On simple groups which are homomorphic images of multiplicative subgroups of simple algebras of degree 2

By Michitaka HIKARI

(Received July 12, 1982)

Let $M_2(D)$ be the full matrix algebra of degree 2 over a division algebra D of characteristic 0. In [11] we proved that if G is a finite multiplicative subgroup of $M_2(D)$ with abelian Sylow 2-subgroups, then G is a solvable group. More generally, in this paper we will determine the non-abelian simple groups S which are homomorphic images of multiplicative subgroups G of $M_2(D)$. In [10] we remarked that abelian subgroups of the Sylow 2-subgroups of G are generated by at most 2 elements. In particular, the Sylow 2-subgroups possess no abelian normal subgroups of rank 3, which implies that these 2-groups are generated by at most 4 elements (see MacWilliams [14]). All simple groups whose Sylow 2-subgroups are generated by at most 4 elements have been determined in Gorenstein-Harada [7]. Using their theorem, we will determine the simple groups S.

Our main result is as follows.

THEOREM. Let S be a simple group. If there exists a division algebra D of characteristic 0, a finite multiplicative subgroup G of $M_2(D)$ and a normal subgroup N of G satisfying $G/N \cong S$, then S is isomorphic to PSL(2, 5) or PSL(2, 9) and $N \neq 1$.

In the theorem $N \neq 1$ means the following:

COROLLARY. Let G be a finite group and let K be a field of characteristic 0. If one of the simple components of the group ring KG is the full matrix algebra of degree 2 over a division algebra, then G is not simple.

The corollary can not be generalized to the full matrix algebra of degree \geq 3. In fact,

 $\mathbf{Q}[PSL(2, 5)] \cong \mathbf{Q} \oplus M_{\mathfrak{z}}(\mathbf{Q}(\sqrt{5})) \oplus M_{\mathfrak{z}}(\mathbf{Q}) \oplus M_{\mathfrak{z}}(\mathbf{Q})$

and

 $\boldsymbol{Q}[A_n] \cong \boldsymbol{Q} \oplus M_{n-1}(\boldsymbol{Q}) \oplus \cdots, \quad n \ge 5.$

1. Preliminaries.

All division algebras considered in this paper are of characteristic 0. As usual Q and C denote respectively the rational number field and the complex

number field. By a subgroup of $M_2(D)$ we mean a finite multiplicative subgroup of $M_2(D)$. Let D be a division algebra and let K be a field contained in the center of D. Let G be a subgroup of $M_2(D)$. We define $V_K(G) =$ $\{\sum \alpha_i g_i | \alpha_i \in K, g_i \in G\}$ as a K-subalgebra of $M_2(D)$. Then there is a natural epimorphism $KG \rightarrow V_K(G)$. Hence $V_K(G)$ is a semi-simple K-subalgebra of $M_2(D)$. Let $V_K(G) \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_t}(D_t)$ be the decomposition of $V_K(G)$ into simple algebras $M_{n_i}(D_i)$. Since $V_K(G) \cong M_2(D)$, there exist at most 2 orthogonal idempotents in $V_K(G)$. Thus we have $\sum_{i=1}^t n_i \leq 2$. This means that $V_K(G) \cong D_1$, $D_1 \oplus D_2$ or $M_2(D_1)$.

(1.1) ([11]). Let D be a division algebra and let K be a subfield of the center of D. Let G be a subgroup of $M_2(D)$. Then we have $V_K(G) \cong D_1$, $D_1 \oplus D_2$ or $M_2(D_1)$ where D_1 , D_2 are some division algebras.

Now we recall the following results on *p*-groups.

(1.2) ([10], [11]). Let p be a prime number. Let P be a p-group which is a subgroup of $M_2(D)$.

(1) If P is abelian, then P is generated by at most 2 elements.

(2) If $p \neq 2$, then P is abelian.

(3) If p=2, then P/[P, P] is generated by at most 4 elements.

Amitsur proved the following result.

(1.3) ([2]). Let G be a finite multiplicative subgroup of a division algebra and let N be a normal subgroup of G. If G/N is simple, then $G/N \cong PSL(2, 5)$.

We recall the following result.

(1.4) ([11]). Let D be a division algebra and let K be a subfield of the center of D. Let G be a subgroup of $M_2(D)$ satisfying $V_K(G) = M_2(D)$ and let N be a normal subgroup of G. If |N| is odd, then one of the following conditions is satisfied:

(1) G has a subgroup of index 2.

(2) $V_{K}(G)$ is a division algebra.

Let S be a non-abelian simple group. We define

 $m(S) = \{(D, G, N) \mid D \text{ is a division algebra of characteristic } 0, \}$

G is a finite multiplicative subgroup of $M_2(D)$

and N is a normal subgroup of G such that $G/N \cong S$.

We assume $m(S) \neq \emptyset$. Let (D, G, N) be an element of m(S). By (1.2) the 2-rank of G (the maximal rank of an abelian 2-subgroup) is ≤ 2 . By MacWilliams [14] the Sylow 2-subgroups of G are generated by at most 4 elements. Hence S is one of the simple groups which were listed in Gorenstein-Harada [7].

2. Basic lemma.

Assume $S \not\equiv PSL(2, 5)$ and $m(S) \neq \emptyset$. Let (D_0, G, N) be an element of m(S) satisfying $|G| \leq |G'|$ for any element $(D', G', N') \in m(S)$. Since $Q \subseteq$ the center

of D_0 , $V_{\mathbf{q}}(G) \cong D_1$, $D_1 \oplus D_2$ or $M_2(D_1)$ for some division algebras D_1 , D_2 . By (1.3) if $V_{\mathbf{q}}(G) \cong D_1$ or $D_1 \oplus D_2$, then $S \cong PSL(2, 5)$. Therefore $V_{\mathbf{q}}(G) \cong M_2(D_1)$. We put $D = D_1$. Then (D, G, N) is an element of m(S) such that $M_2(D) = V_{\mathbf{q}}(G)$ and $|G| \le |G'|$ for any element $(D', G', N') \in m(S)$. In this section we will prove the following basic lemma.

LEMMA 2.1. Assume $S \not\equiv PSL(2, 5)$ and $m(S) \neq \emptyset$.

(1) There exists an element (D, G, N) in m(S) such that $V_{\mathbf{Q}}(G) = M_2(D)$ and $|G| \leq |G'|$ for any element $(D', G', N') \in m(S)$.

For (D, G, N) in (1) we have

(2) [G, G] = G.

(3) N is a 2-group.

(4) If $S \not\cong PSL(2, 7)$, PSL(2, 9), A_7 nor A_8 , then N is cyclic and N = Z(G).

To show the lemma we will use the following lemma.

LEMMA 2.2. Let S be a simple group. If S is a homomorphic image of a subgroup of GL(4, 2), then S is isomorphic to one of the following groups:

PSL(2, 5), PSL(2, 7), PSL(2, 9), A_7 or A_8 .

PROOF. This may be well known. Here we give a proof. Since $|S|||GL(4, 2)|=2^{6}\cdot 3^{2}\cdot 5\cdot 7$, by [3] we have that $S \cong PSL(2, 5)$, PSL(2, 7), PSL(2, 8), $PSL(2, 9), A_7, A_8 \text{ or } PSL(3, 4).$ But $S \not\cong PSL(3, 4),$ because |PSL(3, 4)| = |GL(4, 2)|and $PSL(3, 4) \not\equiv GL(4, 2)$. Let $\mathcal{L} = \{(G, N) | GL(4, 2) \supseteq G \triangleright N \text{ and } G/N \cong PSL(2, 8)\}$. We show that $\mathcal{L} = \emptyset$. Suppose that $\mathcal{L} \neq \emptyset$. Let (G, N) be an element of \mathcal{L} satisfying $|G| \leq |G'|$ for any $(G', N') \in \mathcal{L}$. Since $G \subseteq GL(4, 2) \cong A_8$, we may regard G as a permutation group on $\mathcal{X} = \{1, 2, \dots, 8\}$. We decompose \mathcal{X} into the orbits of $G: \mathfrak{X} = \mathfrak{X}_1 \cup \mathfrak{X}_2 \cup \cdots \cup \mathfrak{X}_n$. And we may assume $|\mathfrak{X}_1| \neq 1$. Let a be an element of \mathfrak{X}_1 . We put $G_a = \{g \in G | g(a) = a\}$. Then G_a is a proper subgroup of G and $1 < |G: G_a| = |\mathcal{X}_1| \leq 8$. If $G/N = G_a / G_a \cap N$, then $(G_a, G_a \cap N) \in \mathcal{L}$. But it is impossible. Therefore $8 \ge |G: G_a| \ge |G/N: G_a/G_a \cap N| > 1$. This shows that PSL(2, 8) has a proper subgroup of index ≤ 8 . But the minimal index of a proper subgroup of PSL(2, 8) is 9 (see [12] (8.28)). Thus we conclude that $S \not\equiv PSL(2, 8).$

PROOF OF LEMMA 2.1. Step 1. We show first that G = [G, G]. Since G/[G, G] is an abelian group, $(D, [G, G], [G, G] \cap N) \in m(S)$. The assumption on (D, G, N) implies G = [G, G].

Step 2. Let P be a Sylow p-subgroup of N for a prime p. We show that P is a normal subgroup of G. Since $N_G(P)N=G$, we have $N_G(P)/N_G(P)\cap N\cong N_G(P)N/N=G/N\cong S$. Then $(D, N_G(P), N_G(P)\cap N)\in m(S)$, which implies $G=N_G(P)$. Thus $P\lhd G$.

Step 3. Next we show that N is a 2-group. Let p be an odd prime and let P be a Sylow p-subgroup of N. If G has a subgroup H of index 2, then $H/H \cap N \cong S$. This means $(D, H, H \cap N) \in m(S)$, which contradicts the assumption on (D, G, N).

M. HIKARI

Then it follows from (1.4) that $V_{Q}(P)$ is a division algebra. Since a *p*-subgroup of a division algebra is cyclic, *P* is cyclic. On the other hand $C_{G}(P) \triangleleft G$, because $P \triangleleft G$. Since $G/C_{G}(P)$ is isomorphic to a subgroup of the automorphism group of the cyclic group *P*, we have $(D, C_{G}(P), C_{G}(P) \cap N) \in m(S)$. Hence $G = C_{G}(P)$, which implies $P \subseteq Z(G)$. Now let *Q* be a Sylow *p*-subgroup of *G*. Put $R = Q \cap Z(N_{G}(Q))$. By (1.2) *Q* is abelian, and by ([5], (20.12)) there exists a normal subgroup G_{0} of *G* such that $G/G_{0} \cong R$. Since $G/G_{0} \not\cong S$, we have $G = G_{0}$, and R = 1. Hence P = 1, because $R \supseteq P$.

Step 4. Finally we show that if $S \not\equiv PSL(2, 5)$, PSL(2, 7), PSL(2, 9), A_7 nor A_{s} , then N is a cyclic 2-group and N=Z(G). If N=Z(G), then $N\subseteq$ the center of $V_{Q}(G)$ =the center of $M_{2}(D)$ =the center of D. Since any finite multiplicative subgroup of a field is cyclic, N is cyclic. Hence it suffices to show that $N \subseteq Z(G)$ (the converse $N \supseteq Z(G)$ can be easily checked). Let us consider a chain of subgroups of N, $N=N_s\supseteq N_{s-1}\supseteq \cdots \supseteq N_1\supseteq N_0=1$ such that $N_i \triangleleft G$ and N_i/N_{i-1} is an elementary abelian 2-group for any i, $1 \leq i \leq s$. By the induction on i we will prove that $N_i \subseteq Z(G)$. We assume that $N_{i-1} \subseteq Z(G)$. By (1.2) N_i/N_{i-1} is generated by at most 4 elements. We can regard $Aut(N_i/N_{i-1})$ as a subgroup of GL(4, 2). By (2.2) and by our assumption on S it is easy to see that $S \cong C_G(N_i/N_{i-1})$ $/C_G(N_i/N_{i-1}) \cap N$. Then we get $G = C_G(N_i/N_{i-1})$. We now put $|N_{i-1}| = 2^t$. Let $g \in G$ and $x \in N_i$. Since $G = C_G(N_i/N_{i-1})$, $x^{-1}g^{-1}xg \in N_{i-1}$. We set $y = x^{-1}g^{-1}xg$. Then $g^{-2^t}xg^{2^t}=xy^{2^t}=x$ because $y \in N_{i-1} \subseteq Z(G)$ and $|N_{i-1}|=2^t$. Thus we have $g^{2^{t}} \in C_{G}(N_{i})$ for any $g \in G$. This shows that $G/C_{G}(N_{i})$ is a 2-group. Hence $S \cong$ $C_G(N_i)/C_G(N_i) \cap N$ and $(D, C_G(N_i), C_G(N_i) \cap N) \in m(S)$. By the assumption on G we conclude that $G = C_G(N_i)$, i.e. $N_i \subseteq Z(G)$. The proof of the lemma is completed.

3. Quasisimple group of 2-rank ≤ 2 .

Let S be a simple group. In this section we assume that $m(S) \neq \emptyset$ and $S \not\equiv PSL(2, 5)$, PSL(2, 7), PSL(2, 9), A_7 nor A_8 . By (2.1) there exists an element (D, G, N) in m(S) such that G = [G, G], N = Z(G) and N is a cyclic 2-group. Therefore O(G) (the largest normal subgroup of G of odd order) =1 and G is a quasisimple group (i.e. G = [G, G] and G/Z(G) is simple) of 2-rank ≤ 2 (cf. (1.2)). These groups G have been studied by Alperin, Brauer, Gorenstein and Harada.

We recall their theorems.

(3.1) (Alperin-Brauer-Gorenstein [1]). If S is a finite simple group of 2-rank 2, then one of the following holds:

(1) S has dihedral Sylow 2-subgroups, and $S \cong PSL(2, q)$, q odd, or A_{τ} ;

(2) S has quasi-dihedral Sylow 2-subgroups, and $S \cong PSL(3, q)$, $q \equiv -1 \pmod{4}$, $PSU(3, q^2)$, $q \equiv 1 \pmod{4}$, or M_{11} ;

(3) S has wreathed Sylow 2-subgroups, and $S \cong PSL(3, q)$, $q \equiv 1 \pmod{4}$ or $PSU(3, q^2)$, $q \equiv -1 \pmod{4}$; or

566

(4) $S \cong PSU(3, 4^2)$.

(3.2) (Gorenstein-Harada [7]). If G is a quasisimple group of 2-rank 2 with O(G)=1, then either G is simple or G is isomorphic to Sp(4, q), q odd.

In the case where 2-rank of G is 1, it is known that a Sylow 2-subgroup P of G is cyclic or generalized quaternion. Since $S \cong G/N$ is simple, P/N is dihedral. Then by (3.1) $S \cong PSL(2, q)$, q odd. In the case where 2-rank of G is 2, by (3.2), and by (3.1), $G \cong PSL(2, q)$, PSL(3, q), $PSU(3, q^2)$, q odd, M_{11} , $PSU(3, 4^2)$ or Sp(4, q), q odd. If q is a power of an odd prime p, the Sylow p-subgroups of PSL(3, q), $PSU(3, q^2)$ and Sp(4, q) are not abelian. Therefore by (1.2) $G \not\equiv PSL(3, q)$, $PSU(3, q^2)$ nor Sp(4, q). Hence we have

PROPOSITION 3.3. Let S be a simple group. Assume that $m(S) \neq \emptyset$. Then we have

(1) $S \cong PSL(2, q)$, q odd, $PSU(3, 4^2)$, A_7 , A_8 or M_{11} .

(2) If $S \cong PSU(3, 4^2)$ or M_{11} , then there exists a division algebra D such that $(D, S, 1) \in m(S)$ and $V_Q(S) = M_2(D)$.

4. Proof of theorem.

Let χ be an irreducible character of a finite group G. By $m(\chi)$ we denote the Schur index of χ over Q.

LEMMA 4.1. Let G be a finite group. Then the following conditions are equivalent:

(1) There exist a division algebra D and a normal subgroup N of G such that $G/N \subseteq M_2(D)$ and $V_q(G/N) = M_2(D)$.

(2) There exists an irreducible character χ of G satisfying $\chi(1)=2 m(\chi)$.

PROOF. Let $M_n(D)$ be a simple component of QG and let χ be an irreducible character of G corresponding to $M_n(D)$. Then $\chi(1) = n m(\chi)$. From this relation we can easily see that the conditions (1) and (2) are equivalent.

The character table of SL(2, q), q odd, is well known (see [4], § 38), and the Schur indices of SL(2, q) have been determined in Janusz [13].

We use the same notation as in Dornhoff [4], § 38.

(4.2) ([13]). The degrees and the Schur indices of the irreducible character of SL(2, q), q odd, are as follows;

(1)	1(1)=1,	m(1) = 1,
(2)	$\psi(1)=q$,	$m(\phi)=1$,
(3)	$\chi_i(1) = q + 1$,	$m(\chi_i)=1$ if i is even,
		$m(\chi_i)=2$ if i is odd,
(4)	$\theta_{j}(1) = q - 1$,	$m(\theta_j)=1$ if j is even,
		$m(\theta_j)=2$ if j is odd,
(5)	$\xi_{k}(1) = (q+1)/2,$	$m(\xi_k)=1$,

M. Hikari

(6)
$$\eta_k(1) = (q-1)/2$$
, $m(\eta_k) = 1$ if $q \equiv -1 \pmod{4}$,
 $m(\eta_k) = 2$ if $q \equiv 1 \pmod{4}$,

where $1 \le i \le (q-3)/2$, $1 \le j \le (q-1)/2$, $1 \le k \le 2$.

By (4.2) we can easily find all irreducible characters of SL(2, q) satisfying $\chi(1)=2 m(\chi)$.

COROLLARY 4.3. Let χ be an irreducible character of SL(2, q), q odd, satisfying $\chi(1)=2m(\chi)$. Then χ is one of the following;

- (1) $\chi = \xi_k$ and $q = 3, 1 \leq k \leq 2$,
- (2) $\chi = \theta_1$ and q = 5,
- (3) $\chi = \eta_k$ and $q = 9, 1 \leq k \leq 2$.

PROPOSITION 4.4. If $m(PSL(2, q)) \neq \emptyset$, q odd, then q=5, 7 or 9.

PROOF. We assume $m(PSL(2, q)) \neq \emptyset$ and $q \neq 5$, 7 nor 9. Let (D, G, N) be an element of m(PSL(2, q)). By (2.1) we may assume that $V_{\mathbf{q}}(G) = M_2(D)$ and G is a central extension of PSL(2, q) with G = [G, G]. It is well known that there exists an epimorphism from SL(2, q) onto G. (See [12] (25.7).) Therefore $V_{\mathbf{q}}(G) = M_2(D)$ is a simple component of $\mathbf{Q}[SL(2, q)]$. By (4.1) and (4.3) q = 5 or 9 (cf. PSL(2, 3) is not simple), which is a contradiction.

LEMMA 4.5. Let H be a non-abelian group of order 21. Let ε_n be a primitive n-th root of unity. Then

$$\boldsymbol{Q}H\cong \boldsymbol{Q}\oplus \boldsymbol{Q}(\varepsilon_3)\oplus M_3(\boldsymbol{Q}(\varepsilon_7+\varepsilon_7^2+\varepsilon_7^4))$$
.

In particular H is not a subgroup of $M_2(D)$ for any division algebra D.

PROOF. We put $H = \langle a, b | a^7 = 1, b^3 = 1, bab^{-1} = a^2 \rangle$. Let σ be the automorphism of $Q(\varepsilon_7)$ over Q defined by $\sigma(\varepsilon_7) = \varepsilon_7^2$. Since there exists an epimorphism from QH to the cyclic algebra $(Q(\varepsilon_7), \sigma, 1)$ determined by the mapping $a \to \varepsilon_7$ and $b \to \sigma$, we have

$$\begin{aligned} \boldsymbol{Q} H &\cong \boldsymbol{Q} \bigoplus \boldsymbol{Q}(\varepsilon_3) \bigoplus (\boldsymbol{Q}(\varepsilon_7), \ \boldsymbol{\sigma}, \ 1) \\ &\cong \boldsymbol{Q} \bigoplus \boldsymbol{Q}(\varepsilon_3) \bigoplus M_3(\boldsymbol{Q}(\varepsilon_7 + \varepsilon_7^2 + \varepsilon_7^4)) \end{aligned}$$

Now we prove the theorem.

THEOREM. Let S be a simple group. Then

(1) $m(S) \neq \emptyset$ if and only if $S \cong PSL(2, 5)$ or PSL(2, 9).

(2) If $(D, G, N) \in m(S)$, then $N \neq 1$.

PROOF. We assume that $m(S) \neq \emptyset$. It follows from (3.3) and (4.4) that $S \cong PSL(2, 5)$, PSL(2, 7), PSL(2, 9), $PSU(3, 4^2)$, A_7 , A_8 or M_{11} . First we suppose that $S \cong PSL(2, 7)$, A_7 or A_8 . Let $(D, G, N) \in m(S)$. By (2.1) we may assume that N is a 2-group. It is easily checked that S contains a non-abelian group of order 21. Thus G contains a non-abelian group of order 21, which contradicts (4.5). Therefore $m(PSL(2, 7))=m(A_7)=m(A_8)=\emptyset$. Since PSL(2, 11) is isomorphic to a subgroup of M_{11} (see [6]) and $m(PSL(2, 11))=\emptyset$ by (4.4), we obtain $m(M_{11})=\emptyset$.

568

Finally we assume that $m(PSU(3, 4^2)) \neq \emptyset$. By (3.3) we can find a division algebra D such that $(D, PSU(3, 4^2), 1) \in m(PSU(3, 4^2))$ and $V_q(PSU(3, 4^2)) = M_2(D)$. Let χ be an irreducible character of $PSU(3, 4^2)$ corresponding to $M_2(D)$. Then, as shown by Gow [8], $m(\chi)=1$ except only one character χ of degree 12 with $m(\chi)=2$. By (4.1) we have $m(\chi)=1$, and D is an algebraic number field. Hence $PSU(3, 4^2)$ is a subgroup of GL(2, C), but it is impossible (see [4] (26.1)). Therefore $m(PSU(3, 4^2))=\emptyset$. Thus we find that if $m(S)\neq\emptyset$, then $S\cong PSL(2, 5)$ or PSL(2, 9).

The assertion (2) and the converse of (1) follow directly from (4.3).

References

- J.L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math., 29 (1973), 191-214.
- [2] S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386.
- [3] C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577.
- [4] L. Dornhoff, Group representation theory, Part A, Marcel Dekker, New York, 1971.
- [5] W. Feit, Characters of finite groups, Benjamin, New York, 1967.
- [6] D. Garbe and J.L. Mennicke, Some remarks on the Mathieu groups, Canad. Math. Bull., 7 (1964), 201-212.
- [7] D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc., 147, 1974.
- [8] R. Gow, Schur indices of some groups of Lie type, J. Algebra, 42 (1976), 102-120.
- [9] R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., 183 (1973), 355-421.
- [10] M. Hikari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374.
- [11] M. Hikari, On finite multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 28 (1976), 737-748.
- [12] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1976.
- [13] G.J. Janusz, Simple components of Q[SL(2,q)], Comm. Algebra, 1 (1974), 1-22.
- [14] A. R. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, [and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc., 150 (1970), 345-408.
- [15] R. Steinberg, Lectures on Chevalley groups, Yale University Notes, New Haven, Conn., 1967.

Michitaka HIKARI Department of Mathematics Keio University Hiyoshi 4-1-1, Yokohama 223 Japan