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The mapping cone method and the
Hattori-Villamayor-Zelinsky sequences
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(Received April 27, 1982)

The mapping cone method, which is originally due to MacLane [8], is fully
developed in Hattori [4]. Let $U$ be the multiplicative group and let Pic be the
Picard group functor. Assume we have an exact sequence of abelian group
functors on commutative rings:

$f$

(1) $0arrow Uarrow Aarrow Barrow Picarrow 0$ .
(Amitsur case). Let $S/R$ be an extension of commutative rings, and let

$S^{n}=S\otimes_{R}\cdots\otimes_{R}S$ ( $n$ terms) for $n=1,2,$ $\cdots$ Applying (1) to the Amitsur semi-
simplicial complex

$Sarrowarrow S^{2}arrowarrow S^{3}arrowarrow^{arrowarrowarrow}\ldots$

we get an exact sequence of complexes

(2) $0arrow U(S^{\cdot})arrow A(S^{\cdot})arrow^{f}B(S^{\cdot})arrow Pic(S)arrow 0$

which yields, in view of [4, Theorem 1.3], a long exact sequence

(3) $arrow H^{n}(S/R, U)arrow H^{n}(M(f))arrow H^{n-1}(S/R, Pic)arrow H^{n+1}(S/R, U)arrow\ldots$

where $M(f)$ is the mapping cone of (2) (with degree lowered by one) and
$H^{\cdot}(S/R, -)$ means the Amitsur cohomology.

(Galois case). Let $G$ be a group acting as automorPhisms of a commutative
ring R. (1) gives an exact sequence of G-modules

(4) $0arrow U(R)arrow A(R)arrow^{f}B(R)arrow Pic(R)arrow 0$ .
Applying [4, Proposition 2.1] to (4), we get a long exact sequence

(5) $arrow H^{n}(G, U(R))arrow H^{n}(G, f)arrow H^{n- 1}$ ( $G$ , Pic $(R)$ ) $arrow H^{n+1}(G, U(R))arrow\ldots$

where $H^{\cdot}(G, U(R))$ and $H^{\cdot}$ ( $G$ , Pic $(R)$ ) are the Galois cohomology groups.
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$(H^{n}(G, f)$ here means $H^{n-1}(G, f)$ of [4].)

On the other hand, we have the Amitsur Pic-U sequence [12], [3]

(6) $arrow H^{n}(S/R, U)arrow H^{n}(J)arrow H^{n-1}(S/R, Pic)arrow H^{n+1}(S/R, U)arrow\cdots$

in the Amitsur case, and the Galois Pic-U sequence [2]

(7) $..arrow H^{n}(G, U(R))arrow H^{n}(R, G)arrow H^{n-1}$ ( $G$ , Pic $(R)$ ) $arrow H^{n+1}(G, U(R))arrow\cdots$

in the Galois case. The above sequences are generalizations of the Chase-
Rosenberg seven term exact sequences.

The purpose of this paper is to show that there is an exact sequence (1)

such that there are isomorphisms of sequences

(3) $arrow H^{n}(S/R, U)arrow H^{n}(M(f))arrow H^{n-1}(S/R, Pic)arrow H^{n+1}(S/R, U)arrow\cdots$

$\Vert$ $l|$ $\Vert$ $\Vert$

(6) $arrow H^{n}(S/R, U)arrow H^{n}(J)arrow H^{n- 1}(S/R, Pic)arrow H^{n+1}(S/R, U)-\cdots$

for any ring extension $S/R$ , and

(5) $arrow H^{n}(G, U(R))-H^{n}(G, f)arrow H^{n-1}$ ( $G$ , Pic $(R)$ ) $arrow H^{n+1}(G, U(R))arrow\cdots$

$\Vert$ $l|$ $\Vert$ $\Vert$

(7) $arrow H^{n}(G, U(R))arrow H^{n}(R, G)arrow H^{n- 1}$ ( $G$ , Pic $(R)$ ) $arrow H^{n+1}(G, U(R))arrow\cdots$

for any pair $(G, R)$ with group $G$ acting on ring $R$ .
Similar results are proved by Hattori $[4, 5]$ in some arithmetic cases, and

used to give many applications in algebraic number theory. Our method is
based on the coherence theorem in categories with abelian group structure due
to Ulbrich [11]. The article was prepared while K.-H. Ulbrich visited Princeton
in March, 1981. I am grateful to him for many useful comments.

\S 1. Construction.

Fix an infinite set $\Omega$ . For a commutative ring $R$ , let $R\Omega$ be the free R-
module with basis $\Omega$ . Let $I_{R}$ be the set of all direct summand R-submodules
$M\subset R\Omega$ which are invertible, $i.e.$ , projective of rank one. Let $\mathcal{P}\iota c(R)$ be the
category of all invertible R-modules and isomorphisms.

1.1. DEFINITION. A group-like set is a quadruple $(G, +, -, 0)$ where $G$ is
a set, $O\in G$ , and

$+:G\cross Garrow G$ , $-:Garrow G$

are maps.
Homomorphisms of group-like sets are defined in an obvious manner. For

each set $I$, there is a group-like set $F(I)$ containing $I$ such that for any group-
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like set $G$ , any map $Iarrow G$ extends uniquely to a homomorphism $F(I)arrow G$ . $F(I)$

is called the free group-like set on $I$ .
For a commutative ring $R,$ $\mathcal{P}\iota c(R)$ has an abelian group structure [10]. We

denote the structure functors by

$+:\mathcal{P}\iota c(R)\cross \mathcal{P}\iota c(R)arrow \mathcal{P}\iota c(R)$ ,

$-:\mathcal{P}\iota c(R)arrow \mathcal{P}\iota c(R)$

where $M+N=M\otimes_{R}N$ and $-M=Hom_{R}(M, R)$ . Thus Ob $(\mathcal{P}\iota c(R))$ is a group-like
class with $R$ as $0$ . Let

$\epsilon;F(I_{R})arrow Ob(\mathcal{P}\iota c(R))$

be the homomorphism where $\epsilon|I_{R}$ is the inclusion. We will use map $\epsilon$ to define
a new category $\overline{\mathcal{P}\iota c}(R)$ .

Take $F(I_{R})$ as the set of objects in $\overline{\mathcal{P}\iota c}(R)$ . For $u,$ $v$ in $F(I_{R})$ , let

$\overline{\mathcal{P}\iota c}(R)(u, v)=\mathcal{P}\iota c(R)(\epsilon(u), \epsilon(v))$ .
With composite obviously defined, we have a small category $\overline{\mathcal{P}\downarrow c}(R)$ together
with an equivalence functor

$\epsilon;\overline{\mathcal{P}\iota c}(R)arrow \mathcal{P}\iota c(R)$

where $\epsilon(f)=f$ for any morphism $f$ in $\overline{\mathcal{P}\iota c}(R)$ .
$\overline{\mathcal{P}\iota c}(R)$ inherits an abelian group structure from $\mathcal{P}\iota c(R)$ as follows: If

$f:uarrow v$ and $g:u’arrow v’$ are maps in $\overline{\mathcal{P}\iota c}(R)$ , define $f+g:u+u’arrow v+v’$ and $-f$ :
$-uarrow-v$ by the rule $\epsilon(f+g)=\epsilon(f)+\epsilon(g)$ and $\epsilon(-f)=-\epsilon(f)$ . This gives rise to
functors $+;\overline{\mathcal{P}\iota c}(R)\cross\overline{\mathcal{P}\iota c}(R)arrow\overline{\mathcal{P}\iota c}(R)$ and –: $\overline{\mathcal{P}\iota c}(R)arrow\overline{\mathcal{P}\iota c}(R)$ . For $u,$ $v,$ $w\in F(I_{R})$ ,

the natural isomorphisms

$a_{u.v.w}$ : $(u+v)+warrow u+(v+w)$ ,

$c_{u,v}$ : $u+varrow v+u$ ,

$e_{u}$ : $u+0arrow u$ ,

$j_{u}$ ; $u+(-u)arrow 0$

are defined by $\epsilon(a_{u.v.w})=a_{\epsilon(u).\epsilon(v).\epsilon(w)},$ $\epsilon(c_{u.v})=c_{\text{\’{e}}(u),\epsilon(v)}$ , etc., by using the corre-
sponding natural isomorphisms $a_{P,Q,N},$ $c_{P,Q}$ , etc. in $\mathcal{P}ic(R)$ . This gives $\overline{\mathcal{P}\iota c}(R)$

an abelian group structure, and $\epsilon:\overline{\mathcal{P}\iota c}(R)arrow \mathcal{P}\iota c(R)$ becomes a homomorphism [10]

whose structure natural transformations are identities. Such a homomorphism
is called strict.

1.2. DEFINITION. Let $\overline{\mathcal{P}\iota c}(R)^{red}$ be the smallest subcategory of $\overline{\mathcal{P}\iota c}(R)$ such
that Ob $(\overline{\mathcal{P}\iota c}(R)^{red})=Ob(\overline{\mathcal{P}\iota c}(R))$ and Mor $(\overline{\mathcal{P}\downarrow c}(R)^{red})$ is closed under $+$ and –

containing $a_{u.v.w},$ $c_{u,v},$ $e_{u},$
$i_{u}$ together with their inverses for all $u,$ $v,$ $w\in F(I_{R})$ .
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Morphisms in $\overline{\mathcal{P}\iota c}(R)^{red}$ are called reduced.
The following is a special case of the coherence theorem due to Ulbrich [11].

For a simpler proof, see Laplaza [6]. Ulbrich also has an improved proof (oral

communication). Different approaches to coherence are found in [1, pp. 246-247],

[12, \S 3].
1.3. THEOREM. For any $u,$ $v\in F(I_{R})$ , there is one reduced morphism $uarrow v$

at most.
We are now ready to define the sequence of abelian groups

$i_{R}$ $f_{R}$ $\pi_{R}$

(1.4) $0arrow U(R)arrow A(R)arrow B(R)arrow Pic(R)arrow 0$

for any commutative ring $R$ .
Let $B(R)=ZI_{R}$ be the free abelian group on $I_{R}$ and let $\pi_{R}$ be the canonic

projection. We may view $B(R)$ as the quotient set of $F(I_{R})$ by the equivalence
relation: $u\sim v$ if there is a reduced morphism $uarrow v$ . We denote by

$u-[u]$ , $F(I_{R})arrow B(R)$

the canonical surjection.
Let $A(R)$ be the quotient set of the set $\Lambda(R)$ of all pairs $(u, a)$ with $u\in F(I_{R})$

and $a:uarrow 0$ in $\overline{\mathcal{P}\iota c}(R)$ by the equivalence relation: $(u, a)\sim(v, b)$ if there is a
reduced morphism $c:uarrow v$ such that $a=b\circ c$ . Let $[u, a]$ denote the equivalence
class of $(u, a)$ . We make $A(R)$ into an abelian group. For $(u, a),$ $(v, b)$ in $\Lambda(R)$ ,
let

$(u, a)+(v, b)=(u+v, \zeta\circ(a+b))$

where $\zeta:0+0arrow 0$ is the reduced map. If $(u, a)\sim(u’, a’)$ and $(v, b)\sim(v’, b’)$ , then
$(u, a)+(v, b)\sim(u’, a’)+(v’, b’)$ . Hence addition on $A(R)$

$[u, a]+[v, b]=class$ of $(u, a)+(v, b)$

is well-defined. It follows easily by the dePnition of $\overline{\mathcal{P}\iota c}(R)^{red}$ that $A(R)$ becomes
an abelian group. The unit is [$0$ , id].

We will dePne homomorphisms $f_{R}$ and $i_{R}$ . For $[u, a]$ in $A(R)$ , and $r$ in
$U(R)$ , we put

$f_{R}[u, a]=[u]$ , $i_{R}(r)=[0, r]$

where we use the usual identification

$\overline{\mathcal{P}\iota c}(R)(0,0)=\mathcal{P}\iota c(R)(0, O)=U(R)$ .
Maps $f_{R}$ and $i_{R}$ are well-defined, and seen to be homomorphisms.

It is easy to show that (1.4) is exact.
Next, we make $A$ and $B$ into group functors on commutative rings so that

$i_{R},$ $f_{R},$ $\pi_{R}$ are natural in $R$ .
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Let $\phi:Rarrow S$ be a homomorphism of commutative rings. Extend it to the
semilinear map

$\phi:R\Omegaarrow S\Omega$

which is the identity on $\Omega$ . If $M\in I_{R}$, then $S\cdot\phi(M)\in I_{S}$ since $S\otimes_{R}M\simeq S\cdot\phi(M)$ .
Put

$\overline{\phi}:M-S\cdot\phi(M)$ , $I_{R}arrow I_{S}$

and extend it to the homomorphism of group-like sets

$\overline{\phi}:F(I_{R})arrow F(I_{S})$ .
We have a homomorphism [10, p. 137]

$\ddot{\phi}:M-S\otimes_{R}M$ , $\mathcal{P}\iota c(R)arrow \mathcal{P}\iota c(S)$ .
Let

$\alpha_{P.Q}$ ; $\ddot{\phi}(P+Q)arrow\ddot{\phi}(P)+\ddot{\phi}(Q)$ ,

$\beta_{P}$ : $\ddot{\phi}(-P)arrow-\ddot{\phi}(P)$ ,

$\gamma:\ddot{\phi}(0_{R})arrow 0_{S}$ (where $0_{R}=R,$ $0_{S}=S$)

denote the structure of $\ddot{\phi}$, for $P,$ $Q$ in $\mathcal{P}\iota c(R)$ . We define a map in $\overline{\mathcal{P}\iota c}(S)$

$\xi_{u}$ : $\ddot{\phi}(\epsilon(u))arrow\epsilon(\overline{\phi}(u))$

for $u\in F(I_{R})$ as follows:

i) $\xi_{u+v}=(\xi_{u}+\xi_{v})\circ\alpha_{\epsilon(u).\epsilon(v)}$ ,

ii) $\xi_{-u}=(-\xi_{u})\circ\beta_{\epsilon(u)}$ ,

iii) $\xi_{0}=\gamma$,
iv) $\xi_{M}$ : $S\otimes_{R}M(=\ddot{\phi}(M))arrow S\cdot\phi(M)(=\overline{\phi}(M))$ is the canonical isomorphism

if $M\in I_{R}$ .
Since $F(I_{R})$ is the free group-like set on $I_{R}$ , there is a unique family of maps
$\{\xi_{u}\}_{u\in F(I_{R})}$ satisfying $i$ ) $\sim iv$).

1.5. LEMMA. We can make $\overline{\phi}$ : $F(I_{R})arrow F(I_{S})$ into a functor $\overline{\phi}:\overline{\mathcal{P}\iota c}(R)arrow$

$\overline{\mathcal{P}\iota c}(S)$ in such a way that
$\xi:\ddot{\phi}\epsilonarrow\epsilon\overline{\phi}$

becomes a natural isomorphism. Then the functor $\overline{\phi}$ becomes a strict homomor-
phism, and $\xi$ is an isomorphism of homomorphisms. In partjcular, $\overline{\phi}$ preserves
reduced maps.

PROOF. Let $g:uarrow v$ be a map in $\overline{\mathcal{P}\iota c}(R)$ . Since $\epsilon$ is an equivalence, there
is a unique map $g’$ : $\overline{\phi}(u)arrow\overline{\phi}(v)$ such that $\epsilon(g’)\circ\xi_{u}=\xi_{v}\circ\ddot{\phi}(\epsilon(g))$ . We put $g’=\overline{\phi}(g)$ .
Then $\overline{\phi}$ becomes a functor $\overline{\mathcal{P}\iota c}(R)arrow\overline{\mathcal{P}\iota c}(S)$ . Now conditions i)-iii) mean that $\xi$

is already an isomorphism of homomorphisms if we take the identities as the
structure of $\epsilon\overline{\phi}$. It follows from $\ddot{\phi}\epsilon$ being a homomorphism that $\epsilon\overline{\phi}$ is indeed a
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homomorphism with identities as the structure. Thus $\epsilon\overline{\phi}$ is a strict homomorphism.
Since $\epsilon$ is an equivalence, so is $\overline{\phi}$ . Q. E. D.

We will define maps $A(\phi)$ and $B(\phi)$ to make the next commutative diagram

$0arrow U(R)arrow A(R)arrow B(R)arrow Pic(R)arrow 0$

(1.6) $\downarrow U(\phi)$ $\downarrow A(\phi)$ $\downarrow B(\phi)$ $\downarrow Pic(\phi)$

$0arrow U(S)arrow A(S)arrow B(S)arrow Pic(S)arrow 0$

where both rows are (1.4).

It follows from Lemma 1.5 that the functor $\overline{\phi}:\overline{\mathcal{P}\iota c}(R)arrow\overline{\mathcal{P}\iota c}(S)$ preserves
reduced maps. Hence $u\sim v$ implies $\overline{\phi}(u)\sim\overline{\phi}(v)$ for $u,$ $n\in F(I_{R})$ , and $(u, a)\sim(v, b)$

implies $(\overline{\phi}(u),\overline{\phi}(a))\sim(\overline{\phi}(v),\overline{\phi}(b))$ for $(u, a),$ $(v, b)$ in $\Lambda(R)$ . Hence the maps

$B(\phi)[u]=[\overline{\phi}(u)]$ , $A(\phi)[u, a]=[\overline{\phi}(u),\overline{\phi}(a)]$

are well-defined, and seen to be homomorphisms to make diagram (1.6) commute.
Let $\psi:Sarrow T$ be another homomorphism of commutative rings. It is easy

to see
$\overline{\psi}^{o}\overline{\phi}=\overline{\psi\phi}$

as functors: $\overline{\mathcal{P}\iota c}(R)arrow\overline{\mathcal{P}\iota c}(T)$ , (while $\dot{\psi}^{Q}\phi$ is different from $\psi\dot{\phi}$). It follows that
$A(\psi^{Q}\phi)=A(\psi)\circ A(\phi)$ and $B(\psi\circ\phi)=B(\psi)\circ B(\phi)$ .

If 1: $Rarrow R$ denote the identity, then 1: $\overline{\mathcal{P}\iota c}(R)arrow\overline{\mathcal{P}\iota c}(R)$ is the identity. Hence
$A(1)$ and $B(1)$ are identities.

Thus we get an exact sequence of abelian group functors on commutative
rings

(1.7) $0arrow Uarrow Aarrow Barrow^{\pi}Picarrow 0$ .
$j$ $f$

\S 2. Identification.

We will identify the Amitsur or Galois mapping cone sequence obtained
from (1.7) with the Amitsur or Galois Pic-U sequence.

Let
$X$ : $...arrow X_{n}arrow X_{n+1}arrow\ldots$

$Y$ : $...arrow Y_{n}arrow Y_{n+1}arrow\ldots$

be complexes of abelian groups.
A diagram of abelian groups
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(2.1)

where complexes $X$ and $Y$ appear as two rows, is called a V-Z syslem [12, $p$ .
37] if the following conditions are fulfilled.

(a) The composite along each diagonal is zero:
$Y_{n-2}arrow J_{n}arrow X_{n+1}$ .

(b) The parallelograms (I) anticommute.
(c) The triangles (II), (III) commute.
(d) The five term, crank-shaped sequences are exact:

$X_{n-1}arrow X_{n}arrow J_{n}arrow Y_{n-1}arrow Y_{n}$ .
We can associate a long exact sequence

(2.2) $-arrow H^{n}(X)arrow H^{n}(J)arrow H^{n-1}(Y)arrow H^{n+1}(X)arrow\cdots$

with each V-Z system (2.1) [12, p. 39]. $H^{n}(J)$ means Ker $(J_{n}arrow X_{n+1})/{\rm Im}(Y_{n-2}arrow J_{n})$ .
$H^{n}(X)arrow H^{n}(J)arrow H^{n-1}(Y)$ are induced from $X_{n}arrow J_{n}arrow Y_{n-1}$ . If $y\in Ker(Y_{n-1}arrow Y_{n})$ ,
$y$ comes from some $z\in J_{n}$ . Let $x\in X_{n+1}$ be the image of $z$ by $J_{n}arrow X_{n+1}$ . Then
$H^{n-1}(Y)arrow H^{n+1}(X)$ is induced by (class of $y$ ) $\mapsto$ ($class$ of $x$ ).

Isomorphisms between two V-Z systems are dePned obviously. Isomorphic
V-Z systems have isomorphic sequences.

Let
$f$

(2.3) $0arrow Xarrow Carrow Darrow Yarrow 0$

be an exact sequence of complexes. We can associate to it some V-Z system
containing $X$ and $Y$ as two rows. The sequence (2.3) contains square diagrams

$C_{n-1}arrow D_{n-1}$

$\partial\downarrow$ $\downarrow\partial$

$C_{n}arrow D_{n}$

with coboundary operator $\partial$ . Let $J_{n}$ be the center of the square, $i.e.$ ,

$J_{n}=(C_{n}\cross_{D_{n}}D_{n-1})/{\rm Im}(C_{n-1}arrow C_{n}\cross_{D_{n}}D_{n-1})$ .
We denote by $[c, d]\in J_{n}$ the image of element $(c, d)$ in the fiber product, and
by $\overline{d}\in Y_{n}$ the image of $d\in D_{n}$ . With well-defined maps
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$X_{n}arrow J_{n}$ , $x-arrow[x, 0]$ ,

$J_{n}arrow Y_{n- 1}$ , $[c, d]-\geq\overline{d}$ ,

$J_{n}arrow X_{n+1}$ , $[c, d]\mapsto\partial(c)$ ,

$Y_{n-1}arrow J_{n+1}$ , $\overline{d}-[0, \partial(d)]$

we have a V-Z system as is easily checked.
Next we review complexes of categories introduced in [10].

2.4. DEFINITION. A sequence of homomorphisms of categories with abelian
group structure

$\partial$

. $..arrow c_{n}arrow c_{n+1}arrow\ldots$

together with isomorphisms of homomorphisms

$\chi;\partial^{2}arrow^{\sim}0$

where $0:C_{n}arrow C_{n+2}$ denotes the constant homomorphism, is called a coherent com-
plex of categones if

$\chi\partial:\partial^{3}arrow\partial 0\partial\chiarrow^{cano}0$ .

Strictly speaking, some coherence conditions for $C_{n}$ as asserted in [10, Lemma
1.2] are necessary to assume. But they are fulfilled for $\mathcal{P}\iota c(R)$ or their direct
products. Coherent complexes of categories are special cases of $E$-systems of
[9].

In [10], Ulbrich constructs a V-Z system

(2.5)

with each coherent complex of categories $\{C_{n}, \partial\}$ , where maps are defined:

$P^{n}-F_{n+2}$ [$10$ , Proposition 2.5] , $C_{n- 1}arrow P^{n+1}$ [$10,$ $\uparrow 1$ , p. 133] ,

$P^{n+1}arrow C_{n}$ [$10,$ (19), p. 134] , $F_{n}arrow P^{n}$ [$10,$ (21), p. 134].

(We lower the dimension of P. $P^{n}$ here means $P^{n-1}$ in [10].)

He defines two coherent complexes of categories corresponding to the Amitsur
and the Galois cases:

$\partial$ $\partial$

(2.6) $\mathcal{P}\iota c(S)arrow \mathcal{P}\iota c(S^{2})arrow$ $arrow \mathcal{P}\iota c(S^{n})arrow \mathcal{P}\iota c(S^{n+1})arrow\ldots$
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for a commutative ring extension $S/R$ [$10,$ (32), p. 137] and

$\partial$
$\partial$

(2.7) $\mathcal{P}\iota c(R)arrow(G, \mathcal{P}\iota c(R))arrow$ $arrow(G^{n-1}, \mathcal{P}\iota c(R))arrow(G^{n}, \mathcal{P}\iota c(R))arrow\cdots$

for a group $G$ acting on a commutative ring $R$ [$10,$ (31), p. 137]. In (2.6), $\mathcal{P}ic(S^{n})$

is of degree $n-1$ . In (2.7), $(G^{n}, \mathcal{P}\iota c(R))$ means the direct product of $\mathcal{P}ic(R)$

indexed by $G^{n}$ . He shows that the V-Z system (2.5) associated with complex
(2.6) (respectively (2.7)) has the Amitsur Pic-U sequence [12], [3]

(2.8) $...arrow H^{n}(S/R, U)arrow H^{n}(J)arrow H^{n-1}(S/R, Pic)arrow H^{n+1}(S/R, U)arrow\cdots$

(respectively the Galois Pic-U sequence [2]

(2.9) $...arrow H^{n}(G, U(R))arrow H^{n}(R, G)arrow H^{n-1}$ ( $G$ , Pic $(R)$ )$arrow H^{n+1}(G, U(R))arrow$ ).

2.10. THEOREM. (a) Let $S/R$ be a commutative ring extension. Let

(2.11) $0arrow U(S^{\cdot})arrow A(S^{\cdot})arrow B(S^{\cdot})arrow$ Pic $(S^{\cdot})arrow 0$

be the exact sequence of complexes obtained by applying sequence (1.7) to the
Amitsur semi-srmplicial complex

$S=S\otimes_{R}S\equiv S\otimes_{R}S\otimes_{R}Sarrow^{arrowarrowarrow}\ldots$

There is a natural isomorphism between the V-Z system associated with (2.11) and
the V-Z system associated with complex (2.6).

(b) Let $G$ be a group acting on a commutative ring $R$ as automorphisms.
Let $C$ be the non-homogeneous standard complex of $G$ , which is a free $Z[G]-$

resolution of the tnvial G-module Z. Let

(2.12) $0arrow Hom_{G}(C, U(R))arrow Hom_{G}(C, A(R))arrow Hom_{G}(C, B(R))arrow Hom_{G}(C, Pic(R))arrow 0$

be the exact sequence obtained by the exact sequence (1.4) of G-modules. There is
a natural isomorphism between the V-Z system associated with the sequence of
complexes (2.12) and the V-Z system associated with complex (2.7).

2.13. COROLLARY. The V-Z system associated with complex exact sequence
(2.11) (respectively (2.12)) has the Amitsur (respectively Galois) Pic-U sequence
(2.8) (respectively (2.9)).

PROOF. (a) Recall the definition of (2.6). $S^{n}$ is the n-fold tensor product
of $S$ over $R$ and the functor

$\partial:\mathcal{P}\iota c(S^{n})arrow \mathcal{P}\iota c(S^{n+1})$

maps an object $P$ to $\partial P=(\cdots((\ddot{\epsilon}{}_{0}P+(-1)\ddot{\epsilon}_{1}P)+(-1)^{2}\ddot{\epsilon}_{2}P)+ )+(-1)^{n}\ddot{\epsilon}_{n}P$, where

$\epsilon_{i}$ ; $S^{n}arrow S^{n+1},$ $a_{1}\otimes\cdots\otimes a_{n^{-\geq}}a_{1}\otimes\cdots\otimes a_{i}\otimes 1\otimes a_{i+1}\otimes\cdots\otimes a_{n}$
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for $0\leqq i\leqq n$ . Using $\overline{\epsilon}_{i}$ instead of $\ddot{\epsilon}_{i}$ , we get a coherent complex of categories
$\partial$ $\partial$

(2.14) $\overline{\mathcal{P}\iota c}(S)arrow\overline{\mathcal{P}\iota c}(S^{2})arrow$ $arrow\overline{\mathcal{P}\iota c}(S^{n})arrow\overline{\mathcal{P}\downarrow c}(S^{n+1})arrow\ldots$

with structure $\overline{x}:\partial^{2}arrow 0$, and we have a diagram of homomorphisms
$\partial$

$...arrow\overline{\mathcal{P}\iota c}(S^{n})arrow\overline{\mathcal{P}\iota c}(S^{n+1})arrow\ldots$

$...arrow \mathcal{P}ic(S^{n})\downarrow\epsilonarrow^{\partial}\mathcal{P}\iota c(S^{n+1})\downarrow\epsilonarrow\ldots$

where (2.14) and (2.6) appear as two rows. It follows from Lemma 1.5 that there
is a natural isomorphism

$\xi:\partial\epsilonarrow^{\sim}\epsilon\partial$

such that
$\partial^{2}\epsilonarrow^{\partial\xi}\partial\epsilon\partialarrow^{\xi\partial}\epsilon\partial^{2}$

$0\epsilon\downarrow\chi_{\epsilon}$

$=$ $0$ $=$

$\epsilon 0\downarrow\epsilon\overline{\chi}$

commutes. Since $\epsilon$ is an equivalence, it follows that the V-Z systems corre-
sponding to (2.14) and (2.6) are isomorphic. Let (2.5) be the V-Z system associated
with (2.14). By definition, we can identify $F_{n}=U(S^{n+1})$ and $C_{n}=Pic(S^{n+1})$ . $P^{n}$

is the quotient set of the set of all pairs $(u, a)$ with $u\in Ob(\overline{\mathcal{P}\iota c}(S^{n}))$ and $a:\partial(u)$

$arrow 0$ in $\overline{\mathcal{P}\iota c}(S^{n+1})$ by the equivalence relation: $(u, a)\sim(v, b)$ if there is a map
$c:uarrow v$ in $\overline{\mathcal{P}\iota c}(S^{n})$ such that $b\circ\partial(c)=a$ . Denote by $\{u, a\}$ the equivalence class
of $(u, a)$ . Next, let (2.1) be the V-Z system associated with (2.11). We can also
identify $X_{n}=U(S^{n+1})$ and $Y_{n}=Pic(S^{n+1})$ . Recall that $J_{n}$ is the center of square

$A(S^{n})arrow^{f}B(S^{n})$

$A(S^{n+1})\downarrowarrow^{f}B(S^{n+1})\downarrow$

.

If $\{u, a\}\in P^{n}$ , we have $[u]\in B(S^{n}),$ $[\partial(u), a]\in A(S^{n+1})$ , and $([\partial(u), a], [u])$ is
in the fiber product. Assume $\{u, a\}=\{v, b\}$ in $P^{n}$ with $c:uarrow v$ in $\overline{\mathcal{P}\iota c}(S^{n})$ . Put

$e:u+(-v)arrow v+(-v)0c+I\underline{reducedmap}$ .
Then $[u+(-v), e]\in A(S^{n})$ and we have

$([\partial(u), a], [u])=([\partial(v), b], [v])+\Delta[u+(-v), e]$

with diagonal map $\Delta:A(S^{n})arrow A(S^{n+1})\cross B(S^{n})$ . Hence the map
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$\{u, a\}-[[\partial(u), a], [u]]$ , $P^{n}arrow J_{n}$

is well-defined and seen to be a homomorphism. It is very easy to check that
this homomorphism gives rise to a homomorphism of the V-Z system associated
with (2.14) to the V-Z system associated with (2.11), together with identities
$F_{n}arrow X_{n}$ and $C_{n}arrow Y_{n}$ . In particular $P^{n}arrow J_{n}$ is an isomorphism by (d) below (2.1).

This proves (a). (b) is proved similarly. Q. E. D.
The final step is to identify the sequence (2.2) of the V-Z system associated

to (2.3) with the mapping cone sequence. We review the definition of the map-
ping cone sequence [4, Theorem 1.3], [8], [7, p. 46].

The mapping cone $M(f)$ of (2.3) is defined by:

$M(f)=\{M_{n}, \partial\}$ , $M_{n}=C_{n}\cross D_{n-1}$ ,

$\partial(x, y)=(-\partial x, fx+\partial y)$ .
(In [4], $M_{n}$ is given degree $n-1.$ ) There is a long exact sequence

(2.15) $arrow H^{n}(X)arrow^{\alpha}H^{n}(M(f))arrow H^{n-1}(Y)arrow H^{n+1}(X)-\cdots$
$\beta$ $\gamma$

where
$\alpha$ ; (class of $x\in X_{n}$ ) $-$ (class of $(x,$ $0)$) ,

$\beta$ : (class of $(x,$ $y)\in M_{n}$ ) $-$ (class of $-\overline{y}$) ,

$\gamma$ : (class of $\overline{y}\in Y_{n-1}$ with $\partial y=fx$ ) $-$ ($class$ of $\partial x$).

Here we denote by $\overline{y}\in Y_{n-1}$ the image of $y\in D_{n-1}$ . (The last map $\gamma$ is $-\gamma$ with
the notation of [4].)

If $(x, y)\in M_{n}$ is an n-cocycle, then $\partial x=0$ and $fx+\partial y=0$ . Hence $(x, -y)\in J_{n}$ .
The homomorphism

$\theta$ : (class of $(x,$ $y)$ ) $-\geq$ (class of $[x,$ $-y]$), $H^{n}(M(f))arrow H^{n}(J)$

is well-defined. It is easy to prove:
2.16. PROPOSITION. We have a commutative diagram

$arrow H^{n}(X)arrow H^{n}(M(f))arrow H^{n-1}(Y)arrow H^{n+1}(X)arrow\ldots$

$\Vert$ $\downarrow\theta$ $\Vert$
$\Vert$

$arrow H^{n}(X)arrow$ $H^{n}(J)$ $arrow H^{n-1}(Y)arrow H^{n+1}(X)arrow\ldots$

where the first row is the maptn $ng$ cone sequence (2.15), and the second row is the
sequence of the V-Z system associated with (2.3). Especially, $\theta$ is an isomorphism.

Combining (2.16) and (2.13), we have:
2.17. THEOREM. (a) Let $S/R$ be a commutative ring extension. There is

an isomorphism of sequences
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$arrow H^{n}(S/R, U)arrow$ $H^{n}(J)$ $arrow H^{n-1}(S/R, Pic)arrow H^{n+1}(S/R, U)arrow\cdots$

$\Vert$
$l\downarrow$ $\Vert$

$\Vert$

$arrow H^{n}(S/R, U)arrow H^{n}(M(f))arrow H^{n-1}(S/R, Pic)arrow H^{n+1}(S/R, U)arrow\cdots$

where the first row is the Amitsur Pic-U sequence (2.8) and the second row is the
mappng cone sequence of the sequence (2.11).

(b) Let $G$ be a group acting on a commutative nng R. There is an isomor-
phism of sequences

$arrow H^{n}(G, U(R))arrow H^{n}(R, G)-H^{n-1}$ ( $G$ , Pic $(R)$ ) $arrow H^{n+1}(G, U(R))arrow\cdots$

$\Vert$
$l\downarrow$ $\Vert$ $\Vert$

$arrow H^{n}(G, U(R))arrow H^{n}(G, f)arrow H^{n-1}$ ( $G$ , Pic $(R)$ ) $arrow H^{n+1}(G, U(R))arrow\cdots$

where the first row is the Galozs Pic-U sequence (2.9) and the second row is the
mapping cone sequence of the sequence (2.12).

Note that the second row of (b) is obtained by applying [4, Proposition 2.1]

to the sequence of G-modules
$f_{R}$

$0arrow U(R)arrow A(R)arrow B(R)arrow$ Pic $(R)arrow 0$ .
$(H^{n}(G, f)$ in the above means $H^{n-1}(G, f)$ of [4].)
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