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1. Introduction.

In [1] Haken has shown that if a closed, connected 3-manifold $M$ is not
irreducible, then there exists such an essential 2-sphere in $M$ that intersects a
fixed Heegaard surface of $M$ in a circle. Ochiai [4] has extended this result
for a 2-sided projective plane in $M$. In this direction, we shall show that for a
2-sided, non-separating, incompressible torus and a genus two Heegaard splitting
of $M$, the same result holds.

THEOREM 1. Let $M$ be a closed, connected (Possibly, non-orientable) 3-manifold
with a Heegaard splitting $(V_{1}, V_{2} ; F)$ of genus two. Assume that $M$ contains a
2-stded, non-separating, incompressible torus T. Then there exzsts a 2-sided, non-
separating, incompressible torus $T’$ which intersects $F$ in a circle.

As an application, we shall show that any orientable, closed 3-manifold which
has a Heegaard splitting of genus two and contains a non-separating, incompres-
sible torus is obtained by pasting boundary components of two bridge link space
by a certain type of homeomorphism and performing a Dehn surgery along the
two meridian loops of this link (Theorem 2).

As a consequence of Theorem 2, we have

COROLLARY. If an orientable, closed 3-manifold $M$ with a Heegaard spljitjng
of genus two contains a non-separafing, incompressible torus, then $M$ is a 2-fold
branched covering space of $S^{2}\cross S^{1}$ branched along a l-manifold.

I would like to express my gratitude to Prof. M. Ochiai for helpful conversa-
tions.

2. Preliminaries.

Throughout this paper, we will work in the piecewise linear category. A
Heegaard splitting of a closed, connected 3-manifold $M$ is a pair $(V_{1}, V_{2} ; F)$ ,
where $V_{i}(i=1,2)$ is a three dimensional orientable or nonorientable handlebody
such that $M=V_{1}\cup V_{2}$ and $V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then $F$ is called a Heegaard
surface of $M$. The first Betti number of $V_{1}$ is called the genus of the splitting.
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It is known that any closed, connected 3-manifold has a Heegaard splitting.
For the definition of standard terms in three dimensional topology and link

theory, we refer to [2], [6]. For the definition of a hierarchy for a 2-manifold
and an isotopy of type $A$ , we refer to [3].

3. Proof of Theorem 1.

Let $T_{i}=T\cap V_{i}(i=1,2)$ . Since $T$ is incompressible in $M$, we may suppose
that $T_{i}$ is incompressible in $V_{i}$ . Furthermore, by moving $T$ by a sequence of
isotopies of type $A$ , we may suppose that each component of $T_{1}$ is a disk. Then
as in [3] we have the hierarchy $(T_{2}^{(0)}, \alpha_{0}),$ $\cdots$ , $(T_{2}^{(m)}, \alpha_{m})$ for $T_{2}$ which gives
rise to a sequence of isotopies of $T$ in $M$ where the first isotopy is of type A at
$\alpha_{0},$

$\cdots$ , and the $(m+1)- st$ isotopy is of type A at $\alpha_{m}$ . In addition, we may sup-
pose that $\alpha_{i}\cap\alpha_{j}=\emptyset(i\neq j)$ . So, we consider each $\alpha_{i}$ to be an arc on $T_{2}$ .

We say that $\alpha_{i}$ is of type 1 if $\alpha_{i}$ joins distinct components of $\partial T_{2},$
$\alpha_{t}$ is of

type 2 if $\alpha_{i}$ joins one component $S$ of $\partial T_{2}$ and there is an arc $\beta$ in $S$ such that
$\partial\beta=\partial\alpha_{i},$ $\beta\cup\alpha_{i}$ bounds a disk on $T,$ $\alpha_{i}$ is of type 3 if $\alpha_{i}$ joins one component $S$

of $\partial T_{2}$ and there is an arc $\beta$ in $S$ such that $\partial\beta=\partial\alpha_{i},$ $\beta\cup\alpha_{i}$ cuts $T$ into an
annulus. We easily see that each $\alpha_{i}$ must be one of type 1, type 2, or type 3.

We say that $\alpha_{i}$ is a d-arc if $\alpha_{i}$ is of type 1 and there is a component $S$ of
$\partial T_{2}$ such that $\alpha_{i}$ is an only arc that joins $S$ (see Figure 1).

Figure 1.

Now, suppose that $T_{1}$ has more than one components.

LEMMA 3.1. If some $\alpha_{i}$ is a d-arc, then there is an ambient isotoPy $h_{t}(0\leqq t\leqq 1)$

of $M$ such that each compOnent of $h_{1}(T)\cap V_{1}$ is $a$ &sk and the number of the
components of $h_{1}(T)\cap V_{1}$ is less than that of $T\cap V_{1}$ .
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PROOF. This can be proved by using the argument of the inverse operation
of an isotopy of type A defined in [4].

LEMMA 3.2. If $\alpha_{0}$ is of tyPe 1 or type 2, then there is an ambient isotopy
$h_{t}(0\leqq t\leqq 1)$ of $M$ such that each component of $h_{1}(T)\cap V_{1}$ is $a$ &sk and the number
of the components of $h_{1}(T)\cap V_{1}$ is less than that of $T\cap V_{1}$ .

PROOF. If $\alpha_{0}$ is of type 1, then the conclusion follows immediately by per-
forming an isotopy of type A at $\alpha_{0}$ . Assume that $\alpha_{0}$ is of type 2. Then there
is an arc $\beta$ in $\partial T_{2}$ such that $\partial\beta=\partial\alpha_{0},$ $\alpha_{0}\cup\beta$ bounds a planar surface $P$ in $T_{2}$ .
Since each $\alpha_{l}$ is an essential arc of $T_{2}$ , some $\alpha_{j}$ on $P$ is a d-arc. Hence, the
conclus\’ion follows by Lemma 3.1.

LEMMA 3.3. SuPpose that $\alpha_{0}$ is of type3 and one of the following conditions
is satisfied:

(i) $\alpha_{1}$ is of type1,
(ii) $\alpha_{1}$ is of type2,
(iii) $\alpha_{1}$ is of type3 and $\alpha_{1}$ intersects the same compOnent of $\partial T_{2}$ that $\alpha_{0}$ intersects.

Then there is an ambient isotopy $h_{t}(0\leqq t\leqq 1)$ of $M$ such that each compOnent of
$h_{1}(T)\cap V_{1}$ is a dis $k$ and the number of the components of $h_{1}(T)\cap V_{1}$ is less than
that of $T\cap V_{1}$ .

PROOF. If (i) holds, then the Lemma can be proved using the argument
of the inverse operation of an isotopy of type A defined in [4]. If (ii) holds,
then the conclusion follows by the same argument of the proof of Lemma 3.2.
If (iii) holds, then $\alpha_{0}\cup\alpha_{1}$ cuts $T_{2}$ into two planar surfaces or one planar surface.
In either case, we see that some $\alpha_{i}$ is a d-arc. Hence, the conclusion follows
by Lemma 3.1.

REMARK. There exists an example of a hierarchy $(T_{2}^{(0)}, \alpha_{0}),$ $\cdots$ , $(T_{2}^{(m)}, \alpha_{m})$

such that each $\alpha_{i}$ is not a d-arc (see Figure 2).

Figure 2.
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Now, let $T’$ be a 2-sided, non-separating, incompressible torus in $M$ such
that among all 2-sided, non-separating, incompressible tori in $M$ which intersect
$V_{1}$ in disks the number of the components of $T’\cap V_{1}$ is minimum.

Let $T_{i}’=T’\cap V_{i}(i=1,2)$ . Assume that $T_{1}’$ has more than one component.
Then $T_{1}’=D_{1}\cup\cdots\cup D_{n}(n\geqq 2)$ , where $D_{1},$ $\cdots$ , $D_{n}$ are mutually disjoint, properly
embedded disks in $V_{1}$ . We have the hierarchy $(T_{2}^{\prime(0)}, \alpha_{0}’),$ $\cdots$ , $(T_{2}^{\prime(l)}, \alpha_{l}’)$ for $T_{2}’$

as above. By Lemmas 3.2 and 3.3, $\alpha_{0}’$ and $\alpha_{1}’$ are of type 3 and we may suppose
that $\alpha_{0}’$ joins points on $\partial D_{1}$ and $\alpha_{1}’$ joins points on $\partial D_{2}$ .

LEMMA 3.4. For any $i,$ $j(1\leqq i<j\leqq n),$ $\{D_{i}, D_{j}\}$ is not a complete system of
meridian disks of $V_{1}$ .

PROOF. Suppose that for some $i,$ $j,$ $\{D_{i}, D_{j}\}$ is a complete system of meridian
disks of $V_{1}$ ( $i.e$ . $D_{i}\cup D_{j}$ cuts $V_{1}$ into a 3-cell $D^{3}$). Let $T^{(1)}$ be the image of $T’$

after an isotopy of type A at $\alpha_{0}’$ . Then $T^{(1)}\cap V_{1}=A_{1}\cup D_{2}\cup\cdots\cup D_{n}$ , where $A_{1}$ is
an annulus properly embedded in $V_{1}$ .

We claim that $A_{1}$ can be pushed into $D^{3}$ . By the definition of an isotopy
of type $A$ , there is a disk $D$ in $V_{2}$ such that $D\cap T_{2}=\alpha_{0}’,$ $D\cap\partial V_{2}=\beta$ where $\alpha_{0}’\cap\beta$

$=\partial\alpha_{0}’=\partial\beta\subset\partial D_{1},$ $\alpha_{0}’\cup\beta=\partial D$ . Then $\beta$ must join $D_{1}$ from one side of $D_{1}$ , for
otherwise there exists a simple loop which is contained in a regular neighborhood
of $A_{1}$ in $V_{1}$ and intersects $A_{1}$ transversely in a single point (see Figure 3) and
this contradicts the fact that $T^{(1)}$ is 2-sided in $M$. Hence, by moving $T^{(1)}$ by a
small isotopy we may suppose that $A_{1}\cap D_{k}=\emptyset(1\leqq k\leqq n)$ and this establishes the
claim.

Figure 3.

On the other hand $A_{1}$ is incompressible in $V_{1}$ for $\alpha_{0}’$ is of type 3. This is
a contradiction.

By Lemma 3.4 there are following three possible cases.
Case 1. $\{D_{1}, \cdots , D_{n}\}$ has only one parallel class in $V_{1}$ , and each $D_{i}$ cuts $V_{1}$

into two solid tori.
Case 2. $\{D_{1}, \cdots , D_{n}\}$ has two parallel classes in $V_{1}$ , and one of them is
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represented by a meridian disk of $V_{1}$ , the other is represented by
a disk which cuts $V_{1}$ into two solid tori.

Case 3. $\{D_{1}, \cdots , D_{n}\}$ has only one parallel class in $V_{1}$ , and each $D_{i}$ is a
meridian disk of $V_{1}$ .

Let $T^{(1)},$ $A_{1}$ be those defined in the proof of Lemma 3.4. $A_{1}$ is an incom-
pressible annulus properly embedded in $V_{1}$ . By Haken’s theorem (see Corollary
II. 10 of [31) and the fact that $M$ has a Heegaard splitting of genus two, we
see that $M$ is irreducible. Hence, each 2-sided, nonseparating torus in $M$ is
incompressible.

Now, we shall derive a contradiction in each of above cases. Then we
complete the proof of Theorem 1.

Case 1. In this case, there is an annulus $A_{1}’$ in $F$ such that $A_{1}’\cap T^{(1)}=A_{1}’\cap A_{1}$

$=\partial A_{1}’=\partial A_{1}$ (see Figure 4). We get a 2-sided, non-separating torus $\overline{T}$ by exchang-
ing $A_{1}$ on $T^{(1)}$ for $A_{1}’$ . We can move $\overline{T}$ by a small isotopy so that each com-
ponent of $\overline{T}\cap V_{1}$ is a disk and the number of components of $\overline{T}\cap V_{1}$ is less than
that of $T’\cap V_{1}$ . This contradicts the minimality of $T’$ .

Figure 4.

Case 2. Since $A_{1}$ is an incompressible annulus in $V_{1},$ $D_{1}$ must separate $V_{1}$

into two solid tori. So we have a contradiction as in Case 1.
Case 3. Let $T^{(2)}$ be the image of $T^{(1)}$ after an isotopy of type A at $\alpha_{1}’$ .

Then $T^{(2)}\cap V_{1}=A_{1}\cup A_{2}\cup D_{3}\cup\cdots\cup D_{n}$ , where $A_{2}$ is an incompressible annulus
properly embedded in $V_{1}$ . We have two subcases.

Case 3.1. $A_{1}$ and $A_{2}$ are parallel in $V_{1}$ .
In this case, there is an annulus $A$ such that $A$ is contained in the interior

of $V_{1},$ $A\cap T^{(2)}=\partial A$ and one component of $\partial A$ is in $A_{1}$ and the other is in $A_{2}$
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(see Figure 5). The annulus $A$ cuts $T^{(2)}$ into two annuli $A^{1}$ and $A^{2}$ . By pasting
$A^{i}(i=1,2)$ and $A$ along its boundary, we get a 2-sided torus $T^{l}$ in $M$. Then
either $T^{1}$ or $T^{2}$, say $T^{1}$ , is nonseparating in $M$. Then $T^{1}\cap V_{1}=A^{1}\cup D_{i1}\cup\cdots\cup D_{ik}$ ,

where $A^{1}$ is an annulus and $\{D_{i1}, \cdots , D_{ik}\}(k\leqq n-2)$ is a subset of $\{D_{3}, \cdots , D_{n}\}$ .
We easily see that by moving $T^{1}$ by an isotopy of type A there is a 2-sided,
non-separating torus which intersects $V_{1}$ in $k+1$ disks. This contradicts the
minimality of $T’$ .

$V_{1}$

Figure 5.

Figure 6.
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Case 3.2. $A_{1}$ and $A_{2}$ are not parallel in $V_{1}$ .
In this case, there is an annulus $A$ ‘ in $F$ such that $A’\cap T^{(2)}=A’\cap(A_{1}\cup A_{2})$

$=\partial A’$ (see Figure 6). Then by pushing $A’$ slightly into the interior of $V_{1}$ , we
have an annulus which has the same property as $A$ in Case 3.1. So we have a
contradiction as in Case 3.1.

4. Statement and proof of Theorem 2.

We can construct a closed, connected, orientable 3-manifold $M$ as follows.

$(*)$ Let $L=k_{1}\cup k_{2}$ be a two bridge link in $S^{3},$ $M(L)$ be the manifold obtained
by removing the interior of the regular neighborhood of $L$ from $S^{3}$ . Let $\overline{m}_{i}$

$(i=1,2)$ be a meridian of the regular neighborhood of $k_{i},$ $m_{i}’$ be a simple loop
obtained by pushing $\overline{m}_{i}$ slightly into $M(L)$ . Let $M_{1}$ be a closed, orientable 3-
manifold obtained by pasting the two boundary components of $M(L)$ by a homeo-
morphism which takes $\overline{m}_{1}$ to $\overline{m}_{2},$ $m_{i}(i=1,2)$ be the image of $m_{i}’$ in $M_{1}$ . Then
we get $M$ by performing Dehn surgery on $M_{1}$ along $m_{1}\cup m_{2}$ .

Then we have

LEMMA 4.1. If $M$ is obtained by the construction $(*)$ then $M$ has a Heegaard
spljitjng of genus two.

PROOF. We use the notations and symbols in the construction $(*)$ . Since $L$

is a two bridge link, $L$ is obtained as the union of the two trivial tangles. This
is shown for the two bridge knot in 115p of [6]. And the argument holds for
the two bridge link. Hence there is a disk with three holes $B$ properly embed-
ded in $M(L)$ such that each component of $\partial B$ is homotopic to $\overline{m}_{i}$ ($i=1$ or 2) in
$\partial M(L)$ and such that the closures of the components of $M(L)-B$ are two handle-
bodies. We denote them by $V_{1}’$ and $V_{2}’$ . Then $V_{i}’\cap\partial M(L)$ consists of two annuli
$A_{1}^{i},$ $A_{2}^{i}(i=1,2)$ . Since $\overline{m}_{1}$ and $\overline{m}_{2}$ are identified in $M$, we may suppose that $A_{1}^{i}$

and $A_{2}^{i}$ are identified in $M$. Moreover, we may suppose that $m_{i}’\subset V_{i}’$ . If we
identify $A_{1}^{i}$ with $A_{2}^{i}$ on $\partial V_{i}’$ then we get a genus two handlebody $V_{i}’’$ . And if
we perform a Dehn surgery on $V_{i}’’$ along $\overline{m}_{i}$ then we get a genus two handle-
body $V_{i}$ . Then $M=V_{1}\cup V_{2}$ and $V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}$ .

This completes the proof of Lemma 4.1.
Let $\theta_{1}$ be the collection of all 3-manifolds which are given by the construc-

tion $(*)$ , and $\theta_{2}$ be the collection of all orientable 3-manifolds which have Heegaard
splittings of genus two and contain non-separating, incompressible tori. Then

THEOREM 2. Let $\theta_{1}$ and $\theta_{2}$ be as above, then $\theta_{2}\iota s$ a subcollection of $\theta_{1}$ .
Moreover, the element of $\theta_{1}$ that is not an element of $\theta_{2}$ is homeomorphic to
$S^{2}\cross S^{1}$ or $S^{2}\cross S^{1}\#S^{2}\cross S^{1}$ or $S^{2}\cross S^{1}\# Ln$ , where $\#$ denotes a connected sum and
$S^{n},$ $Ln$ denote an $n$-sphere, a three &mensional lens space, respectivety.

Now, we shall prove Theorem 2. Let $M$ be an element of $\theta_{2},$ ( $V_{1},$ $V_{2}$ ; $F\rangle$
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be a Heegaard splitting of genus two of $M,$ $T$ be a non-separating, incompressible
torus in $M$. By Theorem 1, we may suppose that $T\cap V_{1}$ is a disk.

LEMMA 4.2. $T\cap V_{1}$ is a meridian disk of $V_{1}$ .
PROOF. Since $T$ is incompressible in $M,$ $T\cap V_{1}$ is not parallel to a disk in

$\partial V_{1}$ . So assume that $T\cap V_{1}$ cuts $V_{1}$ into two solid tori. Since $T$ is non-separat-
ing, there exists such a simple closed curve $l$ in $M$ that intersects $T$ transversely
in a single point $p$ . We may suppose that $P$ is contained in the interior of
$T\cap V_{1}$ . Let 1’ be an arc on 1 such that $p$ is contained in the interior of 1’ and
1’ is contained in the interior of $V_{1}$ . There is an ambient isotopy $h_{t}(0\leqq t\leqq 1)$ of
$M$ such that $h_{1}(l)$ is contained in $V_{1},$ $h_{t}|_{l’}=id_{l’}(0\leqq t\leqq 1)$ and $h_{1}(l)$ is in general
position with respect to $T$ . Since $l-l’$ does not intersect $T$ and $\partial(l-l’)$ is fixed
by $h_{t},$ $h_{1}(l-l’)$ intersects $T$ even number of times. This contradicts the fact
that $h_{1}(l)$ is contained in $V_{1}$ and $T\cap V_{1}$ separates $V_{1}$ .

As in [3] we have a hierarchy $(T_{2}^{(0)}, \alpha_{0}),$ $(T_{2}^{(1)}, \alpha_{1})$ for $T\cap V_{2}$ which gives
rise to a sequence of isotopies of type A at $\alpha_{0}$ and $\alpha_{1}$ . Note that $\alpha_{i}(i=0,1)$ is
of type 3 dePned in Section 3. Let $T’$ be the image of $T$ after an isotopy of
type A at $\alpha_{0}$ , and $A_{i}=T’\cap V_{i}(i=1,2)$ . Then $A_{i}$ is a non-separating, incompres-
sible annulus properly embedded in $V_{i}$ . By cutting $V_{i}$ along $A_{i}$ we get a genus
two solid torus $V_{i}’$ (see Figure 7). Let $A_{i}’$ and $A_{i}’’$ be the copies of $A_{i}$ on $\partial V_{i}’$ .

Figure 7.

Now, we will show that $M$ can be given by the construction $(*)$ .
Let $c_{i}=c_{i1}\cup c_{i2}(i=1,2)$ be two disjoint trivial arcs properly embedded in a

3-cell $B_{i},$ $U_{i}=c1(B_{i}-N(c_{i1}\cup c_{\ell 2} ; B_{i})),$ $A^{ij}=U_{i}\cap N(c_{ij} ; B_{i})(j=1,2)$ , where $N(c;B_{i})$

denotes the regular neighborhood of a polyhedron $c$ in $B_{i}$ . $A^{ij}$ is an annulus on
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$\partial U_{i}$ . Let $m_{t}’$ be a simple closed curve obtained by pushing the core of $A^{i2}$ into
$U_{i}$ . If we perform a proper Dehn surgery on $U_{l}$ along $m_{i}’$ then we get such a
genus two handlebody $U_{i}’$ that there exists a homeomorphism from $U_{i}’$ to $V_{i}’$

which takes the image of $A^{i1}$ to $A_{i}’$ and the image of $A^{i2}$ to $A_{i}’’$ . Hence, the
attaching homeomorphism $\partial V_{1}arrow\partial V_{2}$ of the Heegaard splitting $(V_{1}, V_{2} ; F)$ induces
a homeomorphism cl $(\partial U_{1}-(A^{11}\cup A^{12}))arrow c1(\partial U_{2}-(A^{21}\cup A^{22}))$ . If we paste $U_{1}$ and
$U_{2}$ by this homeomorphism then we get a link space $M(L)$ where $L=k_{1}\cup k_{2}$ is
a two bridge link (see [6] $115p$). Let $m_{i}(i=1,2)$ be the image of $m_{i}’$ in $M(L)$ .
Then $m_{i}$ is isotopic to the meridians of $L$ . Since $A^{i1}$ and $A^{i2}$ are identified in
$M$, we may suppose that $m_{i}$ is isotopic to the meridian of $k_{i}$ . Then by tracing
the above procedure conversely we see that $M$ can be given by the construction
$(*)$ . This completes the proof of the first part of Theorem 2.

Let $M$ be an element of $\theta_{1}$ and not an element of $\theta_{2}$ . By the construction
of $M$, there exists a non-separating torus $T$ in $M$. Then by the loop theorem
[2] there exists a non-separating 2-sphere in $M$. By Lemma 3.8 of [2], Haken’s
theorem ([3]) and Lemma 4.1 $M=S^{2}\cross S^{1}\# M’$ , where $M’$ has a Heegaard split-
ting of genus one. Hence, the second part of Theorem 2 follows.

REMARK. By Theorem 2 and the fact that a torus bundle over $S^{1}$ contains a
non-separating, incompressible torus, we have the following relations of inclusion.

$\{\begin{array}{ll}oclosedrientable 3- manifoldsHwitheegaard splittingsoftgenuswo \end{array}\}\supset\theta_{2}\supset\theta_{1}\supset\{Heegaardsp1ittings\}$

It is known that there exists infinitely many topologically distinct torus
bundles with Heegaard splittings of genus two [5].

We note that there is an element of $\theta_{1}$ which is not a torus bundle. We
claim that if $M$ is a torus bundle and $T$ is a non-separating, incompressible torus in
$M$ then $T$ cuts $M$ into $T^{2}\cross I$ , where $T^{2},$ $I$ denote the two dimensional torus,

the unit interval $[0,1]$ , respectively. Since $M$ is a torus bundle, there exists a
non-separating, incompressible torus $T’$ which cuts $M$ into a $T^{2}\cross I$ , say $M’$ .
Since $T$ and $T’$ are incompressible and $M$ is irreducible, by the standard argu-
ments of the three dimensional topology we may suppose that $T\cap T’=\emptyset$ or $T$

and $T’$ intersect transversely, each component of $T\cap T’$ is an essential loop in
$T’$ (hence $T$ ) and each component of $T\cap M’$ is not boundary parallel in $M’$ . If
$T\cap T’=\emptyset$ then $T\subset M’$ and by [1] $T$ and $T’$ are parallel in $M$. Hence $T$ cuts
$M$ into $T^{2}\cross I$ . If $T\cap T’\neq\emptyset$ then the image of $T$ in $M’$ is a system of parallel
annuli $A_{1},$ $\cdots$ , $A_{r}(r\geqq 1)$ . On the other hand, the closures of components of
$T’-(T\cap T’)$ are annuli $A_{1}’,$ $\cdots$ , $A_{r}’$ . By cutting $M’$ along $A_{1}\cup\cdots\cup A_{r}$ we get $r$

solid tori. If we paste these solid tori along $A_{i}’(1\leqq i\leqq r)$ then we get $T^{2}\cross I$ .
Hence $M$ cut along $T$ is $T^{2}\cross I$ and we establish the claim.
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If $L$ is a non-trivial two bridge link, which is not the Hopf link, then the
image of $\partial M(L)$ in $M$, say $T$ , is a non-separating, incompressible torus and $M$

cut along $T$ is not a $T^{2}\cross I$ . Hence $M$ is not a torus bundle.

two bridge link $L$

(i)

genus two surface normally embedded in $S^{8}$

(ii)

Figure 8.
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Let $L=k_{1}\cup\cdots\cup k_{n}$ be an $n$ component link. $L$ is called strongly invertible
if there is an orientation preserving involution $g$ of $S^{3}$ which satisfies

(i) Fix $(g)$ , the fixed point set of $g$ , is a circle,
(ii) $g(k_{i})=k_{i}(1\leqq i\leqq n)$ and
(iii) $g|_{k\ell}$ reverses the orientation of $k_{i}$ for each $i$ .
Then we have

LEMMA 4.3. Every two bridge link is strongly invertible.
PROOF. Let $L=k_{1}\cup k_{2}$ be a two bridge link and let $(V_{1}, V_{2} ; F)$ be a genus

two Heegaard splitting of $S^{3}$ . Then by the dePnition of the two bridge link
([6]) we may suppose that $L\subset F$ and that $L$ does not separate $F$ (see Figure 8).

In [7] it is shown that if $(V_{1}’, V_{2}’ ; F’)$ is the genus two Heegaard splitting
of a 3-manifold $M’$ and $\alpha_{1},$ $\alpha_{2}$ are pairwise disjoint simple closed curves such
that $\alpha_{1}\cup\alpha_{2}$ does not separate $F$ then there is an orientation preserving involution
$h$ of $M’$ such that $h(V_{i})=V_{i}(i=1,2)$ , Fix $(h)$ is a l-manifold, $h(\alpha_{j})=\alpha_{j}$ and $h|_{a_{j}}$

reverses the orientation of $\alpha_{j}(j=1,2)$ . Hence there is an orientation preserving
involution $g$ of $S^{3}$ such that Fix $(g)$ is a l-manifold, $g(k_{i})=k_{i}(i=1,2)$ and $g|_{k_{i}}$

reverses the orientation of $k_{i}$ . By the Smith theory Fix $(g)$ is a circle. Hence
$L$ is strongly invertible.

PROOF OF COROLLARY. By Theorem 2 an orientable, closed 3-manifold $M$

which has a Heegaard splitting of genus two and contains a non-separating,
incompressible torus is given by the construction $(*)$ . By Lemma 4.3 there is an
involution $h$ on $M(L)$ whose fixed point set $K$ is a l-manifold which intersects

Figure 9.
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each boundary component of $M(L)$ in four points. Moreover, we may suppose
that each of $m_{i}’$ and $\overline{m}_{i}(i=1,2)$ intersects $K$ in two points and is invariant under
$h$ (see Figure 9). Then $h$ induces an involution $h’$ on $M$, and the quotient space
of $M$ under $h’$ is $S^{2}\cross S^{1}$ . This completes the proof of Corollary.
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