Non-separating incompressible tori in 3-manifolds

By Tsuyoshi Kobayashi

(Received Aug. 23, 1982)
(Revised Oct. 28, 1982)

1. Introduction.

In [1] Haken has shown that if a closed, connected 3-manifold M is not irreducible, then there exists such an essential 2 -sphere in M that intersects a fixed Heegaard surface of M in a circle. Ochiai [4] has extended this result for a 2 -sided projective plane in M. In this direction, we shall show that for a 2 -sided, non-separating, incompressible torus and a genus two Heegaard splitting of M, the same result holds.

Theorem 1. Let M be a closed, connected (possibly, non-orientable) 3-manifold with a Heegaard splitting ($V_{1}, V_{2} ; F$) of genus two. Assume that M contains a 2 -sided, non-separating, incompressible torus T. Then there exists a 2 -sided, nonseparating, incompressible torus T^{\prime} which intersects F in a circle.

As an application, we shall show that any orientable, closed 3-manifold which has a Heegaard splitting of genus two and contains a non-separating, incompressible torus is obtained by pasting boundary components of two bridge link space by a certain type of homeomorphism and performing a Dehn surgery along the two meridian loops of this link (Theorem 2).

As a consequence of Theorem 2, we have
Corollary. If an orientable, closed 3 -manifold M with a Heegaard splitting of genus two contains a non-separating, incompressible torus, then M is a 2-fold branched covering space of $S^{2} \times S^{1}$ branched along a 1-manifold.

I would like to express my gratitude to Prof. M. Ochiai for helpful conversations.

2. Preliminaries.

Throughout this paper, we will work in the piecewise linear category. A Heegaard splitting of a closed, connected 3 -manifold M is a pair ($V_{1}, V_{2} ; F$), where $V_{i}(i=1,2)$ is a three dimensional orientable or nonorientable handlebody such that $M=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then F is called a Heegaard surface of M. The first Betti number of V_{1} is called the genus of the splitting.

It is known that any closed, connected 3 -manifold has a Heegaard splitting.
For the definition of standard terms in three dimensional topology and link theory, we refer to [2], [6]. For the definition of a hierarchy for a 2 -manifold and an isotopy of type A, we refer to [3].

3. Proof of Theorem 1.

Let $T_{i}=T \cap V_{i}(i=1,2)$. Since T is incompressible in M, we may suppose that T_{i} is incompressible in V_{i}. Furthermore, by moving T by a sequence of isotopies of type A, we may suppose that each component of T_{1} is a disk. Then as in [3] we have the hierarchy $\left(T_{2}^{(0)}, \alpha_{0}\right), \cdots,\left(T_{2}^{(m)}, \alpha_{m}\right)$ for T_{2} which gives rise to a sequence of isotopies of T in M where the first isotopy is of type A at α_{0}, \cdots, and the ($m+1$)-st isotopy is of type A at α_{m}. In addition, we may suppose that $\alpha_{i} \cap \alpha_{j}=\varnothing(i \neq j)$. So, we consider each α_{i} to be an arc on T_{2}.

We say that α_{i} is of type 1 if α_{i} joins distinct components of $\partial T_{2}, \alpha_{i}$ is of type 2 if α_{i} joins one component S of ∂T_{2} and there is an $\operatorname{arc} \beta$ in S such that $\partial \beta=\partial \alpha_{i}, \beta \cup \alpha_{i}$ bounds a disk on T, α_{i} is of type 3 if α_{i} joins one component S of ∂T_{2} and there is an arc β in S such that $\partial \beta=\partial \alpha_{i}, \beta \cup \alpha_{i}$ cuts T into an annulus. We easily see that each α_{i} must be one of type 1 , type 2 , or type 3 .

We say that α_{i} is a d-arc if α_{i} is of type 1 and there is a component S of ∂T_{2} such that α_{i} is an only arc that joins S (see Figure 1).

Figure 1.
Now, suppose that T_{1} has more than one components.
Lemma 3.1. If some α_{i} is a d-arc, then there is an ambient isotopy $h_{t}(0 \leqq t \leqq 1)$ of M such that each component of $h_{1}(T) \cap V_{1}$ is a disk and the number of the components of $h_{1}(T) \cap V_{1}$ is less than that of $T \cap V_{1}$.

Proof. This can be proved by using the argument of the inverse operation of an isotopy of type A defined in [4].

Lemma 3.2. If α_{0} is of type 1 or type 2, then there is an ambient isotopy $h_{t}(0 \leqq t \leqq 1)$ of M such that each component of $h_{1}(T) \cap V_{1}$ is a disk and the number of the components of $h_{1}(T) \cap V_{1}$ is less than that of $T \cap V_{1}$.

Proof. If α_{0} is of type 1 , then the conclusion follows immediately by performing an isotopy of type A at α_{0}. Assume that α_{0} is of type 2. Then there is an $\operatorname{arc} \beta$ in ∂T_{2} such that $\partial \beta=\partial \alpha_{0}, \alpha_{0} \cup \beta$ bounds a planar surface P in T_{2}. Since each α_{i} is an essential arc of T_{2}, some α_{j} on P is a d-arc. Hence, the conclusion follows by Lemma 3.1.

Lemma 3.3. Suppose that α_{0} is of type 3 and one of the following conditions is satisfied:
(i) α_{1} is of type 1 ,
(ii) α_{1} is of type 2,
(iii) α_{1} is of type 3 and α_{1} intersects the same component of ∂T_{2} that α_{0} intersects. Then there is an ambient isotopy $h_{t}(0 \leqq t \leqq 1)$ of M such that each component of $h_{1}(T) \cap V_{1}$ is a disk and the number of the components of $h_{1}(T) \cap V_{1}$ is less than that of $T \cap V_{1}$.

Proof. If (i) holds, then the Lemma can be proved using the argument of the inverse operation of an isotopy of type A defined in [4]. If (ii) holds, then the conclusion follows by the same argument of the proof of Lemma 3.2. If (iii) holds, then $\alpha_{0} \cup \alpha_{1}$ cuts T_{2} into two planar surfaces or one planar surface. In either case, we see that some α_{i} is a d-arc. Hence, the conclusion follows by Lemma 3.1.

REmark. There exists an example of a hierarchy $\left(T_{2}^{(0)}, \alpha_{0}\right), \cdots,\left(T_{2}^{(m)}, \alpha_{m}\right)$ such that each α_{i} is not a d-arc (see Figure 2).

Figure 2.

Now, let T^{\prime} be a 2 -sided, non-separating, incompressible torus in M such that among all 2-sided, non-separating, incompressible tori in M which intersect V_{1} in disks the number of the components of $T^{\prime} \cap V_{1}$ is minimum.

Let $T_{i}^{\prime}=T^{\prime} \cap V_{i}(i=1,2)$. Assume that T_{1}^{\prime} has more than one component. Then $T_{1}^{\prime}=D_{1} \cup \cdots \cup D_{n}(n \geqq 2)$, where D_{1}, \cdots, D_{n} are mutually disjoint, properly embedded disks in V_{1}. We have the hierarchy $\left(T_{2}^{\prime(0)}, \alpha_{0}^{\prime}\right), \cdots,\left(T_{2}^{\prime(l)}, \alpha_{l}^{\prime}\right)$ for T_{2}^{\prime} as above. By Lemmas 3.2 and $3.3, \alpha_{0}^{\prime}$ and α_{1}^{\prime} are of type 3 and we may suppose that α_{0}^{\prime} joins points on ∂D_{1} and α_{1}^{\prime} joins points on ∂D_{2}.

LEMMA 3.4. For any $i, j(1 \leqq i<j \leqq n),\left\{D_{i}, D_{j}\right\}$ is not a complete system of meridian disks of V_{1}.

Proof. Suppose that for some $i, j,\left\{D_{i}, D_{j}\right\}$ is a complete system of meridian disks of V_{1} (i.e. $D_{i} \cup D_{j}$ cuts V_{1} into a 3-cell D^{3}). Let $T^{(1)}$ be the image of T^{\prime} after an isotopy of type A at α_{0}^{\prime}. Then $T^{(1)} \cap V_{1}=A_{1} \cup D_{2} \cup \cdots \cup D_{n}$, where A_{1} is an annulus properly embedded in V_{1}.

We claim that A_{1} can be pushed into D^{3}. By the definition of an isotopy of type A, there is a disk D in V_{2} such that $D \cap T_{2}=\alpha_{0}^{\prime}, D \cap \partial V_{2}=\beta$ where $\alpha_{0}^{\prime} \cap \beta$ $=\partial \alpha_{0}^{\prime}=\partial \beta \subset \partial D_{1}, \alpha_{0}^{\prime} \cup \beta=\partial D$. Then β must join D_{1} from one side of D_{1}, for otherwise there exists a simple loop which is contained in a regular neighborhood of A_{1} in V_{1} and intersects A_{1} transversely in a single point (see Figure 3) and this contradicts the fact that $T^{(1)}$ is 2 -sided in M. Hence, by moving $T^{(1)}$ by a small isotopy we may suppose that $A_{1} \cap D_{k}=\varnothing(1 \leqq k \leqq n)$ and this establishes the claim.

Figure 3.
On the other hand A_{1} is incompressible in V_{1} for α_{0}^{\prime} is of type 3 . This is a contradiction.

By Lemma 3.4 there are following three possible cases.
Case 1. $\left\{D_{1}, \cdots, D_{n}\right\}$ has only one parallel class in V_{1}, and each D_{i} cuts V_{1} into two solid tori.
Case 2. $\left\{D_{1}, \cdots, D_{n}\right\}$ has two parallel classes in V_{1}, and one of them is
represented by a meridian disk of V_{1}, the other is represented by a disk which cuts V_{1} into two solid tori.
Case 3. $\left\{D_{1}, \cdots, D_{n}\right\}$ has only one parallel class in V_{1}, and each D_{i} is a meridian disk of V_{1}.
Let $T^{(1)}, A_{1}$ be those defined in the proof of Lemma 3.4, A_{1} is an incompressible annulus properly embedded in V_{1}. By Haken's theorem (see Corollary II. 10 of [3]) and the fact that M has a Heegaard splitting of genus two, we see that M is irreducible. Hence, each 2-sided, nonseparating torus in M is incompressible.

Now, we shall derive a contradiction in each of above cases. Then we complete the proof of Theorem 1.

Case 1. In this case, there is an annulus A_{1}^{\prime} in F such that $A_{1}^{\prime} \cap T^{(1)}=A_{1}^{\prime} \cap A_{1}$ $=\partial A_{1}^{\prime}=\partial A_{1}$ (see Figure 4). We get a 2 -sided, non-separating torus \bar{T} by exchanging A_{1} on $T^{(1)}$ for A_{1}^{\prime}. We can move \bar{T} by a small isotopy so that each component of $\bar{T} \cap V_{1}$ is a disk and the number of components of $\bar{T} \cap V_{1}$ is less than that of $T^{\prime} \cap V_{1}$. This contradicts the minimality of T^{\prime}.

Figure 4.
Case 2. Since A_{1} is an incompressible annulus in V_{1}, D_{1} must separate V_{1} into two solid tori. So we have a contradiction as in Case 1.

Case 3. Let $T^{(2)}$ be the image of $T^{(1)}$ after an isotopy of type A at α_{1}^{\prime}. Then $T^{(2)} \cap V_{1}=A_{1} \cup A_{2} \cup D_{3} \cup \cdots \cup D_{n}$, where A_{2} is an incompressible annulus properly embedded in V_{1}. We have two subcases.

Case 3.1. A_{1} and A_{2} are parallel in V_{1}.
In this case, there is an annulus A such that A is contained in the interior of $V_{1}, A \cap T^{(2)}=\partial A$ and one component of ∂A is in A_{1} and the other is in A_{2}
(see Figure 5). The annulus A cuts $T^{(2)}$ into two annuli A^{1} and A^{2}. By pasting $A^{i}(i=1,2)$ and A along its boundary, we get a 2 -sided torus T^{i} in M. Then either T^{1} or T^{2}, say T^{1}, is nonseparating in M. Then $T^{1} \cap V_{1}=A^{1} \cup D_{i 1} \cup \cdots \cup D_{i k}$, where A^{1} is an annulus and $\left\{D_{i 1}, \cdots, D_{i k}\right\}(k \leqq n-2)$ is a subset of $\left\{D_{3}, \cdots, D_{n}\right\}$. We easily see that by moving T^{1} by an isotopy of type A there is a 2 -sided, non-separating torus which intersects V_{1} in $k+1$ disks. This contradicts the minimality of T^{\prime}.

Figure 5.

Figure 6.

Case 3.2. A_{1} and A_{2} are not parallel in V_{1}.
In this case, there is an annulus A^{\prime} in F such that $A^{\prime} \cap T^{(2)}=A^{\prime} \cap\left(A_{1} \cup A_{2}\right)$ $=\partial A^{\prime}$ (see Figure 6). Then by pushing A^{\prime} slightly into the interior of V_{1}, we have an annulus which has the same property as A in Case 3.1. So we have a contradiction as in Case 3.1.

4. Statement and proof of Theorem 2.

We can construct a closed, connected, orientable 3-manifold M as follows.
(*) Let $L=k_{1} \cup k_{2}$ be a two bridge link in $S^{3}, M(L)$ be the manifold obtained by removing the interior of the regular neighborhood of L from S^{3}. Let \bar{m}_{i} ($i=1,2$) be a meridian of the regular neighborhood of k_{i}, m_{i}^{\prime} be a simple loop obtained by pushing \bar{m}_{i} slightly into $M(L)$. Let M_{1} be a closed, orientable 3manifold obtained by pasting the two boundary components of $M(L)$ by a homeomorphism which takes \bar{m}_{1} to $\bar{m}_{2}, m_{i}(i=1,2)$ be the image of m_{i}^{\prime} in M_{1}. Then we get M by performing Dehn surgery on M_{1} along $m_{1} \cup m_{2}$.

Then we have
Lemma 4.1. If M is obtained by the construction (*) then M has a Heegaard splitting of genus two.

Proof. We use the notations and symbols in the construction (*). Since L is a two bridge link, L is obtained as the union of the two trivial tangles. This is shown for the two bridge knot in 115p of [6]. And the argument holds for the two bridge link. Hence there is a disk with three holes B properly embedded in $M(L)$ such that each component of ∂B is homotopic to $\bar{m}_{i}(i=1$ or 2$)$ in $\partial M(L)$ and such that the closures of the components of $M(L)-B$ are two handlebodies. We denote them by V_{1}^{\prime} and V_{2}^{\prime}. Then $V_{i}^{\prime} \cap \partial M(L)$ consists of two annuli $A_{1}^{i}, A_{2}^{i}(i=1,2)$. Since \bar{m}_{1} and \bar{m}_{2} are identified in M, we may suppose that A_{1}^{i} and A_{2}^{i} are identified in M. Moreover, we may suppose that $m_{i}^{\prime} \subset V_{i}^{\prime}$. If we identify A_{1}^{i} with A_{2}^{i} on ∂V_{i}^{\prime} then we get a genus two handlebody $V_{i}^{\prime \prime}$. And if we perform a Dehn surgery on $V_{i}^{\prime \prime}$ along \bar{m}_{i} then we get a genus two handlebody V_{i}. Then $M=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}$.

This completes the proof of Lemma 4.1.
Let θ_{1} be the collection of all 3 -manifolds which are given by the construction (*), and θ_{2} be the collection of all orientable 3-manifolds which have Heegaard splittings of genus two and contain non-separating, incompressible tori. Then

Theorem 2. Let θ_{1} and θ_{2} be as above, then θ_{2} is a subcollection of θ_{1}. Moreover, the element of θ_{1} that is not an element of θ_{2} is homeomorphic to $S^{2} \times S^{1}$ or $S^{2} \times S^{1} \# S^{2} \times S^{1}$ or $S^{2} \times S^{1} \# L n$, where \# denotes a connected sum and S^{n}, Ln denote an n-sphere, a three dimensional lens space, respectively.

Now, we shall prove Theorem 2, Let M be an element of $\theta_{2},\left(V_{1}, V_{2} ; F\right)$
be a Heegaard splitting of genus two of M, T be a non-separating, incompressible torus in M. By Theorem 1, we may suppose that $T \cap V_{1}$ is a disk.

Lemma 4.2. $T \cap V_{1}$ is a meridian disk of V_{1}.
Proof. Since T is incompressible in $M, T \cap V_{1}$ is not parallel to a disk in ∂V_{1}. So assume that $T \cap V_{1}$ cuts V_{1} into two solid tori. Since T is non-separating, there exists such a simple closed curve l in M that intersects T transversely in a single point p. We may suppose that p is contained in the interior of $T \cap V_{1}$. Let l^{\prime} be an arc on l such that p is contained in the interior of l^{\prime} and l^{\prime} is contained in the interior of V_{1}. There is an ambient isotopy $h_{t}(0 \leqq t \leqq 1)$ of M such that $h_{1}(l)$ is contained in $V_{1},\left.h_{t}\right|_{l}=\mathrm{id}_{l^{\prime}}(0 \leqq t \leqq 1)$ and $h_{1}(l)$ is in general position with respect to T. Since $l-l^{\prime}$ does not intersect T and $\partial\left(l-l^{\prime}\right)$ is fixed by $h_{t}, h_{1}\left(l-l^{\prime}\right)$ intersects T even number of times. This contradicts the fact that $h_{1}(l)$ is contained in V_{1} and $T \cap V_{1}$ separates V_{1}.

As in [3] we have a hierarchy $\left(T_{2}^{(0)}, \alpha_{0}\right),\left(T_{2}^{(1)}, \alpha_{1}\right)$ for $T \cap V_{2}$ which gives rise to a sequence of isotopies of type A at α_{0} and α_{1}. Note that $\alpha_{i}(i=0,1)$ is of type 3 defined in Section 3. Let T^{\prime} be the image of T after an isotopy of type A at α_{0}, and $A_{i}=T^{\prime} \cap V_{i}(i=1,2)$. Then A_{i} is a non-separating, incompressible annulus properly embedded in V_{i}. By cutting V_{i} along A_{i} we get a genus two solid torus V_{i}^{\prime} (see Figure 7). Let A_{i}^{\prime} and $A_{i}^{\prime \prime}$ be the copies of A_{i} on ∂V_{i}^{\prime}.

Figure 7.
Now, we will show that M can be given by the construction (*).
Let $c_{i}=c_{i 1} \cup c_{i 2}(i=1,2)$ be two disjoint trivial arcs properly embedded in a 3 -cell $B_{i}, U_{i}=\operatorname{cl}\left(B_{i}-N\left(c_{i 1} \cup c_{i 2} ; B_{i}\right)\right), A^{i j}=U_{i} \cap N\left(c_{i j} ; B_{i}\right)(j=1,2)$, where $N\left(c ; B_{i}\right)$ denotes the regular neighborhood of a polyhedron c in $B_{i} . A^{i j}$ is an annulus on
∂U_{i}. Let m_{i}^{\prime} be a simple closed curve obtained by pushing the core of $A^{i 2}$ into U_{i}. If we perform a proper Dehn surgery on U_{i} along m_{i}^{\prime} then we get such a genus two handlebody U_{i}^{\prime} that there exists a homeomorphism from U_{i}^{\prime} to V_{i}^{\prime} which takes the image of $A^{i 1}$ to A_{i}^{\prime} and the image of $A^{i 2}$ to $A_{i}^{\prime \prime}$. Hence, the attaching homeomorphism $\partial V_{1} \rightarrow \partial V_{2}$ of the Heegaard splitting ($V_{1}, V_{2} ; F$) induces a homeomorphism $\operatorname{cl}\left(\partial U_{1}-\left(A^{11} \cup A^{12}\right)\right) \rightarrow \operatorname{cl}\left(\partial U_{2}-\left(A^{21} \cup A^{22}\right)\right)$. If we paste U_{1} and U_{2} by this homeomorphism then we get a link space $M(L)$ where $L=k_{1} \cup k_{2}$ is a two bridge link (see [6] 115p). Let $m_{i}(i=1,2)$ be the image of m_{i}^{\prime} in $M(L)$. Then m_{i} is isotopic to the meridians of L. Since $A^{i 1}$ and $A^{i 2}$ are identified in M, we may suppose that m_{i} is isotopic to the meridian of k_{i}. Then by tracing the above procedure conversely we see that M can be given by the construction (*). This completes the proof of the first part of Theorem 2.

Let M be an element of θ_{1} and not an element of θ_{2}. By the construction of M, there exists a non-separating torus T in M. Then by the loop theorem [2] there exists a non-separating 2 -sphere in M. By Lemma 3.8 of [2], Haken's theorem ([3]) and Lemma $4.1 ~ M=S^{2} \times S^{1} \# M^{\prime}$, where M^{\prime} has a Heegaard splitting of genus one. Hence, the second part of Theorem 2 follows.

Remark. By Theorem 2 and the fact that a torus bundle over S^{1} contains a non-separating, incompressible torus, we have the following relations of inclusion.

$$
\left\{\begin{array}{l}
\text { closed orientable 3-manifolds } \\
\text { with Heegaard splittings of } \\
\text { genus two }
\end{array}\right\} \supset \theta_{2} \supset \theta_{1} \supset\left\{\begin{array}{l}
\text { torus bundles with } \\
\text { Heegaard splittings } \\
\text { of genus two }
\end{array}\right\}
$$

It is known that there exists infinitely many topologically distinct torus bundles with Heegaard splittings of genus two [5].

We note that there is an element of θ_{1} which is not a torus bundle. We claim that if M is a torus bundle and T is a non-separating, incompressible torus in M then T cuts M into $T^{2} \times I$, where T^{2}, I denote the two dimensional torus, the unit interval $[0,1]$, respectively. Since M is a torus bundle, there exists a non-separating, incompressible torus T^{\prime} which cuts M into a $T^{2} \times I$, say M^{\prime}. Since T and T^{\prime} are incompressible and M is irreducible, by the standard arguments of the three dimensional topology we may suppose that $T \cap T^{\prime}=\varnothing$ or T and T^{\prime} intersect transversely, each component of $T \cap T^{\prime}$ is an essential loop in T^{\prime} (hence T) and each component of $T \cap M^{\prime}$ is not boundary parallel in M^{\prime}. If $T \cap T^{\prime}=\varnothing$ then $T \subset M^{\prime}$ and by [1] T and T^{\prime} are parallel in M. Hence T cuts M into $T^{2} \times I$. If $T \cap T^{\prime} \neq \varnothing$ then the image of T in M^{\prime} is a system of parallel annuli $A_{1}, \cdots, A_{r}(r \geqq 1)$. On the other hand, the closures of components of $T^{\prime}-\left(T \cap T^{\prime}\right)$ are annuli $A_{1}^{\prime}, \cdots, A_{r}^{\prime}$. By cutting M^{\prime} along $A_{1} \cup \cdots \cup A_{r}$ we get r solid tori. If we paste these solid tori along $A_{i}^{\prime}(1 \leqq i \leqq r)$ then we get $T^{2} \times I$. Hence M cut along T is $T^{2} \times I$ and we establish the claim.

If L is a non-trivial two bridge link, which is not the Hopf link, then the image of $\partial M(L)$ in M, say T, is a non-separating, incompressible torus and M cut along T is not a $T^{2} \times I$. Hence M is not a torus bundle.

two bridge link L
(i)

genus two surface normally embedded in S^{3}
(ii)

Figure 8.

Let $L=k_{1} \cup \cdots \cup k_{n}$ be an n component link. L is called strongly invertible if there is an orientation preserving involution g of S^{3} which satisfies
(i) Fix (g), the fixed point set of g, is a circle,
(ii) $g\left(k_{i}\right)=k_{i}(1 \leqq i \leqq n)$ and
(iii) $\left.g\right|_{k_{i}}$ reverses the orientation of k_{i} for each i.

Then we have
Lemma 4.3. Every two bridge link is strongly invertible.
Proof. Let $L=k_{1} \cup k_{2}$ be a two bridge link and let ($V_{1}, V_{2} ; F$) be a genus two Heegaard splitting of S^{3}. Then by the definition of the two bridge link ([6]) we may suppose that $L \subset F$ and that L does not separate F (see Figure 8).

In [7] it is shown that if ($V_{1}^{\prime}, V_{2}^{\prime} ; F^{\prime}$) is the genus two Heegaard splitting of a 3-manifold M^{\prime} and α_{1}, α_{2} are pairwise disjoint simple closed curves such that $\alpha_{1} \cup \alpha_{2}$ does not separate F then there is an orientation preserving involution h of M^{\prime} such that $h\left(V_{i}\right)=V_{i}(i=1,2), \operatorname{Fix}(h)$ is a 1-manifold, $h\left(\alpha_{j}\right)=\alpha_{j}$ and $\left.h\right|_{\alpha_{j}}$ reverses the orientation of $\alpha_{j}(j=1,2)$. Hence there is an orientation preserving involution g of S^{3} such that Fix (g) is a 1-manifold, $g\left(k_{i}\right)=k_{i}(i=1,2)$ and $\left.g\right|_{k_{i}}$ reverses the orientation of k_{i}. By the Smith theory $\operatorname{Fix}(g)$ is a circle. Hence L is strongly invertible.

Proof of Corollary. By Theorem 2 an orientable, closed 3-manifold M which has a Heegaard splitting of genus two and contains a non-separating, incompressible torus is given by the construction (*). By Lemma 4.3 there is an involution h on $M(L)$ whose fixed point set K is a 1 -manifold which intersects

Figure 9.
each boundary component of $M(L)$ in four points. Moreover, we may suppose that each of m_{i}^{\prime} and $\bar{m}_{i}(i=1,2)$ intersects K in two points and is invariant under h (see Figure 9). Then h induces an involution h^{\prime} on M, and the quotient space of M under h^{\prime} is $S^{2} \times S^{1}$. This completes the proof of Corollary.

References

[1] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., Prentice Hall, 1968.
[2] J. Hempel, 3-manifolds, Ann. of Math. Studies, 86, Princeton Univ. Press, Princeton, N. J., 1976.
[3] W. Jaco, Lectures on three-manifold topology, Conference Board of Math. Science, Regional Conference Series in Math., 43, 1980.
[4] M. Ochiai, On Haken's theorem and its extension, Osaka J. Math., 20 (1983), 461-468.
[5] M. Ochiai and M. Takahashi, Heegaard diagrams of torus bundle over S^{1}, Comment. Math. Univ. St. Pauli, 31 (1982), 63-69.
[6] D. Rolfsen, Knots and Links, Math. Lecture Series, 7, Publish or Perish Inc., Berkeley, 1976.
[7] M. Takahashi, An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math., 2 (1978), 27-34.

Tsuyoshi Kobayashi
Department of Mathematics Osaka University Toyonaka, Osaka 560
Japan

