The mapping cone method and the Hattori-Villamayor-Zelinsky sequences

By Mitsuhiro Takedchi

(Received April 27, 1982)

The mapping cone method, which is originally due to MacLane [8], is fully developed in Hattori [4]. Let U be the multiplicative group and let Pic be the Picard group functor. Assume we have an exact sequence of abelian group functors on commutative rings:

$$
\begin{equation*}
0 \longrightarrow U \longrightarrow A \xrightarrow{f} B \longrightarrow \text { Pic } \longrightarrow 0 . \tag{1}
\end{equation*}
$$

(Amitsur case). Let S / R be an extension of commutative rings, and let $S^{n}=S \otimes_{R} \cdots \otimes_{R} S$ (n terms) for $n=1,2, \cdots$. Applying (1) to the Amitsur semisimplicial complex

$$
S \rightrightarrows S^{2} \rightrightarrows S^{3} \rightrightarrows \cdots
$$

we get an exact sequence of complexes

$$
\begin{equation*}
0 \longrightarrow U\left(S^{*}\right) \longrightarrow A\left(S^{*}\right) \xrightarrow{f} B\left(S^{*}\right) \longrightarrow \operatorname{Pic}\left(S^{*}\right) \longrightarrow 0 \tag{2}
\end{equation*}
$$

which yields, in view of [4, Theorem 1.3], a long exact sequence
(3) $\cdots \longrightarrow H^{n}(S / R, U) \longrightarrow H^{n}(M(f)) \longrightarrow H^{n-1}(S / R$, Pic $) \longrightarrow H^{n+1}(S / R, U) \longrightarrow \cdots$
where $M(f)$ is the mapping cone of (2) (with degree lowered by one) and $H^{*}(S / R,-)$ means the Amitsur cohomology.
(Galois case). Let G be a group acting as automorphisms of a commutative ring R. (1) gives an exact sequence of G-modules

$$
\begin{equation*}
0 \longrightarrow U(R) \longrightarrow A(R) \xrightarrow{f} B(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0 \tag{4}
\end{equation*}
$$

Applying [4, Proposition 2.1] to (4), we get a long exact sequence
(5) $\quad \cdots \longrightarrow H^{n}(G, U(R)) \longrightarrow H^{n}(G, f) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots$
where $H^{\cdot}(G, U(R))$ and $H^{\cdot}(G, \operatorname{Pic}(R))$ are the Galois cohomology groups.
This research was partially supported by NSF Grant MCS 77-18723 A04 and Grant-inAids for Scientific Research (No. 56540006 and 57540006) of Ministry of Education.
($H^{n}(G, f)$ here means $H^{n-1}(G, f)$ of [4].)
On the other hand, we have the Amitsur Pic- U sequence [12], [3]
(6) $\cdots \longrightarrow H^{n}(S / R, U) \longrightarrow H^{n}(J) \longrightarrow H^{n-1}(S / R$, Pic $) \longrightarrow H^{n+1}(S / R, U) \longrightarrow \cdots$
in the Amitsur case, and the Galois Pic- U sequence [2]

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(G, U(R)) \longrightarrow \boldsymbol{H}^{n}(R, G) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots \tag{7}
\end{equation*}
$$

in the Galois case. The above sequences are generalizations of the ChaseRosenberg seven term exact sequences.

The purpose of this paper is to show that there is an exact sequence (1) such that there are isomorphisms of sequences

for any ring extension S / R, and

for any pair (G, R) with group G acting on ring R.
Similar results are proved by Hattori [4,5] in some arithmetic cases, and used to give many applications in algebraic number theory. Our method is based on the coherence theorem in categories with abelian group structure due to Ulbrich [11]. The article was prepared while K.-H. Ulbrich visited Princeton in March, 1981. I am grateful to him for many useful comments.

§ 1. Construction.

Fix an infinite set Ω. For a commutative ring R, let $R \Omega$ be the free R module with basis Ω. Let I_{R} be the set of all direct summand R-submodules $M \subset R \Omega$ which are invertible, i.e., projective of rank one. Let $\mathscr{P i c}(R)$ be the category of all invertible R-modules and isomorphisms.
1.1. Definition. A group-like set is a quadruple $(G,+,-, 0)$ where G is a set, $0 \in G$, and

$$
+: G \times G \longrightarrow G, \quad-: G \longrightarrow G
$$

are maps.
Homomorphisms of group-like sets are defined in an obvious manner. For each set I, there is a group-like set $F(I)$ containing I such that for any group-
like set G, any map $I \rightarrow G$ extends uniquely to a homomorphism $F(I) \rightarrow G . \quad F(I)$ is called the free group-like set on I.

For a commutative ring $R, \mathscr{P i c}(R)$ has an abelian group structure [10]. We denote the structure functors by

$$
\begin{gathered}
+: \mathscr{P i c}(R) \times \mathscr{P i c}(R) \longrightarrow \operatorname{Pic}(R), \\
\quad-: \mathscr{P i c}(R) \longrightarrow \mathscr{P} i c(R)
\end{gathered}
$$

where $M+N=M \bigotimes_{R} N$ and $-M=\operatorname{Hom}_{R}(M, R)$. Thus $\mathrm{Ob}(\mathscr{P i c}(R))$ is a group-like class with R as 0 . Let

$$
\varepsilon: F\left(I_{R}\right) \longrightarrow \mathrm{Ob}(\mathscr{P i c}(R))
$$

be the homomorphism where $\varepsilon \mid I_{R}$ is the inclusion. We will use map ε to define a new category $\overline{\operatorname{Pic}}(R)$.

Take $F\left(I_{R}\right)$ as the set of objects in $\overline{\mathscr{P} \mathcal{C}}(R)$. For u, v in $F\left(I_{R}\right)$, let

$$
\overline{\mathscr{P} i c}(R)(u, v)=\mathscr{P i c}(R)(\varepsilon(u), \varepsilon(v)) .
$$

With composite obviously defined, we have a small category $\overline{\mathcal{P} i c}(R)$ together with an equivalence functor

$$
\varepsilon: \overline{\mathscr{P} i c}(R) \longrightarrow \mathscr{P} i c(R)
$$

where $\varepsilon(f)=f$ for any morphism f in $\overline{\operatorname{Pic}}(R)$.
$\overline{\operatorname{Pic}}(R)$ inherits an abelian group structure from $\mathscr{P i c}(R)$ as follows: If $f: u \rightarrow v$ and $g: u^{\prime} \rightarrow v^{\prime}$ are maps in $\overline{\mathcal{P} i c}(R)$, define $f+g: u+u^{\prime} \rightarrow v+v^{\prime}$ and $-f:$ $-u \rightarrow-v$ by the rule $\varepsilon(f+g)=\varepsilon(f)+\varepsilon(g)$ and $\varepsilon(-f)=-\varepsilon(f)$. This gives rise to functors $+: \overline{\mathscr{P} i c}(R) \times \overline{\mathscr{P} i c}(R) \rightarrow \overline{\mathscr{P} i c}(R)$ and $-: \overline{\mathscr{P} i c}(R) \rightarrow \overline{\mathscr{P} i c}(R)$. For $u, v, w \in F\left(I_{R}\right)$, the natural isomorphisms

$$
\begin{gathered}
a_{u, v, w}:(u+v)+w \longrightarrow u+(v+w), \\
c_{u, v}: u+v \longrightarrow v+u, \\
e_{u}: u+0 \longrightarrow u, \\
i_{u}: u+(-u) \longrightarrow 0
\end{gathered}
$$

are defined by $\varepsilon\left(a_{u, v, w}\right)=a_{\varepsilon(u), \varepsilon(v), \varepsilon(w)}, \varepsilon\left(c_{u, v}\right)=c_{\varepsilon(u), \varepsilon(v)}$, etc., by using the corresponding natural isomorphisms $a_{P, Q, N}, c_{P, Q}$, etc. in $\mathscr{P i c}(R)$. This gives $\overline{\operatorname{Pic}}(R)$ an abelian group structure, and $\varepsilon: \overline{\mathscr{P} i c}(R) \rightarrow \mathscr{P i c}(R)$ becomes a homomorphism [10] whose structure natural transformations are identities. Such a homomorphism is called strict.
1.2. Definition. Let $\overline{\operatorname{Pic}}(R)^{\text {red }}$ be the smallest subcategory of $\overline{\operatorname{Pic}}(R)$ such that $\mathrm{Ob}\left(\overline{\mathscr{P} i c}(R)^{\mathrm{red}}\right)=\mathrm{Ob}(\overline{\mathcal{P} i c}(R))$ and $\operatorname{Mor}\left(\overline{\mathcal{P} i c}(R)^{\mathrm{red}}\right)$ is closed under + and containing $a_{u, v, w}, c_{u, v}, e_{u}, i_{u}$ together with their inverses for all $u, v, w \in F\left(I_{R}\right)$.

Morphisms in $\overline{\operatorname{Pic}}(R)^{\text {red }}$ are called reduced.
The following is a special case of the coherence theorem due to Ulbrich [11]. For a simpler proof, see Laplaza [6]. Ulbrich also has an improved proof (oral communication). Different approaches to coherence are found in [1, pp. 246-247], [12, §3].
1.3. Theorem. For any $u, v \in F\left(I_{R}\right)$, there is one reduced morphism $u \rightarrow v$ at most.

We are now ready to define the sequence of abelian groups

$$
\begin{equation*}
0 \longrightarrow U(R) \xrightarrow{i_{R}} A(R) \xrightarrow{f_{R}} B(R) \xrightarrow{\pi_{R}} \operatorname{Pic}(R) \longrightarrow 0 \tag{1.4}
\end{equation*}
$$

for any commutative ring R.
Let $B(R)=\boldsymbol{Z} I_{R}$ be the free abelian group on I_{R} and let π_{R} be the canonic projection. We may view $B(R)$ as the quotient set of $F\left(I_{R}\right)$ by the equivalence relation: $u \sim v$ if there is a reduced morphism $u \rightarrow v$. We denote by

$$
u \longmapsto[u], \quad F\left(I_{R}\right) \longrightarrow B(R)
$$

the canonical surjection.
Let $A(R)$ be the quotient set of the set $\Lambda(R)$ of all pairs (u, a) with $u \in F\left(I_{R}\right)$ and $a: u \rightarrow 0$ in $\overline{\mathscr{P} i c}(R)$ by the equivalence relation: $(u, a) \sim(v, b)$ if there is a reduced morphism $c: u \rightarrow v$ such that $a=b \circ c$. Let $[u, a]$ denote the equivalence class of (u, a). We make $A(R)$ into an abelian group. For ($u, a),(v, b)$ in $\Lambda(R)$, let

$$
(u, a)+(v, b)=(u+v, \zeta \circ(a+b))
$$

where $\zeta: 0+0 \rightarrow 0$ is the reduced map. If ($u, a) \sim\left(u^{\prime}, a^{\prime}\right)$ and $(v, b) \sim\left(v^{\prime}, b^{\prime}\right)$, then $(u, a)+(v, b) \sim\left(u^{\prime}, a^{\prime}\right)+\left(v^{\prime}, b^{\prime}\right)$. Hence addition on $A(R)$

$$
[u, a]+[v, b]=\text { class of }(u, a)+(v, b)
$$

is well-defined. It follows easily by the definition of $\overline{\mathcal{P} i c}(R)^{\text {red }}$ that $A(R)$ becomes an abelian group. The unit is [0, id].

We will define homomorphisms f_{R} and i_{R}. For $[u, a]$ in $A(R)$, and r in $U(R)$, we put

$$
f_{R}[u, a]=[u], \quad i_{R}(r)=[0, r]
$$

where we use the usual identification

$$
\overline{\operatorname{Pic}}(R)(0,0)=\operatorname{Pic}(R)(0,0)=U(R) .
$$

Maps f_{R} and i_{R} are well-defined, and seen to be homomorphisms.
It is easy to show that (1.4) is exact.
Next, we make A and B into group functors on commutative rings so that i_{R}, f_{R}, π_{R} are natural in R.

Let $\phi: R \rightarrow S$ be a homomorphism of commutative rings. Extend it to the semilinear map

$$
\phi: R \Omega \longrightarrow S \Omega
$$

which is the identity on Ω. If $M \in I_{R}$, then $S \cdot \phi(M) \in I_{S}$ since $S \otimes_{R} M \simeq S \cdot \phi(M)$. Put

$$
\bar{\phi}: M \longmapsto S \cdot \phi(M), \quad I_{R} \longrightarrow I_{S}
$$

and extend it to the homomorphism of group-like sets

$$
\bar{\phi}: F\left(I_{R}\right) \longrightarrow F\left(I_{S}\right)
$$

We have a homomorphism [10, p. 137]

$$
\ddot{\phi}: M \longmapsto S \otimes_{R} M, \quad \operatorname{Pic}(R) \longrightarrow \operatorname{Pic}(S) .
$$

Let

$$
\begin{aligned}
& \alpha_{P, Q}: \ddot{\phi}(P+Q) \longrightarrow \ddot{\phi}(P)+\ddot{\phi}(Q), \\
& \beta_{P}: \ddot{\phi}(-P) \longrightarrow-\ddot{\phi}(P), \\
& r: \ddot{\phi}\left(0_{R}\right) \longrightarrow 0_{S} \quad\left(\text { where } 0_{R}=R, 0_{S}=S\right)
\end{aligned}
$$

denote the structure of $\ddot{\phi}$, for P, Q in $\mathscr{P}_{i c}(R)$. We define a map in $\overline{\mathcal{P}_{i c}}(S)$

$$
\xi_{u}: \ddot{\phi}(\varepsilon(u)) \longrightarrow \varepsilon(\bar{\phi}(u))
$$

for $u \in F\left(I_{R}\right)$ as follows:
i) $\xi_{u+v}=\left(\xi_{u}+\xi_{v}\right) \cdot \alpha_{\varepsilon(u), \varepsilon(v)}$,
ii) $\xi_{-u}=\left(-\xi_{u}\right) \circ \beta_{\varepsilon(u)}$,
iii) $\xi_{0}=\gamma$,
iv) $\xi_{M}: S \otimes_{R} M(=\ddot{\phi}(M)) \longrightarrow S \cdot \phi(M)(=\bar{\phi}(M))$ is the canonical isomorphism if $M \in I_{R}$.

Since $F\left(I_{R}\right)$ is the free group-like set on I_{R}, there is a unique family of maps $\left\{\xi_{u}\right\}_{u \in F_{(}\left(I_{R}\right)}$ satisfying i) \sim iv).
1.5. Lemma. We can make $\bar{\phi}: F\left(I_{R}\right) \rightarrow F\left(I_{S}\right)$ into a functor $\bar{\phi}: \overline{\mathscr{L} \bar{c}}(R) \rightarrow$ $\overline{\operatorname{Pic}}(S)$ in such a way that

$$
\xi: \ddot{\phi} \varepsilon \longrightarrow \varepsilon \bar{\phi}
$$

becomes a natural isomorphism. Then the functor $\bar{\phi}$ becomes a strict homomorphism, and ξ is an isomorphism of homomorphisms. In particular, $\bar{\phi}$ preserves reduced maps.

Proof. Let $g: u \rightarrow v$ be a map in $\overline{\operatorname{Pic}}(R)$. Since ε is an equivalence, there is a unique map $g^{\prime}: \bar{\phi}(u) \rightarrow \bar{\phi}(v)$ such that $\varepsilon\left(g^{\prime}\right) \circ \xi_{u}=\xi_{v^{\circ}} \ddot{\phi}(\varepsilon(g))$. We put $g^{\prime}=\bar{\phi}(g)$. Then $\bar{\phi}$ becomes a functor $\overline{\operatorname{sic}}(R) \rightarrow \overline{\operatorname{Pic}}(S)$. Now conditions i)-iii) mean that ξ is already an isomorphism of homomorphisms if we take the identities as the structure of $\varepsilon \bar{\phi}$. It follows from $\ddot{\phi} \varepsilon$ being a homomorphism that $\varepsilon \bar{\phi}$ is indeed a
homomorphism with identities as the structure. Thus $\varepsilon \bar{\phi}$ is a strict homomorphism. Since ε is an equivalence, so is $\bar{\phi}$.
Q.E.D.

We will define maps $A(\phi)$ and $B(\phi)$ to make the next commutative diagram

where both rows are (1.4).
It follows from Lemma 1.5 that the functor $\bar{\phi}: \overline{\mathscr{P} i c}(R) \rightarrow \overline{\mathcal{P} i c}(S)$ preserves reduced maps. Hence $u \sim v$ implies $\bar{\phi}(u) \sim \bar{\phi}(v)$ for $u, v \in F\left(I_{R}\right)$, and $(u, a) \sim(v, b)$ implies ($\bar{\phi}(u), \bar{\phi}(a)) \sim(\bar{\phi}(v), \bar{\phi}(b))$ for ($u, a),(v, b)$ in $\Lambda(R)$. Hence the maps

$$
B(\phi)[u]=[\bar{\phi}(u)], \quad A(\phi)[u, a]=[\bar{\phi}(u), \bar{\phi}(a)]
$$

are well-defined, and seen to be homomorphisms to make diagram (1.6) commute.
Let $\psi: S \rightarrow T$ be another homomorphism of commutative rings. It is easy to see

$$
\bar{\psi} \circ \bar{\phi}=\overline{\psi \phi}
$$

as functors: $\overline{\mathcal{P} i c}(R) \rightarrow \overline{\mathcal{P} i c}(T)$, (while $\ddot{\phi} \circ \ddot{\phi}$ is different from $\ddot{\phi} \ddot{\phi})$. It follows that $A(\psi \circ \phi)=A(\psi) \circ A(\phi)$ and $B(\psi \circ \phi)=B(\psi) \circ B(\phi)$.

If $1: R \rightarrow R$ denote the identity, then $\overline{1}: \overline{\operatorname{Pic}}(R) \rightarrow \overline{\operatorname{Pic}}(R)$ is the identity. Hence $A(1)$ and $B(1)$ are identities.

Thus we get an exact sequence of abelian group functors on commutative rings

$$
\begin{equation*}
0 \longrightarrow U \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{\pi} \text { Pic } \longrightarrow 0 \tag{1.7}
\end{equation*}
$$

§ 2. Identification.

We will identify the Amitsur or Galois mapping cone sequence obtained from (1.7) with the Amitsur or Galois Pic- U sequence.

Let

$$
\begin{aligned}
& X: \cdots \longrightarrow X_{n} \longrightarrow X_{n+1} \longrightarrow \cdots, \\
& Y: \cdots \longrightarrow Y_{n} \longrightarrow Y_{n+1} \longrightarrow \cdots
\end{aligned}
$$

be complexes of abelian groups.
A diagram of abelian groups

where complexes X and Y appear as two rows, is called a V-Z system [12, p. 37] if the following conditions are fulfilled.
(a) The composite along each diagonal is zero:

$$
Y_{n-2} \longrightarrow J_{n} \longrightarrow X_{n+1} .
$$

(b) The parallelograms (I) anticommute.
(c) The triangles (II), (III) commute.
(d) The five term, crank-shaped sequences are exact:

$$
X_{n-1} \longrightarrow X_{n} \longrightarrow J_{n} \longrightarrow Y_{n-1} \longrightarrow Y_{n}
$$

We can associate a long exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(X) \longrightarrow H^{n}(J) \longrightarrow H^{n-1}(Y) \longrightarrow H^{n+1}(X) \longrightarrow \cdots \tag{2.2}
\end{equation*}
$$

with each V-Z system (2.1) [12, p. 39]. $H^{n}(J)$ means $\operatorname{Ker}\left(J_{n} \rightarrow X_{n+1}\right) / \operatorname{Im}\left(Y_{n-2} \rightarrow J_{n}\right)$. $H^{n}(X) \rightarrow H^{n}(J) \rightarrow H^{n-1}(Y)$ are induced from $X_{n} \rightarrow J_{n} \rightarrow Y_{n-1}$. If $y \in \operatorname{Ker}\left(Y_{n-1} \rightarrow Y_{n}\right)$, y comes from some $z \in J_{n}$. Let $x \in X_{n+1}$ be the image of z by $J_{n} \rightarrow X_{n+1}$. Then $H^{n-1}(Y) \rightarrow H^{n+1}(X)$ is induced by (class of $\left.y\right) \mapsto($ class of x).

Isomorphisms between two V-Z systems are defined obviously. Isomorphic $\mathrm{V}-\mathrm{Z}$ systems have isomorphic sequences.

Let

$$
\begin{equation*}
0 \longrightarrow X \longrightarrow C \xrightarrow{f} D \longrightarrow Y \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

be an exact sequence of complexes. We can associate to it some V-Z system containing X and Y as two rows. The sequence (2.3) contains square diagrams

with coboundary operator ∂. Let J_{n} be the center of the square, i.e.,

$$
J_{n}=\left(C_{n} \times_{D_{n}} D_{n-1}\right) / \operatorname{Im}\left(C_{n-1} \longrightarrow C_{n} \times_{D_{n}} D_{n-1}\right) .
$$

We denote by $[c, d] \in J_{n}$ the image of element (c, d) in the fiber product, and by $\bar{d} \in Y_{n}$ the image of $d \in D_{n}$. With well-defined maps

$$
\begin{aligned}
& X_{n} \longrightarrow J_{n}, \quad x \longmapsto[x, 0], \\
& J_{n} \longrightarrow Y_{n-1}, \quad[c, d] \longmapsto \bar{d}, \\
& J_{n} \longrightarrow X_{n+1}, \quad[c, d] \longmapsto \partial(c), \\
& Y_{n-1} \longrightarrow J_{n+1}, \quad \bar{d} \longmapsto[0, \partial(d)]
\end{aligned}
$$

we have a V-Z system as is easily checked.
Next we review complexes of categories introduced in [10].
2.4. Definition. A sequence of homomorphisms of categories with abelian group structure

$$
\cdots \longrightarrow \mathcal{C}_{n} \xrightarrow{\partial} \mathcal{C}_{n+1} \longrightarrow \cdots
$$

together with isomorphisms of homomorphisms

$$
\chi: \partial^{2} \xrightarrow{\sim} 0
$$

where $0: \mathcal{C}_{n} \rightarrow \mathcal{C}_{n+2}$ denotes the constant homomorphism, is called a coherent complex of categories if

$$
\chi \partial: \partial^{3} \xrightarrow{\partial \chi} \partial 0 \xrightarrow{\text { cano }} 0 .
$$

Strictly speaking, some coherence conditions for \mathcal{C}_{n} as asserted in [10, Lemma 1.2] are necessary to assume. But they are fulfilled for $\operatorname{Pic}(R)$ or their direct products. Coherent complexes of categories are special cases of \mathbb{Z}-systems of [9].

In [10], Ulbrich constructs a V-Z system

with each coherent complex of categories $\left\{\mathcal{C}_{n}, \partial\right\}$, where maps are defined:

$$
\begin{array}{rll}
\boldsymbol{P}^{n} \longrightarrow F_{n+2}[10, \text { Proposition 2.5], } & C_{n-1} \longrightarrow P^{n+1}[\mathbf{1 0}, \uparrow 1, \text { p. 133] } \\
\boldsymbol{P}^{n+1} \longrightarrow C_{n}[\mathbf{1 0},(19), \text { p. 134], } & F_{n} \longrightarrow \boldsymbol{P}^{n}[\mathbf{1 0},(21), \text { p. 134] }
\end{array}
$$

(We lower the dimension of $\boldsymbol{P} . \quad \boldsymbol{P}^{n}$ here means \boldsymbol{P}^{n-1} in [10].)
He defines two coherent complexes of categories corresponding to the Amitsur and the Galois cases :

$$
\begin{equation*}
\operatorname{Pic}(S) \xrightarrow{\partial} \operatorname{Pic}\left(S^{2}\right) \longrightarrow \cdots \longrightarrow \operatorname{Pic}\left(S^{n}\right) \xrightarrow{\partial} \operatorname{Pic}\left(S^{n+1}\right) \longrightarrow \cdots \tag{2.6}
\end{equation*}
$$

for a commutative ring extension S / R [10, (32), p. 137] and

$$
\begin{equation*}
\operatorname{Pic}(R) \xrightarrow{\partial}(G, \operatorname{Pic}(R)) \longrightarrow \cdots \longrightarrow\left(G^{n-1}, \operatorname{Pic}(R)\right) \xrightarrow{\partial}\left(G^{n}, \operatorname{Pic}(R)\right) \longrightarrow \cdots \tag{2.7}
\end{equation*}
$$

for a group G acting on a commutative ring $R\left[10,(31)\right.$, p. 137]. In (2.6), $\operatorname{Pic}\left(S^{n}\right)$ is of degree $n-1$. In (2.7), $\left(G^{n}, \operatorname{Pic}(R)\right)$ means the direct product of $\mathscr{P i c}(R)$ indexed by G^{n}. He shows that the V-Z system (2.5) associated with complex (2.6) (respectively (2.7)) has the Amitsur Pic- U sequence [12], [3]

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(S / R, U) \longrightarrow H^{n}(J) \longrightarrow H^{n-1}(S / R, \text { Pic }) \longrightarrow H^{n+1}(S / R, U) \longrightarrow \cdots \tag{2.8}
\end{equation*}
$$

(respectively the Galois Pic- U sequence [2]
(2.9)

$$
\begin{equation*}
\left.\cdots \longrightarrow H^{n}(G, U(R)) \longrightarrow H^{n}(R, G) \longrightarrow H^{n-1}(G, \operatorname{Pic}(R)) \longrightarrow H^{n+1}(G, U(R)) \longrightarrow \cdots\right) \tag{2.9}
\end{equation*}
$$

2.10. Theorem. (a) Let S / R be a commutative ring extension. Let

$$
\begin{equation*}
0 \longrightarrow U\left(S^{*}\right) \longrightarrow A\left(S^{*}\right) \longrightarrow B\left(S^{*}\right) \longrightarrow \operatorname{Pic}\left(S^{*}\right) \longrightarrow 0 \tag{2.11}
\end{equation*}
$$

be the exact sequence of complexes obtained by applying sequence (1.7) to the Amitsur semi-simplicial complex

$$
S \rightrightarrows S \otimes_{R} S \rightrightarrows S \otimes_{R} S \otimes_{R} S \rightrightarrows \cdots
$$

There is a natural isomorphism between the $V-Z$ system associated with (2.11) and the $V-Z$ system associated with complex (2.6).
(b) Let G be a group acting on a commutative ring R as automorphisms. Let C be the non-homogeneous standard complex of G, which is a free $\boldsymbol{Z}[G]$ resolution of the trivial G-module \boldsymbol{Z}. Let
(2.12) $0 \rightarrow \operatorname{Hom}_{G}(C, U(R)) \rightarrow \operatorname{Hom}_{G}(C, A(R)) \rightarrow \operatorname{Hom}_{G}(C, B(R)) \rightarrow \operatorname{Hom}_{G}(C, \operatorname{Pic}(R)) \rightarrow 0$
be the exact sequence obtained by the exact sequence (1.4) of G-modules. There is a natural isomorphism between the $V-Z$ system associated with the sequence of complexes (2.12) and the V-Z system associated with complex (2.7).
2.13. Corollary. The $V-Z$ system associated with complex exact sequence (2.11) (respectively (2.12)) has the Amitsur (respectively Galois) Pic-U sequence (2.8) (respectively (2.9)).

Proof. (a) Recall the definition of (2.6). S^{n} is the n-fold tensor product of S over R and the functor

$$
\partial: \operatorname{Pic}\left(S^{n}\right) \longrightarrow \operatorname{Sic}\left(S^{n+1}\right)
$$

maps an object P to $\partial P=\left(\cdots\left(\left(\ddot{\varepsilon}_{0} P+(-1) \ddot{\varepsilon}_{1} P\right)+(-1)^{2} \ddot{\varepsilon}_{2} P\right)+\cdots\right)+(-1)^{n} \ddot{\varepsilon}_{n} P$, where

$$
\varepsilon_{i}: S^{n} \longrightarrow S^{n+1}, a_{1} \otimes \cdots \otimes a_{n} \longmapsto a_{1} \otimes \cdots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{n}
$$

for $0 \leqq i \leqq n$. Using $\bar{\varepsilon}_{i}$ instead of $\ddot{\varepsilon}_{i}$, we get a coherent complex of categories

$$
\begin{equation*}
\overline{\operatorname{Pic}}(S) \xrightarrow{\bar{\partial}} \overline{\operatorname{Pic}}\left(S^{2}\right) \longrightarrow \cdots \longrightarrow \overline{\operatorname{Pic}}\left(S^{n}\right) \xrightarrow{\bar{\partial}} \overline{\operatorname{Sic}}\left(S^{n+1}\right) \longrightarrow \cdots, \tag{2.14}
\end{equation*}
$$

with structure $\bar{\chi}: \bar{\delta}^{2} \rightarrow 0$, and we have a diagram of homomorphisms

where (2.14) and (2.6) appear as two rows. It follows from Lemma 1.5 that there is a natural isomorphism

$$
\xi: \partial \varepsilon \xrightarrow{\sim} \varepsilon \widetilde{\partial}
$$

such that

commutes. Since ε is an equivalence, it follows that the V-Z systems corresponding to (2.14) and (2.6) are isomorphic. Let (2.5) be the V-Z system associated with (2.14). By definition, we can identify $F_{n}=U\left(S^{n+1}\right)$ and $C_{n}=\operatorname{Pic}\left(S^{n+1}\right) . \quad \boldsymbol{P}^{n}$ is the quotient set of the set of all pairs (u, a) with $u \in \mathrm{Ob}\left(\overline{\mathscr{P} i c}\left(S^{n}\right)\right)$ and $a: \bar{\partial}(u)$ $\rightarrow 0$ in $\overline{\mathscr{P} i c}\left(S^{n+1}\right)$ by the equivalence relation: $(u, a) \sim(v, b)$ if there is a map $c: u \rightarrow v$ in $\overline{\mathcal{P} i c}\left(S^{n}\right)$ such that $b \circ \bar{\partial}(c)=a$. Denote by $\{u, a\}$ the equivalence class of (u, a). Next, let (2.1) be the V-Z system associated with (2.11). We can also identify $X_{n}=U\left(S^{n+1}\right)$ and $Y_{n}=\operatorname{Pic}\left(S^{n+1}\right)$. Recall that J_{n} is the center of square

If $\{u, a\} \in \boldsymbol{P}^{n}$, we have $[u] \in B\left(S^{n}\right),[\bar{\partial}(u), a] \in A\left(S^{n+1}\right)$, and $([\bar{\partial}(u), a],[u])$ is in the fiber product. Assume $\{u, a\}=\{v, b\}$ in \boldsymbol{P}^{n} with $c: u \rightarrow v$ in $\overline{\operatorname{Pic}}\left(S^{n}\right)$. Put

$$
e: u+(-v) \xrightarrow{c+I} v+(-v) \xrightarrow{\text { reduced map }} 0 .
$$

Then $[u+(-v), e] \in A\left(S^{n}\right)$ and we have

$$
([\bar{\partial}(u), a],[u])=([\bar{\partial}(v), b],[v])+\Delta[u+(-v), e]
$$

with diagonal map $4: A\left(S^{n}\right) \rightarrow A\left(S^{n+1}\right) \times B\left(S^{n}\right)$. Hence the map

$$
\{u, a\} \longmapsto[[\bar{\partial}(u), a],[u]], \quad \boldsymbol{P}^{n} \longrightarrow J_{n}
$$

is well-defined and seen to be a homomorphism. It is very easy to check that this homomorphism gives rise to a homomorphism of the V-Z system associated with (2.14) to the V-Z system associated with (2.11), together with identities $F_{n} \rightarrow X_{n}$ and $C_{n} \rightarrow Y_{n}$. In particular $\boldsymbol{P}^{n} \rightarrow J_{n}$ is an isomorphism by (d) below (2.1). This proves (a). (b) is proved similarly.
Q.E.D.

The final step is to identify the sequence (2.2) of the V-Z system associated to (2.3) with the mapping cone sequence. We review the definition of the mapping cone sequence [4, Theorem 1.3], [8], [7, p. 46].

The mapping cone $M(f)$ of (2.3) is defined by :

$$
\begin{gathered}
M(f)=\left\{M_{n}, \partial\right\}, \quad M_{n}=C_{n} \times D_{n-1}, \\
\partial(x, y)=(-\partial x, f x+\partial y) .
\end{gathered}
$$

(In [4], M_{n} is given degree $n-1$.) There is a long exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H^{n}(X) \xrightarrow{\alpha} H^{n}(M(f)) \xrightarrow{\beta} H^{n-1}(Y) \xrightarrow{\gamma} H^{n+1}(X) \longrightarrow \cdots \tag{2.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha:\left(\text { class of } x \in X_{n}\right) \longmapsto(\text { class of }(x, 0)), \\
& \beta:\left(\text { class of }(x, y) \in M_{n}\right) \longmapsto(\text { class of }-\bar{y}), \\
& \gamma:\left(\text { class of } \bar{y} \in Y_{n-1} \text { with } \partial y=f x\right) \longmapsto(\text { class of } \partial x) .
\end{aligned}
$$

Here we denote by $\bar{y} \in Y_{n-1}$ the image of $y \in D_{n-1}$. (The last map γ is $-\gamma$ with the notation of [4].)

If $(x, y) \in M_{n}$ is an n-cocycle, then $\partial x=0$ and $f x+\partial y=0$. Hence $(x,-y) \in J_{n}$. The homomorphism

$$
\theta:(\text { class of }(x, y)) \longmapsto(\text { class of }[x,-y]), \quad H^{n}(M(f)) \longrightarrow H^{n}(J)
$$

is well-defined. It is easy to prove:
2.16. Proposition. We have a commutative diagram

where the first row is the mapping cone sequence (2.15), and the second row is the sequence of the $V-Z$ system associated with (2.3). Especially, θ is an isomorphism.

Combining (2.16) and (2.13), we have:
2.17. Theorem. (a) Let S / R be a commutative ring extension. There is an isomorphism of sequences

where the first row is the Amitsur Pic-U sequence (2.8) and the second row is the mapping cone sequence of the sequence (2.11).
(b) Let G be a group acting on a commutative ring R. There is an isomorphism of sequences

where the first row is the Galois Pic-U sequence (2.9) and the second row is the mapping cone sequence of the sequence (2.12).

Note that the second row of (b) is obtained by applying [4, Proposition 2.1] to the sequence of G-modules

$$
0 \longrightarrow U(R) \longrightarrow A(R) \xrightarrow{f_{R}} B(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0 .
$$

($H^{n}(G, f)$ in the above means $H^{n-1}(G, f)$ of [4].)

References

[1] A. Fröhlich and C.T.C. Wall, Graded monoidal categories, Compositio Math., 28 (1974), 229-285.
[2] A. Hattori, On groups $H^{n}(S, G)$ and the Brauer group of commutative rings, Sci. Papers College Gen. Ed. Univ. Tokyo, 28 (1978), 1-20.
[3] A. Hattori, On groups $H^{n}(S / R)$ related to the Amitsur cohomology and the Brauer groups of commutative rings, Osaka J. Math., 16 (1979), 357-382.
[4] A. Hattori, Some arithmetical applications of groups $H^{q}(R, G)$, Tôhoku Math. J., 33 (1981), 35-63.
[5] A. Hattori, On Amitsur cohomology of rings of algebraic integers, Hokkaido Math. J., 10 (1981), 46-56.
[6] M. Laplaza, Considerations motivated by the paper of K.-H. Ulbrich: "Kohärenz in Kategorien mit Gruppenstruktur," an informal document.
[7] S. MacLane, Homology, Springer-Verlag, New York, 1967.
[8] S. MacLane, Group extensions by primary abelian groups, Trans. A. M. S., 95 (1960), 1-16.
[9] M. Takeuchi, On Villamayor and Zelinsky's long exact sequence, Memoirs A. M. S., 249 (1981).
[10] K.-H. Ulbrich, An abstract version of the Hattori-Villamayor-Zelinsky sequences, Sci. Papers College Gen. Ed. Univ. Tokyo, 29 (1979), 125-137.
[11] K.-H. Ulbrich, Kohärenz in Kategorien mit Gruppenstruktur, J. Algebra, 72 (1981), 279-295.
[12] O.E. Villamayor and D. Zelinsky, Brauer groups and Amitsur cohomology for general commutative ring extensions, J. Pure Appl. Algebra, 10 (1977), 19-55.

Mitsuhiro Takeuchi
Department of Mathematics
University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki-ken 305
Japan

