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Introduction.

The aim of the present paper is to show that the regular representations of
some non-type I semi-direct product groups can be decomposed into direct integrals
of irreducible representations in an uncountably infinite number of completely
different ways. This is related with some cohomology groups.

The non-uniqueness of irreducible decompositions of a non-type I representation
has been pointed out by several authors, for example, [3], [4], [7], [8], [9], [10],

[11], [12], [13], [18], [19] and [20]. Concerning the regular representations $\lambda$

of non-type I semi-direct product groups $G,$ $[4],$ $[12]$ and [13] gave two kinds of
entirely different irreducible decompositions of $\lambda$ under some restrictions. In the
present paper, we shall establish similar facts in a more general situation. We
have studied in [7] and [10] that it is possible to give various kinds of irreducible
decompositions of certain non-type I factor representations, related with some
cohomology groups. In the present paper, we shall show that similar results may
be obtained even for the regular representation $\lambda$ of $G$ and that there are an
uncountably infinite number of completely different irreducible decompositions of
$\lambda$ in some cases.

Our main result is as follows. Let $G$ be a semi-direct product $N\cross sK$ of $N$

with $K$ where $N$ and $K$ are assumed to be separable locally compact abelian
groups. Then, the left regular representation $\lambda$ of $G$ is decomposed into ir-
reducible components as

$\lambda\cong\int_{\hat{N}}^{\oplus}\int_{\hat{H}\chi}^{\oplus}U^{(\chi,\theta)}d\tau_{\chi}(\theta)d\mu(\chi)$ (I)

$\cong\int_{Z}^{\oplus}\int_{\hat{K}}^{\oplus}V^{(a,\eta,\zeta)}d\nu(\eta)d\sigma(\zeta)$ (II)

where $a$ is a cocycle of the double transformation group $(K;\hat{N}\cross K;K)$ . Further,
we describe a maximal abelian von Neumann subalgebra $A^{a}$ in $\lambda(G)’$ explicitly,
which will give rise to the decomposition in (II). We state also the unitary in-
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equivalence among the component representations and the discrepancy of different
decompositions. See Proposition 1 and Theorem 4.

I would like to express my hearty thanks to Professor O. Takenouchi for
various advices and careful reading of the manuscript, and to all the members
of his seminar for stimulating discussions and valuable suggestions.

Preliminaries.

Let $G$ be a semi-direct product group $N\cross sK$, where $K$ acts on $N$ as an
automorphism group. We consider the case where $N$ and $K$ are separable locally
compact abelian groups. The action is denoted by $z\in Narrow k\cdot z\in N$ for $k\in K$.
The element of $G$ is written as $(z, k)(z\in N, k\in K)$ and the multiplication is
given by $(z, k)(z’, k’)=(z+k\cdot z’, k+k’)$ . The subgroups $\{(z, 0);z\in N\}$ and {$(0, k)$ ;
$k\in K\}$ of $G$ are identified with $N$ and $K$ respectively.

Via the action of $K$ on $N$, an action of $K$ on the topological space $\hat{N}$ (the

dual of $N$ ) is defined: for $k\in K$ and $\chi\in\hat{N},$ $\langle z, k\cdot\chi\rangle=\langle k\cdot z, \chi\rangle$ for all $z\in N$. We
get in this way a topological transformation group $(K;\hat{N})$ which satisfies $k_{2}\cdot(k_{1}\cdot\chi)$

$=(k_{1}+k_{2})\cdot\chi$ for $k_{1},$ $k_{2}\in K$ and $\chi\in\hat{N}$. When $(K;\hat{N})$ is smooth ([2]), $G=Nx_{s}K$

is called a “regular” semi-direct product group ([14]). We note that $G$ is of
type I if and only if $G$ is a regular semi-direct product group of abelian groups
([15]). Our concern will be centered around to the case where $G$ is a non-regular
semi-direct product group (therefore, of non-type I).

When the topological transformation group $(K;\hat{N})$ is non-smooth, following
two facts are known.

(i) There are various kinds of quasi-orbits on $\hat{N}$ under the action of $K$

$([5], [3])$ .
(ii) For each non-transitive quasi-orbit $\mu$ , the one-cohomology group $H_{\beta}^{1}(K;\hat{N})$

is large ( $i.e$. uncountably infinite) because the action of $K$ is amenable.
In the present paper, we shall give different irreducible decompositions of the

left regular representation $\lambda$ of $G$ , in relation with these facts.
Throughout the paper, we assume that a Haar measure of $N$ is invariant

under the action of $K$ for simplicity. By the assumption, we see that $G=N\cross\epsilon K$

is a unimodular group and that a Haar measure of $\hat{N}$ is also invariant under the
action of $K$.

Canonical decomposition of $\lambda$ .
Let $\lambda$ be the left regular representation of $G$ and $\iota$ be the trivial representa-

tion of the subgroup $\{e\}$ of $G$ where $e$ denotes the unit element of $G$ . Then,
we see, by general considerations of induced representations [15], $\lambda$ is decomposed
as follows.
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$\lambda\cong Ind_{tet}^{G}\iota$

$\cong Ind_{N}^{G}Ind_{te\}}^{N}\iota$

$\cong Ind_{N}^{G}\int_{\hat{N}}^{\oplus}\chi d\mu(\chi)$

$\cong\int_{\hat{N}}^{\oplus}Ind_{N}^{G}\chi d\mu(\chi)$

where $\mu$ is a suitable Haar measure of $\hat{N}$ (the dual of $N$ ).

For $\chi\in\hat{N}$, let $H_{\chi}$ denote the stabilizer of $K$ at $\chi$ . Put $G_{\chi}=N\cross {}_{s}H_{\chi}$ . For
$\theta\in\hat{H}_{\chi}$, a unitary representation $L^{(\chi,\theta)}$ of $G_{\chi}$ is dePned by $L_{(z,h)}^{(\chi,\theta)}=\langle z, \chi\rangle\langle h, \theta\rangle$ for
$(z, h)\in N\cross {}_{s}H_{\chi}=G_{\chi}$ . Thus, we get a unitary representation $U^{(\chi.\theta)}$ of $G$ by $U^{(\chi.\theta)}$

$=Ind_{G\chi}^{G}L^{(\chi.\theta)}$ . Then, each component $Ind_{N}^{G}\chi$ of the above decomposition is fur-
ther decomposed as

$Ind_{N}^{G}\chi\cong Ind_{G\chi}^{G}Ind_{N}^{G\chi}\chi$

$\cong Ind_{G\chi}^{G}\int_{\hat{H}}^{\oplus}xL^{(x.\theta)}d\tau_{\chi}(\theta)$

$\cong\int_{\hat{H}\chi}^{\oplus}Ind_{G\chi}^{G}L^{(x.\theta)}d\tau_{\chi}(\theta)$

$= \int_{\hat{H}\chi}^{\oplus}U^{(\chi.\theta)}d\tau_{\chi}(\theta)$

where $T\chi$ is a Haar measure of $\hat{H}_{\chi}$ . Therefore, we get the following.

PROPOSITION 1. The left regular representatjOn $\lambda$ of $G=N\cross sK$ is decompOsed
as

$\lambda\cong\int_{\hat{N}}^{\oplus}\int_{\hat{H}\chi}^{\oplus}U^{(\chi,\theta)}d\tau_{\chi}(\theta)d\mu(\chi)$ .

The components $U^{(\chi.\theta)}(x\in N, \theta\in\hat{H}_{\chi})$ have the following prOpertjes.
(i) All $U^{(X.\theta)}$ are irreducible representations of $G$ .
(ii) $U^{(\chi,\theta)}$ is unitarily equivalent to $U^{(\chi\prime.\theta’)}$ if and only if $\chi’\in Orb_{K}(\chi)$ and

$\theta’=\theta$ .
PROOF. These are easily veriPed by using Mackey’s theory of induced rep-

resentations [14]. So we omit the detail. [Q. E. D.]

Other decompositions of $\lambda$ .
Now, we shall describe the possibility of other irreducible decompositions

of $\lambda$ . To do this, at first, we realize $\lambda$ on $L^{2}(\hat{N}\cross K)$ as follows.

LEMMA 2. The left regular representation $\lambda$ of $G$ is realized on $L^{2}(\hat{N}\cross K)$ as
$(\lambda_{(z.k)}\xi)(\chi s)=\langle z, \chi\rangle\xi(k\cdot\chi s-k)$
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for $(z, k)\in N\cross sK=G$ and $\xi(\chi s)\in L^{2}(\hat{N}\cross K)$ .
PROOF. Transform the representation space of $\lambda$ from $L^{2}(N\cross K)$ to $L^{2}(\hat{N}\cross K)$

by the unitary operator $F\otimes I$ where $F$ is the Fourier transformation from $L^{2}(N)$

to $L^{2}(\hat{N})$ and $I$ is the identity operator on $L^{2}(K)$ . Then, we get the desired
conclusion. [Q. E. D.]

Here, we may consider two actions of $K$ on the space $\hat{N}\cross K$, defined by

$k\cdot(\chi s)=(k\cdot\chi s-k)$

$(\chi s)\cdot t=(\chi s+t)$

for $(\chi s)\in\hat{N}\cross K$ and $k,$ $t\in K$. Then, we get a double transformation group
$(K;\hat{N}\cross K;K)$ . Let $T$ be the one-dimensional torus group. As in [6], a T-valued
Borel function $a(\chi s)$ on $\hat{N}\cross K$ is called a cocycle of $(K;\hat{N}\cross K;K)$ if $a(\chi s)$

satisfies the following condition. For each $k,$ $t\in K$,

$a(k\cdot(\chi s)t)=a(k\cdot(\chi s))\overline{a(x,s)}a((\chi s)\cdot t)$ ,
namely,

$a(k\cdot\chi s-k+t)=a(k\cdot\chi s-k)\overline{a(x,s)}a(\chi s+t)$ .

$Z^{1}(K;\hat{N}\cross K;K)$ denotes the abelian group of all such cocycles.
For $a\in Z^{1}(K;\hat{N}\cross K;K)$ , put

$(\rho_{t}^{a}\xi)(\chi s)=a(\chi s)\overline{a(x,s+t)}\xi(\chi s+t)$

for $t\in K$ and $\xi(\chi s)\in L^{2}(\hat{N}\cross K)$ . Then, $\rho^{a}$ is a unitary representation of $K$ on
$L^{2}(\hat{N}\cross K)$ .

Let $L^{\infty}(\hat{N})$ denote the algebra of all $\mu$-essentially bounded measurable func-
tions, where $\mu$ is the Haar measure of $\hat{N}$ and $L^{\infty}(\hat{N})^{K}$ denotes the fixed point
subalgebra of $L^{\infty}(\hat{N})$ under the action of $K$, namely, the set of elements $f\in L^{\infty}(\hat{N})$

satisfying that, for each $k\in K$, $f(k\cdot\chi)=f(\chi)\mu- a.a$ . $\chi\in\hat{N}$. When we regard
$L^{\infty}(\hat{N})$ as a von Neumann algebra on $L^{2}(\hat{N})$ , we denote the operator of $L^{\infty}(\hat{N})$ by
$T_{f}$ for $f\in L^{\infty}(\hat{N})$ .

Now, we take a von Neumann algebra $A^{a}$ on $L^{2}(\hat{N})\otimes L^{2}(K)$ for $a\in Z^{1}(K$ ;
$\hat{N}\cross K;K)$ , defined by

$A^{a}=$ { $T_{f}\otimes\rho_{t}^{a}$ ; $f\in L^{\infty}(\hat{N})^{K}$ and $t\in K$} ’ ,

where $T_{f}\otimes\rho_{t}^{a}$ means $(T_{f}\otimes I)\rho_{l}^{a}$ When the regular representation $\lambda$ of $G$ is
realized on $L^{2}(\hat{N})\otimes L^{2}(K)$ as Lemma 2, we get the following lemma.

LEMMA 3. $A^{a}$ is a maximal abelian von Neumann algebra in $\lambda(G)’$ for each
$a\in Z^{1}(K;\hat{N}\cross K;K)$ .

PROOF. To show that $A^{a}\subset\lambda(G)’$ , it is sufficient to verify that

$\lambda_{(z,k)}(T_{f}\otimes\rho_{t}^{a})=(T_{f}\otimes\rho_{t}^{a})\lambda_{(z,k)}$
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for each $(z, k)\in G,$ $t\in K$ and $f\in L^{\infty}(\hat{N})^{K}$ . This can be seen as follows. For $\xi(\chi s)$

$\in L^{2}(\hat{N})\otimes L^{2}(K)$ ,

$(\lambda_{(z,k)}(T_{f}\otimes\rho_{t}^{a})\xi)(\chi s)$

$=\langle z, \chi\rangle f(k\cdot\chi)a(k\cdot\chi s-k)\overline{a(k\cdot x,s-k+t)}\xi(k\cdot\chi s-k+t)$

$=\langle z, \chi\rangle f(\chi)a(\chi s)\overline{a(x,s-t)}\xi(k\cdot\chi s-k+t)$

$=((T_{f}\otimes\rho_{t}^{a})\lambda_{(z,k)}\xi)(\chi s)$ .

The maximality of $A^{a}$ in $\lambda(G)’$ will be shown later. [Q. E. D.]
Now, we shall consider the irreducible decomposition of $\lambda$ corresponding to

the maximal abelian von Neumann subalgebra $A^{a}$ in $\lambda(G)’[17]$ .
For the abelian von Neumann algebra $L^{\infty}(\hat{N})^{K}$ on $L^{2}(\hat{N})$ , there exists a com-

pact Hausdorff space $Z$ and a positive finite measure $\sigma$ on $Z$ such that supp $\sigma=Z$

and $L^{\infty}(\hat{N})^{K}$ is algebraically isomorphic with $L^{\infty}(Z, \sigma)[1]$ . At the same time,
the Haar measure $\mu$ on $\hat{N}$ is decomposed to ergodic measures $\mu^{\rho}.(\zeta\in Z)$ as

$\mu=\int_{Z}^{\oplus}\mu_{\zeta}d\sigma(\zeta)$

where the component measures $\mu_{\zeta}$ on $\hat{N}$ are chosen to be invariant under the
action of $K$ for $\sigma- a.a$ . $\zeta\in Z$ by the invariance of $\mu$ and the uniqueness of de-
compositions. Associated with this decomposition, we have that

$L^{2}( \hat{N}, \mu)\cong\int_{Z}^{\oplus}L^{2}(\hat{N}, \mu_{\zeta})d\sigma(\zeta)$

and
$L^{\infty}( \hat{N}, \mu)=\int_{Z}^{\oplus}L^{\infty}(\hat{N}, \mu_{\zeta})d\sigma(\zeta)$

and that $L^{\infty}(\hat{N})^{K}$ is transformed to the diagonal algebra.
For $a\in Z^{1}(K;\hat{N}\cross K;K)$ , a cocycle $c^{a}(k, \chi)$ of $(K;\hat{N})$ is obtained by

$c^{a}(k, \chi)=\overline{a(x,s)}a(k\cdot\chi s-k)$

which is well-defined by the cocycle condition of $a$ . Then, we may define a
unitary representation $V^{(a,\eta,\zeta)}(\zeta\in Z, \eta\in f\zeta)$ by

(V $(z.k)(a.\eta.\zeta)\xi$ ) $(\chi)=c^{a}(k, \chi)\langle z, \chi\rangle\langle k, \eta\rangle\xi(k\cdot\chi)$

for $\xi(\chi)\in L^{2}(N, \mu_{\zeta})$ and $(z, k)\in N\cross sK=G$ .
Thus, we get the following theorem.

THEOREM 4. The left regular representati0n $\lambda$ of $G=N\cross sK$ is decomp0sed
as follows, corresp0nding to the abelian von Neumann algebra $A^{a}(a\in Z^{1}(K$ ;
$\hat{N}\cross K;K))$ in $\lambda(G)’$ .

$\lambda\cong\int_{Z}^{\oplus}\int_{\hat{K}}^{\oplus}I^{\gamma(a}\eta\zeta)d\nu(\eta)d\sigma(\zeta)$
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where $\nu$ is a Haar measure of $K$ and $V^{(a,\eta,()}$ is given as above. Moreover, $V^{(a,\eta,\zeta)}$

$(\zeta\in Z, \eta\in\hat{K})$ have the following propertjes.
(i) $V^{(a.\eta.\zeta)}$ is irreducible for each $a\in Z^{1}(K;\hat{N}\cross K;K),$ $\zeta\in Z$ , and $\eta\in\hat{K}$.
(ii) $V^{(a.\eta.\zeta)}$ is unitarily equivalent to $V^{(a’.\eta’.\zeta’)}$ if and only if $\zeta=\zeta’$ and

$c^{a}+\eta$ is $\mu_{(}$-cohomologous to $c^{a’}+\eta’$ .
(iii) $V^{(a.\eta,()}$ is unitarily equivalent to $U^{(\chi,\theta)}$ if and only if the measure $\mu_{(}$

concentrates on $Orb_{K}(\chi)$ and $c^{a}+\eta$ is $\mu_{\zeta}$-cohomologous to an extension of $\theta$ to $K$.
PROOF. For $a\in Z^{1}(K;\hat{N}\cross K;K)$ , define a unitary operator $T_{a}$ on $L^{2}(\hat{N}\cross K)$

by

$(T_{a}\xi)(\chi s)=\overline{a(x,s)}\xi(\chi s)$

for $\xi(\chi s)\in L^{2}(\hat{N}\cross K)$ . Then, by simple calculations, we know that, for $\xi(\chi s)\in$

$L^{2}(\hat{N}\cross K)$ ,

$T_{a}\lambda_{(z.k)}T_{a}^{*}$ : $\xi(\chi s)arrow\overline{a(x,s)}a(k\cdot\chi s-k)\langle z, \chi\rangle\xi(k\cdot\chi s-k)$

$=c^{a}(k, \chi)\langle z, \chi\rangle\xi(k\cdot\chi s-k)$

and
$T_{a}(T_{f}\otimes\rho_{t}^{a})T_{a}^{*}$ : $\xi(\chi s)arrow f(\chi)\xi(\chi s+t)$

for $(z, k)\in G,$ $f\in L^{\infty}(\hat{N})^{K}$ , and $t\in K$.
Next, take a unitary operator $I\otimes F$ from $L^{2}(\hat{N})\otimes L^{2}(K)$ to $L^{2}(\hat{N})\otimes L^{2}(K)$ where

$I$ is the identity operator on $L^{2}(\hat{N})$ and $F$ is the Fourier transformation from
$L^{2}(K)$ to $L^{2}(R)$ , and put $W_{a}=(I\otimes F)T_{a}$ . Then, we get, for $\xi(\chi\eta)\in L^{2}(\hat{N}\cross K)$ ,

$W_{a}\lambda_{(z.k)}W_{a}^{*}$ : $\xi(\chi\eta)arrow c^{a}(k, \chi)\langle z, \chi\rangle\langle k, \eta\rangle\xi(k\cdot\chi\eta)$

and

$W_{a}(T_{f}\otimes\rho_{t}^{a})W_{a}^{*}$ : $\xi(\chi\eta)arrow f(\chi)\overline{\langle t,\eta\rangle}\xi(\chi\eta)$ .

Hence, we see that, corresponding to the abelian von Neumann algebra $W_{a}A^{a}W_{a}^{*}$ ,

the Hilbert space $L^{2}(\hat{N}\cross\hat{K})$ is decomposed as

$L^{2}( \hat{N}\cross\hat{K})\cong\int_{Z}^{\oplus}\int_{\hat{K}}^{\oplus}H^{(\eta}\zeta)d\nu(\eta)d\sigma(\zeta)$

where $H^{(\eta,\zeta)}\cong L^{2}(\hat{N}, \mu_{\zeta})$ for $\sigma- a.a$ . $\zeta\in Z$ ,

$\lambda_{(z,k)}\cong\int_{Z}^{\oplus}\int_{\hat{K}}^{\oplus}V_{(z.k)}^{(a,\eta.\zeta)}d\nu(\eta)d\sigma(\zeta)$

and

$\tau_{f}\otimes\rho_{t}^{a}\cong\int_{Z}^{\oplus}\int_{\hat{K}}^{\oplus}f(\zeta)\overline{\langle t,\eta\rangle}d\nu(\eta)d\sigma(\zeta)$

where $f\in L^{\infty}(Z, \sigma)$ for $f\in L^{\infty}(\hat{N})^{K}$ . Thus, we get the desired decomposition of $\lambda$ .
(i) Suppose that there exists an operator $S$ on $L^{2}(\hat{N}, \mu_{\zeta})$ such that $V_{(z.k)}^{(a.\eta.\zeta)}S$

$=SV_{(z.k)}^{(a,\eta.\zeta)}$ for all $(z, k)\in G$ . Then, the equality $V_{(z,0)}^{(\alpha,\eta.\zeta}$ ‘ $S=SV_{(z.0)}^{(a,\eta.\zeta)}$ for all $z\in N$
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implies that $\grave{\circ}=T_{g}$ for some $g\in L^{\infty}(\hat{N}, \mu_{\zeta})$ because the set {V $(z.0)(a\eta\zeta);z\in N$ }
generates a maximal abelian von Neumann algebra $L^{\infty}(\hat{N}, \mu_{\zeta})$ on $L^{2}(\hat{N}, \mu_{\zeta})$ . Next,
$V_{(0.k)}^{(a.\eta.\zeta)}S=SV_{(0.k)}^{(a.\eta.\zeta)}$ implies that, for each $k\in K,$ $g(k\cdot\chi)=g(\chi)\mu_{\zeta^{-}}a.a$ . $\chi\in\hat{N}$. By
the ergodicity of $\mu_{\zeta},$

$g(\chi)=constant(\mu_{\zeta^{-}}a.a. \chi\in\hat{N})$ , and so $S$ must be a constant
multiplication operator. This means the irreducibility of $V^{(a,\eta,\zeta)}$ .

(ii) Suppose that $V^{(a.\eta,\zeta)}$ is unitarily equivalent to $V^{(a^{i}.\eta’,\zeta’)}$ . The restriction
of each representation to the abelian subgroup $N$ of $G$ is decomposed as

$N|V^{(a,\eta,\zeta)} \cong\int_{\hat{N}}^{\oplus}\chi d\mu_{\zeta}(\chi)$

and

$N|V^{(a,)} \eta’,\backslash ’=\int_{\hat{N}}^{\oplus}xd\mu_{\zeta},(\chi)$ .

Then, the unitary equivalency of these representations implies that the measures
$\mu_{(}$ and $\mu_{\zeta}$

, on $\hat{N}$ are mutually equivalent [16] and so $\zeta=\zeta’$ .
Thus, we may assume that there exists a unitary operator $S$ on $L^{2}(N, \mu_{\zeta})$

such that
V $(z.k)(a.\eta,()S=SV_{(z,\dot{k})^{\eta’}}^{(a’,\zeta)}$

for all $(z, k)\in G$ . Similarly as in the proof of (i), we see that $S=T_{g}$ for some
T-valued Borel function $g$ on $\hat{N}$. Next, by the equality

$V_{(0.k)}^{(a,\eta,\zeta)}=T_{g}V_{(0.\dot{k})}^{(a^{J}\eta’.\zeta)}T_{g}^{*}$ ,

we get, for each $k\in K$,

$c^{a}(k, \chi)\langle k, \eta\rangle=g(\chi)c^{a’}(k, \chi)\langle k, \eta’\rangle\overline{g(k\cdot\chi)}$

for $\mu_{(}- a.a$ . $\chi\in\hat{N}$ so that $c^{a}+\eta$ is $\mu_{\zeta}$-cohomologous to $c^{a’}+\eta’$ , where we regard
$\eta$ and $\eta’(\in K)$ as elements of $Z^{1}(K;\hat{N})$ . The converse is easily verified.

(iii) For $\chi\in\hat{N}$, let $\omega_{\chi}$ be the canonical transitive invariant measure on $\hat{N}$

concentrated on $Orb_{K}(\chi)$ . Then, the unitary representation $U^{(\chi,\theta)}$ of $G$ is realized
on $L^{2}(\hat{N};\omega_{\chi})$ as

$(U_{(z}^{(\chi\theta)}:k)\xi)(\chi)=\langle z, \chi\rangle\langle k,\tilde{\theta}\rangle\xi(k\cdot\chi)$

for $\xi(\chi)\in L^{2}(\hat{N}, \omega_{\chi})$ , where $\tilde{\theta}$ is an extension character of $\theta$ to $K$. Hence, it is
easy to deduce the desired conclusion by similar arguments as in the proof of (ii).

So we omit the detail. [Q. E. D.]
REMARK 5. (a) By the irreducibility of $V^{(a.\eta,\zeta)}$ , we see that $A^{a}$ was a

“maximal” abelian von Neumann subalgebra in $\lambda(G)’$ (see [17]).
(b) When the measure $\mu_{\zeta}$ on $\hat{N}$ is not transitive for a-a. $a$ . $\zeta\in Z$ , by (iii) in

Theorem 4, we see that the regular representation $\lambda$ of $G$ is decomposed to ir-
reducible components at least in two completely different ways. We note that
this fact is connected with the existence of non-transitive quasi-orbits on $\hat{N}$ for
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the non-smooth topological transformation group $(K;\hat{N})$ . This result is interpreted
as a generalization of examples obtained by several authors, for example, by
G. W. Mackey [13] (1951; some discrete semi-direct product groups), A. A.
Kirillov [12] (1972; the Mautner group), and S. Funakosi [4] (1981; some general
cases).

(c) When a cocycle $c^{a}$ is not weakly $\mu_{\zeta}$-cohomologous to a cocycle $c^{a’}$ (this

means that $c^{a}+\eta$ is not $\mu_{(}$-cohomologous to $c^{a’}+\eta’$ for any $\eta,$
$\eta’\in K$ ) for $\sigma- a.a$ .

$\zeta\in Z$ , by (ii) in Theorem 4, we see that the regular representation $\lambda$ of $G$ has
completely different irreducible decompositions. This fact is connected with the
weak cohomology group of $(K;\hat{N})$ for each quasi-orbit $[\mu_{\zeta}]$ and it is a new
result for the regular representation. For a particular factor representation $\pi$ ,
we have studied the relation between decompositions of $\pi$ and the weak coho-
mology group associated with $\pi$ in [7], [8], [10], [11]. Applying the arguments
described there to this fact, we see that there are an uncountable infinite number
of completely different irreducible decompositions of the regular representation for
some concrete non-type I groups, for example, the discrete Mautner group, the
Mautner group, the discrete Heisenberg group, and the Dixmier group.

EXAMPLE 6. $G=Z^{2}\cross_{s}Z$ . Let $Z$ be the additive group of integers and $Z^{2}$

be the product of two copies of $Z$ . Let $G$ be a semi-direct product of $Z^{2}$

$(=N)$ by $Z(=K)$ , where the action of $Z$ on $Z^{2}$ as automorphism groups of $Z^{2}$ is
defined by

$n\cdot z=(\begin{array}{ll}m+1 m1 1\end{array})(\begin{array}{l}ab\end{array})$ $(m\in N)$

for $n\in Z$ and $z=(a, b)\in Z^{2}$ . It is well-known that the transformation group
$(K;\hat{N})$ is non-smooth so that $G$ is of non-type I and that the normalized Haar
measure $\mu$ on $\hat{N}$ is ergodic under the action of $K$. We note that $G$ does not
satisfy the imbedding assumption $(*)$ which was crucial in the decomposition
theory in [7].

Let $c^{(pq)}(p, q\in Z)$ be a concrete cocycle of $(K;\hat{N})$ canonically obtained by

$c^{(p,q)}(1, (s, t))=e^{ips}s^{iq\iota}$

for $(s, t)\in[0,2\pi)\cross[0,2\pi)\cong\hat{N}$. Then, by similar arguments as in Lemma 4.2 of
[6], we see that $c^{(p,q)}$ is weakly cohomologous to $c^{(p’,q’)}$ if and only if $p=p’$ and
$q=q’$ . Next, using the technique in [11], we know that the cardinal number of
the weak cohomology group of $(K;\hat{N})$ is uncountably infinite. Thus, by (c) of
Remark 5, the left regular representation $\lambda$ of $G$ has an uncountably infinite
number of completely different irreducible decompositions in the following form.

$\lambda\cong\int_{0}^{2\pi}\oplus V^{(c,r)}dr$ $c\in Z^{1}(K,\hat{N})$ .
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Here we note that there is another technique which gives rise to different
decompositions of $\lambda$ . Let $K_{z}$ be a subgroup of $G$ generated by $(z, 1)\in G$ and $\eta^{r}$

be a unitary character of $K_{z}$ obtained by $\langle(z, 1), \eta^{r}\rangle=e^{ir}$ for $r\in[0,2\pi$ ). Put
$W^{(z.r)}=Ind_{K_{z}}^{G}\eta^{r}$ . Then, we get

$\lambda\cong\int_{0}^{2\pi}\oplus W^{(z.r)}$ dr.

Moreover, the following facts hold.
(i) $W^{(z.r)}$ is irreducible for any $z\in N$ and $r\in[0,2\pi$ ).

(ii) If $K_{z}$ is not cojugate to $K_{z’},$ $W^{(z,r)}$ is never unitarily equivalent to $W^{(z’.r)}$

for arbitrary choices of $r,$ $r’\in[0,2\pi$).

(iii) The number of the conjugacy classes of $\{K_{z} ; z\in N\}$ is Pnite, exactly $m$ .
Therefore, we see that $\lambda$ has $m$ kinds of completely different irreducible de-

compositions. This is a technique similar to the one used in [9], [19] and [20].
However, we can show that these decompositions are all contained in ours given
in Theorem 4. In a subsequent paper, we will observe the diverse possibility of
decompositions of representations, concerned with automorphisms of $G$ . There,
we will clarify the relationship between the conjugacy classes of some family of
closed subgroups of $G$ and the weak cohomology group of $(K;\hat{N})$ .
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