On simple groups which are homomorphic images of multiplicative subgroups of simple algebras of degree 2

By Michitaka HIKari

(Received July 12, 1982)

Let $M_{2}(D)$ be the full matrix algebra of degree 2 over a division algebra D of characteristic 0 . In [11] we proved that if G is a finite multiplicative subgroup of $M_{2}(D)$ with abelian Sylow 2-subgroups, then G is a solvable group. More generally, in this paper we will determine the non-abelian simple groups S which are homomorphic images of multiplicative subgroups G of $M_{2}(D)$. In [10] we remarked that abelian subgroups of the Sylow 2 -subgroups of G are generated by at most 2 elements. In particular, the Sylow 2 -subgroups possess no abelian normal subgroups of rank 3 , which implies that these 2 -groups are generated by at most 4 elements (see MacWilliams [14]). All simple groups whose Sylow 2 -subgroups are generated by at most 4 elements have been determined in Gorenstein-Harada [7]. Using their theorem, we will determine the simple groups S.

Our main result is as follows.
Theorem. Let S be a simple group. If there exists a division algebra D of characteristic 0 , a finite multiplicative subgroup G of $M_{2}(D)$ and a normal subgroup N of G satisfying $G / N \cong S$, then S is isomorphic to $\operatorname{PSL}(2,5)$ or $\operatorname{PSL}(2,9)$ and $N \neq 1$.

In the theorem $N \neq 1$ means the following:
Corollary. Let G be a finite group and let K be a field of characteristic 0. If one of the simple components of the group ring $K G$ is the full matrix algebra of degree 2 over a division algebra, then G is not simple.

The corollary can not be generalized to the full matrix algebra of degree $\geqq 3$. In fact,

$$
\boldsymbol{Q}[P S L(2,5)] \cong \boldsymbol{Q} \oplus M_{3}(\boldsymbol{Q}(\sqrt{5})) \oplus M_{4}(\boldsymbol{Q}) \oplus M_{5}(\boldsymbol{Q})
$$

and

$$
\boldsymbol{Q}\left[A_{n}\right] \cong \boldsymbol{Q} \oplus M_{n-1}(\boldsymbol{Q}) \oplus \cdots, \quad n \geqq 5 .
$$

1. Preliminaries.

All division algebras considered in this paper are of characteristic 0 . As usual \boldsymbol{Q} and \boldsymbol{C} denote respectively the rational number field and the complex
number field. By a subgroup of $M_{2}(D)$ we mean a finite multiplicative subgroup of $M_{2}(D)$. Let D be a division algebra and let K be a field contained in the center of D. Let G be a subgroup of $M_{2}(D)$. We define $V_{K}(G)=$ $\left\{\Sigma \alpha_{i} g_{i} \mid \alpha_{i} \in K, g_{i} \in G\right\}$ as a K-subalgebra of $M_{2}(D)$. Then there is a natural epimorphism $K G \rightarrow V_{K}(G)$. Hence $V_{K}(G)$ is a semi-simple K-subalgebra of $M_{2}(D)$. Let $V_{K}(G) \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{t}}\left(D_{t}\right)$ be the decomposition of $V_{K}(G)$ into simple algebras $M_{n_{i}}\left(D_{i}\right)$. Since $V_{K}(G) \cong M_{2}(D)$, there exist at most 2 orthogonal idempotents in $V_{K}(G)$. Thus we have $\sum_{i=1}^{t} n_{i} \leqq 2$. This means that $V_{K}(G) \cong D_{1}, D_{1} \oplus D_{2}$ or $M_{2}\left(D_{1}\right)$.
(1.1) ([11]). Let D be a division algebra and let K be a subfield of the center of D. Let G be a subgroup of $M_{2}(D)$. Then we have $V_{K}(G) \cong D_{1}, D_{1} \oplus D_{2}$ or $M_{2}\left(D_{1}\right)$ where D_{1}, D_{2} are some division algebras.

Now we recall the following results on p-groups.
(1.2) ([10], [11]). Let p be a prime number. Let P be a p-group which is a subgroup of $M_{2}(D)$.
(1) If P is abelian, then P is generated by at most 2 elements.
(2) If $p \neq 2$, then P is abelian.
(3) If $p=2$, then $P /[P, P]$ is generated by at most 4 elements.

Amitsur proved the following result.
(1.3) ([2]). Let G be a finite multiplicative subgroup of a division algebra and let N be a normal subgroup of G. If G / N is simple, then $G / N \cong \operatorname{PSL}(2,5)$.

We recall the following result.
(1.4) ([11]). Let D be a division algebra and let K be a subfield of the center of D. Let G be a subgroup of $M_{2}(D)$ satisfying $V_{K}(G)=M_{2}(D)$ and let N be a normal subgroup of G. If $|N|$ is odd, then one of the following conditions is satisfied:
(1) G has a subgroup of index 2 .
(2) $V_{K}(G)$ is a division algebra.

Let S be a non-abelian simple group. We define
$m(S)=\{(D, G, N) \mid D$ is a division algebra of characteristic 0 , G is a finite multiplicative subgroup of $M_{2}(D)$ and N is a normal subgroup of G such that $G / N \cong S\}$.
We assume $m(S) \neq \varnothing$. Let (D, G, N) be an element of $m(S)$. By (1.2) the 2 -rank of G (the maximal rank of an abelian 2-subgroup) is $\leqq 2$. By MacWilliams [14] the Sylow 2 -subgroups of G are generated by at most 4 elements. Hence S is one of the simple groups which were listed in Gorenstein-Harada [7].

2. Basic lemma.

Assume $S \not \equiv P S L(2,5)$ and $m(S) \neq \varnothing$. Let $\left(D_{0}, G, N\right)$ be an element of $m(S)$ satisfying $|G| \leqq\left|G^{\prime}\right|$ for any element $\left(D^{\prime}, G^{\prime}, N^{\prime}\right) \in m(S)$. Since $\boldsymbol{Q} \subseteq$ the center
of $D_{0}, V_{Q}(G) \cong D_{1}, D_{1} \oplus D_{2}$ or $M_{2}\left(D_{1}\right)$ for some division algebras D_{1}, D_{2}. By (1.3) if $V_{\boldsymbol{Q}}(G) \cong D_{1}$ or $D_{1} \oplus D_{2}$, then $S \cong \operatorname{PSL}(2,5)$. Therefore $V_{\boldsymbol{Q}}(G) \cong M_{2}\left(D_{1}\right)$. We put $D=D_{1}$. Then (D, G, N) is an element of $m(S)$ such that $M_{2}(D)=V_{\boldsymbol{Q}}(G)$ and $|G| \leqq\left|G^{\prime}\right|$ for any element $\left(D^{\prime}, G^{\prime}, N^{\prime}\right) \in m(S)$. In this section we will prove the following basic lemma.

Lemma 2.1. Assume $S \not \equiv \operatorname{PSL}(2,5)$ and $m(S) \neq \varnothing$.
(1) There exists an element (D, G, N) in $m(S)$ such that $V_{\boldsymbol{Q}}(G)=M_{2}(D)$ and $|G| \leqq\left|G^{\prime}\right|$ for any element $\left(D^{\prime}, G^{\prime}, N^{\prime}\right) \in m(S)$.

For (D, G, N) in (1) we have
(2) $[G, G]=G$.
(3) N is a 2-group.
(4) If $\operatorname{S\not \equiv } \operatorname{PSL}(2,7), \operatorname{PSL}(2,9), A_{7}$ nor A_{8}, then N is cyclic and $N=Z(G)$.

To show the lemma we will use the following lemma.
Lemma 2.2. Let S be a simple group. If S is a homomorphic image of a subgroup of $G L(4,2)$, then S is isomorphic to one of the following groups:
$\operatorname{PSL}(2,5), \operatorname{PSL}(2,7), \operatorname{PSL}(2,9), A_{7}$ or A_{8}.
Proof. This may be well known. Here we give a proof. Since $|S|\left||G L(4,2)|=2^{6} \cdot 3^{2} \cdot 5 \cdot 7\right.$, by [3] we have that $S \cong \operatorname{PSL}(2,5), \operatorname{PSL}(2,7), \operatorname{PSL}(2,8)$, $\operatorname{PSL}(2,9), A_{7}, A_{8}$ or $\operatorname{PSL}(3,4)$. But $S \neq \operatorname{PSL}(3,4)$, because $|\operatorname{PSL}(3,4)|=|G L(4,2)|$ and $\operatorname{PSL}(3,4) \neq G L(4,2)$. Let $\mathcal{L}=\{(G, N) \mid G L(4,2) \supseteqq G \triangleright N$ and $G / N \cong P S L(2,8)\}$. We show that $\mathcal{L}=\varnothing$. Suppose that $\mathcal{L} \neq \varnothing$. Let $(G, N$) be an element of \mathcal{L} satisfying $|G| \leqq\left|G^{\prime}\right|$ for any $\left(G^{\prime}, N^{\prime}\right) \in \mathcal{L}$. Since $G \cong G L(4,2) \cong A_{8}$, we may regard G as a permutation group on $\mathscr{X}=\{1,2, \cdots, 8\}$. We decompose \mathfrak{X} into the orbits of $G: \mathscr{X}=\mathscr{X}_{1} \cup \mathscr{X}_{2} \cup \cdots \cup \mathscr{X}_{n}$. And we may assume $\left|\mathscr{X}_{1}\right| \neq 1$. Let a be an element of \mathfrak{X}_{1}. We put $G_{a}=\{g \in G \mid g(a)=a\}$. Then G_{a} is a proper subgroup of G and $1<\left|G: G_{a}\right|=\left|\mathscr{X}_{1}\right| \leqq 8$. If $G / N=G_{a} / G_{a} \cap N$, then $\left(G_{a}, G_{a} \cap N\right) \in \mathcal{L}$. But it is impossible. Therefore $8 \geqq\left|G: G_{a}\right| \geqq\left|G / N: G_{a} / G_{a} \cap N\right|>1$. This shows that $\operatorname{PSL}(2,8)$ has a proper subgroup of index $\leqq 8$. But the minimal index of a proper subgroup of $\operatorname{PSL}(2,8)$ is 9 (see [12] (8.28)). Thus we conclude that $S \neq P S L(2,8)$.

Proof of Lemma 2.1. Step 1. We show first that $G=[G, G]$. Since $G /[G, G]$ is an abelian group, $(D,[G, G],[G, G] \cap N) \in m(S)$. The assumption on (D, G, N) implies $G=[G, G]$.

Step 2. Let P be a Sylow p-subgroup of N for a prime p. We show that P is a normal subgroup of G. Since $N_{G}(P) N=G$, we have $N_{G}(P) / N_{G}(P) \cap N \cong$ $N_{G}(P) N / N=G / N \cong S$. Then $\left(D, N_{G}(P), N_{G}(P) \cap N\right) \in m(S)$, which implies $G=N_{G}(P)$. Thus $P \triangleleft G$.

Step 3. Next we show that N is a 2 -group. Let p be an odd prime and let P be a Sylow p-subgroup of N. If G has a subgroup H of index 2 , then $H / H \cap N \cong S$. This means $(D, H, H \cap N) \in m(S)$, which contradicts the assumption on (D, G, N).

Then it follows from (1.4) that $V_{\boldsymbol{Q}}(P)$ is a division algebra. Since a p-subgroup of a division algebra is cyclic, P is cyclic. On the other hand $C_{G}(P) \triangleleft G$, because $P \triangleleft G$. Since $G / C_{G}(P)$ is isomorphic to a subgroup of the automorphism group of the cyclic group P, we have $\left(D, C_{G}(P), C_{G}(P) \cap N\right) \in m(S)$. Hence $G=C_{G}(P)$, which implies $P \cong Z(G)$. Now let Q be a Sylow p-subgroup of G. Put $R=Q \cap Z\left(N_{G}(Q)\right)$. By (1.2) Q is abelian, and by ([5], (20.12)) there exists a normal subgroup G_{0} of G such that $G / G_{0} \cong R$. Since $G / G_{0} \neq S$, we have $G=G_{0}$, and $R=1$. Hence $P=1$, because $R \supseteqq P$.

Step 4. Finally we show that if $\operatorname{S\not \equiv } \operatorname{PSL}(2,5), \operatorname{PSL}(2,7), \operatorname{PSL}(2,9), A_{7}$ nor A_{8}, then N is a cyclic 2 -group and $N=Z(G)$. If $N=Z(G)$, then $N \cong$ the center of $V_{\boldsymbol{Q}}(G)=$ the center of $M_{2}(D)=$ the center of D. Since any finite multiplicative subgroup of a field is cyclic, N is cyclic. Hence it suffices to show that $N \subseteq Z(G)$ (the converse $N \supseteq Z(G)$ can be easily checked). Let us consider a chain of subgroups of $N, N=N_{s} \supseteq N_{s-1} \supseteq \cdots \supseteq N_{1} \supseteq N_{0}=1$ such that $N_{i} \triangleleft G$ and N_{i} / N_{i-1} is an elementary abelian 2 -group for any $i, 1 \leqq i \leqq s$. By the induction on i we will prove that $N_{i} \subseteq Z(G)$. We assume that $N_{i-1} \cong Z(G)$. By (1.2) N_{i} / N_{i-1} is generated by at most 4 elements. We can regard $\operatorname{Aut}\left(N_{i} / N_{i-1}\right)$ as a subgroup of $G L(4,2)$. By (2.2) and by our assumption on S it is easy to see that $S \cong C_{G}\left(N_{i} / N_{i-1}\right)$ $/ C_{G}\left(N_{i} / N_{i-1}\right) \cap N$. Then we get $G=C_{G}\left(N_{i} / N_{i-1}\right)$. We now put $\left|N_{i-1}\right|=2^{t}$. Let $g \in G$ and $x \in N_{i}$. Since $G=C_{G}\left(N_{i} / N_{i-1}\right), x^{-1} g^{-1} x g \in N_{i-1}$. We set $y=x^{-1} g^{-1} x g$. Then $g^{-2^{t}} x g^{2 t}=x y^{2 t}=x$ because $y \in N_{i-1} \cong Z(G)$ and $\left|N_{i-1}\right|=2^{t}$. Thus we have $g^{2^{2 t} \in C_{G}\left(N_{i}\right) \text { for any } g \in G \text {. This shows that } G / C_{G}\left(N_{i}\right) \text { is a 2-group. Hence } S \cong<~}$ $C_{G}\left(N_{i}\right) / C_{G}\left(N_{i}\right) \cap N$ and $\left(D, C_{G}\left(N_{i}\right), C_{G}\left(N_{i}\right) \cap N\right) \in m(S)$. By the assumption on G we conclude that $G=C_{G}\left(N_{i}\right)$, i. e. $N_{i} \subseteq Z(G)$. The proof of the lemma is completed.

3. Quasisimple group of 2-rank $\leqq 2$.

Let S be a simple group. In this section we assume that $m(S) \neq \varnothing$ and $S \neq P S L(2,5), \operatorname{PSL}(2,7), \operatorname{PSL}(2,9), A_{7}$ nor A_{8}. By (2.1) there exists an element (D, G, N) in $m(S)$ such that $G=[G, G], N=Z(G)$ and N is a cyclic 2-group. Therefore $O(G)$ (the largest normal subgroup of G of odd order) $=1$ and G is a quasisimple group (i.e. $G=[G, G]$ and $G / Z(G)$ is simple) of 2 -rank $\leqq 2$ (cf. (1.2)). These groups G have been studied by Alperin, Brauer, Gorenstein and Harada.

We recall their theorems.
(3.1) (Alperin-Brauer-Gorenstein [1]). If S is a finite simple group of 2-rank 2, then one of the following holds:
(1) S has dihedral Sylow 2-subgroups, and $S \cong \operatorname{PSL}(2, q), q$ odd, or A_{7};
(2) S has quasi-dihedral Sylow 2-subgroups, and $S \cong P S L(3, q), q \equiv-1(\bmod 4)$, $\operatorname{PSU}\left(3, q^{2}\right), q \equiv 1(\bmod 4)$, or M_{11};
(3) S has wreathed Sylow 2-subgroups, and $S \cong \operatorname{PSL}(3, q), q \equiv 1(\bmod 4)$ or $\operatorname{PSU}\left(3, q^{2}\right), q \equiv-1(\bmod 4)$; or
(4) $S \cong P S U\left(3,4^{2}\right)$.
(3.2) (Gorenstein-Harada [7]). If G is a quasisimple group of 2 -rank 2 with $O(G)=1$, then either G is simple or G is isomorphic to $\operatorname{Sp}(4, q), q$ odd.

In the case where 2 -rank of G is 1 , it is known that a Sylow 2 -subgroup P of G is cyclic or generalized quaternion. Since $S \cong G / N$ is simple, P / N is dihedral. Then by (3.1) $S \cong \operatorname{PSL}(2, q), q$ odd. In the case where 2 -rank of G is 2 , by (3.2), and by (3.1), $G \cong \operatorname{PSL}(2, q), \operatorname{PSL}(3, q), \operatorname{PSU}\left(3, q^{2}\right), q$ odd, $M_{11}, \operatorname{PSU}\left(3,4^{2}\right)$ or $S p(4, q), q$ odd. If q is a power of an odd prime p, the Sylow p-subgroups of $\operatorname{PSL}(3, q), \operatorname{PSU}\left(3, q^{2}\right)$ and $S p(4, q)$ are not abelian. Therefore by (1.2) $G \not \equiv \operatorname{PSL}(3, q)$, $\operatorname{PSU}\left(3, q^{2}\right)$ nor $S p(4, q)$. Hence we have

Proposition 3.3. Let S be a simple group. Assume that $m(S) \neq \varnothing$. Then we have
(1) $\operatorname{S\cong } \cong \operatorname{PSL}(2, q), q$ odd, $\operatorname{PSU}\left(3,4^{2}\right), A_{7}, A_{8}$ or M_{11}.
(2) If $S \cong \operatorname{PSU}\left(3,4^{2}\right)$ or M_{11}, then there exists a division algebra D such that $(D, S, 1) \in m(S)$ and $V_{Q}(S)=M_{2}(D)$.

4. Proof of theorem.

Let χ be an irreducible character of a finite group G. By $m(\chi)$ we denote the Schur index of χ over \boldsymbol{Q}.

Lemma 4.1. Let G be a finite group. Then the following conditions are equivalent:
(1) There exist a division algebra D and a normal subgroup N of G such that $G / N \cong M_{2}(D)$ and $V_{\boldsymbol{Q}}(G / N)=M_{2}(D)$.
(2) There exists an irreducible character χ of G satisfying $\chi(1)=2 m(\chi)$.

Proof. Let $M_{n}(D)$ be a simple component of $\boldsymbol{Q} G$ and let χ be an irreducible character of G corresponding to $M_{n}(D)$. Then $\chi(1)=n m(\chi)$. From this relation we can easily see that the conditions (1) and (2) are equivalent.

The character table of $S L(2, q), q$ odd, is well known (see [4], §38), and the Schur indices of $S L(2, q)$ have been determined in Janusz [13].

We use the same notation as in Dornhoff [4], § 38.
(4.2) ([13]). The degrees and the Schur indices of the irreducible character of $S L(2, q), q$ odd, are as follows;
(1) $1(1)=1, \quad m(1)=1$,
(2) $\psi(1)=q, \quad m(\psi)=1$,
(3) $\chi_{i}(1)=q+1, \quad m\left(\chi_{i}\right)=1$ if i is even, $m\left(\chi_{i}\right)=2$ if i is odd,
(4) $\theta_{j}(1)=q-1, \quad m\left(\theta_{j}\right)=1$ if j is even, $m\left(\theta_{j}\right)=2$ if j is odd,
(5) $\quad \xi_{k}(1)=(q+1) / 2, \quad m\left(\xi_{k}\right)=1$,
(6) $\quad \eta_{k}(1)=(q-1) / 2, \quad m\left(\eta_{k}\right)=1$ if $q \equiv-1(\bmod 4)$,

$$
m\left(\eta_{k}\right)=2 \text { if } q \equiv 1(\bmod 4),
$$

where $1 \leqq i \leqq(q-3) / 2,1 \leqq j \leqq(q-1) / 2,1 \leqq k \leqq 2$.
By (4.2) we can easily find all irreducible characters of $S L(2, q)$ satisfying $\chi(1)=2 m(\chi)$.

Corollary 4.3. Let χ be an irreducible character of $\operatorname{SL}(2, q), q$ odd, satisfying $\chi(1)=2 m(\chi)$. Then χ is one of the following;
(1) $\chi=\xi_{k}$ and $q=3,1 \leqq k \leqq 2$,
(2) $\chi=\theta_{1}$ and $q=5$,
(3) $\chi=\eta_{k}$ and $q=9,1 \leqq k \leqq 2$.

Proposition 4.4. If $m(\operatorname{PSL}(2, q)) \neq \varnothing, q$ odd, then $q=5,7$ or 9 .
Proof. We assume $m(P S L(2, q)) \neq \varnothing$ and $q \neq 5,7$ nor 9. Let (D, G, N) be an element of $m(P S L(2, q))$. By (2.1) we may assume that $V_{\boldsymbol{Q}}(G)=M_{2}(D)$ and G is a central extension of $\operatorname{PSL}(2, q)$ with $G=[G, G]$. It is well known that there exists an epimorphism from $S L(2, q)$ onto G. (See [12] (25.7).) Therefore $V_{\boldsymbol{Q}}(G)=M_{2}(D)$ is a simple component of $\boldsymbol{Q}[S L(2, q)]$. By (4.1) and (4.3) $q=5$ or 9 (cf. $\operatorname{PSL}(2,3)$ is not simple), which is a contradiction.

Lemma 4.5. Let H be a non-abelian group of order 21 . Let ε_{n} be a primitive n-th root of unity. Then

$$
\boldsymbol{Q} H \cong \boldsymbol{Q} \oplus \boldsymbol{Q}\left(\varepsilon_{3}\right) \oplus M_{3}\left(\boldsymbol{Q}\left(\varepsilon_{7}+\varepsilon_{7}^{2}+\varepsilon_{7}^{4}\right)\right) .
$$

In particular H is not a subgroup of $M_{2}(D)$ for any division algebra D.
Proof. We put $H=\left\langle a, b \mid a^{7}=1, b^{3}=1, b a b^{-1}=a^{2}\right\rangle$. Let σ be the automorphism of $\boldsymbol{Q}\left(\varepsilon_{7}\right)$ over \boldsymbol{Q} defined by $\boldsymbol{\sigma}\left(\varepsilon_{7}\right)=\varepsilon_{7}^{2}$. Since there exists an epimorphism from $\boldsymbol{Q H}$ to the cyclic algebra $\left(\boldsymbol{Q}\left(\varepsilon_{7}\right), \sigma, 1\right)$ determined by the mapping $a \rightarrow \varepsilon_{7}$ and $b \rightarrow \sigma$, we have

$$
\begin{aligned}
\boldsymbol{Q} H & \cong \boldsymbol{Q} \oplus \boldsymbol{Q}\left(\varepsilon_{3}\right) \oplus\left(\boldsymbol{Q}\left(\varepsilon_{7}\right), \boldsymbol{\sigma}, 1\right) \\
& \cong \boldsymbol{Q} \oplus \boldsymbol{Q}\left(\varepsilon_{3}\right) \oplus M_{3}\left(\boldsymbol{Q}\left(\varepsilon_{7}+\varepsilon_{7}^{2}+\varepsilon_{7}^{4}\right)\right) .
\end{aligned}
$$

Now we prove the theorem.
Theorem. Let S be a simple group. Then
(1) $m(S) \neq \varnothing$ if and only if $S \cong \operatorname{PSL}(2,5)$ or $\operatorname{PSL}(2,9)$.
(2) If $(D, G, N) \in m(S)$, then $N \neq 1$.

Proof. We assume that $m(S) \neq \varnothing$. It follows from (3.3) and (4.4) that $S \cong$ $\operatorname{PSL}(2,5), \operatorname{PSL}(2,7), \operatorname{PSL}(2,9), \operatorname{PSU}\left(3,4^{2}\right), A_{7}, A_{8}$ or M_{11}. First we suppose that $S \cong \operatorname{PSL}(2,7), A_{7}$ or A_{8}. Let $(D, G, N) \in m(S)$. By (2.1) we may assume that N is a 2 -group. It is easily checked that S contains a non-abelian group of order 21. Thus G contains a non-abelian group of order 21 , which contradicts (4.5). Therefore $m(\operatorname{PSL}(2,7))=m\left(A_{7}\right)=m\left(A_{8}\right)=\varnothing$. Since $\operatorname{PSL}(2,11)$ is isomorphic to a subgroup of M_{11} (see [6]) and $m(\operatorname{PSL}(2,11))=\varnothing$ by (4.4), we obtain $m\left(M_{11}\right)=\varnothing$.

Finally we assume that $m\left(P S U\left(3,4^{2}\right)\right) \neq \varnothing$. By (3.3) we can find a division algebra D such that $\left(D, \operatorname{PSU}\left(3,4^{2}\right), 1\right) \in m\left(\operatorname{PSU}\left(3,4^{2}\right)\right)$ and $V_{\boldsymbol{Q}}\left(\operatorname{PSU}\left(3,4^{2}\right)\right)=M_{2}(D)$. Let χ be an irreducible character of $\operatorname{PSU}\left(3,4^{2}\right)$ corresponding to $M_{2}(D)$. Then, as shown by Gow [8], $m(\chi)=1$ except only one character χ of degree 12 with $m(\chi)=2$. By (4.1) we have $m(\chi)=1$, and D is an algebraic number field. Hence $\operatorname{PSU}\left(3,4^{2}\right)$ is a subgroup of $G L(2, \boldsymbol{C})$, but it is impossible (see [4] (26.1)). Therefore $m\left(P S U\left(3,4^{2}\right)\right)=\varnothing$. Thus we find that if $m(S) \neq \varnothing$, then $S \cong P S L(2,5)$ or $\operatorname{PSL}(2,9)$.

The assertion (2) and the converse of (1) follow directly from (4.3).

References

[1] J.L. Alperin, R. Brauer and D. Gorenstein, Finite simple groups of 2-rank two, Scripta Math., 29 (1973), 191-214.
[2] S. Amitsur, Finite subgroups of division rings, Trans. Amer. Math. Soc., 80 (1955), 361-386.
[3] C. Cato, The orders of the known simple groups as far as one trillion, Math. Comp., 31 (1977), 574-577.
[4] L. Dornhoff, Group representation theory, Part A, Marcel Dekker, New York, 1971.
[5] W. Feit, Characters of finite groups, Benjamin, New York, 1967.
[6] D. Garbe and J.L. Mennicke, Some remarks on the Mathieu groups, Canad. Math. Bull., 7 (1964), 201-212.
[7] D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Mem. Amer. Math. Soc., 147, 1974.
[8] R. Gow, Schur indices of some groups of Lie type, J. Algebra, 42 (1976), 102-120.
[9] R. Griess, Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc., 183 (1973), 355-421.
[10] M. Hikari, Multiplicative p-subgroups of simple algebras, Osaka J. Math., 10 (1973), 369-374.
[11] M. Hikari, On finite multiplicative subgroups of simple algebras of degree 2, J. Math. Soc. Japan, 28 (1976), 737-748.
[12] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1976.
[13] G. J. Janusz, Simple components of $\boldsymbol{Q}[S L(2, q)]$, Comm. Algebra, 1 (1974), 1-22.
[14] A. R. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, Iand their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc., 150 (1970), 345-408.
[15] R. Steinberg, Lectures on Chevalley groups, Yale University Notes, New Haven, Conn., 1967.

Michitaka Hikari
Department of Mathematics
Keio University
Hiyoshi 4-1-1, Yokohama 223
Japan

