dot{K}\backslash \sigma(\dot{K})$ is open and compact. This can not happen and the proof is completed.

LEMMA 23. Let $X_{0}$ and $H$ be as in Lemma 22. If $X_{0}$ is abelian, then $H$ is
chosen such that $a(H)=H$ holds.

PROOF. Let $X_{1}$ and $X_{2}$ be subgroups of $X$. Denote by $[X_{1}, X_{2}]$ the sub-
group generated by points of the forms $[x_{1}, x_{2}]=x_{1}^{-1}x_{2}^{-1}x_{1}x_{2},$ $x_{1}\in X_{1}$ and $x_{2}\in X_{2}$ .
Since $H$ is normal in $X,$ $[X_{0}, H]\subset X_{0}\cap H=\{e\}$ and so

$[X_{0}H, X_{0}H]=[X_{0}, X_{0}][H, H]=[H, H]$ .

Since $X_{0}H/[H, H]=(X_{0}[H, H]/[H, H])(H/[H, H])$ is abelian, by Lemma 4 there
is a completely a-invariant subgroup $H_{t}/[H, H]$ such that $H_{t}/[H, H]$ is totally
disconnected and $X_{0}H/[H, H]=(X_{0}[H, H]/[H, H])(H_{t}/[H, H])$ . It is easy to
see that $a(H_{t})=H_{t}$ and $H_{t}$ is totally disconnected. This $H_{t}$ is our requirement.

Let $X_{0}$ be as in Lemma 22 and assume that $X_{0}$ is abelian. We denote by
$(G, \gamma)$ the dual of $(X_{0}, \sigma)$ as before. As usual, $C(X_{0})$ denotes the Banach space
of all complex valued continuous functions imposed with the uniform norm. De-
noting by $\langle\cdot, g\rangle$ a character $g$ of $X_{0}$ , we get $\hat{G}=\{\langle\cdot, g\rangle : g\in G\}\subset C(X_{0})$ . It
follows easily that $\hat{G}$ is discrete in $C(X_{0})$ . Let $\psi_{y}$ : $\hat{G}\supset$ be an automorphism
dePned by

$\langle x, \psi_{y}g\rangle=\langle yxy^{-1}, g\rangle$ ($g\in G$ and $y\in X$).
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LEMMA 24. (i) $\psi_{y}$ is continuous in $y$ and (ii) for $g\in G,$ $\{/\backslash \cdot, \psi_{y}g\rangle : y\in X\}$

is a fimte set.
PROOF. It is easy to see that for $g\in G$

$\sup_{x\in X_{0}}|\langle x, \psi_{y}g\rangle-\langle x, g\rangle|arrow 0$ as $yarrow e$ .

Define a map $\varphi_{g}$ : $Xarrow\hat{G}$ by $\varphi_{g}(y)=\langle\cdot, \psi_{y}g\rangle$ for $g\in G$ and $y\in X$. Then $\varphi_{g}$ is
continuous since $\psi_{y}$ is continuous in $y$ . Hence $\varphi_{g}(X)\subset\hat{G}$ , and $\varphi_{g}(X)$ is finite.

LEMMA 25. For $g\in G$ , there exists an open normal subgroup $U_{g}$ such that
$X_{0}\subset U_{g}$ and $\psi_{y}(g)=g$ for all $y\in U_{g}$ .

PROOF. Since $\{\psi_{y}(g):y\in X\}$ is finite by Lemma 24 (ii), there is in $X$ an
open subgroup $U_{g}’$ such that $X_{0}\subset U_{g}’$ and $\psi_{y}(g)=g$ for all $y\in U_{g}’$ (by using Lemma
24 $(i))$ . Note that $X/X_{0}$ is totally disconnected and compact. Then there is an
open normal subgroup $U_{g}$ , so that $X_{0}\subset U_{g}\subset U_{g}’$ . This $U_{g}$ is the desired subgroup.

Let $G_{A}$ be the maximal subgroup of $G$ whose dual satisfies condition (A).

LEMMA 26. There exists a completely a-invariant open normal subgroup $X_{1}$

such that $X_{0}\subset X_{1}$ and $\psi_{y}(G_{A})=G_{A}$ for all $y\in X_{1}$ .
PROOF. If $0\neq g\in G_{A}$ , then there is $0\neq p(\xi)\in Z[\xi]$ with degree $(p(\xi))=k$ such

that $p(\gamma)g=0$ . By Lemma 25 there is an open normal subgroup $V$ so that $\psi.(r^{i}g)$

$=\gamma^{i}g(0\leqq i\leqq k)$ for all $v\in V$ . Note that $G$ is torsion free. It follows that $\psi_{v}(\gamma^{i}g)$

$=\gamma^{i}g$ for all $i\in Z$ and all $v\in V$ . By compactness there is $m>0$ such that $X_{1}=$

$V\sigma(V)\cdots a^{m}(V)$ is completely $\sigma$ -invariant. Therefore $\psi_{y}(g)=g$ for all $y\in X_{1}$ .
Since $g$ is arbitrary in $G_{A}$ , we get the conclusion of the lemma.

LEMMA 27. Let $G_{A}$ and $X_{1}$ be as in Lemma 26. Then there exists a com-
pletely $\sigma$ -invariant subgroup $K$ of $X_{0}$ such that

(i) $K$ is normal in $X_{1}$ ,
(ii) $K$ has the dual group $G/G_{A}$ and satisfies condition (B),

(iii) $X_{0}/K$ has the dual group $G_{A}$ .
PROOF. Since $\psi_{y}(G_{A})=G_{A}$ for all $y\in X_{1}$ by Lemma 26, the annihilator $K$

of $G_{A}$ in $X_{0}$ is normal in $X_{1}$ . Since $K$ and $X_{0}/K$ have the dual groups $G/G_{A}$

and $G_{A}$ respectively, the assertions (ii) and (iii) hold.

LEMMA 28. Let $X_{1},$ $K$ and $G_{A}$ be as in Lemma 27. Then there exists a
sequence $X_{0}\supset X^{(1)}\supset\ldots$ of completely a-invariant subgroups such that $\cap X^{(i)}=K$

and for every $i\geqq 1$

(i) $X^{(i)}$ is normal in $X_{1}$ ,
(ii) $X_{0}/X^{(t)}$ is solenoidal.
PROOF. By Lemma 27 (iii), the dual group of $X_{0}/K$ satisfies condition (A).

Let $g$ be a character of $X_{0}/K$ : $i.e$ . $g\in G_{A}$ . Then $\{\psi_{y}(g):y\in X_{1}\}$ is finite
by Lemma 24 (ii). Hence the rank of the subgroup generated by
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$\{\gamma^{i}\psi_{y}(g) : -\infty<i<\infty, y\in X_{1}\}$

is finite. By using this, we get easily the conclusion of the lemma.

LEMMA 29. Let $X_{0}$ be the connected comp0nent of $e$ in $X$ as before. Assume
that $X_{0}$ has no center. If $U$ is a completely $\sigma\triangleleft nvariant$ Lie group in $X_{0}$ and $U$

is normal in $X_{0}$ , then there is a completely $\sigma$ -invariant open subgroup $X_{1}$ of $X$

such that $X_{1}\supset X_{0}$ and $U$ is normal in $X_{1}$ . If in particular (X, a) has OE-property,
then $X_{0}$ does not contain such subgroups $U$.

PROOF. Let $L$ be a subgroup of $X_{0}$ . We may assume that $L$ is algebrai-
cally simple and normal in $X_{0}$ . Choose a representation $g\in X^{*}$ such that $g(L)$

$\neq\{e\}$ and let $F$ be the kernel of $g$ . Then $F$ is a normal subgroup of $X$ such
that $X/F$ is a Lie group and $F\cap L=\{e\}$ holds. Note that $x^{-1}Lx\subset X_{0}$ and
$g(x^{-1}Lx)\neq\{e\}$ for $x\in X$. Then $0=\{x^{-1}Lx : x\in X\}$ is a finite sequence of
subgroups that are normal in $X_{0}$ . For, if $0$ is infinite, then $R=\Pi(x^{-1}Lx)$ splits
into the infinite direct product $R=\cross(x^{-1}Lx)$ and $F\cap R=\{e\}$ by Lemma 17. But
$FR/F$ is a Lie group and $FR/F\cong R$ . This can not happen. Therefore { $x\in X$ :
$x^{-1}Lx=L\}$ is an open subgroup of $X$. By assumption $X_{0}$ is represented as $X_{0}$

$=\cross L^{(i)}$ with the notations of Lemma 19 (ii). Since $U\subset X_{0},$ $U$ splits into a
direct product of a finite family of $\{L^{(i)}\}$ (by Lemma 17). Hence $X_{1}=\{x\in X$ :
$x^{-1}Ux=U\}$ is a completely $\sigma$ -invariant open subgroup of $X$ (since $a(U)=U$).

Let $V$ be a direct factor such that $X_{0}=V\cross U$ . Then $V$ is normal in $X_{1}$ and
$\sigma(V)=V$ holds (this is obtained using Lemma 17). If (X, a) has OE-property
then $(X_{1}, \sigma)$ and $(X_{1}/V, \sigma)$ both have OE-property. Since $X_{0}/V\cong U$ , by (5.1, [18])

we can find a completely $\sigma$ -invariant normal subgroup $\dot{C}$ of $X_{1}/V$ such that $\dot{C}\cap$

$X_{0}/V$ is trivial and $\dot{C}\cross X_{0}/V$ is open in $X_{1}/V$ . Since $(X_{1}/V, a)$ has OE-property,
as in the proof of Main Lemma 16 we get $X_{1}=V$ : $i.e$ . $U=\{e\}$ .

PROOF OF MAIN LEMMA 21.
As before let $X_{0}$ be the connected component of $e$ in $X$. With the notations

of Lemma 18 (iii), $X_{0}$ splits into a product $X_{0}=AB$ of subgroups that are normal
in $X$ (Lemma 20). Since $\sigma(B)=B$ , we have $a(Z_{B})=Z_{B}$ where $Z_{B}$ is the, center
of $B$ . Note that $Z_{B}$ is normal in $X$. Let us put

$\dot{X}=X/Z_{B}$ , $A=AZ_{B}/Z_{B}$ , $\dot{B}=B/Z_{B}$ and $\dot{X}_{0}=X_{0}/Z_{B}$ .

Then $\dot{A},\dot{B}$ and $\dot{X}_{0}$ are normal in $\dot{X}$ and completely a-invariant. Note that $\dot{X}_{0}$

$=A\cross\dot{B}$ holds. By Lemma 1 (ii), $(\dot{X}, \sigma)$ has OE-property.
To get the conclusion of Main Lemma 21, we need only to prove that $(\dot{X}, a)$

has P. $0$ . T. P. (because $(Z_{B}, \sigma)$ has P. O. T. P. by Lemma 9 and hence by Lemma
8, (X, $\sigma$ ) has P. $0$ . T. P.). Note that $(X/A, a)$ has OE-property. Since $\dot{x}_{0}/A$

$\cong\dot{B},\dot{x}_{0}/A$ has no center. By Lemma 29, $\dot{B}$ does not contain non-trivial a-
invariant Lie groups that are normal in $\dot{X}_{0}$ : $i.e.\dot{B}=M_{1}$ where $M_{1}$ is the group
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in $(***)$ . Therefore $(\dot{B}, \sigma)$ has P. O. T. P. (by Lemma 2).

Thus it is enough to show that $(X/B, \sigma)$ has P. $0$ . T. P. For convenience
put $Y=\dot{X}/B$ and $Y_{0}=\dot{X}_{0}/B$ . Clearly $Y_{0}$ is the connected component of the iden-
tity of $Y$ and $Y_{0}$ is abelian. Let $(G, \gamma)$ be the dual of $(Y_{0}, \sigma)$ as before. Since
$Y_{0}$ is connected, $G$ is torsion free. Let $G_{A}$ be the maximal subgroup of $G$

whose dual satisPes condition (A). Then there is in $Y$ a completely a-invariant
open normal subgroup $Y_{1}$ (by Lemma 26), and by Lemma 27 there is a subgroup
$K$ such that $a(K)=K,$ $K$ is normal in $Y_{1}$ and $Y_{0}/K$ has the dual group $G_{A}$ . By
using Lemma 28, we have that $Y_{1}$ contains a sequence $Y_{0}\supset Y^{(1)}\supset\ldots$ of completely
$\sigma$-invariant subgroups such that $\cap Y^{(t)}=K$ and for every $i\geqq 1,$ $Y^{(i)}$ is normal in
$Y_{1}$ and $Y_{0}/Y^{(i)}$ is solenoidal. Since $Y_{0}/Y^{(i)}$ is the connected component
of the identity in $Y_{1}/Y^{(i)},$ $Y_{1}/Y^{(i)}$ contains a totally disconnected normal
subgroup $H_{i}/Y^{(i)}$ such that $Y_{0}H_{i}/Y^{(i)}$ is open in $Y_{1}/Y^{(i)}$ and $a(Y_{0}H_{i}/Y^{(t)})=$

$Y_{0}H_{i}/Y^{(i)}$ holds (by Lemma 22).

Since $Y_{1}$ is open in $Y$ and $(Y, \sigma)$ has OE-property (by Lemma 1 (ii)), $(Y_{1}, \sigma)$

has OE-property (see Lemma 10), and hence $(Y{}_{0}H_{i}/Y^{(i)}, \sigma)$ also has OE-property.
By Lemma 23 we remark that $H_{i}/Y^{(i)}$ is chosen such that $\sigma(H_{i}/Y^{(i)})=H_{i}/Y^{(i)}$

holds. Hence $(H_{i}/Y^{(i)}, \sigma)$ has P. $0$ . T. P. On the other hand, since $(Y_{0}H_{i}/Y^{(i)})$

$/(H_{i}/Y^{(i)})$ is connected, by Lemma 1 (i) and Main Lemma 16 the system has
P. $0$ . T. P., and so does $(Y{}_{0}H_{i}/Y^{(i)}, \sigma)$ by Lemma 8. By using Lemma 10 we get

that $(Y_{1}/Y^{(i)}, a)$ , and hence $(Y/Y^{(i)}, \sigma)$ , has P. O. T. P. Since $Y^{(i)}\searrow K,$ $(Y/K, \sigma)$

must have P. $0$ . T. P. (by Lemma 7). Since $K$ has the dual group $G/G_{A},$ ($K,$ $a\rangle$

satisfies condition (B) by Lemma 27 (ii), and so $(K, \sigma)$ has P. O. T. P. (by Lemmas
6 and 7). Therefore $(Y, \sigma)=(\dot{X}/\dot{B}, \sigma)$ has P. $0$ . T. P. The proof of Main Lemma
21 is completed.
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