Residues of complex analytic foliation singularities

By Tatsuo Suwa

(Received Nov. 15, 1982)

In [3], Baum and Bott defined the residues of complex analytic foliation singularities and proved a general residue formula using differential geometry based on the Bott vanishing theorem. Let M be a complex manifold. We define a foliation (of complete intersection type) on M to be a locally free subsheaf F of the cotangent sheaf Ω_{M} which satisfies the Frobenius integrability condition outside of the singular set ($=$ the singular set of the coherent sheaf $\Omega_{F}=\Omega_{M} / F$). In this note, we express ((3.4) Theorem) a certain class of residues of F in terms of the Chern classes of F and the local Chern classes of the sheaf $\mathcal{E} x t_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)$, which appeared in the unfolding theory ([7]). As a corollary, the rationality of these residues is shown (cf. [3] p. 287 Rationality Conjecture). In a number of cases, the Riemann-Roch theorem for analytic embeddings (Atiyah-Hirzebruch [2]) can be used to compute the residues. The results of this paper were announced in [9].

This work was done while I was visiting University of Illinois at Chicago. I would like to thank especially J. Heitsch and P. Wagreich for their interest and helpful conversations. I am also grateful to H. Suzuki of Hokkaido University for reading the manuscript carefully and correcting some mistakes.

1. Residues.

We briefly review how the residues are defined in Baum-Bott [3]. Let M be an n-dimensional complex manifold. We denote by \mathcal{O}_{M} (or simply by \mathcal{O}), Θ_{M} and Ω_{M}, respectively, the structure sheaf, the tangent sheaf and the cotangent sheaf of M. In [3] pp.281-282, a foliation is defined to be a full integrable coherent subsheaf ξ of Θ_{M}. Let Q be the quotient sheaf Θ_{M} / ξ;

$$
\begin{equation*}
0 \longrightarrow \xi \longrightarrow \Theta_{M} \longrightarrow Q \longrightarrow 0 . \tag{1.1}
\end{equation*}
$$

The singular set S of the foliation is defined by

$$
\begin{equation*}
S=\left\{z \in M \mid Q_{z} \text { is not a free } \mathcal{O}_{z} \text {-module }\right\} \tag{1.2}
\end{equation*}
$$

[^0]where for a sheaf \mathcal{S} on M, \mathcal{S}_{z} denotes the stalk of \mathcal{S} over z. The sheaf ξ defines an ordinary foliation on $M-S$, whose codimension is denoted by q. Let Z be a connected component of S and assume that Z is compact. Take an open neighborhood U of Z in M such that Z is a deformation retract of U. Let $\sigma_{1}, \cdots, \sigma_{n}$ be the elementary symmetric functions in n variables X_{1}, \cdots, X_{n}. On $U-Z$, the sheaf Q is locally free and it admits a basic connection D_{-1}, which determines a closed $2 i$-form $\sigma_{i}\left(K_{-1}\right)$ on $U-Z$ for each $i, 1 \leqq i \leqq n$. There exists a closed $2 i$-form ω_{i} on U which coincides with $\sigma_{i}\left(K_{-1}\right)$ outside of a compact set in U containing Z in its interior (cf. [3] p. 312 Proof of (0.23)).

If ϕ is a symmetric and homogeneous polynomial of degree d in X_{1}, \cdots, X_{n}, there is a polynomial $\tilde{\phi}$ in $\sigma_{1}, \cdots, \sigma_{n}$ with $\phi=\tilde{\phi}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$. We set $\phi(Q)=$ $(\sqrt{-1} / 2 \pi)^{d} \tilde{\phi}\left(\omega_{1}, \cdots, \omega_{n}\right)$, which is a closed $2 d$-form on U. Note that in [3], the cohomology class of $\phi(Q)$ is denoted by $\phi(Q)$, however here the form itself is denoted by $\phi(Q)$. If $d>q$, then by the Bott vanishing theorem $([3](3.27)), \phi(Q)$ has compact support and defines a cohomology class $[\phi(Q)]$ in $H_{c}^{2 d}(U ; \boldsymbol{C})$ (cohomology with compact support). We denote by L the composition of the two isomorphisms

$$
\begin{equation*}
H_{c}^{2 d}(U ; \boldsymbol{C}) \xrightarrow{\stackrel{D_{U}}{\sim}} H_{2 n-2 d}(U ; \boldsymbol{C}) \xrightarrow{i_{\varkappa_{*}^{1}}} H_{2 n-2 d}(Z ; \boldsymbol{C}), \tag{1.3}
\end{equation*}
$$

where D_{U} denotes the Poincaré duality map and i is the embedding $Z \subset U$. Then the residue is defined by

$$
\operatorname{Res}_{\phi}(\xi, Z)=L([\phi(Q)]) .
$$

2. The sheaf $\mathcal{E} \times t_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)$.

In [7](1.2), a (reduced) foliation is defined to be a full coherent subsheaf F of Ω_{M} satisfying the integrability condition. Let Ω_{F} be the quotient sheaf Ω_{M} / F;

$$
\begin{equation*}
0 \longrightarrow F \longrightarrow \Omega_{M} \longrightarrow \Omega_{F} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

The two definitions are equivalent if we set $[7](1.5)) \xi=F^{a}=\left\{\theta \in \Theta_{M} \mid \omega(\theta)=0\right.$, $\forall \omega \in F\}$ or $F=\xi^{a}=\left\{\omega \in \Omega_{M} \mid \omega(\theta)=0, \forall \theta \in \xi\right\}$. Note that F^{a} is identical with the dual sheaf $\mathscr{F} \operatorname{com}_{\mathcal{O}}\left(\Omega_{F}, \mathcal{O}\right)$ of Ω_{F}. The singular set $S(F)$ of F is defined by

$$
\begin{equation*}
S(F)=\left\{z \in M \mid \Omega_{F, z} \text { is not a free } \mathcal{O}_{z} \text {-module }\right\} \tag{2.2}
\end{equation*}
$$

and is identical with S in (1.2). By taking the duals of (2.1), we obtain the exact sequence

By (2.2), the support of the sheaf $\mathcal{E} \times t_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)$ is in S. Comparing (1.1) and (2.3), we get the exact sequence

$$
\begin{equation*}
0 \longrightarrow Q \longrightarrow F^{*} \longrightarrow \mathcal{E}^{2} \epsilon_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right) \longrightarrow 0 . \tag{2.4}
\end{equation*}
$$

From now on we consider only foliations of complete intersection type ([7](1.10)), i.e., we assume that F is a locally free θ-module (of rank q). We do not distinguish locally free sheaves from holomorphic vector bundles. Thus (2.4) can be viewed as a "decomposition" of the sheaf Q into the vector bundle part F^{*} and the singular part $\mathcal{E x t o t}_{0}^{1}\left(\Omega_{F}, \mathcal{O}\right)$.

3. Residues and the local Chern classes of $\mathcal{E} x+0^{1}\left(\Omega_{F}, \mathcal{O}\right)$.

Let F be a codim q foliation (of complete intersection type) and let Z be a compact connected component of the singular set S. In this section, analytic objects on M are restricted to the open set U considered in section 1. Since $\mathcal{E} \times t_{0}\left(\Omega_{F}, \mathcal{O}\right)$ is a coherent sheaf on U with support in Z, there is the associated "Grothendieck element" $\gamma_{z}\left(\mathcal{E} \times t_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)\right)$, which we simply denote by \mathcal{E}, in $K^{\circ}(U, U-Z)([1] \S 4,[4]$ Ch. I, cf. also [5]). The Chern character gives a mapping

$$
\mathrm{ch}: K^{0}(U, U-Z) \longrightarrow H^{*}(U, U-Z ; \boldsymbol{Q}) .
$$

Since Z is a deformation retract of U, there is a canonical isomorphism

$$
H^{*}(U, U-Z ; \boldsymbol{Q}) \xrightarrow{\sim} H_{c}^{*}(U ; \boldsymbol{Q}) .
$$

Also there is a canonical homomorphism

$$
\begin{equation*}
\kappa: H_{c}^{*}(U ; \boldsymbol{Q}) \longrightarrow H^{*}(U ; \boldsymbol{Q}) . \tag{3.1}
\end{equation*}
$$

Thus $\operatorname{ch}(\mathcal{E})$ determines the local Chern classes $c_{1}(\mathcal{E}), \cdots, c_{n}(\mathcal{E})$ in $H^{*}(U, U-Z ; \boldsymbol{Q})$ $=H_{c}^{*}(U ; \boldsymbol{Q})$ such that $1+\kappa\left(c_{1}(\mathcal{E})\right)+\cdots+\kappa\left(c_{n}(\mathcal{E})\right)$ is the total Chern class of the coherent sheaf $\mathcal{E} \times t^{1}\left(\Omega_{F}, \mathcal{O}\right)$ on U. For each integer k with $1 \leqq k \leqq n$, we set

$$
\begin{equation*}
d_{k}(\mathcal{E})=\sum_{r=1}^{k}(-1)^{r} \sum_{j_{1}+{\underset{j}{2}}^{j_{2}+j_{j}=k}} c_{j_{1}}(\mathcal{E}) \cdots c_{j_{r}}(\mathcal{E}) . \tag{3.2}
\end{equation*}
$$

Let $c\left(F^{*}\right)=1+c_{1}\left(F^{*}\right)+\cdots+c_{n}\left(F^{*}\right)$ be the (rational) total Chern class in $H^{*}(U ; \boldsymbol{Q})$ of F^{*}. Note that $c_{i}\left(F^{*}\right)=0, q+1 \leqq i \leqq n$, since F^{*} is a locally free sheaf of rank q. Also note that there is a canonical pairing

$$
H^{*}(U ; \boldsymbol{Q}) \times H_{c}^{*}(U ; \boldsymbol{Q}) \longrightarrow H_{c}^{*}(U ; \boldsymbol{Q}) .
$$

(3.3) Definition. For each integer j with $q<j \leqq n, c_{j}\left(F^{*}-\mathcal{E}\right)$ denotes the element

$$
c_{q}\left(F^{*}\right) d_{j-q}(\mathcal{E})+\cdots+c_{1}\left(F^{*}\right) d_{j-1}(\mathcal{E})+d_{j}(\mathcal{E})
$$

in $H_{c}^{2 j}(U ; \boldsymbol{Q})$, and for each integer j with $1 \leqq j \leqq q$, it denotes the element

$$
c_{j}\left(F^{*}\right)+c_{j-1}\left(F^{*}\right) \kappa\left(d_{1}(\mathcal{E})\right)+\cdots+c_{1}\left(F^{*}\right) \kappa\left(d_{j-1}(\mathcal{E})\right)+\kappa\left(d_{j}(\mathcal{E})\right)
$$

in $H^{2 j}(U ; \boldsymbol{Q})$.
(3.4) Theorem. Let F be a foliation (of complete intersection type) of codim q on M and let U and Z be as above. If $\phi=\sigma_{j_{1}} \cdots \sigma_{j_{r}}$ with $j_{\nu}>q$ for some ν, then

$$
\operatorname{Res}_{\phi}(F, Z)=L\left(c_{j_{1}}\left(F^{*}-\mathcal{E}\right) \cdots c_{j_{r}}\left(F^{*}-\mathcal{E}\right)\right),
$$

where $\operatorname{Res}_{\phi}(F, Z)=\operatorname{Res}_{\phi}\left(F^{a}, Z\right)$ and L is the composition of two isomorphisms in (1.3).

Proof. Let D_{-1} be a basic connection for Q on $U-Z$. Since $Q=F^{*}$ on $U-Z$ and F^{*} is locally free on U, by [3] (4.41), the connection D_{-1} can be modified to obtain a connection \widetilde{D}_{-1} for F^{*} on U such that

$$
\begin{equation*}
\tilde{D}_{-1}=D_{-1} \quad \text { on } \quad U-\Sigma, \tag{3.5}
\end{equation*}
$$

where Σ is a compact set in U containing Z in its interior. The connection \tilde{D}_{-1} determines, for each i with $1 \leqq i \leqq q$, a closed $2 i$-form $\sigma_{i}\left(F^{*}\right)$ on U such that the class of $(\sqrt{-1} / 2 \pi)^{i} \sigma_{i}\left(F^{*}\right)$ in $H^{*}(U ; \boldsymbol{C})$ is $c_{i}\left(F^{*}\right)$. The equation

$$
\begin{align*}
& \left(1+\sigma_{1}(Q)+\cdots+\sigma_{n}(Q)\right)\left(1+\sigma_{1}(\mathcal{E})+\cdots+\sigma_{n}(\mathcal{E})\right) \tag{3.6}\\
& \quad=1+\sigma_{1}\left(F^{*}\right)+\cdots+\sigma_{q}\left(F^{*}\right)
\end{align*}
$$

can be solved to find $\sigma_{1}(\mathcal{E}), \cdots, \sigma_{n}(\mathcal{E})$ such that, for each $j, 1 \leqq j \leqq n, \sigma_{j}(\mathcal{E})$ is a closed $2 j$-form on U. By (3.5), $\sigma_{j}(Q)=\sigma_{i}(F), 1 \leqq i \leqq q$ on $U-\Sigma$. Also by the Bott vanishing theorem, $\sigma_{q+1}(Q), \cdots, \sigma_{n}(Q)$ have compact support. Hence each $\sigma_{j}(\mathcal{E}), 1 \leqq j \leqq n$, has compact support. Moreover, the class of $(\sqrt{-1} / 2 \pi)^{j} \sigma_{j}(\mathcal{E})$ in $H_{c}^{*}(U ; \boldsymbol{C})$ is $c_{j}(\mathcal{E})$. If we set, for $k=1, \cdots, n$,

$$
\tau_{k}(\mathcal{E})=\sum_{r=1}^{k}(-1)^{r} \sum_{j_{1}+j_{j_{\nu}} \downarrow j_{r}=k} \sigma_{j_{1}}(\mathcal{E}) \cdots \sigma_{j_{r}}(\mathcal{E}),
$$

then we have $\left(1+\tau_{1}(\mathcal{E})+\cdots+\tau_{n}(\mathcal{E})\right)\left(1+\sigma_{1}(\mathcal{E})+\cdots+\sigma_{n}(\mathcal{E})\right)=1$. From (3.6), we have

$$
\begin{equation*}
\sigma_{j}(Q)=\sum_{\substack{i, k=j \\ i, k \geq 0}} \sigma_{i}\left(F^{*}\right) \tau_{k}(\mathcal{E}), \quad j=1, \cdots, n, \tag{3.7}
\end{equation*}
$$

where we set $\sigma_{0}\left(F^{*}\right)=\tau_{0}(\mathcal{E})=1$ and $\sigma_{q+1}\left(F^{*}\right)=\cdots=\sigma_{n}\left(F^{*}\right)=0$. Thus if $j>q$, each term in the right hand side of (3.7) has compact support and the class of $\left(\frac{\sqrt{-1}}{2 \pi}\right)^{j} \sigma_{j}(Q)$ in $H_{c}^{2 j}(U ; \boldsymbol{Q})$ is $c_{j}\left(F^{*}-\mathcal{E}\right)$ (see (3.3) Definition). Therefore, if $\phi=$ $\sigma_{j_{1}} \cdots \sigma_{j_{r}}$ with $j_{\nu}>q$ for some ν, then $c_{j_{1}}\left(F^{*}-\mathcal{E}\right) \cdots c_{j_{r}}\left(F^{*}-\mathcal{E}\right)$ is in $H_{c}^{2 j}(U ; \boldsymbol{Q})$, $j=j_{1}+\cdots+j_{r}$, and is the class of $\phi(Q)$, Q.E.D.
(3.8) Corollary. Let F and Z be as above and let ϕ be a symmetric and homogeneous polynomial of degree d in X_{1}, \cdots, X_{n}. If each monomial in the expression $\phi=\tilde{\phi}\left(\sigma_{1}, \cdots, \sigma_{n}\right)$ contains σ_{j} with $j>q$, then $\operatorname{Res}_{\phi}(F, Z)$ is rational, i.e. it is in $H_{2 n-2 d}(Z ; \boldsymbol{Q})$ (cf. [3] p. 287 Rationality Conjecture).

Suppose now that Z is non-singular and that there is a holomorphic vector bundle E on Z such that $\mathcal{E}^{x} t_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)=i_{!} \mathcal{O}_{Z}(E)$ ($=$ the sheaf $\mathcal{O}_{Z}(E)$ of germs of holomorphic sections of E extended by zero on $U-Z$), where i is the embedding $Z \hookrightarrow U$. Then (the finer version of) the Riemann-Roch theorem for analytic embeddings (Atiyah-Hirzebruch [2] Theorem (3.1), see also the proof of Theorem (3.3)) gives the local Chern classes of $\mathcal{E}=\gamma_{Z}\left(\mathcal{E}^{2} t_{0}^{1}\left(\Omega_{F}, \mathcal{O}\right)\right)$;

$$
\begin{equation*}
\operatorname{ch}(\mathcal{E})=i_{*}\left(\operatorname{td}(N)^{-1} \operatorname{ch}(E)\right) \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{1}(\mathcal{E})+\cdots+c_{n}(\mathcal{E})=i_{*}\left(\frac{c\left(\lambda_{-1}\left(N^{*}\right)\right) * c(E)-1}{c_{r}(N)}\right) \tag{3.10}
\end{equation*}
$$

where N is the normal bundle of Z in $U, r=\operatorname{rank} N=\operatorname{codim} Z$ in $U, \lambda_{-1}\left(N^{*}\right)$ $=\sum_{i=0}^{r}(-1)^{i} \lambda^{i}\left(N^{*}\right)\left(\lambda^{i}\left(N^{*}\right)=i\right.$-th exterior power of $\left.N^{*}\right), c\left(\lambda_{-1}\left(N^{*}\right)\right) * c(E)$ is the total Chern class of the tensor product $\lambda_{-1}\left(N^{*}\right) \otimes E$ and i_{*} is the Thom-Gysin homomorphism

$$
\begin{equation*}
i_{*}: H^{*}(Z ; \boldsymbol{Q}) \longrightarrow H^{*}(U, U-Z ; \boldsymbol{Q})=H_{c}^{*}(U ; \boldsymbol{Q}) . \tag{3.11}
\end{equation*}
$$

By our assumption, Z is non-singular. Thus we have a commutative diagram

where D_{Z} is the Poincare duality map, and i_{*} in (3.11) is an isomorphism.
In particular, if the singularity is isolated, we have
(3.12) Proposition. Let U be a polydisk about the origin 0 in \boldsymbol{C}^{n} and let $F=(\omega)$ be a codim 1 foliation on U with an isolated singularity at 0 . We denote the stalks $\mathcal{O}_{c n, 0}$ and $\Omega_{F, 0}$ simply by \mathcal{O} and Ω_{F}, respectively. Then we have

$$
\operatorname{Res}_{\sigma_{n}}(F,\{0\})=(-1)^{n}(n-1)!\operatorname{dim}_{c} \operatorname{Ext}_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right) \text { in } H_{0}(\{0\} ; \boldsymbol{Q})=\boldsymbol{Q} .
$$

Proof. Since $H_{c}^{2 j}(U ; \boldsymbol{Q})=0$ for $j \neq n$, we have $c_{j}(\mathcal{E})=0$ for $1 \leqq j \leqq n$. Also $c_{i}\left(F^{*}\right)=0$ for $i>0$. Hence by (3.4) Theorem and (3.2), we have

$$
\operatorname{Res}_{\sigma_{n}}(F,\{0\})=L\left(d_{n}(\mathcal{E})\right)=-L\left(c_{n}(\mathcal{E})\right) .
$$

On the other hand, for a point z in U,

We set $E=\operatorname{Ext}_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)$ and think of it as a vector bundle over $Z=\{0\}$ of rank $\mu=\operatorname{dim}_{c} E$. Then we have $\mathcal{E x} t_{\Theta}^{1}\left(\Omega_{F}, \mathcal{O}\right)=i_{!} \mathcal{O}_{Z}(E)$. In (3.9), we have $\operatorname{td}(N)=1$ and $\operatorname{ch}(E)=\mu$ in $H^{0}(\{0\} ; \boldsymbol{Q})=\boldsymbol{Q}$. Thus denoting by θ the image of 1 by the isomorphism $i_{*}: H^{0}(\{0\} ; \boldsymbol{Q}) \rightarrow H_{c}^{2 n}(U ; \boldsymbol{Q})$, we have

$$
\begin{equation*}
\operatorname{ch}(\mathcal{E})=\mu \theta . \tag{3.13}
\end{equation*}
$$

Writing formally $1+c_{1}(\mathcal{E})+\cdots+c_{n}(\mathcal{E})=\prod_{i=1}^{n}\left(1+\gamma_{i}\right)$, we have $\operatorname{ch}(\mathcal{E})=\sum_{i=1}^{n}\left(e^{r_{i}-1}\right)$. From (3.13),

$$
\gamma_{1}^{j}+\cdots+\gamma_{n}^{j}= \begin{cases}0, & \text { if } \quad 1 \leqq j \leqq n-1, \\ n!\mu \theta, & \text { if } \quad j=n .\end{cases}
$$

Thus we have $n \gamma_{1} \cdots \gamma_{n}+(-1)^{n}\left(\gamma_{1}^{n}+\cdots+\gamma_{n}^{n}\right)=0$. Hence $c_{n}(\mathcal{E})=\gamma_{1} \cdots \gamma_{n}=$ $(-1)^{n+1}(n-1)!\mu \theta$.
Q.E.D.
(3.14) Remark. In the situation of (3.12), if we write $\omega=\sum_{i=1}^{n} f_{i}(z) d z_{i}$, then

$$
\operatorname{Ext}_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)=\boldsymbol{C}\left\{z_{1}, \cdots, z_{n}\right\} /\left(f_{1}, \cdots, f_{n}\right)
$$

where $\mathcal{O}=\boldsymbol{C}\left\{z_{1}, \cdots, z_{n}\right\}$ is the ring of convergent power series in z_{1}, \cdots, z_{n} and (f_{1}, \cdots, f_{n}) is the ideal generated by the germs of $f_{1}(z), \cdots, f_{n}(z)$ at 0 ([7](4.5)). Especially, if $\omega=d f$ for some f, then $f_{i}=\frac{\partial f}{\partial z_{i}}$. Thus (3.12) can be viewed as a formula for the "generalized" multiplicity (cf. [6]). For the significance of $\operatorname{Ext}_{\mathcal{O}}^{1}\left(\Omega_{F}, \mathcal{O}\right)$, see also [8].

Here is an example with non-isolated singular set.
(3.15) Example. Let $\boldsymbol{P}^{1}=\boldsymbol{P}^{1}(\boldsymbol{C})$ be the projective line with homogeneous coordinates $\left(\zeta_{0}: \zeta_{1}\right)$. It is covered by two coordinate neighborhoods U_{0} and U_{1} with coordinates $z_{0}=\zeta_{1} / \zeta_{0}$ and $z_{1}=\zeta_{0} / \zeta_{1}$, respectively. We denote by H the hyperplane bundle over \boldsymbol{P}^{1}. Letting l and m be two integers, consider the vector bundle N of rank 2 over \boldsymbol{P}^{1} given by $N=H^{l} \oplus H^{m}$. Thus N can be expressed as a union $N=\boldsymbol{C}^{2} \times U_{0} \cup \boldsymbol{C}^{2} \times U_{1}$, where a point (x_{0}, y_{0}, z_{0}) in $\boldsymbol{C}^{2} \times U_{0}$ is identified with (x_{1}, y_{1}, z_{1}) in $C^{2} \times U_{1}$ if and only if

$$
\begin{equation*}
x_{0}=z_{1}^{-l} x_{1}, \quad y_{0}=z_{1}^{-m} y_{1} \quad \text { and } \quad z_{0}=z_{1}^{-1} . \tag{3.16}
\end{equation*}
$$

We identify \boldsymbol{P}^{1} with the zero section $x_{i}=y_{i}=0, i=0,1$, in N. Let a and b be positive integers satisfying $l(a-1)=m(b-1)$. We set $r=l(a-1)=m(b-1)$. C: each $W_{i}=\boldsymbol{C}^{2} \times U_{i}, i=0$, 1 , we consider two holomorphic 1-forms τ_{i} and ω_{i} given by

$$
\tau_{i}=d z_{i} \quad \text { and } \quad \omega_{i}=y_{i}^{b} d x_{i}-x_{i}^{a} d y_{i}
$$

In the intersection $W_{0} \cap W_{1}$, we have

$$
\binom{\tau_{0}}{\omega_{0}}=\left(\begin{array}{cc}
-z_{1}^{-2} & 0 \tag{3.17}\\
x_{1} y_{1} z_{1}^{-s-1}\left(m x_{1}^{a-1}-l y_{1}^{b-1}\right) & z_{1}^{-s}
\end{array}\right)\binom{\tau_{1}}{\omega_{1}}
$$

where $s=r+l+m$. Thus we may consider the locally free sub- Θ_{N}-module F of Ω_{N} generated by τ_{i} and ω_{i} on W_{i}. Clearly F satisfies the integrability condition and defines a codim 2 foliation on N with singular set the zero section \boldsymbol{P}^{1}. Now we find the sheaf $\mathcal{E}^{2} t_{\mathcal{O}_{N}}\left(\Omega_{F}, \mathcal{O}_{N}\right)$. From (2.3), we have

$$
\left.\mathcal{E}_{\times \epsilon_{\mathcal{O}_{N}}^{1}}\left(\Omega_{F}, \mathcal{O}_{N}\right)\right|_{W_{i}} \cong \mathcal{O}_{W_{i}}^{2} /\left(\left(0, y_{i}^{b}\right),\left(0, x_{i}^{a}\right),(1,0)\right),
$$

where the denominator in the right hand side denotes the sub- $\mathcal{O}_{W_{i}}$-module of $\mathcal{O}_{W_{i}}^{2}$ generated by $\left(0, y_{i}^{b}\right),\left(0, x_{i}^{a}\right)$ and $(1,0)$. Hence we have

$$
\begin{equation*}
\left.\mathcal{E}^{x} \operatorname{O}_{N}^{1}\left(\Omega_{F}, \mathcal{O}_{N}\right)\right|_{W_{i}} \cong \mathcal{O}_{W_{i}} /\left(x_{i}^{a}, y_{i}^{b}\right), \tag{3.18}
\end{equation*}
$$

where (x_{i}^{a}, y_{i}^{b}) is the ideal generated by the sections x_{i}^{a} and y_{i}^{b}. For an element h in $\mathcal{O}_{W_{i}}$, we denote by [h] its class in $\mathcal{O}_{W_{i}} /\left(x_{i}^{a}, y_{i}^{b}\right)$. The right hand side of (3.18) is a free $\mathcal{O}_{U_{i}}$-module generated by $\left[x_{i}^{\alpha} y_{i}^{\beta}\right], 0 \leqq \alpha \leqq a-1,0 \leqq \beta \leqq b-1$. Moreover, by (3.16), we have

$$
x_{0}^{\alpha} y_{0}^{\beta}=z_{1}^{-(\alpha l+\beta m)} x_{1}^{\alpha} y_{1}^{\beta} .
$$

Hence we may write $\mathcal{E}^{\times 1} \hat{O}_{N}^{1}\left(\Omega_{F}, \mathcal{O}_{N}\right)=i_{1} \mathcal{O}_{P 1}(E)$, where E is the vector bundle over \boldsymbol{P}^{1} of rank $a b$ given by

$$
E=\underset{\substack{0 \leq \alpha \leq a-1 \\ 0 \leq \beta \leq b-1}}{\oplus} H^{\alpha l+\beta m} .
$$

We have

$$
\operatorname{ch}(E)=\sum_{\substack{0 \leq \alpha \leq a-1 \\ 0 \leq \beta \leq b-1}}(1+\eta)^{\alpha l+\beta m}=a b(1+r \eta),
$$

where η is the first Chern class of H and is a generator of $H^{2}\left(\boldsymbol{P}^{1} ; \boldsymbol{Q}\right) \cong \boldsymbol{Q}$. On the other hand, from $N=H^{l} \oplus H^{m}$, we have

$$
\operatorname{td}(N)^{-1}=1-\frac{l+m}{2} \eta .
$$

Hence we have

$$
\operatorname{td}(N)^{-1} \operatorname{ch}(E)=\mathrm{ab}\left(1+\left(r-\frac{l+m}{2}\right) \eta\right)
$$

We have the Thom isomorphism $H^{p}\left(\boldsymbol{P}^{1} ; \boldsymbol{Q} \stackrel{i_{*}}{\rightarrow} H^{p+4}\left(N, N-\boldsymbol{P}^{1} ; \boldsymbol{Q}\right)\right.$. Setting θ_{2} $=i_{*}(1) \in H^{4}\left(N, N-\boldsymbol{P}^{1} ; \boldsymbol{Q}\right)$ and $\theta_{3}=i_{*}(\eta) \in H^{6}\left(N, N-\boldsymbol{P}^{1} ; \boldsymbol{Q}\right)$, we have from (3.9),

$$
\operatorname{ch}(\mathcal{E})=a b\left(\theta_{2}+\left(r-\frac{l+m}{2}\right) \theta_{3}\right)
$$

Thus we have

$$
c_{1}(\mathcal{E})=0, \quad c_{2}(\mathcal{E})=-a b \theta_{2} \quad \text { and } \quad c_{3}(\mathcal{E})=a b(2 r-(l+m)) \theta_{3} .
$$

From (3.2), we have

$$
d_{1}(\mathcal{E})=0, \quad d_{2}(\mathcal{E})=a b \theta_{2} \quad \text { and } \quad d_{3}(\mathcal{E})=a b(l+m-2 r) \theta_{3}
$$

Next we find $c\left(F^{*}\right)$. Since $H^{*}(N ; \boldsymbol{Q}) \stackrel{i^{*}}{\leftrightarrows} H^{*}\left(\boldsymbol{P}^{1} ; \boldsymbol{Q}\right)$, it suffices to find $c\left(i^{*} F^{*}\right)$. From (3.17), we have $i^{*} F^{*}=H^{2} \oplus H^{s}$. Thus $c\left(i^{*} F^{*}\right)=1+(s+2) \eta$. Therefore, $c\left(F^{*}\right)=1+(s+2) \sigma$, where σ denotes $i^{*-1} \eta$ and is a generator of $H^{2}(N ; \boldsymbol{Q}) \cong \boldsymbol{Q}$. We have

$$
\begin{aligned}
c_{3}\left(F^{*}-\mathcal{E}\right) & =c_{2}\left(F^{*}\right) d_{1}(\mathcal{E})+c_{1}\left(F^{*}\right) d_{2}(\mathcal{E})+d_{3}(\mathcal{E}) \\
& =a b(s+2) \sigma \theta_{2}+a b(l+m-2 r) \theta_{3} \\
& =a b(2(l+m+1)-r) \theta_{3} .
\end{aligned}
$$

Therefore,

$$
\operatorname{Res}_{\sigma_{3}}\left(F, \boldsymbol{P}^{1}\right)=a b(2(l+m+1)-r) \quad \text { in } \quad H_{0}\left(\boldsymbol{P}^{1} ; \boldsymbol{Q}\right)=\boldsymbol{Q} .
$$

References

[1] M.F. Atiyah and F. Hirzebruch, Analytic cycles on complex manifolds, Topology, 1 (1962), 25-45.
[2] M. F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic embeddings, Topology, 1 (1962), 151-166.
[3] P. Baum and R. Bott, Singularities of holomorphic foliations, J. Differential Geometry, 7(1972), 279-342.
[4] P. Baum, W. Fulton and R. MacPherson, Riemann-Roch for singular varieties, Publ. Math. IHES, 45 (1975), 101-167.
[5] B. Iversen, Local Chern classes, Ann. Sci. École Norm. Sup., 9 (1976), 155-169.
[6] P. Orlik, The multiplicity of a holomorphic map at an isolated critical point, Real and Complex Singularities, Oslo 1976, edited by P. Holm, Sijthoff and Noordhoff, 1977, 405-474.
[7] T. Suwa, Unfoldings of complex analytic foliations with singularities, Japan. J. Math., 9(1983), 181-206.
[8] T. Suwa, A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math., 65(1981), 29-48.
[9] T. Suwa, Singularities of complex analytic foliations, Proc. Symposia in Pure Math., 40 (1983), Amer. Math. Soc., 551-559.

Tatsuo Suwa
Department of Mathematics
Hokkaido University
Sapporo 060
Japan

[^0]: This work was partially supported by the National Science Foundation.

