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\S 1. Introduction.

In the previous papers [17], [18] we determined all arithmetic triangle
Fuchsian groups. The purpose of this paper is to determine all arithmetic
Fuchsian groups with signature $($1; $e)$ . In \S 2, we prove that for arbitrary non-
negative integers $g$ and $t$ there exist finitely many arithmetic Fuchsian groups
with signature $(g;e_{1}, e_{2}, \cdots , e_{t})$ up to $SL_{2}(R)$-conjugation (Theorem 2.1). In \S 3
we deal with arithmetic Fuchsian groups $\Gamma$ with signature (1; e) $(i.e$ . $g=1$ ,
$t=1)$ . We give a necessary and sufficient condition for such a group $\Gamma$ to be
arithmetic. More precisely, assume that $\Gamma$ contains $-1_{2}$ . Then $\Gamma$ has the fol-
lowing presentation:

$\Gamma=\langle\alpha, \beta, \gamma|\alpha\beta\alpha^{-1}\beta^{-1}\gamma=-1_{2}, \gamma^{e}=-1_{2}\rangle$ ,

where $\alpha$ and $\beta$ are hyperbolic elements of $SL_{2}(R)$ and $\gamma$ is an elliptic (resp. a
parabolic) element such that tr $(\gamma)=2$ cos $(\pi/e)$ . Among such triples $(\alpha, \beta, \gamma)$ of
generators of $\Gamma$ we can find a certain fundamental triple $(\alpha_{0}, \beta_{0}, \gamma_{0})$ . Let $x=$

tr $(\alpha_{0}),$ $y=tr(\beta_{0}),$ $z=tr(\alpha_{0}\beta_{0})$ . Then the condition for $\Gamma$ to be arithmetic can be
expressed in terms of $x,$ $y,$ $z$ . We can also obtain an explicit expression of the
quaternion algebra associated with $\Gamma$ (Theorem 3.4). In \S 4 using Theorem 3.4
of \S 3 we determine all arithmetic Fuchsian groups with signature (1; e) and
list them up (Theorem 4.1). In Fricke-Klein [7] we can find some examples of
arithmetic Fuchsian groups with signature $($1; $e)$ .

\S 2. Arithmetic Fuchsian groups.

We recall the definition of arithmetic Fuchsian groups. Let $k$ be a totally
real algebraic number field of degree $n$ . Then we have $n$ distinct Q-embeddings
$\varphi_{i}(1\leqq i\leqq n)$ of $k$ into the real number field $R$, where $\varphi_{1}$ is the identity. Let $A$

be a quaternion algebra over $k$ which is unramified at the place $\varphi_{1}$ and ramified
at all other infinite places $\varphi_{i}(2\leqq i\leqq n)$ . Then there exists an R-isomorphism

This research was partially supported by Grant-in-Aid for Scientific Research (No.

57540007) , Ministry of Education.



382 K. TAKEUCHI

\langle 2.1) $\rho:A\otimes_{Q}Rarrow M_{2}(R)+H+\cdots+H$ ,

where $H$ is the Hamilton quaternion algebra over $R$ . Let $\rho_{1}$ (resp. $\rho_{i},$
$2\leqq i\leqq n$ )

be the composite of $\rho|_{A}$ with the projection to $M_{2}(R)$ (resp. $H$). Then $\rho_{1}$ (resp. $\rho_{i}$ )

is a k-isomorphism of $A$ into $M_{2}(R)$ (resp. $H$). $\rho_{1}$ is uniquely determined up
to $GL_{2}(R)$-conjugation. We may assume that $\rho_{i}|_{k}=\varphi_{i}(2\leqq i\leqq n)$ . Let $O$ be an
order of $A$ . Put $U^{(1)}=\{\epsilon\in O|n_{A}(\epsilon)=1\}$ , where $n_{A}()$ is the reduced norm of $A$

over $k$ . Let $\Gamma^{(1)}(A, O)=\rho_{1}(U^{(1)})$ . Then $\Gamma^{(1)}(A, O)$ is a Fuchsian group of the
first kind ( $i$ . $e$ . a discrete subgroup of $SL_{2}(R)$ acting discontinuously on the
upper half plane $H=\{z\in C|{\rm Im}(z)>0\}$ such that vol $(H/\Gamma^{(1)}(A, O))<\infty$ , where
vol $()$ is the non-Euclidean volume on $H.$ )

DEFINITION 1. Let $\Gamma$ be a discrete subgroup of $SL_{2}(R)$ such that vol $(H/\Gamma)$

$<\infty$ . If $\Gamma$ is commensurable with some $\Gamma^{(1)}(A, 0)$ , then $\Gamma$ is called an arith-
metic Fuchsian grouP. We call A the quaternion algebra associated with $\Gamma$

Let $\Gamma$ be a Fuchsian group of the first kind with signature $(g;e_{1}, e_{2}, \cdots , e_{t})$ ,
where $2\leqq e_{1}\leqq e_{2}\leqq\ldots\leqq e_{t}\leqq\infty$ . Then $\Gamma$ is generated by $2g$ hyperbolic elements
$\{\alpha_{i}, \beta_{i}|1\leqq i\leqq g\}$ and $t$ elliptic or parabolic elements $\{\gamma_{j}|1\leqq j\leqq t\}$ . The funda-
mental relations among them are given as follows:

(2.2) $\{\begin{array}{l}\alpha_{1}\beta_{1}\alpha_{1}^{-1}\beta_{1}^{-1}\cdots\alpha_{g}\beta_{g}\alpha_{g}^{-1}\beta_{g}^{-1}\gamma_{1}\cdots\gamma_{t}=\pm 1_{2}\gamma_{j}^{e_{j}}=\pm 1_{2} (1\leqq j\leqq t),\end{array}$

where we neglect the relation for $e_{j}=\infty$ .
The integer $g$ is the genus of the compact Riemann surface $(H/\Gamma)^{*}$ obtained

by joining the finite number of cusps to $H/\Gamma$ We have the following formula:

\langle 2.3) vol $(H/ \Gamma)=(2\pi)^{-1}\int_{F(\Gamma)}\frac{dxdy}{y^{2}}=2g-2+\sum_{j=1}^{t}(1-1/e_{j})>0$ ,

where $F(\Gamma)$ denotes a fundamental domain of $\Gamma$

Now we shall prove the following theorem.
THEOREM 2.1. Let $g$ and $t$ be arbitrary non-negative integers. Then there

exist only finitely many arithmetic Fuchsian groups with signature $(g;e_{1}, e_{2}, \cdots , e_{t})$

up to $SL_{2}(R)$-conjugation.
PROOF. In order to prove the above theorem we need several propositions and

lemmas. Let $\Gamma$ be an arithmetic Fuchsian group commensurable with $\Gamma^{(1)}(A, O)$ .
Then by the results of [16] we see that $k=Q(tr(\delta)|\delta\in\Gamma^{(2)}),$ $\rho_{1}(A)=k[\Gamma^{(2)}]$ ,
where $\Gamma^{(2)}$ is the subgroup of $\Gamma$ generated by $\{\delta^{2}|\delta\in\Gamma\}$ . Furthermore, $O_{k}[\Gamma^{(2)}]$

is an order of $\rho_{1}(A)$ , where $O_{k}$ is the ring of integers in $k$ . Hence there exists
a maximal order $O_{1}$ in $A$ such that $\Gamma^{(2)}$ is a subgroup of finite index in
$\Gamma^{(1)}(A, O_{1})$ .

PROPOSITION 2.2. Let $\Gamma be$ a Fuchstan group with signature $(g;e_{1}, e_{2}, \cdots , e_{t})$ .
Then the following assertions hold:
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(i) If $t=0$ , then $[\Gamma\cdot\{\pm 1_{2}\} : \Gamma^{(2)}\cdot\{\pm 1_{2}\}]=2^{2g}$ .
(ii) If $t>0$ , then $2^{2g}\leqq[\Gamma\cdot\{\pm 1_{2}\} : \Gamma^{(2)}\cdot\{\pm 1_{2}\}]\leqq 2^{2g+t- 1}$ .
PROOF OF PROPOSITION 2.2. Firstly consider the case (ii). Since $\Gamma\cdot\{\pm 1_{2}\}$

$/\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ is an elementary abelian group of type (2, $\cdots$ , 2) generated by
$2g+t-1$ elements, we see that the second inequality holds. For an arbitrary
element $\gamma$ of $\Gamma$ we have the expression $\gamma=\pm\delta_{1}^{m_{1}}\cdots\delta_{r}^{m_{r}}$, where $\delta_{j}\in\{\alpha_{1},$ $\beta_{1},$ $\cdots$ ,
$\alpha_{g},$

$\beta_{g},$ $\gamma_{1},$
$\cdots$ , $\gamma_{t}$ }. We put

$\nu_{a_{i}}(\gamma)=\sum_{\delta_{j}=\alpha_{i}}m_{j}(mod 2)$ , $\nu_{\beta_{i}}(\gamma)=\sum_{\delta_{j}=\beta_{i}}m_{j}(mod 2)$ .

In view of (2.2), $\nu_{a_{i}},$
$\nu_{\beta_{i}}(1\leqq i\leqq g)$ are well-defined and they are homomorphisms

of $\Gamma$ onto $Z/2Z$. Let $\Gamma_{a_{i}}=Ker(\nu_{\alpha_{i}}),$ $\Gamma_{\beta_{i}}=Ker(\nu_{\beta_{i}})$ . Then they are pair-wise
distinct subgroups of index 2 in $\Gamma$ Since $\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ is contained in $\bigcap_{1\leqq i\leqq g}(\Gamma_{\alpha_{i}}\cap\Gamma_{\beta_{i}})$ ,

we obtain the first inequality. This proves the assertion (ii). By the same
argument we can prove the assertion (i).

Let $O_{1}$ be a maximal order of $A$ . Then by a formula of Shimizu [14] we
have

(2.4) vol $(H/ \Gamma^{(1)}(A, O_{1}))=4(2\pi)^{-2n}d(k)^{3/2}\zeta_{k}(2)\prod_{\mathfrak{p}_{|D(A)}}(n_{k/Q}(\mathfrak{p})-1)$ ,

where $d(k)$ is the discriminant of $k$ and $\zeta_{k}(2)$ is the value of the Dedekind zeta
function of $k$ at $s=2$ and $D(A)$ is the discriminant of $A$ which is defined by

the product of all finite places $\mathfrak{p}$ such that $A\otimes_{k}k_{\mathfrak{p}}$ is a division quaternion algebra.
Let $\Gamma$ be an arithmetic Fuchsian group with signature $(g;e_{1}, \cdots , e_{t})$ com-

mensurable with $\Gamma^{(1)}(A, O_{1})$ . Then by (2.3) and (2.4) we have

(2.5) $4(2 \pi)^{-2n}d(k)^{3/2}\zeta_{k}(2)\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)=d_{1}d_{2}^{-1}\{2g-2+\sum_{1\leqq j\leqq t}(1-1/e_{j})\}$ ,

where $d_{1}=[\Gamma\cdot\{\pm 1_{2}\} : \Gamma^{(2)}\cdot\{\pm 1_{2}\}],$ $d_{2}=[\Gamma^{(1)}(A, O_{1}):\Gamma^{(2)}\cdot\{\pm 1_{2}\}]$ . Since, $\zeta_{k}(2)$

$>1$ , $\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)\geqq 1$ , by Proposition 2.2 we have

(2.6) $d(k)<(2\pi)^{4n/3}\cdot\{2^{2g+t- 2}(2g+t-2)\}^{2/S}$ .
On the other hand the following result is proved by A. Odlyzko [11].

PROPOSITION 2.3 (A. Odlyzko). Let $k$ be a totally real algebraic number
field of degree $n$ and $d(k)$ be its discriminant. Then the following inequality
holds:

(2.7) $d(k)>a^{n}\exp(-b)$ , where $a=29.099,$ $b=8.3185$ .
REMARK. By using a computer he has made a table of the numerical values

for $a$ and $b$ . We note that (2.7) is one of them.
If we fix the integers $g$ and $t$ , then by (2.6) and (2.7) we obtain an upper

bound of the degree $n$ of $k$ and it is given by

(2.8) $n_{0}=(b+\log {}_{e}C(g, t))/\log_{e}(a/(2\pi)^{4/3})$ ,
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where $C(g, t)=2^{2g+t-2}(2g+t-2)^{2/3}$ and $a$ and $b$ are given in (2.7). We note that
$\log_{e}(a/(2\pi)^{4/3})=0.920201\cdots$ . Now we fix $g,$

$t$ and $n$ . Then by (2.6) $d(k)$ is
bounded. It is well-known that there exist only finitely many algebraic number
fields $k$ of given degree such that $d(k)$ is bounded up to Q-isomorphisms.

Now we may fix the field $k$ . By (2.5) $\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)$ is bounded. There-

fore, if $\mathfrak{p}$ divides $D(A)$ , then $n_{k/Q}(\mathfrak{p})$ is bounded. Hence there exist only finitely
many prime ideals $\mathfrak{p}$ dividing $D(A)$ . Thus we have proved that $D(A)$ is of
finite possibility. Since $A$ satisfies (2.1), by the Hasse’s principle in the theory
of simple algebras we see that there exist only finitely many quaternion algebras
over $k$ associated with some arithmetic Fuchsian groups with given signature.

We may fix a quaternion algebra $A$ . It is well-known that the type number
of maximal orders in $A(i$ . $e$ . the number of conjugate classes of maximal orders
under the invertible elements of $A$ ) is finite. Hence there exist only finitely
many $\Gamma^{(1)}(A, O_{1})$ up to $SL_{2}(R)$-conjugation. Now by (2.5) we see that $d_{2}$ is
bounded. We need the following lemma.

LEMMA 2.4. Let $G$ be a finitely generated group. Then for an arbitrary

Positive integer $d$ there exist only finitely many subgroups $H$ of $G$ such that
$[G:H]\leqq d$ .

PROOF OF LEMMA 2.4. We see easily that we may assume that $G$ is a free
group. In this case this is a well-known fact (cf. Theorem 7.2.9 $p$ 105 Hall
[5]). Q. E. D.

By Lemma 2.4 we see that $\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ is of finite possibility up to $SL_{2}(R)-$

conjugation. Let $N(\Gamma^{(2)})$ be the normalizer of $\Gamma^{(2)}$ in $SL_{2}(R)$ . Then we see
that $\Gamma\cdot\{\pm 1_{2}\}\subset N(\Gamma^{(2)})$ . We need the following

PROPOSITION 2.5. Let $\Gamma$ be a discrete subgroup of $SL_{2}(R)$ such that vol $(H/\Gamma)$

$<\infty$ . Then the normalizer $N(\Gamma)$ of $\Gamma$ in $SL_{2}(R)$ is also a discrete subgroup of
$SL_{2}(R)$ such that vol $(H/N(\Gamma))<\infty$ and $[N(\Gamma):\Gamma]<\infty$ .

The fact that $N(\Gamma)$ is discrete in $SL_{2}(R)$ is proved in [3] p. 5. Since we
have vol $(H/\Gamma)=[N(\Gamma):\Gamma\cdot\{\pm 1_{2}\}]\cdot vol(H/N(\Gamma))$ , we see that the assertion holds.
Q. E. D.

By proposition 2.5 we see that there exist only finitely many $\Gamma\cdot\{\pm 1_{2}\}$ up
to $SL_{2}(R)$-conjugation. This is valid for $\Gamma$ This proves Theorem 2.1.

\S 3. Arithmetic Fuchsian groups with signature $($ 1; $e)$ .
From now on we treat Fuchsian groups $\Gamma$ with signature (1; e) $(i$ . $e$ . $g=1$ ,

$t=1)$ . Since there is no essential difference between $\Gamma$ and $\Gamma\cdot\{\pm 1_{2}\}$ , we always
assume that $\Gamma$ contains $-1_{2}$ . Then by Fricke-Klein [7] $\Gamma$ has the following
presentation:
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(3.1) $\Gamma=$ \langle $\alpha,$ $\beta,$ $\gamma|\alpha\beta\alpha^{-1}\beta^{-1}\gamma=-1_{2},$ $\gamma^{e}=-1_{2}$ , tr $(\gamma)=2$ cos $(\pi/e)\rangle$ ,

where $\alpha,$
$\beta$ are hyperbolic elements.

PROPOSITION 3.1. Let $\Gamma$ be a Fuchsian group with signature (1; e) $(2\leqq e\leqq\infty)$ .
Let $\Gamma^{(2)}$ be the subgroup of $\Gamma$ generated by $\{\delta^{2}|\delta\in\Gamma\}$ . Then the signature of
$\Gamma^{(2)}$ is $(1; e, e, e, e)$ and $[\Gamma:\Gamma^{(2)}\cdot\{\pm 1_{2}\}]=4$ . Furthermore, let $(\alpha, \beta, \gamma)$ be a
triple of generators of $\Gamma$ satisfying (3.1). Then $\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ is generated by
$\{\alpha^{2}, \beta^{2}, \beta\gamma\beta^{-1}, \beta\alpha\gamma\alpha^{-1}\beta^{-1}, \gamma, \alpha\gamma\alpha^{-1}\}$ and the field $Q(tr(\delta)|\delta\in\Gamma^{(2)})$ is generated by
{ $(tr(\alpha))^{2}$ , (tr $(\beta))^{2}$ , tr $(\alpha)tr(\beta)tr(\alpha\beta)$ } over $Q$ .

PROOF. Let $\nu_{\alpha},$ $\nu_{\beta}$ be the same as defined in Proposition 2.2. Let $\Gamma_{a}=Ker(\nu_{\alpha})$ ,
$\Gamma_{\beta}=Ker(\nu_{\beta})$ . Then we see that $\Gamma^{(2)}\cdot\{\pm 1_{2}\}=\Gamma_{\alpha}\cap\Gamma_{\beta}$ . It is easy to see that $\gamma$

and $\alpha\gamma\alpha^{-1}$ represent all inequivalent conjugate classes of primitive elliptic (or

parabolic if $e=\infty$ ) elements of $\Gamma_{a}$ . Since $\Gamma_{\alpha}$ is of index 2 in $\Gamma$, we see that
the signature of $\Gamma_{\alpha}$ is $(1; e, e)$ . Moreover, we see that $\Gamma_{\alpha}$ is generated by
$\{\alpha^{2}, \beta, \gamma, \alpha\gamma\alpha^{-1}\}$ . To see this we denote by $\Gamma’$ the subgroup of $\Gamma$ generated by
$\{\alpha^{2}, \beta, \gamma, \alpha\gamma\alpha^{-1}\}$ . Then we see easily that $\Gamma’$ is a normal subgroup of $\Gamma$ such
that $[\Gamma:\Gamma’]\leqq 2$ . Since $\Gamma’$ is contained in $\Gamma_{a}$ , we see that $\Gamma_{\alpha}=\Gamma’$ . Since
$\{1_{2}, \beta\}$ is a complete set of representatives of $\Gamma_{a}/\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ , by the same
argument as above we see that $\{\gamma, \alpha\gamma\alpha^{-1}, \beta\gamma\beta^{-1}, \beta\alpha\gamma\alpha^{-1}\beta^{-1}\}$ represent all in-
equivalent conjugate classes of primitive elliptic (or parabolic if $e=\infty$ ) elements
of $\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ and that the signature of $\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ is $(1; e, e, e, e)$ . Let $\Gamma$“ be
the subgroup of $\Gamma$ generated by $\{\alpha^{2}, \beta^{2}, \gamma, \alpha\gamma\alpha^{-1}, \beta\gamma\beta^{-1}, \beta\alpha\gamma\alpha^{-1}\beta^{-1}\}$ . Then we
see that $\Gamma’’\subset\Gamma_{\alpha\cap}\Gamma_{\beta}=\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ . Using the relations: $\beta\alpha^{2}\beta^{-1}=\gamma(\alpha\gamma\alpha^{-1})\alpha^{2}$,
$\beta^{-1}\alpha^{2}\beta=\beta^{-2}(\beta\alpha^{2}\beta^{-1})\beta^{2},$ $\beta^{-1}(\alpha\gamma\alpha^{-1})\beta=\beta^{-2}(\beta\alpha\gamma\alpha^{-1}\beta^{-1})\beta^{2}$, we see that $\beta$ normalizes
$\Gamma’’$ . By the relation $\alpha\gamma\alpha^{-1}=\gamma^{-1}\beta\alpha^{2}\beta^{-1}\alpha^{-2}$ we see that $\Gamma_{\alpha}$ is generated by $\{\alpha^{2}, \beta, \gamma\}$ .
Therefore, $\Gamma^{\parallel}$ is a normal subgroup of $\Gamma_{a}$ such that $[\Gamma_{\alpha} : \Gamma’’]\leqq 2$ . Hence we
see that $\Gamma’’=\Gamma^{(2)}\cdot\{\pm 1_{2}\}$ . Let $k=Q$ ( $tr(\alpha^{2})$ , tr $(\beta^{2})$ , tr $(\alpha^{2}\beta^{2})$). By the equations

(3.2) $\{\begin{array}{l}tr (\alpha^{2})=tr(\alpha)^{2}-2, tr (\beta^{2})=tr(\beta)^{2}-2 ,tr (\alpha^{2}\beta^{2})=tr(\alpha) tr (\beta) tr (\alpha\beta)-tr(\alpha)^{2}-tr(\beta)^{2}+2,\end{array}$

we see that $k=Q$ ( $tr(\alpha)^{2}$ , tr $(\beta)^{2}$ , tr $(\alpha)tr(\beta)tr(\alpha\beta)$ ). Let $A$ be the vector space
spanned by $\{1_{2}, \alpha^{2}, \beta^{2}, \alpha^{2}\beta^{2}\}$ over $k$ in $M_{2}(R)$ . By the equations $\beta^{2}\alpha^{2}=$

tr $(\alpha^{2}\beta^{2})1_{2}-\alpha^{-2}\beta^{-2},$ $\alpha^{-2}=tr(\alpha^{2})1_{2}-\alpha^{2},$ $\beta^{-2}=tr(\beta^{2})1_{2}-\beta^{2}$, we see that $A$ is an
algebra over $k$ . Using the equation $\delta=tr(\delta)^{-1}(\delta^{2}+1_{2})$ for $\delta\in SL_{2}(R)$ such that
tr $(\delta)\neq 0$, we see that $\gamma=-\beta\alpha\beta^{-1}\alpha^{-1}=tr(\alpha)^{-2}tr(\beta)^{-2}(\beta^{2}+1_{2})(\alpha^{2}+1_{2})(\beta^{-2}+1_{2})(\alpha^{-2}+1_{2})$

$\in A$ . In the same way we see that $\alpha\gamma\alpha^{-1},$ $\beta\gamma\beta^{-1}$ and $\alpha\beta\gamma\beta^{-1}\alpha^{-1}$ are also con-
tained in $A$ . It follows that $A=k[\Gamma^{(2)}]$ and $k=Q(tr(\delta)|\delta\in\Gamma^{(2)})$ . Q. E. D.

Let $\Gamma$ be a Fuchsian group with signature $($1; $e)$ . Let $\{\alpha, \beta, \gamma\}$ be a triple
of generators of $\Gamma$ satisfying (3.1). Let $x=tr(\alpha),$ $y=tr(\beta),$ $z=tr(\alpha\beta)$ . Then by
the equation tr $(\delta\epsilon)+tr(\delta\epsilon^{-1})=tr(\delta)tr(\epsilon)$ for $\delta,$ $\epsilon\in SL_{2}(R)$ and by (3.1) we have
the following equation (cf. Fricke-Klein [7] p. 306)
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(3.3) $x^{2}+y^{2}+z^{2}-xyz=2-2$ cos $(\pi/e)$ .

Now we consider the transformations:
(i) $\alpha_{1}=-\alpha$ , $\beta_{1}=-\beta$ , $\gamma_{1}=\gamma$,

(ii) $\alpha_{2}=-\alpha$ , $\beta_{2}=\beta$ , $\gamma_{2}=\gamma$,

(ili) $\alpha_{3}=\alpha$, $\beta_{3}=-\beta$ , $\gamma_{3}=\gamma$,

(iv) $\alpha_{4}=\beta$ , $\beta_{4}=\alpha$ , $\gamma_{4}=\gamma^{-1}$ ,
(v) $\alpha_{5}=\alpha\beta$ , $\beta_{5}=\alpha^{-1}$ , $\gamma_{5}=\gamma$,

(vi) $\alpha_{6}=\alpha^{-1}$ , $\beta_{6}=\alpha\beta\alpha^{-1}$, $\gamma_{6}=\gamma^{-1}$ .
Then each $(\alpha_{i}, \beta_{i}, \gamma_{t})(1\leqq i\leqq 6)$ is also a triple of generators of $\Gamma$ satisfying (3.1).

Let $x_{i}=tr(\alpha_{i}),$ $y_{i}=tr(\beta_{i}),$ $z_{i}=tr(\alpha_{i}\beta_{i})$ . Then $(x_{i}, y_{i}, z_{i})$ is given by
$(i)’$ $(x_{1}, y_{1}, z_{1})=(-x, -y, z)$ ,

(ii)’ $(x_{2}, y_{2}, z_{2})=(-x, y, -z)$ ,

(iii)’ $(x_{3}, y_{3}, z_{3})=(x, -y, -z)$ ,

(iv)’ $(x_{4}, y_{4}, z_{4})=(y, x, z)$ ,
$(v)’$ $(x_{5}, y_{5}, z_{5})=(z, x, y)$ ,
(vi)’ $(x_{6}, y_{6}, z_{6})=(x, y, xy-z)$ .

We note that each $(x_{i}, y_{i}, z_{i})(1\leqq i\leqq 6)$ also satisfies (3.3).

DEFINITION 2. Let notations be the same as above. Each transformation
$(\alpha, \beta, \gamma)arrow(\alpha_{i}, \beta_{i}, \gamma_{i})(1\leqq i\leqq 6)$ is called an elementary operati0n for $(\alpha, \beta, \gamma)$ .

These operations are introduced in Fricke-Klein [7].

DEFINITION 3. Let $(\alpha, \beta, \gamma)$ be a triple of generators of $\Gamma$ satisfying (3.1).

We denote the height of $(\alpha, \beta, \gamma)$ by

(3.4) $h(\alpha, \beta, \gamma)=tr(\alpha)^{2}+tr(\beta)^{2}+tr(\alpha\beta)^{2}$ .

This notion is a modified one given in Mordell [10] p. 107. We note here that
each permutation of $(x, y, z)$ can be realized by a finite number of the elementary
operations. The height $h(\alpha, \beta, \gamma)$ is unchanged under the operations (i), (ii), (iii),

(iv), (v) and by the operation (vi) we have

(3.5) $h(\alpha_{6}, \beta_{6}, \gamma_{6})=h(\alpha, \beta, \gamma)+x^{2}y^{2}-2xyz$ .

DEFINITION 4. Let $(\alpha, \beta, \gamma)$ and $(\alpha’, \beta’, \gamma’)$ be arbitrary triples of generators
of $\Gamma$ satisfying (3.1). If the one can be obtained from the other under a finite
number of the elementary operations, we say that they are equivalent to each
other and we denote $(\alpha, \beta, \gamma)\sim(\alpha’, \beta’, \gamma’)$ .

This is obviously an equivalence relation.
DEFINITION 5. Let $(\alpha_{0}, \beta_{0}, \gamma_{0})$ be a triple of generators of $\Gamma$ satisfying (3.1).

We call $(\alpha_{0}, \beta_{c}, \gamma_{0})$ a fundamental triple of generators if it satisfies the following
conditions:

(3.6) $2<tr(\alpha_{0})\leqq tr(\beta_{0})\leqq tr(\alpha_{0}\beta_{0})$ ,

(3.7) $h(\alpha_{0}, \beta_{0}, \gamma_{0})={\rm Min}\{h(\alpha, \beta, \gamma)|(\alpha, \beta, \gamma)\sim(\alpha_{0}, \beta_{0}, \gamma_{0})\}$ .
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This definition is motivated by the notion given in Mcrdell [10] p. 107.
PROPOSITION 32. Let $(\alpha, \beta, \gamma)$ be a triple of generators of $\Gamma$ satisfying (3.1).

Then by a finite number of the elementary operations $(\alpha, \beta, \gamma)$ can be transformed
to a fundamental triple of generators of $\Gamma$

PROOF. Let $h=h(\alpha, \beta, \gamma)$ . Let $C_{h}$ be the set of all triples $(\alpha’, \beta’, \gamma’)$ such
that $(\alpha’, \beta’, \gamma’)\sim(\alpha, \beta, \gamma)$ and $h(\alpha’, \beta’, \gamma’)\leqq h$ . Then we have tr $(\alpha’)|\leqq h^{1/2}$,
$|tr(\beta’)|\leqq h^{1/2}$ . By a result of [3] p. 88 (and Takeuchi [15]) the set tr $(\Gamma)$ has
no limit point in $R$ . Hence $C_{h}$ is a finite set. Therefore, we can find a triple
$(\alpha_{0}, \beta_{0}, \gamma_{0})$ equivalent to $(\alpha, \beta, \gamma)$ satisfying (3.7). Now we need the following

LEMMA 3.3. Let $\Gamma$ be a Fuchsian group with signature $($1; $e)$ . Let $(\alpha, \beta, \gamma)$

be a triple of generators of $\Gamma$ satisfying (3.1). Then $\alpha\beta$ is a hyperb0lic element
and tr $(\alpha)tr(\beta)tr(\alpha\beta)\geqq 10$ .

PROOF. Assume that $\alpha\beta$ is non-hyperbolic. Then we have the expression
$\alpha\beta=\pm\delta^{-1}\gamma^{m}\delta$ for $\delta\in\Gamma$ Since $\nu_{\alpha}(\alpha\beta)=1$ and $v_{a}(\delta^{-1}\gamma^{m}\delta)=\nu_{\alpha}(\gamma^{m})=0$ , we have a
contradiction. This shows $\alpha\beta$ is a hyperbolic element. Since tr $(\alpha)|>2$, tr $(\beta)|$

$>2$ , tr $(\alpha\beta)|>2$ , by (3.3) we have tr $(\alpha)tr(\beta)$ tr $(\alpha\beta)>10+2$ cos $(\pi/e)\geqq 10$ . This
proves Lemma 3.3.

By Lemma 3.3 under a finite number of operations $(i)-(v)$ we obtain a triple
of generators of $\Gamma$ satisfying (3.6) and (3.7). This proves Proposition 3.2. Q. E. D.

In order to determine all arithmetic Fuchsian groups with signature (1; e)

we shall prove the following theorem.
THEOREM 3.4. Let $\Gamma$ be an arithmetic Fuchsian groups with signature $($1; $e)$ .

Let $A$ be the quaternion algebra over $k$ associated with $\Gamma$ Assume that $\Gamma$ contains
$-1_{2}$ . Let $(\alpha, \beta, \gamma)$ be a fundamental triple of generators of $\Gamma$ satisfying (3.1).

Put

(3.8) $x=tr(\alpha)$ , $y=tr(\beta)$ , $z=tr(\alpha\beta)$ .

Then the following assertions hold:
(i) $k=Q(x^{2}, y^{2}, z^{2}, xyz)$ and $k$ contains cos $(\pi/e)$ .
(ii) $x,$ $y$ and $z$ are algebraic integers satisfying (3.9), (3.10), (3.11):

(3.9) $x^{2}+y^{2}+z^{2}-xyz=c_{e}$ , where $c_{e}=2-2$ cos $(\pi/e)$ ( $c_{e}=0$ if $e=\infty$ ).

(3.10) $\{\begin{array}{l}2<x<3 ( 2<x\leqq 3 if e=\infty) ,4(x^{2}-c_{e})/(x^{2}-4)\leqq y^{2}\leqq(x^{2}-c_{e})/(x-2),x\leqq y\leqq z=(xy-\sqrt{x^{2}y^{2}-4x^{2}-4y^{2}+4c_{e}})/2.\end{array}$

(3.11) $\{\begin{array}{l}0<\varphi_{i}(y^{2})\leqq\varphi_{i}(4(x^{2}-c_{e})/(x^{2}-4))<4,0<\varphi_{i}(z^{2})\leqq\varphi_{i}(4(y^{2}-c_{e})/(y^{2}-4))<4,0<\varphi_{i}(x^{2})\leqq\varphi_{i}(4(z^{2}-c_{e})/(z^{2}-4))<4(2\leqq i\leqq n).\end{array}$
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(iii) $A \cong(\frac{a,b}{k})$ , where $a=x^{2}(x^{2}-4),$ $b=-$ ($2+2$ cos $(\pi/e)$ ) $x^{2}y^{2}$. We denote by

$( \frac{a,b}{k})$ a quaternion algebra over $k$ defined as follows:
$( \frac{a,b}{k})=k1_{2}+k\omega+k\Omega+k\omega\Omega,$ $\omega^{2}=a,$ $\Omega^{2}=b,$ $\omega\Omega+\Omega\omega=0$ .

Conversely, let $x,$ $y$ and $z$ be algebraic integers satisfying (i), (ii). Let $a,$ $\beta$ be
two elements of $SL_{2}(R)$ determined by (3.8). Then the subgroup of $SL_{2}(R)$ gener-
ated by $\{\alpha, \beta\}$ is an arithmetic Fuchstan group with signature $($1; $e)$ .

REMARK. By (3.11) in particular we have

\langle 3.12) $0<\varphi_{i}(x^{2})$ , $\varphi_{i}(y^{2})$ , $\varphi_{i}(z^{2})<\varphi_{i}(c_{e})$ $(2\leqq i\leqq n)$ .

In case $e=\infty$ , this means that $n=1$ . Hence $k=Q$ . In fact $A\cong M_{2}(Q)$ .
PROOF OF THEOREM 3.4. Let $\Gamma$ be commensurable with $\Gamma^{(1)}(A, 0)$ . Then

there exists a maximal order $O_{1}$ of $A$ such that $\Gamma^{(2)}$ is a subgroup of index
finite in $\Gamma^{(1)}(A, O_{1})$ . $k=Q(tr(\delta)|\delta\in\Gamma^{(2)})$ and tr $(\Gamma^{(2)})$ is contained in the ring
$O_{k}$ of integers in $k$ (cf. [16]). Since $\rho_{i}(A)(2\leqq i\leqq n)$ is contained in $H$, we have
$\varphi_{i}(tr(\alpha^{2}))=tr_{H/R}(\rho_{i}(\alpha^{2}))$ is contained in the interval $(-2,2)$ . By the equation
$x^{2}=tr(\alpha^{2})+2$ we see that $x^{2}$ is an algebraic integer in $k$ such that $4<x^{2}$,
$0<\varphi_{i}(x^{2})<4(2\leqq i\leqq n)$ . Hence $x$ is totally real. In the same way we see that
$y$ and $z$ are also totally real algebraic integers.

Since $(\alpha, \beta, \gamma)$ is a fundamental triple of generators of $\Gamma$, we have $h(\alpha, \beta, \gamma)$

$\leqq h(\alpha_{6}, \beta_{6}, \gamma_{6})$ . By (3.5) we see that $x\leqq y\leqq z\leqq xy/2$ . Hence by (3.3) $x^{2}y^{2}-4x^{2}$

$-4y^{2}+4c_{e}\geqq 0$ and $z=(xy- \frac{x^{22}-4_{X^{2}}-424c}{yy+e})/2$ . Let $f(t)=t^{2}-xyt$ $(y\leqq t\leqq$

$xy/2)$ . Then we see easily that $y^{2}(1-x)\geqq f(t)\geqq-x^{2}y^{2}/4$ . Hence by (3.3) we
have the second and third inequality of (3.10). Now we shall prove the first
inequality of (3.10). By the inequality $3z^{2}-xyz\geqq x^{2}+y^{2}+z^{2}-xyz=c_{e}>0$ in case
$e<\infty$ , we have $xy/3<z\leqq xy/2$ . Hence $-xy/6<z-xy/2\leqq 0$ . By (3.3) $x^{2}+y^{2}+$

$(z-xy/2)^{2}-x^{2}y^{2}/4=c_{e}$ . Thus we have $2y^{2}(9-x^{2})/9\geqq x^{2}+y^{2}-2x^{2}y^{2}/9>c_{e}\geqq 0$ .
Hence we have $2<x<3$ in case $e<\infty$ . In case $e=\infty$ by the slight modification
of the above argument we have $2<x\leqq 3$ (cf. Mordell [10] p. 91). Since $z$ is
totally real, by (3.3) we have $\varphi_{i}(x^{2}y^{2}-4x^{2}-4y^{2}+4c_{e})\geqq 0$ . By the same argument
we can prove all inequalities of (3.11).

We shall prove the assertion (iii). By Proposition 3.1 and its proof we see
that $k=Q(tr(\delta)|\delta\in\Gamma^{(2)})=Q(x^{2}, y^{2}, xyz)$ and $k\ni c_{e}$ . Let $A_{0}=k[\Gamma^{(2)}]$ be the vector
space spanned by $\Gamma^{(2)}$ over $k$ in $M_{2}(R)$ . Then $A_{0}=k1_{2}+k\alpha^{2}+k\beta^{2}+k\alpha^{2}\beta^{2}=\rho_{1}(A)$ .
Let $\xi=y_{0}1_{2}+y_{1}\alpha^{2}+y_{2}\beta^{2}+y_{3}\alpha^{2}\beta^{2}$ be an arbitrary element of $A_{0}(y_{i}\in k)$ . Let $c_{1}=$

tr $(\alpha^{2}),$ $c_{2}=tr(\beta^{2}),$ $c_{3}=tr(\alpha^{2}\beta^{2}),$ $c_{4}=tr(\alpha^{2}\beta^{-2})$ . Then the reduced norm $n_{A_{0}}(\xi)$ of $\xi$

is given by

$n_{A_{0}}(\xi)=(y_{0}, y_{1}, y_{2}, y_{3})D_{0^{t}}(y_{0}, y_{1}, y_{2}, y_{3})$ ,

where
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$D_{0}=(\begin{array}{llll}1, c_{1}/2, c_{2}/2, c_{3}/2c_{1}/2, 1, c_{4}/2, c_{2}/2c_{2}/2, c_{4}/2, 1, c_{1}/2c_{3}/2, c_{2}/2, c_{1}/2, 1\end{array})$

.
By the following linear transformation:

$\{\begin{array}{l}Y_{0}=y_{0}+(c_{1}y_{1}+c_{2}y_{2}+c_{3}y_{3})/2,Y_{1}=y_{1}/2-((c_{1}c_{2}-2c_{3})y_{2}+(c_{1}c_{3}-2c_{2})y_{3})/(2(4-c_{1}^{2})),Y_{2}=y_{3}/2,Y_{3}=(y_{2}+c_{1}y_{3}/2)/(4-c_{1}^{2}),\end{array}$

we have
$n_{A_{0}}(\xi)=Y_{0^{2}}+(4-c_{1}^{2})Y_{1}^{2}-(c_{1}^{2}+c_{2}^{2}+c_{3^{2}}-C_{1}C{}_{2}C_{3}-4)Y_{2}^{2}$

$-(4-c_{1}^{2})(c_{1}^{2}+c_{2}^{2}+c_{3^{2}}-c_{1}c_{2}c_{3}-4)Y_{3}^{2}$ .
Since $c_{1}=x^{2}-2,$ $c_{2}=y^{2}-2,$ $c_{3}=-x^{2}-y^{2}+xyz+2$, by an easy calculation we see

that $A_{0}$ is isomorphic to $( \frac{a,b}{k})$ , where $a,$
$b$ are as given in (iii).

Conversely, let $x,$ $y,$ $z$ be algebraic integers satisfying (i), (ii). Let $\alpha,$
$\beta$ be

two elements of $SL_{2}(R)$ determined by (3.8). Then $\alpha,$ $\beta$ are uniquely determined
up to $GL_{2}(R)$-conjugation. We can dePne $\gamma$ so that $(\alpha, \beta, \gamma)$ satisfies (3.1). Now
we need the following proposition proved in Fricke-Klein [7] pp. 335-353 and
Purzitsky-Rosenberger [13].

PROPOSITION 3.5. Let $\alpha,$ $\beta$ be two elements of $SL_{2}(R)$ such that $2<tr(\alpha)$,

$2<tr(\beta)$ , tr $(\alpha\beta\alpha^{-1}\beta^{-1})=-2\cos(\pi/e)(=-2ife=\infty)$ . $ThenthesubgroupofSL_{2}(R)$

generated by $\{\alpha, \beta\}$ is a Fuchsian group of the first kind with signature $($ 1; $e)$ .
By Proposition 3.5 the subgroup $\Gamma$ of $SL_{2}(R)$ generated by $\{\alpha, \beta\}$ is a

Fuchsian group with signature $($ 1; $e)$ . Let $k=Q(tr(\delta)|\delta\in\Gamma^{(2)})$ and $A_{0}=k[\Gamma^{(2)}]$ .
Then by the same argument as before we see that $k=Q(x^{2}, y^{2}, xyz)$ and $k$

contains cos $(\pi/e)$ and $A_{0}=( \frac{a,b}{k})$ . By (3.12) we see that $A_{0}$ is unramified at

$\varphi_{1}$ and ramified at all other $\varphi_{i}(2\leqq i\leqq n)$ . Since $\Gamma$ is generated by $\{\alpha, \beta\}$ , by

Lemma 2 in [17] p. 95 we see that tr $(\Gamma)$ is contained in the ring of integers in
$Q(x, y, z)$ . Let $O=O_{k}[\Gamma^{(2)}]$ be the $O_{k}$ -module generated by $\Gamma^{(2)}$ in $M_{2}(R)$ .
Then $0$ is an order of $A_{0}$ and $\Gamma^{(2)}$ is a subgroup of $\Gamma^{(1)}(A_{0},0)$ of finite index.
This shows that $\Gamma$ is arithmetic. This completes the proof of Theorem 3.4.
Q. E. D.

The following theorem is useful to determine all arithmetic Fuchsian groups
with signature $($1; $e)$ .

THEOREM 3.6. Let $k$ be a totally real algebraic number field of degree $n$

such that $k$ contains $\cos(\pi/e)(2\leqq e<\infty)$ . Let $c_{e}=2-2\cos(\pi/e)$ . If there exists
an algebraic integer $X$ in $k$ satisfying the inequalities:

(3.13) $4<X<9$ , $0<\varphi_{i}(X)<\varphi_{i}(c_{e})$ $(2\leqq i\leqq n)$ ,



390 K. TAKEUCHI

then $(e, n)$ is one of pairs listed below:

$(e, n)=(2,1),$ $(2,2),$ $(2,3),$ $(2,4),$ $(2,5),$ $(2,6),$ $(3,1),$ $(3,2),$ $(3,3)$ ,
$(3, 4)$ , $(4, 2)$ , $(4, 4)$ , $(4, 6)$ , $(4, 8)$ , $(5, 2)$ , $(5, 4)$ , $(6, 2)$ , $(6, 4)$ ,
$(6, 6)$ , $(7, 3)$ , $(7, 6)$ , $(8, 4)$ , $(8, 8)$ , $(9, 3)$ , $(9, 6)$ , $(10, 4)$ , $(11, 5)$ ,
$(12, 4)$ , $(12, 8)$ , $(13, 6)$ , $(14, 6)$ , $(15, 4)$ , $(15, 8)$ , $(16, 8)$ , $(17, 8)$ ,
$(18, 6)$ , $(19, 9)$ , $(20, 8)$ , $(21, 6)$ , $(24, 8)$ , $(25, 10)$ , $(27, 9)$ , $(30, 8)$ ,
$(33, 10)$ .

PROOF. By (3.13) we have

$0<X(X-c_{e})<9(9-c_{e})$ , $0<\varphi_{i}(X(c_{e}-X))\leqq\varphi_{i}(c_{e}^{2})/4$ $(2\leqq i\leqq n)$ .
Since $X$ is an algebraic integer in $k$ , we have

(3.14) $1\leqq|n_{k/Q}(X(c_{e}-X))|<(9/c_{e})(9/c_{e}-1)n_{k/Q}(c_{e}^{2})/4^{n- 1}$ .
Hence we have

(3.15) $4^{n-1}<(9/c_{e})(9/c_{e}-1)n_{k/Q}(c_{e}^{2})$ .

Now we need the following
LEMMA 3.7. Let $c_{e}=2-2\cos(\pi/e)$ . Then the following assertions hold:
(i) If $e\neq 2^{m}$ , then $c_{e}$ is a unit of the ring of integers in the field $Q(\cos(\pi/e))$ .
(ii) If $e=2^{m}$ , then $n_{Q(\cos(\pi/e))/Q}(c_{e})=2$ .
The proof of this lemma is referred to Lehmer [8] and Liang [9].

Let $k_{0}=Q(\cos(\pi/e)),$ $n_{1}=[k:k_{0}]$ . Then we have $n=n_{1}\cdot\varphi(2e)/2$, where $\varphi()$

is the Euler function. We divide into two cases: $e=2^{m}$ and $e\neq 2^{m}$ . Firstly
consider the case $e\neq 2^{m}$ . By (3.15) and Lemma 3.7 we have

(3.16) $2^{\varphi(2e)/2}<9/(1-\cos(\pi/e))$ .

Since $t^{2}/2-t^{4}/24<1-\cos(t)(0<t)$ , we have

(3.17) $2^{\varphi(2e)/2}<18e^{2}/(\pi^{2}(1-12^{-1}(\pi/e)^{2}))$ .

It is known that for an arbitrary $\delta>0,\lim_{marrow\infty}\varphi(m)/m^{1-\delta}=\infty$ (cf. Hardy-Wright

[6] Theorem 3.27). Using this result we can prove that there exist only a
finite number of such numbers $e$ . By (3.15) we see that there are also finitely
many such numbers $n$ . In order to determine the pair $(e, n)$ more precisely we
need the following

LEMMA 3.8. If $43\leqq m$ , then $m^{2/3}\leqq\varphi(m)$ .
PROOF. Let $m=p_{1}^{e_{1}}\cdots p_{r}^{e_{\mathcal{T}}}$ be the prime divisors decomposition, where $p_{i}$ is

a prime number such that $p_{1}<p_{2}<\cdots<p_{r}$ and $e_{i}\geqq 1$ . Let $p$ be a prime number.
If $e\geqq 3$, then $p^{e-3}(p-1)\geqq 1$ . Let $\psi(m)=\varphi(m)^{3}/m^{2}$ . Then we have $\psi(m)=$

$\prod_{1\leqq i\leqq r}p_{i^{e_{i^{-3}}}}(p_{i}-1)^{3}$ . It suffices to prove that $\psi(m)\geqq 1$ for $m\geqq 43$ . By an easy

calculation we have $\psi(2)=1/4,$ $\psi(3)=8/9,$ $\psi(2^{2})=1/2,$ $\psi(3^{2})=8/3$ . Furthermore, for
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an arbitrary prime number $p$ such that $p\geqq 5$ we see that $\psi(p)=p-3+(3-1/p)/p$

$>1$ and $\psi(p^{2})=p^{2}-3p+3-1/p>1$ . Therefore, we see easily that if there is
a $p_{i}$ such that $p_{t}\geqq 11$ , then $\psi(m)>1$ . Now we may assume that $m=2^{e_{1}}3^{e_{2}}5^{e_{3}}7^{e_{4}}$

$(0\leqq e_{\ell})$ . We distinguish several cases. If $e_{4}\geqq 2$ , then $\psi(m)\geqq(1/4)(8/9)(6^{3}/7)>1$ .
Consider the case $e_{4}=1$ . If $e_{1}=1,$ $e_{2}=1$ , then by the condition $43\leqq m$ we have
$e_{3}\geqq 1$ . Hence $\psi(m)\geqq(1/4)(8/9)(4^{s}/5^{2})(6^{3}/7^{2})>1$ . If $e_{1}\geqq 2$ or $e_{2}\geqq 2$ , then $\psi(m)\geqq$

$(1/2)(8/9)(6^{3}/7^{2})>1$ or $\geqq(1/4)(6^{3}/7^{2})>1$ . We may consider the case $m=2^{e_{1}}3^{e_{2}}5^{e_{3}}$ .
If $e_{3}\geqq 2$, then $\psi(m)\geqq(1/4)(8/9)(4^{3}/5)>1$ . If $e_{3}=1$ , then by the condition $43\leqq m$

we have $e_{1}\geqq 2$ or $e_{2}\geqq 2$ . Hence we see easily that $\psi(m)>1$ . It remains the case
$m=2^{e_{1}}3^{e_{2}}$ . By the similar argument as above we can verify our assertion.
Q. E. D.

Now we return to the proof of Theorem 3.6. We assume that $e\geqq 32$ . Then
by Lemma 3.8 we have $(2e)^{2/3}\leqq\varphi(2e)$ . Hence by (3.17) and by the inequality
$\pi/32<1/10$ we have $2^{(2e)^{2/3}}/2<18(1200/1199)\pi^{-2}e^{2}$ . Let $t=(2e)^{2/S}/2$ . Then we
have $8\leqq t$ and $2^{t}<36(1200/1199)\pi^{-2}t^{3}$ . We note that the approximate value of
$36(1200/1199)\pi^{-2}$ is 3.6506. Let $f(t)=2^{t}/t^{3}$ . Then $f(t)$ is monotone increasing
on $8\leqq t$ . Since $f(13)\doteqdot 3.7287$, we see that $t<13$ . Hence we have $e\leqq 66$ . For
each $e\leqq 66$ such that $e\neq 2^{m}$ we examine (3.16) and by (3.15) we obtain the pairs
listed in Theorem 3.6.

Next let us consider the case $e=2^{m}$ . Assume that $m\geqq 2$ . In this case we
denote $d=2^{m-1}=\varphi(2e)/2$ . By (3.14) and Lemma 3.7 we have

(3.18) $4^{n- n_{1}-1}<(9/c_{e})(9/c_{e}-1)$ .
By the assumption $2\leqq m$ we have $2\leqq d$ . By (3.18) we have $2^{d-1}\leqq 2^{(d-1)n_{1}}<$

$9/(1-\cos(\pi/e))$ . Hence $2^{e/2}<36e^{2}/(\pi^{2}(1-(\pi/e)^{2}/12))$ . Assume that $e\geqq 32$ . Then by
the same argument as in the case $e\neq 2^{m}$ we have $e<22$ . This is a contradiction.
Thus we see that $e=4,8,16$ . For each $e=4,8,16$ by (3.18) we can determine
all $n$ .

Let us consider the case $e=2$ . In this case the above argument does not
work. By (3.13) we have $8<X(X-2)(X-1)^{2}<63\cdot 64(=4032),$ $0<\varphi_{i}(X(2-X)(X-1)^{2})$

$\leqq 1/4(2\leqq i\leqq n)$ . Since $X$ is an algebraic integer, we have $1\leqq|n_{k/Q}(X(2-X)$

$(X-1)^{2})|$ . Hence we have $4^{n-1}<4032$ . Therefore, we have $n\leqq 6$ . This completes
the proof of Theorem 3.6.

\S 4. Determination of all arithmetic Fuchsian groups with signature $($ 1; $e)$ .
4.1. In this section we shall determine explicitly all arithmetic Fuchsian

groups $\Gamma$ with signature $($ 1; $e)$ . In order to do this it suffices to give a funda-
mental triple $(\alpha, \beta, \gamma)$ of generators of $\Gamma$ Let $x=tr(\alpha),$ $y=tr(\beta),$ $z=tr(\alpha\beta)$ .
Then $(\alpha, \beta, \gamma)$ is uniquely determined by $(x, y, z)$ up to $GL_{2}(R)$-conjugation. The
conditions for $\Gamma$ to be arithmetic are given in terms of $(x, y, z)$ in Theorem 3.4
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\S 3. In the following theorem we shall give a complete list of all $(x, y, z)$ such
that the group generated by $(\alpha, \beta, \gamma)$ obtained from $(x, y, z)$ is an arithmetic
Fuchsian group with signature $($ 1; $e)$ . We can also determine the quaternion
algebra $A$ over $k$ associated with each $\Gamma$ We shall give the discriminant $D(A)$

of $A$ explicitly.
THEOREM 4.1. The complete list of all $(x, y, z)$ such that the group $\Gamma$ gen-

erated by $(\alpha, \beta, \gamma)$ obtained from $(x, y, z)$ is an arithmetic Fuchstan group with
$\alpha gnature(1;e)$ is as follows:
(i) $e=\infty$ .

$k$ $(x, y, z)$ $D(A)$

$Q$ $(\sqrt{5},2\sqrt{5},5)$ (1)

$Q$ $(\sqrt{6},2\sqrt 3^{-}, 3\sqrt{2})$ (1)

$Q$ $(2\sqrt{2},2\sqrt{2},4)$ (1)

$Q$ (3, 3, 3) (1)

(ii) $e=2$ .
$Q$ $(\wedge 5,2\sqrt{3}, \wedge 15)$ (2) $(3)$

$Q$ $(\sqrt{6},2\sqrt{2},2\sqrt{3})$ (2) $(3)$

$Q$ $(\sqrt{7}, \sqrt{7},3)$ (2) $(7)$

$Q(\sqrt 5)$ $(\sqrt{2w_{5}+2}, \sqrt{4w_{5}+4}, \sqrt 6\overline{w_{5}+4})$ $\mathfrak{p}_{2}$

$Q(\sqrt{5})$ $( \sqrt{3w_{5}+2}, \frac{3w2}{5+}, \sqrt{4w_{5}+4})$ $\mathfrak{p}_{2}$

$Q(\sqrt{5})$
$\mathfrak{p}_{2}$

$Q(\sqrt{2})$ $(\sqrt{w_{8}+3}, \sqrt{8w_{8}+12}, \sqrt{9w_{8}+13})$ $\mathfrak{p}_{7}(=(3+\sqrt{2}))$

$Q(\sqrt{2})$ $\mathfrak{p}_{7}’(=(3-\sqrt{2}))$

$Q(\sqrt{}\overline{2})$ $\mathfrak{p}_{2}(=(\sqrt{2}))$

$Q(\sqrt{3})$ $(\sqrt{w_{12}+}3, \sqrt{4w_{12}+8}, \sqrt{5w_{12}+9})$ $\mathfrak{p}_{3}(=(\sqrt{3}))$

$Q(\wedge 3)$
$\mathfrak{p}_{2}$

$Q(\sqrt{13})$ $(\sqrt{w_{13}+2}, V8\sqrt{8w_{13}+12}, \sqrt{9w_{13}+12})$ $\mathfrak{p}_{2}\mathfrak{p}_{8}\mathfrak{p}_{3}’$

$Q(\sqrt{13})$
$\mathfrak{p}_{2}$

$Q(\sqrt{17})$ $\mathfrak{p}_{2}’(=(w_{17}’+2))$

$Q(\sqrt{17})$ $\mathfrak{p}_{2}(=(w_{17}+2))$

$Q(\sqrt{21})$ $( \frac{w2}{21+}, \sqrt{3w_{21}+6}, \sqrt{3w_{21}+7})$ $\mathfrak{p}_{2}$
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$Q(\sqrt{6})$ $(\sqrt{w_{24}+3}, \sqrt{2w_{24}+5}, \sqrt{2w_{24}+6})$ $\mathfrak{p}_{2}(=(w_{24}+2))$

$Q(\sqrt{33})$ $(\sqrt{w_{33}+3}, \sqrt{w_{33}+4}, \sqrt{2w_{33}+5})$ $\mathfrak{p}_{2}(=(w_{33}-3))$

We define $w_{d}$ for the discnminant $d$ of a quadratic field $Q(\sqrt{d})$ as follows:

(4.1) $w_{d}=\{\begin{array}{l}(1+\sqrt{d})/2\sqrt{d}/2\end{array}$

$f(t)$ $d(k)$ $\rho$

if $d\equiv 1$ (mod4) ,

if $d\equiv 0$ (mod4).

$t^{3}-t^{2}-2t+1$ 492 $\cos(\pi/7)$ $(\sqrt{\rho^{2}+\rho}, \sqrt{3\rho^{2}+2\rho-1}, \sqrt{3\rho^{2}+2\rho-1})$ $\mathfrak{p}_{2}\mathfrak{p}_{7}$

$t^{3}-3t-1$ 81 $\rho\doteqdot 1.8794$ $(\sqrt{\rho^{2}+\rho+1}, \rho+1, \rho+1)$ (1)

$t^{3}-t^{2}-3t+1$ 148 $\rho\doteqdot 2.1700$ $(\sqrt{\rho^{2}+\rho}, \sqrt{\rho^{2}+\rho}, \sqrt{\rho^{2}+2\rho+1})$ (1)

$t^{3}-t^{2}-3t+1$ 148 $\rho\doteqdot 0.3111$ $(\sqrt{-\rho^{2}+\rho+4}$ , $\sqrt{-12\rho^{2}+8\rho+40}$ ,

$\sqrt{-13\rho^{2}+9\rho+4}2^{-})$ (1)

$t^{3}-t^{2}-3t+1$ 148 $\rho\doteqdot-1.4811$ $(\sqrt{\rho^{2}-2\rho+1}, \sqrt{\rho^{2}-3\rho+2}, \sqrt{\rho^{2}-3\rho+2})(1)$

$t^{3}-4t-1$ 229 $\rho\doteqdot 2.1149$ $(\sqrt{\rho+2}, \sqrt{8\rho^{2}+16\rho+4}, \sqrt{8\rho^{2}+17\rho+4})\mathfrak{p}_{2}\mathfrak{p}_{2}’$

$t^{3}-4t-1$

$\sqrt{-4\rho^{2}+\rho+16})$ $\mathfrak{p}_{2}\mathfrak{p}_{2}’$

$t^{3}-4t-1$ 229 $\rho\doteqdot-1.8608(\sqrt{\rho^{2}-2\rho}, \sqrt{\rho^{2}-2\rho}, \sqrt{\rho^{2}-2\rho+1})$ $\mathfrak{p}_{2}\mathfrak{p}_{2}’$

$t^{4}-t^{3}-3t^{2}+t+1$ 725 $\rho\doteqdot-1.3556(x=\sqrt{-\rho^{3}+2\rho^{2}+\rho}$,

$y=z=\sqrt{-2\rho^{3}+5\rho^{2}-\rho-1})$ $\mathfrak{p}_{2}$

$t^{4}-t^{3}-3t^{2}+t+1$

$\mathfrak{p}_{2}$

$t^{4}-t^{3}-4t^{2}+4t+1$ 1125 $\rho\doteqdot-1.9562(\sqrt{\rho^{2}-\rho}$ , $\sqrt{\rho^{2}-2\rho+1}$ ,

$\sqrt{-\rho^{3}+\rho^{2}+\rho+1})$ $\mathfrak{p}_{2}$

where $f(t)$ denotes the irreducible p0lyn0mial of $\rho$ over $Q$ such that $k=Q(\rho)$ .

(iii) $e=3$ .

$C1$ $(\sqrt 5,4,2\sqrt{5})$ (3) $(5)$

$Q$ $(\sqrt{6}, \sqrt{10}, \sqrt{}\overline{15})$ (2) $(5)$

$Q$ $(\sqrt{7},2\sqrt{2}, \sqrt{14})$ (2) $(3)$
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$Q$ $(2\sqrt{}^{-}2,2\sqrt{2},3)$ (2) $(3)$

$Q(\sqrt{5})$
$\mathfrak{p}_{3}$

$Q(\wedge 5)$ $(\sqrt{3w_{5}+2}, \sqrt{4w_{5}+3}, \sqrt{4w_{5}+3})$
$\mathfrak{p}_{5}$

$Q(\sqrt{2})$
$\mathfrak{p}_{3}$

$Q(\sqrt{3})$ $(\sqrt{2w_{12}+4}, \sqrt{2w_{12}}+4-, \sqrt 4\overline{w_{12}+}7)$
$\mathfrak{p}_{3}$

$Q(\sqrt{13})$ $\mathfrak{p}_{3}’(=(w_{13}’))$

$Q(\sqrt{13})$ ( $\sqrt{w_{13}+2}$ , V12 $w_{13}+16,$ $\sqrt{13w_{13}+17}$) $\mathfrak{p}_{3}(=(w_{13}))$

$Q(\sqrt{}\overline{17})$ $( \frac{wF22}{17}, \sqrt{6w_{17}+1}0, \sqrt{7w_{17}+11})$ $\mathfrak{p}_{2}\mathfrak{p}_{2}’\mathfrak{p}_{3}$

$Q(\sqrt{21})$
$\mathfrak{p}_{3}$

$Q(\sqrt{7})$ $(\sqrt{w_{28}+3}, \sqrt{2w_{28}+6}, \sqrt{3w_{28}+8})$ $\mathfrak{p}_{2}\mathfrak{p}_{3}\mathfrak{p}_{3}’$

$f(t)$ $d(k)$ $\rho$

$t^{3}-t^{2}-2t+1$ 49 2 cos $(\pi/7)$ $(x=\sqrt{\rho^{2}+\rho}, y=z=\sqrt{4\rho^{2}+3\rho-}2^{-})$ (1)

$t^{3}-3t^{2}+1$ 81 $-1/$ ( $2$ cos $(5\pi/9)$ ) $(\rho, \rho, \rho)$ (1)

where $f(t)$ denotes the irreducible p0lyn0mial of $\rho$ over $Q$ such that $k=Q(\rho)$ .

(iv) $e=4$ .
$Q(\sqrt{2})$ $\mathfrak{p}_{2}\mathfrak{p}_{7}\mathfrak{p}_{7}’$

$Q(\sqrt{}^{-}2)$ $\mathfrak{p}_{7}(=(3-\sqrt{}\overline{2}))$

$Q(\sqrt{2})$ $(\sqrt{3+2\sqrt 2}, \sqrt{7+4J2}, \sqrt{7+4\sqrt{2}})$
$\mathfrak{p}_{2}$

$Q(\sqrt{2})$ $(\sqrt{3+2\sqrt 2}, \sqrt{6+4\sqrt{}^{-}2}, \sqrt{9+4\sqrt{2}})$
$\mathfrak{p}_{2}$

$Q(\sqrt{}^{-}2)$ $(\sqrt{4+2\sqrt 2}, \sqrt{6+2}\sqrt{2}^{-}, \sqrt{8+5}^{--}\sqrt 2)$ $\mathfrak{p}_{7}(=(3+\sqrt{2}))$

$Q(\sqrt{2})$ $(\sqrt{5+2\sqrt 2^{-}}, \sqrt{5+2\sqrt 2^{-}}, \sqrt{6+4\sqrt{2}})$
$\mathfrak{p}_{2}$

$Q(\sqrt{7-2\sqrt 2})$ $d(k)=2624_{a}^{F}\rho=(1+\sqrt{13+8\sqrt{2}})/2$

$(x= \frac{2}{\rho+}, y=z=\sqrt{(1+2\sqrt{2})\rho+5+2\sqrt 2^{-}})$ $\mathfrak{p}_{2}(=(\sqrt{2}))$

$Q(\sqrt{7+2}\sqrt{2}^{-})$ $d(k)=2624$

$(x, y, z)=(\rho, \rho, \rho+1)$ $\mathfrak{p}_{2}$

$Q(\sqrt{2}, \sqrt{3})$ $d(k)=2304$ $\rho=(2+\sqrt 2^{-}+\sqrt{6})/2$

$(x, y, z)=(\rho, \rho, \rho)$ $\mathfrak{p}_{2}$
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(v) $e=5$.
$Q(\sqrt{5})$ $(\sqrt{w_{5}+3}, \sqrt 12\overline{w_{\overline{o}}+8}, \sqrt{14w_{5}+9})$ $\mathfrak{p}_{5}(=(\sqrt{5}))$

$Q(\sqrt{5})$ $(\sqrt{2w_{5}+}2^{-}, \sqrt{6w_{o}+6}, \sqrt{9w_{5}+6})$
$\mathfrak{p}_{2}\mathfrak{p}_{3}\mathfrak{p}_{5}$

$Q(\sqrt{5})$ $(\sqrt{2w_{5}+3}, \sqrt{4w_{5}+4}, \sqrt{7w_{5}+5})$
$\mathfrak{p}_{5}$

$Q(\sqrt{5})$ $(\sqrt{3w_{5}+2}, \sqrt{4w_{5}+4}, \sqrt{4w_{5}+4})$
$\mathfrak{p}_{5}$

$Q(\sqrt{5})$ $(\sqrt{3w_{5}+3}, \sqrt{3w_{5}+3}, \sqrt{5w_{5}+5})$
$\mathfrak{p}_{2}$

$Q(\sqrt{13w_{5}+9})$ $d(k)=725$ $\rho=(w_{5}+\sqrt{13w_{5}+9})/2$

$\mathfrak{p}_{5}$

$Q(\sqrt{7w_{5}+6})$ $d(k)=725$ $\rho=(w_{5}+3+\sqrt{7w_{5}+6})/2$

$(x=\sqrt{\rho}, y=z=\sqrt{(5w_{5}+2)\rho-2w_{5}+1})$ $\mathfrak{p}_{5}$

$Q(\sqrt{33w_{5}+21})$ $d(k)=1125$ $\rho=(1+w_{5}+(2-w_{5})\sqrt{33w_{5}+21})/2$

$(x, y, z)=(\rho, \rho, \rho)$ $\mathfrak{p}_{5}$

(vi) $e=6$ .

$Q(\sqrt{3})$ $(\sqrt{3+\sqrt 3}, \sqrt{14+6\sqrt{}^{-}3^{-}}, \sqrt{15+8\sqrt 3^{-}})$
$\mathfrak{p}_{2}\mathfrak{p}_{3}\mathfrak{p}_{11}$

$Q(\sqrt{3})$ $(\sqrt{5+\sqrt{3}}, \sqrt{6+2\sqrt{3}}, \sqrt{9+4\sqrt 3^{-}})$
$\mathfrak{p}_{2}\mathfrak{p}_{3}\mathfrak{p}_{11}$

(vii) $e=7$.
$k=Q(\cos(\pi/7))$ $d(k)=49$ $\rho=2\cos(\pi/7)$

$(x, y, z)=(\sqrt{\rho^{2}+1}, \sqrt{16\rho^{2}+12\rho-8}, \sqrt{17\rho^{2}+13\rho-9})$ $\mathfrak{p}_{7}\mathfrak{p}_{13}$

$(\sqrt{\rho^{2}+\rho}, \sqrt{5\rho^{2}+3\rho-2}, \sqrt{5\rho^{2}+3\rho-2})$ $\mathfrak{p}_{7}\mathfrak{p}_{13}’$

$(\sqrt{2\rho^{2}+\rho}, \sqrt{2\rho^{2}+\rho}, \sqrt{3\rho^{2}+\rho-1})$ $\mathfrak{p}_{7}\mathfrak{p}_{13}^{JJ}$

$(\sqrt{2\rho^{2}}, \sqrt 2\overline{\rho^{2}+2\rho}, \sqrt{4\rho^{2}+3\rho-2})$ (1)
(viii) $e=9$ .

$k=Q(\cos(\pi/9))$ $d(k)=81$ $\rho=2\cos(\pi/9)$

$(x, y, z)=(\sqrt{\rho^{2}+1}, \sqrt 4\overline{\rho^{2}+8\rho+4}, \sqrt{5\rho^{2}+9\rho+3})$ $\mathfrak{p}_{3}\mathfrak{p}_{17}$

$(\sqrt{\rho^{2}+\rho+1}, \sqrt{2\rho^{2}+2\rho+1}, \sqrt{2\rho^{2}+2\rho+1})$ $\mathfrak{p}_{3}\mathfrak{p}_{17}’$

$(\sqrt{\rho^{2}+2\rho+1}, \sqrt{\rho^{2}+2\rho+2}, \sqrt{\rho^{2}+2\rho+2})$ $\mathfrak{p}_{3}\mathfrak{p}_{17}’’$

(ix) $e=11$ .
$k=Q(\cos(\pi/11))$ $d(k)=11^{4}$ $\rho=2\cos(\pi/11)$

$(x, y, z)=(\rho^{2}-1, \rho^{3}-2\rho, \rho^{3}-2\rho)$ (1)

where we denote by $\mathfrak{p}_{p}$ the prjme ideal of $k$ dividing $(p)$ for a prime number $p$ .
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We shall give the proof of Theorem 4.1 in 4.2-4.10. We have $on!y$ to deal
with the cases $(e, n)$ listed in Theorem 3.6 and the case $e=\infty$ . Let $\Gamma$ be an
arithmetic Fuchsian group with signature $($1; $e)$ . Then by Proposition 3.1 and
(2.5) we have

(4.2) $(2 \pi)^{-2n}d(k)^{3/2}\cdot\zeta_{k}(2)\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)=d_{2}^{-1}(1-1/e)$ ,

where $d_{2}=[\Gamma^{(1)}(A, O_{1}):\Gamma^{(2)}\cdot\{\pm 1_{2}\}]$ . In solving the simultaneous linear inequal-
ities we used a programable electronic calculator YHP-67. In view of Theorem
3.4 the general procedure to obtain all solutions $(x, y, z)$ over $k$ is as follows.
Let $\{w_{1}, \cdots , w_{n}\}$ be a Z-basis of $O_{k}$ . Then we have the expressions $x^{2}=$

$m_{1}w_{1}+$ $+m_{n}w_{n}$ , $y^{2}=r_{1}w_{1}+\cdots+r_{n}w_{n}$ , $z^{2}=s_{1}w_{1}+\cdots+s_{n}w_{n}$ $(m_{i}, r_{i}, s_{i}\in Z)$ .
From (3.10), (3.12) we have the simultaneous inequalities for $(m_{1}, \cdots , m_{n})$ . For
each solution $x^{2}$ by (3.10), (3.11) we have the inequalities for $(r_{1}, \cdots , r_{n})$ . For
each $(x^{2}, y^{2})$ we have the inequalities for $(s_{1}, \cdots , s_{n})$ . Finally for each $(x, y, z)$

we check the condition (3.9). We note here that $x,$ $y,$ $z$ are not necessarily
contained in $k$ .

Let us consider the case $e=\infty$ . Since $\Gamma$ contains a parabolic element in this
case, it is well-known that $k=Q,$ $A\cong M_{2}(Q)$ . From (3.10) we see that $x^{2}$ is a
rational integer such that $5\leqq x^{2}\leqq 9$ . For each $x^{2}$ we can easily solve the
inequalities for $y^{2},$ $z^{2}$ . Thus, we can obtain all solutions in the case $e=\infty$ .

4.2. The case $e=2$ .
Let us consider the case $e=2$ . In this case by Theorem 3.6 we have $1\leqq n\leqq 6$ .

Furthermore, from (3.10), (3.12) we have

(4.3) $4<x^{2}\leqq 4+2\sqrt{3}$, $0<\varphi_{i}(x^{2})<2$ $(2\leqq i\leqq n)$ .

In the case $n=1$ it is easy to obtain all solutions. Let us consider the case $n=2$ .
Let $w_{d}$ be the same as in (4.1). Then $\{1, w_{f}(\}$ is a Z-basis of the ring $O_{k}$ of
integers in $k$ . Put $x^{2}=a+bw_{d}(a, b\in Z)$ . Then from (4.3) we have $2<b\sqrt{d}$

$\leqq 4+2\sqrt{3}$ . Hence $d\leqq(4+2\sqrt{3})^{2}=55.7\cdots$ . Thus we have $d=d(k)\leqq 55$ . For
each $d$ we can obtain all solutions $x^{2}$ in $O_{k}$ satisfying (4.3). For each $x^{2}$ we
can solve the inequalities of Theorem 3.4 for $y,$ $z$ . Hence we obtain all solu-
tions in the case $n=2$ .

Let us consider the case $n=3$ . Since $\zeta_{k}(2)>1$ and $\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)\geqq 1$ , from

(4.2) we have $d(k)<((2\pi)^{6}/2)^{2/3}=981.822\cdots$ . Hence we have $d(k)\leqq 981$ . A list
of the totally real algebraic number fields $k$ of degree 3 with small $d(k)$ can be
found in K. K. Billevich [1] p. 134 and in B. N. Delone-D. K. Faddeev [2] p. 159.
In view of these lists we obtain the following 25 cases:
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$d(k)=49,81,148,169,229,257,316,321,361,404,469,473,564,568$ ,
621, 697, 733, 756, 761, 785, 788, 837, 892, 940, 961.

For each $d(k)$ listed above the defining equation for $k$ and a Z-basis of $O_{k}$ are
given in [1], [2]. Using those data we can compute the relative degrees $f_{\mathfrak{p}}$ and
the ramification indexes $e_{\mathfrak{p}}$ for the prime ideals $\mathfrak{p}$ of $k$ dividing the prime num-
bers $p=2,3,5$ . Thus, we can compute the $\mathfrak{p}$-factor of the Euler product $\zeta_{k}(2)$

$= \prod_{\mathfrak{p}}(1-n_{k/Q}(\mathfrak{p})^{-2})^{-1}$ . It implies that the cases $d(k)=788,837,892,940$ , 961 are

excluded because the left hand side of (4.2) is greater than 1/2 in these cases.
In each remaining case a Z-basis of $O_{k}$ is given. Therefore following the
general procedure we can obtain the solutions for $x^{2}$ and then for $y,$ $z$ .

Let us consider the case $n=4$ . From (4.2) we have $d(k)<((2\pi)^{8}/2)^{2/3}=$

$11383.416\cdots$ . Hence we have $d(k)\leqq 11383$ . A list of the totally real algebraic
number fields $k$ with $d(k)\leqq 11664$ is given by H. J. Godwin [4]. A list of such
fields $k$ with $d(k)\leqq 8112$ (resp. 7168) is also given in [2] (resp. [1]). A Z-basis
of $O_{k}$ for each $k$ is also given there. Using these data we can obtain all
solutions. However, in order to avoid the extensive numerical computations we
make the following arguments.

We distinguish two cases $2<y^{2}-x^{2}$ and $0\leqq y^{2}-x^{2}\leqq 2$ . First let us consider
the former case. From (3.10) we have $x^{2}+2<(x^{2}-2)/(x-2)$ . Solving this
inequality numerically we have

(4.4) $4<x^{2}<6.4$, $0<\varphi_{i}(x^{2})<2$ $(2\leqq i\leqq 4)$ .
It follows from (4.4) that $|n_{k/Q}(x^{2}(2-x^{2})(1-x^{2})^{2})|<12.83\cdots$ . Hence we have

(4.5) $-12\leqq n_{k/Q}(x^{2}(2-x^{2})(1-x^{2})^{2})\leqq-1$ .
Let $f(t)=t^{4}+a_{3}t^{3}+a_{2}t^{2}+a_{1}t+a_{0}(a_{i}\in Z)$ be the irreducible polynomial of $x^{2}$ over
$Q$ . Let $b_{i}=f(i)(0\leqq i\leqq 2)$ . Then from (4.4), (4.5) we have

(4.6) $b_{0}\geqq 1$ , $b_{2}\leqq-1$ , $-12\leqq b_{0}b_{1}^{2}b_{2}\leqq-1$ .
We can determine easily all triples $(b_{0}, b_{1}, b_{2})$ satisfying (4.6). Since $a_{3}=-tr_{k/Q}(x^{2})$ ,

from (4.4) we have

(4.7) $-12\leqq a_{3}\leqq-5$ .
Using the expressions: $a_{0}=b_{0}$ , $a_{1}=(-b_{2}+4b_{1}-3b_{0}+4a_{3}+12)/2,$ $a_{2}=(b_{2}-2b_{1}+b_{0}$

$-6a_{3}-14)/2$ , we can obtain all $(a_{3}, a_{2}, a_{1}, a_{0})$ such that $x^{2}$ satisfies (4.4), which
are as follows:

$a_{3}$ $a_{2}$ $a_{1}$

$-7$ 13 $-7$

$-8$ 18 $-13$

$a_{0}$ $d(f)$

1 725 $(=5^{2}\cdot 29)$

$1$ 725
$-8$ 14 $-7$

$-9$ 20 $-14$

1 1125 $(=3^{2}\cdot 5^{3})$

$3$ 1957 $(=19\cdot 103)$
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$-10$ 27 $-26$

$-9$ 22 $-18$

$-8$ 15 $-8$

$-8$ 16 $-9$

$-9$ 19 $-12$

$-9$ 21 $-15$

$-9$ 19 $-11$

7 2624 $(=2^{6}\cdot 41)$

3 3981 $(=3\cdot 1327)$

1 4752 $(=2^{4}\cdot 3^{3}\cdot 11)$

$1$ 8069 (prime)

2 11324 $(=2^{2}\cdot 19\cdot 149)$

$1$ 14197 (prime)

1 36677 (prime) ,

where we denote by $d(f)$ the discriminant of $f(t)$ . It is known that 725 is the
smallest discriminant of the totally real algebraic number fields of degree 4.
Since $d(f)=d(k)m^{2}(m\in Z)$ , in view of the list in Godwin [4] we see that $d(f)$

$=d(k)$ and $O_{k}=Z[x^{2}]$ in each case listed above. Since $n=4$ is even, by (2.1)

and the Hasse’s principle we see that the number of the prime ideals of $k$

dividing $D(A)$ is odd. In particular, $D(A)\neq(1)$ . In the cases: $d(f)=8069$, 11324,
14197, 36677 we can see easily that the left hand side of (4.2) is greater than
1/2. Hence these cases are excluded. In the remaining cases we can obtain all
solutions following the general procedure.

Now let us consider the second case $0\leqq y^{2}-x^{2}\leqq 2$ . Let $a=y^{2}-x^{2}$ . Then
from (3.10), (3.12) we have

(4.8) $0\leqq a<2$ , $-2<\varphi_{i}(a)<2$ $(2\leqq i\leqq 4)$ .

We need the following lemma (cf. P\’olya-Szeg6 [12] p. 145).

LEMMA 4.2. Let $a$ be a totally real algebraic integer such that all conjugates
$\varphi_{i}(a)$ of $a$ satisfy the inequalities $-2\leqq\varphi_{i}(a)\leqq 2(1\leqq i\leqq n)$ . Then $a=2\cos(2\pi r)$

$\langle r\in Q)$ .
From this lemma we have $a=2\cos(2\pi r)(r\in Q)$ . By (3.10), (3.11) we have

(4.9) $\{\begin{array}{l}(8-a+\sqrt{a^{2}+32})/2\leqq x^{2}<4+2\sqrt{3},0<\varphi_{i}(x^{2})\leqq(8-\varphi_{i}(a)-\sqrt{\varphi_{i}(a)^{2}+32})/2 (2\leqq i\leqq n).\end{array}$

Moreover,

\langle 4.10) If $\varphi_{i}(a)<0$, then $-\varphi_{i}(a)<\varphi_{i}(x^{2})$ $(2\leqq i\leqq n)$ .

Since $a$ is contained in $k$ , we see that $[Q(a):Q]=1,2,4$ . Assume that $a\in Q$ .
Then $a=0$ or 1. In these cases from (4.9) we see that $0<\varphi_{i}(x^{2})\leqq 4-2\sqrt{2}$ or
$(7-\mathcal{F}33)/2$ . Hence we have $|n_{k/Q}(x^{2}(1-x^{2}))|<1$ , which is a contradiction.

Let us consider the case $[Q(a):Q]=2$ . Then we see that $a=2\cos(\pi/4)$ ,
2cos $(\pi/5)$ , 2cos $(2\pi/5)$ or 2cos $(\pi/6)$ . Let $v_{1}=tr_{k/Q}(x^{2}),$ $v_{0}=n_{k/Q}(x^{2})$ . Then by
(4.9) and (4.10) we obtain the inequalities for $v_{0},$ $v_{1}$ and their Q-conjugates $v_{0}’,$ $v_{1}’$ .
Solving these inequalities for each case, we see that there exist no solutions in
each case.
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Let us consider the case $[Q(a):Q]=4$ . We have $k=Q(a)=Q(\cos(\pi/8))$ ,
$Q(\cos(\pi/10))$ , $Q(\cos(\pi/12))$ or $Q(\cos(\pi/15))$ . Since we know that $\zeta_{k}(2)=$

$2^{-5}3^{-1}5(2\pi)^{8}d(k)^{-3/2}$ for $k=Q(\cos(\pi/8))$ (cf. [18] p. 208), from (4.2) we have
$\prod_{\mathfrak{p}|D(A)}(n_{k/Q}(\mathfrak{p})-1)d_{2}=2^{4}3/5$ , which is not an integer. This is a contradiction.

In order to deal with the remaining cases we need the following
LEMMA 4.3. Let $\rho=2\cos(2\pi/m)(m\in Z)$ and $k=Q(\rho)$ . Then {1, $\rho,$

$\rho^{2},$ $\cdots$ ,
$\rho^{d-1}\}$ is a Z-basis of the ring $O_{k}$ of integers in $k$ , where $d=[k:Q]$ .

The proof of this lemma is referred to Liang [9]. Let $\rho_{r}=2\cos(\pi/r)$ for
each case $k=Q(\cos(\pi/r)),$ $r=10,12$ or 15. By (3.10) we have the inequality
$4(x^{2}-2)/(x^{2}-4)<x^{2}+2$ in this case. Solving this inequality numerically, we have

(4.10) $6<x^{2}<4+2\sqrt{3}$ , $0<\varphi_{t}(x^{2})<2$ $(2\leqq i\leqq 4)$ .
By Lemma 4.3 we have the expression $x^{2}= \sum_{0\leqq i\exists 3}m_{i}\rho_{r}^{i}(m_{i}\in Z)$ . Solving the

inequalities for $(m_{0}, m_{1}, m_{2}, m_{3})$ given by (4.10) numerically, we see that there
exist no solutions for $x^{2}$ .

Let us consider the case $n=5$ . Solving the inequality numerically $1\leqq$

$|n_{k/Q}(x^{2}(2-x^{2})(1-x^{2})^{2})|\leqq x^{2}(x^{2}-2)(x^{2}-1)^{2}/4^{4}$ , we have

(4.11) $5.06<x^{2}<4+2\sqrt{3}$ , $0<\varphi_{i}(x^{2})<2$ $(2\leqq i\leqq 5)$ .
$Weshallshowthatif0\leqq y^{2}-x^{2}\leqq 2or0\leqq z^{2}-y^{2}\leqq 2$ , then k $=Q(\cos(\pi/11))$ . Assume
that $0\leqq y^{2}-x^{2}\leqq 2$ . Then by (3.12) and Lemma 4.2 we have $y^{2}-x^{2}=2\cos(2\pi r)$ ,
$r\in Q$ . Since $n=5$ , we have $y^{2}-x^{2}=0,1$ or 2cos $(2\pi s/11)$ . If $y^{2}-x^{2}=0$ or 1,
then by (4.9) we have $|n_{k/Q}(x^{2}(1-x^{2}))|<1$ , which is a contradiction. Assume
that $0\leqq z^{2}-y^{2}\leqq 2$ . Then we have $z^{2}-y^{2}=0,1$ or 2cos $(2\pi s/11)$ . If $z^{2}-y^{2}=0$ or
1, then by the fact that the function $(x^{2}-2)/(x-2)$ is monotone-decreasing on
$\sqrt{506}<x<3$, from (3.10), (3.11) we have

$y^{2}<12.268$, $0<\varphi_{i}(y^{2})<4-2\sqrt{2}$ (resp. $(7-\sqrt{33})/2$) $(2\leqq i\leqq 5)$ .
It follows that $|n_{k/Q}(y^{2}(1-y^{2}))|<1$ , which is a contradiction. Hence we see
that $k=Q(\cos(\pi/11))$ . Since $\zeta_{k}(2)=2^{-3}\cdot 3^{-1}\cdot 5\cdot 11^{-1}(2\pi)^{10}d(k)^{-3/2}$ for $k=Q(\cos(\pi/11))$

(cf. [18] p. 208), we have $\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)d_{2}=2^{2}\cdot 3\cdot 11/5$ , which is not an integer.

This is a contradiction.
Now we must consider the case:

(4.12) $x^{2}+2<y^{2}$ , $y^{2}+2<z^{2}$ .
From (3.10) and the second inequality of (4.12) we have

(4.13) $y^{2}<x^{2}(1+\sqrt{x}2^{-}-3)/(x^{2}-4)$ .
Combining the first inequality of (4.12) with (4.13), we have

(4.14) $5.06<x^{2}<6.071$ , $0<\varphi_{i}(x^{2})<2$ $(2\leqq i\leqq 5)$ .
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From (4.14) we have $|n_{k/Q}(x^{2}(2-x^{2})(1-x^{2})^{2})|<2.48\cdots$ . Hence we have $n_{k/Q}(1-x^{2})$

$=\pm 1,$ $n_{k/Q}(x^{2}(2-x^{2}))=-1$ or $-2$ . Since $x^{2}+(2-x^{2})=2,$ $n_{k/Q}(x^{2})$ is divisible by
2 if and only if $n_{k/Q}(2-x^{2})$ is so. Therefore we have
(4.15) $n_{k/Q}(-x^{2})=-1$ , $n_{k/Q}(2-x^{2})=-1$ , $n_{k/Q}(1-x^{2})=\pm 1$ .

Let $f(t)=t^{5}+a_{4}t^{4}+a_{3}t^{3}+a_{2}t^{2}+a_{1}t+a_{0}(a_{i}\in Z)$ be the irreducible polynomial
of $x^{2}$ over $Q$ . Then from (4.15) we have $f(O)=-1,$ $f(2)=-1,$ $f(1)=\pm 1$ .

We distinguish two cases: $f(1)=1$ and $-1$ . Let us consider first the case
$f(1)=-1$ . In this case we have the expression: $f(t)=t(t-1)(t-2)(t^{2}+c_{1}t+c_{0})-1$

$(c_{t}\in Z)$ . Since tr $k/Q(x^{2})=3-c_{1}$ , by (4.14) we have

(4.16) $-11\leqq c_{1}\leqq-3$ .
From (4.14) we have $f(5.06)<0<f(6.071)$ . This gives the inequalities for $(c_{0}, c_{1})$ .
Solving these inequalities numerically, we have a finite set of solutions for $(c_{0}, c_{1})$ .
We check the condition (4.14) for each case $(c_{0}, c_{1})$ . Hence we have only one
case: $f(t)=t^{5}-10t^{4}+29t^{3}-32t^{2}+12t-1,$ $d(f)=24217$ . However, solving the inequal-
ities (3.10), (3.11) for $y^{2}$ in this case, we see that there exist no solutions.

For the case $f(1)=1$ by the same way as in the case $f(1)=-1$ we see that
there exist no solutions.

Let us consider the case $n=6$ . From the inequality:

$1\leqq|n_{k/Q}(x^{2}(2-x^{2})(1-x^{2})^{2})|<-x^{2}(2-x^{2})(1-x^{2})^{2}/4^{5}$ ,
we have

(4.17) $6.7<x^{2}<4+2\sqrt{3}$ , $0<\varphi_{i}(x^{2})<2$ $(2\leqq t\leqq 6)$ .

Let $a=y^{2}-x^{2}$ . Then from (3.10) we have
$0\leqq a\leqq(x^{2}-2)/(x-2)-x^{2}$ .

Since the function $(x^{2}-2)/(x-2)-x^{2}$ is monotone-decreasing on $\sqrt{6}7\leqq x$ , we
have

$0\leqq a\leqq 1.2873$, $-2<\varphi_{i}(a)<2$ $(2\leqq i\leqq 6)$ .
By Lemma 4.2 we have $a=2\cos(2\pi s/r)$ , where $1\leqq r,$ $s\in Z$ such that $\varphi(r)=2,4,6$

or 12 and $(r, s)=1$ and $0<s/r\leqq 1/4$ .
Assume that $a=0$ or 1. Then by (4.9) we have $|n_{k/Q}(x^{2}(1-x^{2}))|<1$ , which

is a contradiction. There remain the cases $\varphi(r)=4,6$ or 12. In these cases for

each pair $(r, s)$ we can show that $|n_{k/Q}(x^{2})|<1$ or $|n_{k/Q}(y^{2})|<1$ . This is a
contradiction. We have finished the case $e=2$ .

4.3. The case $e=3$ .
Let us consider the case $e=3$ . In this case we have $c_{e}=1$ . By Theorem 3.6

we have $1\leqq n\leqq 4$ . From (3.10) we have $x^{2}\leqq(x^{2}-1)/(x-2)$ . Solving this inequality
numerically, we have

(4.18) $4<x^{2}<8.291$ , $0<\varphi_{i}(x^{2})<1$ $(2\leqq i\leqq n)$
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By the inequalities: $1\leqq|n_{k/Q}(x^{2}(1-x^{2}))|<8.291\cdot 7.291/4^{n- 1}$ , we have $4^{n- 1}<60.449$ .
Hence we see that $n=1,2$ or 3. In the cases $n=1,2$ we can obtain easily all
solutions.

Now let us consider the case $n=3$ . We distinguish two cases: $3<y^{2}-x^{2}$

and $0\leqq y^{2}-x^{2}\leqq 3$ . Let us consider the first case $3<y^{2}-x^{2}$ . By (3.10) we have
$x^{2}+3<(x^{2}-1)/(x-2)$ . Solving this inequality, we have $x^{2}<6.6947$ . On the other
hand, since $1\leqq|n_{k/Q}(x^{2}(1-x^{2}))|<x^{2}(x^{2}-1)/4^{2}$, we have

(4.19) $(1+\sqrt{}\overline{65})/2<x^{2}<6.6947$ , $0<\varphi_{i}(x^{2})<1$ $(2\leqq i\leqq 3)$ .

From (4.19) we see easily that

(4.20) $n_{k/Q}(x^{2}(1-x^{2}))=-1,$ $-2$ .
Let $f(t)=t^{3}+a_{2}t+a_{1}t+a_{0}(a_{i}\in Z)$ be the irreducible polynomial of $x^{2}$ over $Q$ . By
(4.19) we have $-8\leqq a_{2}\leqq-5$ . By (4.20) we have $f(0)\cdot f(1)=1$ or 2. From these
relations we obtain a finite set of solutions for $(a_{0}, a_{1}, a_{2})$ . Checking the condi-
tion (4.19) for each $(a_{0}, a_{1}, a_{2})$ , we obtain $f(t)=t^{3}-6t^{2}+5t-1,$ $d(f)=d(k)=49$ .
For this $x^{2}$ we have a solution such that $y=z$ .

Let us consider the case $0\leqq y^{2}-x^{2}\leqq 3$ . Let $a=y^{2}-x^{2}$ . Then from (3.12) we
have

(4.21) $-1\leqq a-1\leqq 2$ , $-2<\varphi_{i}(a-1)<0$ $(2\leqq i\leqq 3)$ .
Since $[Q(a):Q]=1$ or 3, from (4.21) we have $a=0,1+2\cos(2\pi/7)$ or $1+2\cos(\pi/9)$ .
In the case $a=0$ by (3.10), (3.11), (4.18) we have

(4.22) $4+2\sqrt{3}^{-}\leqq x^{2}<8.291$ , $0<\varphi_{i}(x^{2})\leqq 4-2\sqrt{}^{-}3^{-}$ $(2\leqq i\leqq 3)$ .

From this we obtain a solution such that $x=y=z,$ $d(k)=81$ . For two other cases
we see that there exist no solutions.

4.4. The case $e=4$ .
Let us consider the case $e=4$ . In this case we have $c_{e}=2-\sqrt{2}$ . By Theo-

rem 3.4 (i) we see that $k$ contains $k_{0}=Q(\sqrt{2})$ . From (3.10), (3.12) we have

(4.23) $4<x^{2}<9$, $0<\varphi_{i}(x^{2})<\varphi_{i}(2-\sqrt{2})$ $(2\leqq i\leqq n)$ .
Let $u=1+\mathcal{F}2$ . Since $0<\varphi_{i}(ux^{2}(\sqrt{2}-ux^{2}))<1/2$ , we have

$1\leqq|n_{k/Q}(ux^{2}(\sqrt{2}-ux^{2})(\sqrt{2}ux^{2}-1)^{2})|<9u(9u-\mathcal{F}2)(9\sqrt{}\overline{2}u-1)^{2}/8^{n- 1}$ .
Hence $8^{n-1}<390064.58\cdots$ . It follows that $n=2,4$ or 6. Since $x^{2}\leqq y^{2}$

$\leqq(x^{2}-2+\sqrt{2})/(x-2)$ , we have

(4.24) $4<x^{2}<8.596$ , $0<\varphi_{i}(x^{2})<\varphi_{i}(2-\sqrt 2)$ $(2\leqq i\leqq n)$ .

In the case $n=2$ we have $k=k_{0}$ and it is easy to obtain all solutions.
Let us consider the case $n=4$ . Then $k$ is a quadratic extension of $k_{0}$ . Let
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$a_{0}=n_{k/k_{0}}(x^{2}),$ $a_{1}=tr_{k/k_{0}}(x^{2})$ . From (4.24) we have the inequalities for $a_{0},$ $a_{1}$ and
their Q-conjugates. We obtain 11 cases for $(a_{0}, a_{1})$ . For each case we can
calculate $d(k)$ and obtain an $O_{k_{0}}$-basis $\{1, \rho\}$ of $O_{k}$ . Using the expressions $y^{2}=$

$b_{0}+b_{1}\rho,$ $z^{2}=c_{0}+c_{1}\rho(b_{i}, c_{i}\in O_{k_{0}})$ , we obtain the inequalities for $b_{i},$
$c_{i}$ and their

Q-conjugates. Solving these inequalities we obtain three solutions for $(x, y, z)$ .
Let us consider the case $n=6$ . Let $g(t)=t^{3}+b_{2}t^{2}+b_{1}t+b_{0}(b_{i}\in O_{k_{0}})$ be the

irreducible polynomial of $ux^{2}$ over $k_{0}$ . By (4.24) we have

(4.25) $4u<ux^{2}<8.596u$ , $0<\pm\varphi_{i}(ux^{2})<\sqrt{2}$ $(2\leqq i\leqq 6)$ ,

where the sign $\pm is$ determined according to $\varphi_{i}(\sqrt{2})=\pm\sqrt{2}$ . From (4.25) we
have inequalities for $b_{i}$ and their Q-conjugates. For each solution for $(b_{i})$ we
check the condition (4.25) and we see that there exist no solutions.

4.5. The case $e=5$ .
Let us consider the case $e=5$ . In this case from Theorem 3.6 we see that

$n=2$ or 4. For the case $n=2$ we have $k=Q(\sqrt{5})$ and we obtain easily all
solutions. Let us consider the case $n=4$ . Then $k$ is a quadratic extension of

$k_{0}=Q(J\overline{5})$ . From (3.10) we have the inequality $x^{3}-3x^{2}+ \frac{3-\sqrt{5}}{2}\leqq 0$ . Solving

this numerically, we have

(4.26) $4<x^{2}<8.740$ .

Let $u=(3+\sqrt{5})/2$ . Then we have

(4.27) $10.472<ux^{2}<22.882$ , $0<\varphi_{i}(ux^{2})<1$ $(2\leqq i\leqq 4)$ .

It implies that $|n_{k/Q}(ux^{2}(1-ux^{2}))|<7.824$ . Calculating the relative degree $f_{p}$ of
prime numbers $p=2,3,5,7$ over $k_{0}/Q$ , we have

(4.28) $n_{k/Q}(ux^{2}(1-ux^{2}))=-1,$ $-4,$ $-5$ .

Let $b_{0}=n_{k/k_{0}}(ux^{2}),$ $b_{1}=tr_{k/k_{0}}(ux^{2})$ . Then from (4.27), (4.28) we have inequalities
for $b_{i}$ and their Q-conjugates. We obtain 5 solutions for $(b_{i})$ . For each $(b_{i})$ we
calculate $y^{2},$ $z^{2}$ and we obtain three solutions.

4.6. The case $e=6$ .
Let us consider the case $e=6$ . In this case we see that $c_{e}=2-\wedge 3$ and that

$k$ contains $k_{0}=Q(\sqrt{3}),$ $n=2,4$ or 6. Let $u=2+\sqrt{3}$ . Then we have

(4.29) $4u<ux^{2}<9u$ , $0<\varphi_{i}(ux^{2})<1$ $(2\leqq i\leqq n)$ .
In the case $n=2$ it is easy to obtain all solutions. Let us consider the case $n=4$ .
Let $g(t)=t^{2}+b_{1}t+b_{0}(b_{i}\in O_{k_{0}})$ be the irreducible polynomial of $ux^{2}$ over $k_{0}$ .
Solving the inequalities for $b_{i}$ and their Q-conjugates derived from (4.29), we
obtain three solutions for $(b_{0}, b_{1})$ . For these $(b_{0}, b_{1})$ we have $d(k)=4752$ , 27792,
39744. On the other hand, since $n=4$ is even, we have $D(A)\neq(1)$ . Hence we
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have $\zeta_{k}(2)\prod_{\mathfrak{p}|D(A)}(n_{k/Q}(\mathfrak{p})-1)>4/3$ . It implies that $d(k)<13209.28$ . Therefore there

remains only the case $k=Q(\sqrt{15+8\sqrt{3}}),$ $d(k)=4752$ . However, by straight-
forward calculations we see that there exist no solutions. Let us consider the
case $n=6$ . Let $b=uy^{2}-ux^{2}$ . Then by (3.10), (3.12) we have

(4.30) $0\leqq b$ , $-1<\varphi_{i}(b)<1$ $(2\leqq i\leqq 6)$ .

We shall show that $x=y$ . Assume that $b\neq 0$ . From the inequalities: $1\leqq$

$|n_{k/Q}(b^{2}(1-b^{2}))|<b^{2}(b^{2}-1)/4^{5}$, we have $5.701<b$ . Since $y^{2}=x^{2}+b/u$ . we have
$x^{2}+1.5276<(x^{2}-2+\sqrt{3})/(x-2)$ . Solving this inequality, we have $x^{2}<7.893$ .
This implies that $|n_{k/Q}(ux^{2}(1-ux^{2}))|<1$ . This is a contradiction. Therefore
we have shown that $x=y$ . From (3.10) we have $x^{3}-3x^{2}+2-\sqrt{3}\leqq 0$ . Solving
this numerically, we have

(4.31) $ux^{2}<8.819u$ .

On the other hand, from the inequalities: $1\leqq|n_{k/Q}(ux^{2}(1-ux^{2}))|<ux^{2}(ux^{2}-1)/4^{5}$ ,

we have

(4.32) $8.709u<ux^{2}$ .

If $\varphi_{i}(ux^{2}(1-ux^{2}))<0.243$ for some $i$, then we have $|n_{k/Q}(ux^{2}(1-ux^{2}))|<1$ . This
is a contradiction. Hence we have

(4.33) $32.502<ux^{2}<32.913$ , $0.4<\varphi_{i}(ux^{2})<0.6$ $(2\leqq i\leqq 6)$ .
Let $c=tr_{k’ k_{0}}(ux^{2})$ . From (4.33) we have inequalities for $c$ and its Q-conjugates.
We see easily that there exist no solutions for $c$ in $O_{k_{0}}$ .

4.7. The cases $e=7,9$ .
Let us consider the case $e=7$ . By Theorem 3.6 we have $n=3$ or 6. Let

$\rho=2\cos(\pi/7),$ $k_{0}=Q(\rho)$ . If $n=3$ , then we have $k=k_{0}$ . Using a Z-basis $\{1, \rho, \rho^{2}\}$ ,

we have inequalities for $x^{2},$ $\varphi_{i}(x^{2})$ . We obtain four solutions for $x^{2}$ . For each
$x$ we can obtain a solution for $(x, y, z)$ .

Let us consider the case $n=6$ . In this case $k$ is a quadratic extension of
$k_{0}$ . Let $u=\rho^{2}+\rho$ . Then we have

(4.34) $4u<ux^{2}<9u$ , $0<\varphi_{i}(ux^{2})<1$ $(2\leqq i\leqq 6)$ .
From the inequalities: $1\leqq|n_{k/Q}(ux^{2}(1-ux^{2}))|<ux^{2}(ux^{2}-1)/4^{5}$ we have

(4.35) $(1+\sqrt{4097})/2\leqq ux^{2}<9u(=45.440\cdots)$ .
It follows that $|n_{k/Q}(ux^{2}(1-ux^{2}))|<1.97$ . Hence we have

(4.36) $n_{k/Q}(ux^{2})=1$ , $n_{k/Q}(1-ux^{2})=-1$ .

We put $b_{0}=n_{k/k_{0}}(ux^{2})$ , $b_{1}=tr_{k/k_{0}}(ux^{2})$ . Using the expressions $b_{i}= \sum_{0\leqq f\leqq 2}b_{ij}\rho^{j}$
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$(b_{lj}\in Z)$ , by (4.34), (4.35), (4.36) we have inequalities for $b_{ij}$ . For each solution
$(b_{i})$ we check the condition and we see that there exist no solutions for $ux^{2}$ .

For the case $e=9$ in the same way as in the case $e=7$ we can obtain all
solutions.

4.8. The cases $e=8,15$ .
Let us consider the case $e=8$ . Let $\rho=2\cos(\pi/8)$ and $k_{0}=Q(\rho)$ . By Theo-

rem 3.6 we see that $n=4,8$ . If $n=4$, then $k=k_{0}$ and it is known that $\zeta_{k_{0}}(2)=$

$2^{3}\cdot 3^{-1}\cdot 5\cdot\pi^{8}d(k_{0})^{-3/2}$ (cf. [18] p. 208). Hence we have $\coprod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)d_{2}=2^{2}\cdot 3\cdot 7/5$ .
This is a contradiction because it is not an integer. Let us consider the case
$n=8$ . Then $k$ is a quadratic extension of $k_{0}$ . Since $n=8$ is even, we have
$D(A)\neq(1)$ . Hence we have $\zeta_{k}(2)\prod_{\mathfrak{p}}(n_{k/Q}(\mathfrak{p})-1)>4/3$ . By (4.2) we have

(4.37) $d(k)<(2^{11}\cdot 3\cdot 7\pi^{16})^{2/3}$ .

Since $[k:k_{0}]=2$, by a theorem of the algebraic number theory we have

\langle 4.38) $d(k)=d(k_{0})^{2}n_{k_{0}/Q}(D(k/k_{0}))$ ,

where $D(k/k_{0})$ is the relative discriminant of the extension $k/k_{0}$ . Since $d(k_{0})$

$=2^{11}$ , by (4.37) we have

(4.39) $n_{k_{0}/Q}(D(k/k_{0}))\leqq 58$ .

Considering the relative degree $f_{p}$ for $p=2,3,$ $\cdots$ , 57 over $k_{0}/Q$ , we have

(4.40) $n_{k_{0}/Q}(D(k/k_{0}))=2^{m}\cdot q$ $(0\leqq m\leqq 5, q=1,17,31,47,49)$ .
Now we have the expression $k=k_{0}(\sqrt{\mu})$ , where $\mu$ is a totally positive algebraic
integer in $k_{0}$ . Note that the class number of $k_{0}$ is 1 and that every totally
positive unit of $k_{0}$ is a square of some unit of $k_{0}$ . We obtain six cases for $\mu$

satisfying (4.40). Calculating $n_{k_{0}/Q}(D(k/k_{0}))$ explicitly for each case $\mu$ , we obtain
$n_{k_{0}/Q}(D(k/k_{0}))=2^{9},2^{6}\cdot 17,2^{9}\cdot 17,2^{8}\cdot 31,2^{8}\cdot 47,2^{4}\cdot 49$, which contradicts (4.40).

For the case $e=15$ similarly to the case $e=8$ we see that there exist no
solutions.

4.9. The cases $e=10,12$ .
Let us consider the cases $e=10,12$ . Let $\rho=2\cos(\pi/e)$ and $k_{0}=Q(\rho)$ for each

case. By Theorem 3.6 we see that $n=4$ (and 8 for $e=12$). Since we know that
$\zeta_{k_{0}}(2)=2^{5}\cdot 3^{-1}\pi^{8}d(k_{0})^{-3/2},2^{4}\cdot\pi^{8}d(k_{0})^{-3/2}$ for $e=10,12$ respectively (cf. [18] p. 208),

we see that $\prod_{\mathfrak{p}}(n_{k_{0}/Q}(\mathfrak{p})-1)d_{2}$ is not an integer. Therefore only the case: $e=12$ ,

$n=8$ remains. Now let us consider this case. Put $u=1/(2-\rho)$ . Then $u$ is a
unit of $k_{0}$ . By (3.10), (3.12) we have

(4.41) $4u<ux^{2}<9u(=132.06\cdots)$ , $0<\varphi_{i}(ux^{2})<1$ $(2\leqq i\leqq 8)$ .
From the inequalities: $1\leqq|n_{k/Q}(ux^{2}(1-ux^{2}))|\leqq ux^{2}(ux^{2}-1)/4^{7}$ , we have
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(4.42) $(1+\sqrt{65537})/2\leqq ux^{2}$ .
Hence we have

(4.43) $8.757<x^{2}<9$

Put $b=uy^{2}-ux^{2}$ . Since the function $(t^{2}-2+\rho)/(t-2)-t^{2}$ is monotone-decreasing
on $2<t$ , by (3.10), (3.12) we have

(4.44) $0\leqq b<4.4201$ , $-1<\varphi_{i}(b)<1$ $(2\leqq i\leqq 8)$ .
Since $b$ is an algebraic integer of $k$ , from (4.44) we have $n_{k/Q}(b^{2}(1-b^{2}))=0$ .
Hence $b=0$ . This implies that $x=y$ . By (3.10) we have $z=(x^{2}-\sqrt{x^{4}-8x^{2}+8-4\rho})/2$ .
Since the function $t-\sqrt{t^{2}-8t+8-4\rho}$ is monotone-decreasing on $4\leqq t$ , by (4.43)

we have

(4.45) $z<3.065$ .
We put $c=uz^{2}-ux^{2}$ . Then by (3.12), (4.45) we have

(4.46) $0\leqq c<9.351$ , $-1<\varphi_{i}(c)<1$ $(2\leqq i\leqq 8)$ .

It follows that $0\leqq|n_{k/Q}(c^{2}(1-c^{2}))|<1$ . Since $c$ is an algebraic integer, we have
$c=0$ . Hence we have $x=y=z$ . By (3.10) we have $x^{3}-3x^{2}+2-\rho=0$ . We can
obtain the solution $x=1+2\cos(\pi/36)$ . Since $[Q(x):k_{0}]=3$, we see that $k=k_{0}(x^{2})$

is a cubic extension of $k_{0}$ . This contradicts the fact $[k:k_{0}]=2$ .
4.10. The remaining cases.
Let us discuss the remaining cases which are as follows by Theorem 3.6:

$e=11,13,14,16,17,18,19,20,21,24,25,27,30,33$ .
We put $\rho_{e}=2\cos(\pi/e)$ for each case $e$ . Let us consider first the case $e=11$ .

Then we have $k=Q(\rho_{11})$ . By Lemma 4.3 we have the expression $x^{2}= \sum_{0\leqq i\leqq 4}a_{i}\rho_{11}^{i}$

$(a_{i}\in Z)$ . Solving the inequalities for $a_{i}$ given by (3.10), (3.12), we obtain a
solution for $(x, y, z)$ .

Let us consider tbe case $e=13$ . Then $k=Q(\rho_{13})$ . Let $\eta=\rho_{13}+2\cos(5\pi/13)$

and $k_{1}=Q(\eta)$ . Then we see that $[k_{1} : Q]=3,$ $[k:k_{1}]=2$ . It is easy to see that
$\{1, \eta, \eta^{2}\}$ is a Z-basis of $O_{k_{1}}$ and that $\{1, \rho_{13}\}$ is a $O_{k_{1}}$-basis of $O_{k}$ . Using the
expression $x^{2}=a_{0}+a_{1}\rho_{13}(a_{i}\in O_{k_{1}})$ , we have inequalities for $a_{i}$ from (3.10), (3.12).

We solve these inequalities to see that there exist no solutions for $a_{i}$ .
For the cases $e=18,21$ in the similar way to the case $e=13$ we see that

there exist no solutions.
Let us consider the case $e=14$ . In this case we see that $k=Q(\rho_{14}),$ $[k:Q]$

$=6,$ $d(k)=2^{6}\cdot 7^{5}$ . Since $n=6$ is even, we have $D(A)\neq(1)$ . By using the fact
that the minimum of $n_{k/Q}(\mathfrak{p})$ for all prime ideals $\mathfrak{p}$ of $k$ is 7 we have

$\zeta_{k}(2)\prod_{\mathfrak{p}|D(A)}(n_{k/Q}(\mathfrak{p})-1)>7^{2}/8$ .
Hence we have
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$(2 \pi)^{-12}d(k)^{3/2}\zeta_{k}(2)\prod_{\mathfrak{p}_{|D(A)}}(n_{k/Q}(\mathfrak{p})-1)>1.804>1-1/14$ .

This contradicts (4.2).

For each remaining case $e$ we have $k=Q(\rho_{e})$ . We can calculate $d(k)$

explicitly and we see that $(2\pi)^{-2n}d(k)^{3/2}>1-1/e$ which contradicts (4.2). We
have finished the proof of Theorem 4.1.

4.11. For each triple $(x, y, z)$ listed in Theorem 4.1 we can obtain a triple
$(\alpha, \beta, \gamma)$ determined by (3.8). This is unique up to $GL_{2}(R)$ -conjugation but not
$SL_{2}(R)$ -conjugation. We have another triple $(g_{0}^{-1}\alpha g_{0}, g_{0}^{-1}\beta g_{0}, g_{0}^{-1}\gamma g_{0})$ satisfying

(3.8), where we denote $g_{0}=(\begin{array}{l}1 00-1\end{array})$ . These are complete solutions for (3.8) up

to $SL_{2}(R)$-conjugation. Let $\Gamma$ be the Fuchsian group generated by $\{\alpha, \beta\}$ and
let $A$ be the quaternion algebra associated with $\Gamma$ For a fixed triple $(x, y, z)$

any Fuchsian group derived from $(x, y, z)$ is $SL_{2}(R)$-conjugate to $\Gamma$ or $g_{0}^{-1}\Gamma g_{0}$ .
It depends on the case whether these two groups are $SL_{2}(R)$-conjugate or not.

For a fixed $e$ different triples may correspond to the same $\Gamma$ Now we
shall show that each $\Gamma$ derived from each triple $(x, y, z)$ listed in Theorem 4.1
is pairwise $GL_{2}(R)$-inconjugate. Let $(x’, y’, z’)$ be another triple for the fixed $e$ .
Let $\Gamma’$ be the Fuchsian group derived from it and $A’/k’$ be the quaternion
algebra associated with $\Gamma’$ . Suppose that $\Gamma’=g^{-1}\Gamma g$ for $g\in GL_{2}(R)$ . By a
result in [17] we see that $Q(tr(\gamma)|\gamma\in\Gamma)=Q(x, y, z)$ . It follows that $k=k’$,
$D(A)=D(A’),$ $Q(x, y, z)=Q(x’, y’, z’)$ . However, in view of the data in Theorem
4.1 we see that there exist no such triples $(x, y, z)$ and $(x’, y’, z’)$ .
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