J. Math. Soc. Japan Vol. 35, No. 3, 1983

## The mapping cone method and the Hattori-Villamayor-Zelinsky sequences

By Mitsuhiro TAKEUCHI

(Received April 27, 1982)

The mapping cone method, which is originally due to MacLane [8], is fully developed in Hattori [4]. Let U be the multiplicative group and let Pic be the Picard group functor. Assume we have an exact sequence of abelian group functors on commutative rings:

(1) 
$$0 \longrightarrow U \longrightarrow A \xrightarrow{f} B \longrightarrow \operatorname{Pic} \longrightarrow 0$$
.

(Amitsur case). Let S/R be an extension of commutative rings, and let  $S^n = S \bigotimes_R \cdots \bigotimes_R S$  (*n* terms) for  $n=1, 2, \cdots$ . Applying (1) to the Amitsur semi-simplicial complex

$$S \Longrightarrow S^2 \Longrightarrow S^3 \Longrightarrow \cdots$$

we get an exact sequence of complexes

(2) 
$$0 \longrightarrow U(S^{\cdot}) \longrightarrow A(S^{\cdot}) \xrightarrow{f} B(S^{\cdot}) \longrightarrow \operatorname{Pic}(S^{\cdot}) \longrightarrow 0$$

which yields, in view of [4, Theorem 1.3], a long exact sequence

(3) 
$$\cdots \longrightarrow H^n(S/R, U) \longrightarrow H^n(M(f)) \longrightarrow H^{n-1}(S/R, \operatorname{Pic}) \longrightarrow H^{n+1}(S/R, U) \longrightarrow \cdots$$

where M(f) is the mapping cone of (2) (with degree lowered by one) and H'(S/R, -) means the Amitsur cohomology.

(Galois case). Let G be a group acting as automorphisms of a commutative ring R. (1) gives an exact sequence of G-modules

(4) 
$$0 \longrightarrow U(R) \longrightarrow A(R) \xrightarrow{f} B(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0$$
.

Applying [4, Proposition 2.1] to (4), we get a long exact sequence

(5) 
$$\cdots \longrightarrow H^n(G, U(R)) \longrightarrow H^n(G, f) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots$$

where  $H^{\cdot}(G, U(R))$  and  $H^{\cdot}(G, Pic(R))$  are the Galois cohomology groups.

This research was partially supported by NSF Grant MCS 77-18723 A04 and Grant-in-Aids for Scientific Research (No. 56540006 and 57540006) of Ministry of Education.

 $(H^n(G, f)$  here means  $H^{n-1}(G, f)$  of [4].)

On the other hand, we have the Amitsur Pic-U sequence [12], [3]

(6) 
$$\cdots \longrightarrow H^n(S/R, U) \longrightarrow H^n(J) \longrightarrow H^{n-1}(S/R, \operatorname{Pic}) \longrightarrow H^{n+1}(S/R, U) \longrightarrow \cdots$$

in the Amitsur case, and the Galois Pic-U sequence [2]

(7)  $\cdots \longrightarrow H^n(G, U(R)) \longrightarrow H^n(R, G) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots$ 

in the Galois case. The above sequences are generalizations of the Chase-Rosenberg seven term exact sequences.

The purpose of this paper is to show that there is an exact sequence (1) such that there are isomorphisms of sequences

(3) 
$$\cdots \longrightarrow H^{n}(S/R, U) \longrightarrow H^{n}(M(f)) \longrightarrow H^{n-1}(S/R, \operatorname{Pic}) \longrightarrow H^{n+1}(S/R, U) \longrightarrow \cdots$$
  

$$\left\| \begin{array}{c} \langle \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right\|$$
(6)  $\cdots \longrightarrow H^{n}(S/R, U) \longrightarrow H^{n}(J) \longrightarrow H^{n-1}(S/R, \operatorname{Pic}) \longrightarrow H^{n+1}(S/R, U) \longrightarrow \cdots$ 

for any ring extension S/R, and

(5) 
$$\cdots \longrightarrow H^{n}(G, U(R)) \longrightarrow H^{n}(G, f) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots$$
  

$$\left\| \begin{array}{cccc} & & \\ & & \\ & & \\ \end{array} \right\| \\ (7) & \cdots \longrightarrow H^{n}(G, U(R)) \longrightarrow H^{n}(R, G) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots$$

for any pair (G, R) with group G acting on ring R.

Similar results are proved by Hattori [4, 5] in some arithmetic cases, and used to give many applications in algebraic number theory. Our method is based on the coherence theorem in categories with abelian group structure due to Ulbrich [11]. The article was prepared while K.-H. Ulbrich visited Princeton in March, 1981. I am grateful to him for many useful comments.

## §1. Construction.

Fix an infinite set  $\Omega$ . For a commutative ring R, let  $R\Omega$  be the free R-module with basis  $\Omega$ . Let  $I_R$  be the set of all direct summand R-submodules  $M \subset R\Omega$  which are invertible, i.e., projective of rank one. Let  $\mathfrak{Pic}(R)$  be the category of all invertible R-modules and isomorphisms.

1.1. DEFINITION. A group-like set is a quadruple (G, +, -, 0) where G is a set,  $0 \in G$ , and

 $+: G \times G \longrightarrow G, \quad -: G \longrightarrow G$ 

are maps.

Homomorphisms of group-like sets are defined in an obvious manner. For each set I, there is a group-like set F(I) containing I such that for any group-

like set G, any map  $I \rightarrow G$  extends uniquely to a homomorphism  $F(I) \rightarrow G$ . F(I) is called the *free* group-like set on I.

For a commutative ring R,  $\mathcal{P}ic(R)$  has an abelian group structure [10]. We denote the structure functors by

$$+: \mathfrak{Pic}(R) \times \mathfrak{Pic}(R) \longrightarrow \mathfrak{Pic}(R)$$
$$-: \mathfrak{Pic}(R) \longrightarrow \mathfrak{Pic}(R)$$

where  $M+N=M\otimes_{\mathbb{R}}N$  and  $-M=\operatorname{Hom}_{\mathbb{R}}(M, \mathbb{R})$ . Thus  $Ob(\mathfrak{Pic}(\mathbb{R}))$  is a group-like class with  $\mathbb{R}$  as 0. Let

$$\varepsilon: F(I_R) \longrightarrow \operatorname{Ob}(\operatorname{Pic}(R))$$

be the homomorphism where  $\varepsilon | I_R$  is the inclusion. We will use map  $\varepsilon$  to define a new category  $\overline{\mathcal{Pic}}(R)$ .

Take  $F(I_R)$  as the set of objects in  $\overline{\mathcal{Pic}}(R)$ . For u, v in  $F(I_R)$ , let

$$\overline{\mathcal{Pic}}(R)(u, v) = \mathcal{Pic}(R)(\varepsilon(u), \varepsilon(v)).$$

With composite obviously defined, we have a small category  $\overline{\mathcal{Pic}}(R)$  together with an equivalence functor

$$\varepsilon: \overline{\mathcal{Pic}}(R) \longrightarrow \mathcal{Pic}(R)$$

where  $\varepsilon(f) = f$  for any morphism f in  $\overline{\mathcal{Pic}}(R)$ .

 $\overline{\mathcal{Pic}}(R)$  inherits an abelian group structure from  $\mathcal{Pic}(R)$  as follows: If  $f: u \rightarrow v$  and  $g: u' \rightarrow v'$  are maps in  $\overline{\mathcal{Pic}}(R)$ , define  $f+g: u+u' \rightarrow v+v'$  and  $-f: -u \rightarrow -v$  by the rule  $\varepsilon(f+g) = \varepsilon(f) + \varepsilon(g)$  and  $\varepsilon(-f) = -\varepsilon(f)$ . This gives rise to functors  $+: \overline{\mathcal{Pic}}(R) \times \overline{\mathcal{Pic}}(R) \rightarrow \overline{\mathcal{Pic}}(R)$  and  $-: \overline{\mathcal{Pic}}(R) \rightarrow \overline{\mathcal{Pic}}(R)$ . For  $u, v, w \in F(I_R)$ , the natural isomorphisms

$$a_{u.v.w}: (u+v)+w \longrightarrow u+(v+w),$$

$$c_{u,v}: u+v \longrightarrow v+u,$$

$$e_{u}: u+0 \longrightarrow u,$$

$$i_{u}: u+(-u) \longrightarrow 0$$

are defined by  $\varepsilon(a_{u,v,w}) = a_{\varepsilon(u),\varepsilon(v),\varepsilon(w)}$ ,  $\varepsilon(c_{u,v}) = c_{\varepsilon(u),\varepsilon(v)}$ , etc., by using the corresponding natural isomorphisms  $a_{P,Q,N}$ ,  $c_{P,Q}$ , etc. in  $\mathfrak{Pic}(R)$ . This gives  $\overline{\mathfrak{Pic}}(R)$  an abelian group structure, and  $\varepsilon: \overline{\mathfrak{Pic}}(R) \to \mathfrak{Pic}(R)$  becomes a homomorphism [10] whose structure natural transformations are identities. Such a homomorphism is called *strict*.

1.2. DEFINITION. Let  $\overline{\mathcal{P}\iota c}(R)^{\text{red}}$  be the smallest subcategory of  $\overline{\mathcal{P}\iota c}(R)$  such that  $Ob(\overline{\mathcal{P}\iota c}(R)^{\text{red}})=Ob(\overline{\mathcal{P}\iota c}(R))$  and  $Mor(\overline{\mathcal{P}\iota c}(R)^{\text{red}})$  is closed under + and - containing  $a_{u,v,w}$ ,  $c_{u,v}$ ,  $e_{u}$ ,  $i_{u}$  together with their inverses for all  $u, v, w \in F(I_{R})$ .

Morphisms in  $\overline{\mathcal{Pic}}(R)^{red}$  are called *reduced*.

The following is a special case of the coherence theorem due to Ulbrich [11]. For a simpler proof, see Laplaza [6]. Ulbrich also has an improved proof (oral communication). Different approaches to coherence are found in [1, pp. 246-247], [12, § 3].

1.3. THEOREM. For any  $u, v \in F(I_R)$ , there is one reduced morphism  $u \rightarrow v$  at most.

We are now ready to define the sequence of abelian groups

(1.4) 
$$0 \longrightarrow U(R) \xrightarrow{i_R} A(R) \xrightarrow{f_R} B(R) \xrightarrow{\pi_R} \operatorname{Pic}(R) \longrightarrow 0$$

for any commutative ring R.

Let  $B(R) = \mathbb{Z}I_R$  be the free abelian group on  $I_R$  and let  $\pi_R$  be the canonic projection. We may view B(R) as the quotient set of  $F(I_R)$  by the equivalence relation:  $u \sim v$  if there is a reduced morphism  $u \rightarrow v$ . We denote by

$$u \longmapsto [u], \quad F(I_R) \longrightarrow B(R)$$

the canonical surjection.

Let A(R) be the quotient set of the set  $\Lambda(R)$  of all pairs (u, a) with  $u \in F(I_R)$ and  $a: u \to 0$  in  $\overline{\mathcal{Puc}}(R)$  by the equivalence relation:  $(u, a) \sim (v, b)$  if there is a reduced morphism  $c: u \to v$  such that  $a = b \circ c$ . Let [u, a] denote the equivalence class of (u, a). We make A(R) into an abelian group. For (u, a), (v, b) in  $\Lambda(R)$ , let

$$(u, a) + (v, b) = (u+v, \zeta \circ (a+b))$$

where  $\zeta: 0+0 \rightarrow 0$  is the reduced map. If  $(u, a) \sim (u', a')$  and  $(v, b) \sim (v', b')$ , then  $(u, a)+(v, b) \sim (u', a')+(v', b')$ . Hence addition on A(R)

$$[u, a]+[v, b]=$$
class of  $(u, a)+(v, b)$ 

is well-defined. It follows easily by the definition of  $\overline{\mathcal{Fic}}(R)^{\text{red}}$  that A(R) becomes an abelian group. The unit is [0, id].

We will define homomorphisms  $f_R$  and  $i_R$ . For [u, a] in A(R), and r in U(R), we put

$$f_{R}[u, a] = [u], \quad i_{R}(r) = [0, r]$$

where we use the usual identification

$$\overline{\mathcal{Pic}}(R)(0, 0) = \mathcal{Pic}(R)(0, 0) = U(R)$$
.

Maps  $f_R$  and  $i_R$  are well-defined, and seen to be homomorphisms.

It is easy to show that (1.4) is exact.

Next, we make A and B into group functors on commutative rings so that  $i_R$ ,  $f_R$ ,  $\pi_R$  are natural in R.

Let  $\phi: R \rightarrow S$  be a homomorphism of commutative rings. Extend it to the semilinear map

$$\phi: R\Omega \longrightarrow S\Omega$$

which is the identity on  $\Omega$ . If  $M \in I_R$ , then  $S \cdot \phi(M) \in I_S$  since  $S \otimes_R M \simeq S \cdot \phi(M)$ . Put

$$\bar{\phi}: M \longmapsto S \cdot \phi(M) , \qquad I_R \longrightarrow I_S$$

and extend it to the homomorphism of group-like sets

$$\bar{\phi}: F(I_R) \longrightarrow F(I_S).$$

We have a homomorphism [10, p. 137]

$$\ddot{\phi}: M \longmapsto S \otimes_R M, \qquad \mathcal{Pic}(R) \longrightarrow \mathcal{Pic}(S).$$

Let

$$\begin{split} &\alpha_{P,Q} : \ddot{\phi}(P+Q) \longrightarrow \ddot{\phi}(P) + \ddot{\phi}(Q) , \\ &\beta_{P} : \ddot{\phi}(-P) \longrightarrow - \ddot{\phi}(P) , \\ &\gamma : \ddot{\phi}(0_{R}) \longrightarrow 0_{S} \quad \text{(where } 0_{R} = R, \ 0_{S} = S) \end{split}$$

denote the structure of  $\vec{\phi}$ , for P, Q in  $\mathfrak{Pic}(R)$ . We define a map in  $\overline{\mathfrak{Pic}}(S)$ 

$$\xi_u : \ddot{\phi}(\varepsilon(u)) \longrightarrow \varepsilon(\bar{\phi}(u))$$

for  $u \in F(I_R)$  as follows:

- i)  $\xi_{u+v} = (\xi_u + \xi_v) \circ \alpha_{\varepsilon(u), \varepsilon(v)},$
- ii)  $\xi_{-u} = (-\xi_u) \circ \beta_{\varepsilon(u)},$
- iii)  $\xi_0 = \gamma$ ,
- iv)  $\xi_M : S \otimes_R M(= \ddot{\phi}(M)) \longrightarrow S \cdot \phi(M)(= \bar{\phi}(M))$  is the canonical isomorphism if  $M \in I_R$ .

Since  $F(I_R)$  is the free group-like set on  $I_R$ , there is a unique family of maps  $\{\xi_u\}_{u\in F(I_R)}$  satisfying i)~iv).

1.5. LEMMA. We can make  $\overline{\phi}: F(I_R) \rightarrow F(I_S)$  into a functor  $\overline{\phi}: \overline{\operatorname{Fic}}(R) \rightarrow \overline{\operatorname{Fic}}(S)$  in such a way that

$$\xi: \ddot{\phi} \varepsilon \longrightarrow \varepsilon \bar{\phi}$$

becomes a natural isomorphism. Then the functor  $\overline{\phi}$  becomes a strict homomorphism, and  $\xi$  is an isomorphism of homomorphisms. In particular,  $\overline{\phi}$  preserves reduced maps.

**PROOF.** Let  $g: u \to v$  be a map in  $\mathfrak{Pic}(R)$ . Since  $\varepsilon$  is an equivalence, there is a unique map  $g': \overline{\phi}(u) \to \overline{\phi}(v)$  such that  $\varepsilon(g') \circ \xi_u = \xi_v \circ \overline{\phi}(\varepsilon(g))$ . We put  $g' = \overline{\phi}(g)$ . Then  $\overline{\phi}$  becomes a functor  $\overline{\mathfrak{Pic}}(R) \to \overline{\mathfrak{Pic}}(S)$ . Now conditions i)-iii) mean that  $\xi$ is already an isomorphism of homomorphisms if we take the identities as the structure of  $\varepsilon \overline{\phi}$ . It follows from  $\overline{\phi}\varepsilon$  being a homomorphism that  $\varepsilon \overline{\phi}$  is indeed a homomorphism with identities as the structure. Thus  $\epsilon \bar{\phi}$  is a strict homomorphism. Since  $\epsilon$  is an equivalence, so is  $\bar{\phi}$ . Q.E.D.

We will define maps  $A(\phi)$  and  $B(\phi)$  to make the next commutative diagram

$$(1.6) \qquad \begin{array}{c} 0 \longrightarrow U(R) \longrightarrow A(R) \longrightarrow B(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0 \\ & \downarrow U(\phi) \qquad \downarrow A(\phi) \qquad \downarrow B(\phi) \qquad \downarrow \operatorname{Pic}(\phi) \\ 0 \longrightarrow U(S) \longrightarrow A(S) \longrightarrow B(S) \longrightarrow \operatorname{Pic}(S) \longrightarrow 0 \end{array}$$

where both rows are (1.4).

It follows from Lemma 1.5 that the functor  $\overline{\phi}:\overline{\mathcal{Pic}}(R)\to\overline{\mathcal{Pic}}(S)$  preserves reduced maps. Hence  $u\sim v$  implies  $\overline{\phi}(u)\sim\overline{\phi}(v)$  for  $u, v\in F(I_R)$ , and  $(u, a)\sim(v, b)$ implies  $(\overline{\phi}(u), \overline{\phi}(a))\sim(\overline{\phi}(v), \overline{\phi}(b))$  for (u, a), (v, b) in  $\Lambda(R)$ . Hence the maps

$$B(\phi)[u] = [\bar{\phi}(u)], \qquad A(\phi)[u, a] = [\bar{\phi}(u), \bar{\phi}(a)]$$

are well-defined, and seen to be homomorphisms to make diagram (1.6) commute.

Let  $\psi: S \rightarrow T$  be another homomorphism of commutative rings. It is easy to see

$$\bar{\psi} \circ \bar{\phi} = \overline{\psi} \phi$$

as functors:  $\overline{\mathcal{Dic}}(R) \to \overline{\mathcal{Dic}}(T)$ , (while  $\ddot{\psi} \circ \ddot{\phi}$  is different from  $\psi \ddot{\phi}$ ). It follows that  $A(\psi \circ \phi) = A(\phi) \circ A(\phi)$  and  $B(\psi \circ \phi) = B(\phi) \circ B(\phi)$ .

If 1:  $R \to R$  denote the identity, then  $\overline{1}: \overline{\mathcal{Pic}}(R) \to \overline{\mathcal{Pic}}(R)$  is the identity. Hence A(1) and B(1) are identities.

Thus we get an exact sequence of abelian group functors on commutative rings

(1.7) 
$$0 \longrightarrow U \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{\pi} \operatorname{Pic} \longrightarrow 0.$$

## §2. Identification.

We will identify the Amitsur or Galois mapping cone sequence obtained from (1.7) with the Amitsur or Galois Pic-U sequence.

Let

$$\begin{aligned} X: & \cdots \longrightarrow X_n \longrightarrow X_{n+1} \longrightarrow \cdots, \\ Y: & \cdots \longrightarrow Y_n \longrightarrow Y_{n+1} \longrightarrow \cdots \end{aligned}$$

be complexes of abelian groups.

A diagram of abelian groups



(2.1)

where complexes X and Y appear as two rows, is called a V-Z system [12, p. 37] if the following conditions are fulfilled.

(a) The composite along each diagonal is zero:

$$Y_{n-2} \longrightarrow J_n \longrightarrow X_{n+1}$$

- (b) The parallelograms (I) anticommute.
- (c) The triangles (II), (III) commute.
- (d) The five term, crank-shaped sequences are exact:

$$X_{n-1} \longrightarrow X_n \longrightarrow J_n \longrightarrow Y_{n-1} \longrightarrow Y_n$$
.

We can associate a long exact sequence

$$(2.2) \qquad \cdots \longrightarrow H^n(X) \longrightarrow H^n(J) \longrightarrow H^{n-1}(Y) \longrightarrow H^{n+1}(X) \longrightarrow \cdots$$

with each V-Z system (2.1) [12, p. 39].  $H^n(J)$  means Ker $(J_n \to X_{n+1})/\text{Im}(Y_{n-2} \to J_n)$ .  $H^n(X) \to H^n(J) \to H^{n-1}(Y)$  are induced from  $X_n \to J_n \to Y_{n-1}$ . If  $y \in \text{Ker}(Y_{n-1} \to Y_n)$ , y comes from some  $z \in J_n$ . Let  $x \in X_{n+1}$  be the image of z by  $J_n \to X_{n+1}$ . Then  $H^{n-1}(Y) \to H^{n+1}(X)$  is induced by (class of y)  $\mapsto$  (class of x).

Isomorphisms between two V-Z systems are defined obviously. Isomorphic V-Z systems have isomorphic sequences.

Let

$$(2.3) 0 \longrightarrow X \longrightarrow C \xrightarrow{f} D \longrightarrow Y \longrightarrow 0$$

be an exact sequence of complexes. We can associate to it some V-Z system containing X and Y as two rows. The sequence (2.3) contains square diagrams

$$\begin{array}{ccc} C_{n-1} & \longrightarrow & D_{n-1} \\ \partial \downarrow & & & \downarrow \partial \\ C_n & \longrightarrow & D_n \end{array}$$

with coboundary operator  $\partial$ . Let  $J_n$  be the *center* of the square, i.e.,

$$J_n = (C_n \times_{D_n} D_{n-1}) / \operatorname{Im} (C_{n-1} \longrightarrow C_n \times_{D_n} D_{n-1}).$$

We denote by  $[c, d] \in J_n$  the image of element (c, d) in the fiber product, and by  $\overline{d} \in Y_n$  the image of  $d \in D_n$ . With well-defined maps

M. TAKEUCHI

$$\begin{split} X_n &\longrightarrow J_n, \qquad x \longmapsto [x, 0], \\ J_n &\longrightarrow Y_{n-1}, \qquad [c, d] \longmapsto \bar{d}, \\ J_n &\longrightarrow X_{n+1}, \qquad [c, d] \longmapsto \partial(c), \\ Y_{n-1} &\longrightarrow J_{n+1}, \qquad \bar{d} \longmapsto [0, \partial(d)] \end{split}$$

we have a V-Z system as is easily checked.

Next we review complexes of categories introduced in [10].

2.4. DEFINITION. A sequence of homomorphisms of categories with abelian group structure

$$\cdots \longrightarrow \mathcal{C}_n \xrightarrow{\partial} \mathcal{C}_{n+1} \longrightarrow \cdots$$

together with isomorphisms of homomorphisms

$$\chi:\partial^2 \longrightarrow 0$$

where  $0: C_n \rightarrow C_{n+2}$  denotes the constant homomorphism, is called a *coherent complex of categories* if

$$\chi \partial: \partial^3 \xrightarrow{\partial \chi} \partial 0 \xrightarrow{\text{cano}} 0.$$

Strictly speaking, some coherence conditions for  $C_n$  as asserted in [10, Lemma 1.2] are necessary to assume. But they are fulfilled for  $\mathfrak{Pic}(R)$  or their direct products. Coherent complexes of categories are special cases of  $\nabla$ -systems of [9].

In [10], Ulbrich constructs a V-Z system



with each coherent complex of categories  $\{\mathcal{C}_n, \partial\}$ , where maps are defined:

 $P^n \longrightarrow F_{n+2}$  [10, Proposition 2.5],  $C_{n-1} \longrightarrow P^{n+1}$  [10,  $\uparrow$  1, p. 133],

$$P^{n+1} \longrightarrow C_n$$
 [10, (19), p. 134],  $F_n \longrightarrow P^n$  [10, (21), p. 134]

(We lower the dimension of P.  $P^n$  here means  $P^{n-1}$  in [10].)

He defines two coherent complexes of categories corresponding to the Amitsur and the Galois cases:

(2.6) 
$$\mathscr{D}ic(S) \xrightarrow{\partial} \mathscr{D}ic(S^2) \longrightarrow \cdots \longrightarrow \mathscr{D}ic(S^n) \xrightarrow{\partial} \mathscr{D}ic(S^{n+1}) \longrightarrow \cdots$$

for a commutative ring extension S/R [10, (32), p. 137] and

$$(2.7) \qquad \mathcal{L}ic(R) \xrightarrow{\partial} (G, \mathcal{L}ic(R)) \longrightarrow \cdots \longrightarrow (G^{n-1}, \mathcal{L}ic(R)) \xrightarrow{\partial} (G^n, \mathcal{L}ic(R)) \longrightarrow \cdots$$

for a group G acting on a commutative ring R [10, (31), p. 137]. In (2.6),  $\mathfrak{Pic}(S^n)$  is of degree n-1. In (2.7),  $(G^n, \mathfrak{Pic}(R))$  means the direct product of  $\mathfrak{Pic}(R)$  indexed by  $G^n$ . He shows that the V-Z system (2.5) associated with complex (2.6) (respectively (2.7)) has the Amitsur Pic-U sequence [12], [3]

$$(2.8) \quad \cdots \longrightarrow H^n(S/R, U) \longrightarrow H^n(J) \longrightarrow H^{n-1}(S/R, \operatorname{Pic}) \longrightarrow H^{n+1}(S/R, U) \longrightarrow \cdots$$

(respectively the Galois Pic-U sequence [2]

$$(2.9) \quad \cdots \longrightarrow H^n(G, U(R)) \longrightarrow H^n(R, G) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots).$$

2.10. THEOREM. (a) Let S/R be a commutative ring extension. Let

$$(2.11) 0 \longrightarrow U(S^{`}) \longrightarrow A(S^{`}) \longrightarrow B(S^{`}) \longrightarrow \operatorname{Pic}(S^{`}) \longrightarrow 0$$

be the exact sequence of complexes obtained by applying sequence (1.7) to the Amitsur semi-simplicial complex

$$S \Longrightarrow S \otimes_R S \rightrightarrows S \otimes_R S \otimes_R S \rightrightarrows \cdots$$

There is a natural isomorphism between the V-Z system associated with (2.11) and the V-Z system associated with complex (2.6).

(b) Let G be a group acting on a commutative ring R as automorphisms. Let C be the non-homogeneous standard complex of G, which is a free  $\mathbb{Z}[G]$ -resolution of the trivial G-module Z. Let

$$(2.12) \quad 0 \longrightarrow \operatorname{Hom}_{G}(C, U(R)) \longrightarrow \operatorname{Hom}_{G}(C, A(R)) \longrightarrow \operatorname{Hom}_{G}(C, B(R)) \longrightarrow \operatorname{Hom}_{G}(C, \operatorname{Pic}(R)) \longrightarrow 0$$

be the exact sequence obtained by the exact sequence (1.4) of G-modules. There is a natural isomorphism between the V-Z system associated with the sequence of complexes (2.12) and the V-Z system associated with complex (2.7).

2.13. COROLLARY. The V-Z system associated with complex exact sequence (2.11) (respectively (2.12)) has the Amitsur (respectively Galois) Pic-U sequence (2.8) (respectively (2.9)).

**PROOF.** (a) Recall the definition of (2.6).  $S^n$  is the *n*-fold tensor product of S over R and the functor

$$\partial: \mathfrak{Pic}(S^n) \longrightarrow \mathfrak{Pic}(S^{n+1})$$

maps an object P to  $\partial P = (\cdots ((\ddot{\boldsymbol{\varepsilon}}_{\mathfrak{d}}P + (-1)\ddot{\boldsymbol{\varepsilon}}_{\mathfrak{d}}P) + (-1)^{2}\ddot{\boldsymbol{\varepsilon}}_{\mathfrak{d}}P) + \cdots) + (-1)^{n}\ddot{\boldsymbol{\varepsilon}}_{n}P$ , where

$$\varepsilon_i: S^n \longrightarrow S^{n+1}, a_1 \otimes \cdots \otimes a_n \longmapsto a_1 \otimes \cdots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_n$$

M. TAKEUCHI

for  $0 \leq i \leq n$ . Using  $\overline{\varepsilon}_i$  instead of  $\ddot{\varepsilon}_i$ , we get a coherent complex of categories (2.14)  $\overline{\mathcal{Fuc}}(S) \xrightarrow{\overline{\partial}} \overline{\mathcal{Fuc}}(S^2) \longrightarrow \cdots \longrightarrow \overline{\mathcal{Fuc}}(S^n) \xrightarrow{\overline{\partial}} \overline{\mathcal{Fuc}}(S^{n+1}) \longrightarrow \cdots$ ,

with structure  $\bar{\chi}: \bar{\partial}^2 \rightarrow 0$ , and we have a diagram of homomorphisms

where (2.14) and (2.6) appear as two rows. It follows from Lemma 1.5 that there is a natural isomorphism

$$\xi: \partial \varepsilon \longrightarrow \varepsilon \overline{\partial}$$

such that

$$\begin{array}{cccc} \partial^2 \varepsilon & & & \partial \xi & & & \xi \bar{\partial} \\ \partial^2 \varepsilon & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & & & & & & \xi \bar{\partial}^2 \\ & & & & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & & & & & & & & \\ \partial \varepsilon & & & & & & & & \\ \partial \varepsilon & & & & & & & & & \\ \partial \varepsilon & & & &$$

commutes. Since  $\varepsilon$  is an equivalence, it follows that the V-Z systems corresponding to (2.14) and (2.6) are isomorphic. Let (2.5) be the V-Z system associated with (2.14). By definition, we can identify  $F_n = U(S^{n+1})$  and  $C_n = \operatorname{Pic}(S^{n+1})$ .  $P^n$  is the quotient set of the set of all pairs (u, a) with  $u \in \operatorname{Ob}(\overline{\mathcal{Pic}}(S^n))$  and  $a: \overline{\delta}(u) \to 0$  in  $\overline{\mathcal{Pic}}(S^{n+1})$  by the equivalence relation:  $(u, a) \sim (v, b)$  if there is a map  $c: u \to v$  in  $\overline{\mathcal{Pic}}(S^n)$  such that  $b \circ \overline{\delta}(c) = a$ . Denote by  $\{u, a\}$  the equivalence class of (u, a). Next, let (2.1) be the V-Z system associated with (2.11). We can also identify  $X_n = U(S^{n+1})$  and  $Y_n = \operatorname{Pic}(S^{n+1})$ . Recall that  $J_n$  is the center of square

If  $\{u, a\} \in \mathbb{P}^n$ , we have  $[u] \in B(S^n)$ ,  $[\bar{\partial}(u), a] \in A(S^{n+1})$ , and  $([\bar{\partial}(u), a], [u])$  is in the fiber product. Assume  $\{u, a\} = \{v, b\}$  in  $\mathbb{P}^n$  with  $c: u \to v$  in  $\overline{\mathcal{P}(c}(S^n)$ . Put

$$e: u+(-v) \xrightarrow{c+I} v+(-v) \xrightarrow{\text{reduced map}} 0$$

Then  $[u+(-v), e] \in A(S^n)$  and we have

$$([\bar{\partial}(u), a], [u]) = ([\bar{\partial}(v), b], [v]) + \mathcal{A}[u + (-v), e]$$

with diagonal map  $\mathcal{A}: A(S^n) \rightarrow A(S^{n+1}) \times B(S^n)$ . Hence the map

$$\{u, a\} \longmapsto \llbracket [\bar{\partial}(u), a], \llbracket u \rrbracket ], \quad P^n \longrightarrow J_n$$

is well-defined and seen to be a homomorphism. It is very easy to check that this homomorphism gives rise to a homomorphism of the V-Z system associated with (2.14) to the V-Z system associated with (2.11), together with identities  $F_n \rightarrow X_n$  and  $C_n \rightarrow Y_n$ . In particular  $\mathbf{P}^n \rightarrow J_n$  is an isomorphism by (d) below (2.1). This proves (a). (b) is proved similarly. Q. E. D.

The final step is to identify the sequence (2.2) of the V-Z system associated to (2.3) with the mapping cone sequence. We review the definition of the mapping cone sequence [4, Theorem 1.3], [8], [7, p. 46].

The mapping cone M(f) of (2.3) is defined by:

$$M(f) = \{M_n, \partial\}, \quad M_n = C_n \times D_{n-1},$$
$$\partial(x, y) = (-\partial x, fx + \partial y).$$

(In [4],  $M_n$  is given degree n-1.) There is a long exact sequence

$$(2.15) \qquad \cdots \longrightarrow H^n(X) \xrightarrow{\alpha} H^n(M(f)) \xrightarrow{\beta} H^{n-1}(Y) \xrightarrow{\gamma} H^{n+1}(X) \longrightarrow \cdots$$

where

 $\alpha$ : (class of  $x \in X_n$ )  $\longmapsto$  (class of (x, 0)),

 $\beta$ : (class of  $(x, y) \in M_n$ )  $\longmapsto$  (class of  $-\overline{y}$ ),

 $\gamma:$  (class of  $\bar{y} \in Y_{n-1}$  with  $\partial y = fx$ )  $\longmapsto$  (class of  $\partial x$ ).

Here we denote by  $\bar{y} \in Y_{n-1}$  the image of  $y \in D_{n-1}$ . (The last map  $\gamma$  is  $-\gamma$  with the notation of [4].)

If  $(x, y) \in M_n$  is an *n*-cocycle, then  $\partial x = 0$  and  $fx + \partial y = 0$ . Hence  $(x, -y) \in J_n$ . The homomorphism

 $\theta$ : (class of (x, y))  $\longmapsto$  (class of [x, -y]),  $H^n(M(f)) \longrightarrow H^n(J)$ 

is well-defined. It is easy to prove:

2.16. PROPOSITION. We have a commutative diagram

where the first row is the mapping cone sequence (2.15), and the second row is the sequence of the V-Z system associated with (2.3). Especially,  $\theta$  is an isomorphism.

Combining (2.16) and (2.13), we have:

2.17. THEOREM. (a) Let S/R be a commutative ring extension. There is an isomorphism of sequences

M. TAKEUCHI

where the first row is the Amitsur Pic-U sequence (2.8) and the second row is the mapping cone sequence of the sequence (2.11).

(b) Let G be a group acting on a commutative ring R. There is an isomorphism of sequences

where the first row is the Galois Pic-U sequence (2.9) and the second row is the mapping cone sequence of the sequence (2.12).

Note that the second row of (b) is obtained by applying [4, Proposition 2.1] to the sequence of G-modules

$$0 \longrightarrow U(R) \longrightarrow A(R) \xrightarrow{f_R} B(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0.$$

 $(H^n(G, f)$  in the above means  $H^{n-1}(G, f)$  of [4].)

## References

- [1] A. Fröhlich and C. T. C. Wall, Graded monoidal categories, Compositio Math., 28 (1974), 229-285.
- [2] A. Hattori, On groups H<sup>n</sup>(S, G) and the Brauer group of commutative rings, Sci.
   Papers College Gen. Ed. Univ. Tokyo, 28 (1978), 1-20.
- [3] A. Hattori, On groups  $H^n(S/R)$  related to the Amitsur cohomology and the Brauer groups of commutative rings, Osaka J. Math., 16 (1979), 357-382.
- [4] A. Hattori, Some arithmetical applications of groups H<sup>q</sup>(R, G), Tôhoku Math. J., 33 (1981), 35-63.
- [5] A. Hattori, On Amitsur cohomology of rings of algebraic integers, Hokkaido Math. J., 10 (1981), 46-56.
- [6] M. Laplaza, Considerations motivated by the paper of K.-H. Ulbrich: "Kohärenz in Kategorien mit Gruppenstruktur," an informal document.
- [7] S. MacLane, Homology, Springer-Verlag, New York, 1967.
- [8] S. MacLane, Group extensions by primary abelian groups, Trans. A. M. S., 95 (1960), 1-16.
- [9] M. Takeuchi, On Villamayor and Zelinsky's long exact sequence, Memoirs A. M. S., 249 (1981).
- [10] K.-H. Ulbrich, An abstract version of the Hattori-Villamayor-Zelinsky sequences, Sci. Papers College Gen. Ed. Univ. Tokyo, 29 (1979), 125-137.
- [11] K.-H. Ulbrich, Kohärenz in Kategorien mit Gruppenstruktur, J. Algebra, 72 (1981), 279-295.

[12] O.E. Villamayor and D. Zelinsky, Brauer groups and Amitsur cohomology for general commutative ring extensions, J. Pure Appl. Algebra, 10 (1977), 19-55.

Mitsuhiro TAKEUCHI

Department of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki-ken 305 Japan