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1. Introduction.

It is an interesting and important problem to investigate the existence and
the rigidity of a minimal immersion of a Riemannian manifold into a unit
sphere. In the case of an n-dimensional sphere S7”, associated with each positive
integer s, there exists an isometric minimal immersion ¢, : Sfs,—ST*®, where
S! denotes an /-dimensional sphere with constant sectional curvature ¢ and k(s)
and m(s) are given as follows;

n
HO= =)
(s+n—2)!

¢das is given by s-th eigenfunctions of the Laplacian A on S™ (T. Takahashi
[9]). These immersions ¢, are called “standard minimal immersions” (cf. § 2).

It will be convenient to say that a minimal immersion ¢: Sp—>SIC R is
full if ©(SP) is not contained in a hyperplane of R'** and that two such immer-
sions ¢, ¢, are equivalent if there exists an isometry p of S! such that ¢,=p-¢,.
For the rigidity of the immersion ¢, do Carmo and Wallach ([4]) showed the
following result.

THEOREM ([4]). In the case of s=1,2, and 3, the immersion ¢y, is rigid.
Namely any isometric minimal immersion ¢ of Sks, into St is equivalent to ¢n,s.
However when n=3 and s=4 the immersion ¢, s is not rigid. That is, the set
of equivalence classes of isometric minimal immersions of Sky into St can be
smoothly parametrized by a compact convex body LCW in a vector space W, with
dimW=N(n, s)=18.

In this note we consider characterizations of the standard minimal immersion
in such a broad class of minimal immersions. First we characterize it by making
use of the notion of isotropic immersions introduced by B. O’Neill [5]). We
say that an R*-valued symmetric multi-linear form B on R" is isotropic if
| B(u, u, ---, u)||=constant for any unit vectors u in R™ (cf. §2). Then we
have the following result.
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THEOREM A. Let ¢: Sksy—St be an isometric minimal immersion. Assume

that ¢ is full and that n=3 and s=4. If the degree of gpg[%], where [—;—] is

the largest integer less than or equal to s/2, and the j-th fundamental form B;
1s isotropic for 2=j5= [%], then we have [=m(s) and ¢ is equivalent to the stand-
ard minimal immersion Py ;.

We shall refer to the notions of higher fundamental forms and the degree
of the immersion in § 2.

Next we characterize the standard minimal immersion using the concept of
a helical geodesic immersion. Let ¢: M—M be an isometric immersion of a
connnected complete Riemannian manifold A into a Riemannian manifold M.
If for each geodesic 7 of M the curve ¢-7 in M has constant curvatures of
osculating order d which are independent of 7, then ¢ is called a helical geodesic
immersion of order d (K. Sakamoto [8]). It is known that a strongly harmonic
manifold admits a helical geodesic minimal immersion into a sphere (A. Besse
[2]). Sakamoto ([8]) stated that the study of helical geodesic immersions will
be useful for the study of the conjecture that the harmonic manifolds are locally
symmetric. In this paper we show the following result.

THEOREM B. Let ¢:Sk;—S! be a helical geodesic minimal immersion.
Assume that ¢ is full. Then ¢ is equivalent to the standard minimal immersion
¢n.s; in particular the order of the helical geodesic immersion ¢ is equal to s
and [=m(s). ,

The author wishes to thank Professor K. Ogiue for his many valuable
comments.

2. The standard minimal immersions and their properties.

2.1. The standard minimal immersions. Let M=G/K be an n-dimensional
compact homogeneous Riemannian manifold with an irreducible linear isotropy
group and V*° the s-th eigenspace of the Laplacian A, corresponding to the s-th
eigenvalue A;,. We define an inner product < , > in V* by

S, h>=SMf-ha'p fheve.

For simplicity, we normalize the canonical measure dyu of (M, g) in such a way
that SMd;zzdim Vi=m(s)+1. Let {fs, f1, -, fmw} be an orthonormal basis for

V¢ and define a map ¢: M—=R™®+ by d(p)=(fo(p), -+, fmw(D), pEM. The
transitive action G on M induces a natural action on V*® by (g f)(p)=F(g"'p),

g<G, peM. It is easily seen that mi) Fip)=1 for all peM, i.e, H(M)TST.
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The irreducibility of the linear isotropy action of K and the G-invariance of the
metric g imply that ¢ is an isometric immersion of (M, cg) into ST**’. By a
theorem of Takahashi ([9]) ¢ is then a minimal immersion of (M, cg) into ST
and ¢=4;/n. We shall call this isometric minimal immersion ¢ of (M, (A,/n)g)
into ST the s-th standard minimal immersion of M.

The standard minimal immersion can be described in other words as follows.
Take an orthonormal basis {fo, f1, ***, fmw} Of V® such that e,=¢(eK)
=(fo(eK), -+, fms(eK)), where e is the identity element of G. Let A be an
isometry of V* into R™®+! guch that A(f;)=e;, =0, 1, ---, m(s). Let G act on
R™@®+1 g0 that A is a G-isomorphism. Then by a simple computation we get
d(gK)=A(g-fo), g=G. Since A is an isometry, we can consider ¢ as an isometric
minimal immersion of (M, (4;/n)g) into a unit hypersphere in V° defined by
P(gK)=g fu g<G6.

Let ¢ : M—M be an isometric immersion of a Riemannian homogeneous space
M=G/K into a Riemannian manifold of constant sectional curvature M. We
say that ¢ is equivariant if there exists a continuous homomorphism p of G
into the isometry group I(M) of M such that

e(g-p)=p@e(p) peM, gei.
It is easily seen that the standard minimal immersion is naturally equivariant.

2.2. Higher fundamental forms and degrees of isometric immersions. In
this part, we define the higher fundamental forms and the degree of an
isometric immersion (Wallach [10]. Let M be a Riemannian manifold of
constant curvature. Let ¢: M—M be an isometric immersion of a Riemannian
manifold M into M. Let B, be the second fundamental form of ¢ at pe M
and 0% be the linear span of the image of B, in the normal space N (M) of
the immersion ¢ at peM. We call ¢xT , M+ 0% the second osculating space at
peM. We say that peM is degree 2 regular if O% is of maximal dimension.
Let R,CM be the set of all degree 2 regular points of M. Then R, is open in
M. Let peR, Let N, be the normal projection in N (M) relative to N,(M)
=0%+(0%)* (we write v—vV?*<(0%)*). We define By(uy, u,, ug)z(ﬁul(Bz(ug, Ug)))N2
for u,, us, us€T ,M arbitrarily extended to the vector fields on M, where \vj
denotes the Riemannian connection on M. B, is well-defined and defines a
symmetric tensor field on R, Let O} be the linear span of the image of B,.
We call B the third fundamental form of ¢ at p and ¢4T,M+0%+03 the
third osculating space. We call a point p&R, degree 3 regular if dim O3 is
maximal. We define B;, O7 for j=2, 3, --- by recursion as above on the space
R;_, of all degree j—1 regular points of M. We call B; the j-th fundamental
form of ¢ and xT,M+0%+ --- +07, the j-th osculating space. Clearly the above
process must eventually stop since dim (@«T,M~+0%+0%+ -+ +0%)=dim T ,M.
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Let d be the first integer =2 such that B;==0 but B;,,=0. Then we call d
the degree of ¢ and the set of all d-regular points will be called the set of all
completely regular points of M, denoted M’=R,. In particular, when ¢ is totally
geodesic, i.e., B,=0, we say that ¢ has degree 1.

LEMMA 2.1 (Wallach [10]).

(1) Bj: T,MXT,MX -+ XT ,M—0, is an O})-valued symmetric j-linear form

Jj-times

on T,M for peR;,. Then Bj; induces a linear map S/ (T ,M)—0%, where
ST ,M) denotes the j-fold symmetric power of T M.

(2) Let ey, -+, e, be an orthonormal basis of T ,M. Set rp= ge%eSZ(TPM).
If ¢: M—M is minimal, then

ker B;,Dr,-ST" T, M), j=2.

2.3. Higher fundamental forms of the standard minimal immersions. Let
¢: M—S! be the standard minimal immersion of a compact homogeneous space
M=G/K defined in 2.1. Since ¢ is equivariant, the set of all completely regular
points of M coincides with M. Moreover the following properties hold.

LeMmMA 2.2. (1) B, is G-invariant and commutes with p(g),

Bjigp(g-us, -, g u)=p(g)Bjip(us, -+, uy)
0(2)0%=0%.p
Njep(g)=p(g)N;, g€G.

In particular, B;: SU (T .xM)—0Oix(M) is a K-homomorphism.
(2) V* admits an orthogonal divect sum decomposition

VS:R°¢(QK)+¢J*T3KM+O§K+ o +0%k,

where d is the degree of ¢. ,

REMARK 2.3. When M=G/K is a compact rank 1 symmetric space, K acts
transitively on the unit sphere of T,xM. Then by (D),

I Bj(k-u, -, k-w)|=llp(R)Bs(u, -, w)|=Byu, -, u)| kREK.

Thus B, is isotropic at ¢K and again by (1) B, is constant isotropic
on M.

REMARK 2.4. The degrees of the standard minimal immersions of a compact
rank 1 symmetric space M into spheres are computed.

(1) When M=S", the degree of the s-th standard minimal immersion ¢,
is s.

(2) When M is a complex projective space P,(C), a quaternion projective
space P,(H), or a Cayley projective plane P,(Cay), the degree of ¢, is 2s.

Do Carmo and Wallach ([4]) showed the above result in the case of a
sphere and K. Mashimo ([6], [7]) calculated the degree for the other cases.
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3. Higher fundamental forms of isotropic minimal immersions.

Let ¢n,s: MEs—ST® be the standard minimal immersion of an n-dimensional
compact rank 1 symmetric space M into a unit sphere corresponding to the s-th
eigenvalue, where MJ, has the induced Riemannian metric by ¢, Let
¢: MEy—St be an another minimal immersion corresponding to the same
eigenvalue. We compare the higher fundamental forms of ¢ with those of ¢y s
when the higher fundamental forms of ¢ are isotropic. Namely we show the
following.

PROPOSITION 3.1. We denote by B, and B; the j-th fundamental forms of ¢
and ¢n,s respectively. Let i be an integer such that 2<i=the minimum of the
degree of ¢ and the degree of (ns. If By is isotropic for 2=k=i at every
degree k—1 regular point pER,_, with respect to ¢, then we have

<Bk<u1; Ty uk)) Bk(”l; T Uk>>:<Bk(u1) Tty uk)) Bk(vly ) vk)>)

2RS4, Uy, o, Up, Uy, o, V€T M at every point peRy_1. In particular, the
set of all degree k regular points with respect to ¢ coincides with M for 2<k=i.
As preliminaries we state two well-known lemmas.
LEMMA 3.2. Let B be an R*-valued symmetric j-linear form on R". B is

A-isotropic, i.e., | B(x, -+, x)||[=2 for any unit vector x€R", if and only if
LS’2;‘{<B(ul; tt uj)r B(uj+1; uzj)>} :2252]‘«”1, Ugy ** <u2j-1, u2j>}
for uy, -, uz;eR™,

where S,; denotes the symmetrizer of order 2j.

Next we recall the equations of Gauss and Ricci. We prepare notations.
Let ¢ : M—S! be an isometric immersion. We denote by V and V the covariant
differentiations on S} and M respectively. V* denotes the covariant differentiation
with respect to the induced connection in the normal bundle. We define the
covariant differentiation ¥V on T(M)PN(M) as follows: For any N(M)-valued
tensor field S of type (0, k), we define

- k
(YIXS)(YI; Tty Yk):vJX(S<Y1; R Yk>>— 1;1 S(Yly Tty VXYD ] Yk)

and VS is also defined by (VS)(X, Yy, -, Y ) =(xS)Y,, -, Y.
LEMMA 3.3.
(1) Gauss equation:

+<(Bo(X, W), B(Y, Z)>—<ByX, Z), B,(Y, W),

where R denotes the curvature tensor with respect to N.
(2) Ricci equation:
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CRY(X, Y)§, pp=<[H,, H,1(X), Y>,

where R* denotes the curvature tensor with respect to N* and H; denotes the
second fundamental tensor corresponding to the normal vector field & Hg is
related to B, as <H:X, Y)=<(By(X, Y), &.

(3) Riccr formula:

VS, V, Xy, -+, Xp)—2S(V, U, Xy, -, Xp)
=RU, V)S(Xy, -+, X&)

=RHU, VIS(Xy, -+, Xi))— Ekl S(Xy, o, RU, V)Xy, -y Xa) .

We prove [Proposition 3.1] inductively. First we start under the assumption
that the second fundamental form B, of ¢ is A-isotropic. We recall B, is constant
isotropic (Remark 2.3). Using and Gauss equation we obtain

@B.1) 3{Bs(u, v), Bs(x, y)»
=2 {u, v)<x, Y>+<u, x>y, v>+<u, y><v, 2}
—<R(u, yw, x>—<R(u, x)v, y>+<u, 2>y, v»
—<u, v3<{x, y>+<u, y><x, vy—Lu, v><{x, y>.

Since ¢ is minimal,
0=3( 3} Bules, e, 3} Bules, €))=2n(n-+2+2c—n(n—1),

where 7 is the scalar curvature of M. Then we have
2=2(n(n—1)—72)/n(n+2).

Therefore the right-hand-side of [3.I)] for ¢ coincides with that of ¢, , Thus
we have (B,(u, v), By(x, y)>={Bs(u, v), By(x, y)>, which implies that the dimension
of 0% of ¢ is equal to that of ¢, at every point peM. Therefore every point
of M is degree 2 regular for the immersion ¢.

Next step we shall show that (VBy(x, y, 2), Bo(u, v)>=<VBu(x, v, 2), Ba(u, v)>
=0 on M. Since ¢, is equivariant, it is sufficient to prove this at the origin
o=e¢K of M. For an arbitrary vector x=T,M, we denote by 7 the geodesic
of M such that 7(0)=0 and 7’(0)=x. Let (G, K) be a symmetric pair correspond-
ing to M and g=I+m the canonical decomposition. Then the geodesic 7 is
described in such a way that y(f)=exptX-0, where exptX denotes a one-para-
meter subgroup of G and X is a vector in m corresponding to x. Moreover
(exptX)-y is a parallel vector field along 7, which we denote by V. Similarly
we set Z=(exptX)-z, U=(exptX)-u, etc. Then
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(Bu(Y, Z), By(U, V))={(By((exptX)y, (exptX)z), Bu((exp tX)u, (exp tX)v)>
=<p(exp tX)By(y, 2), plexp tX)By(u, v)>
={B.(y, 2), Ba(u, v)) .

Therefore <1§2(Y, Z), B,(U, V)>=constant along y. Since (By(Y, Z), B,(U, V),
=(By(Y, Z), By(U, V)>=constant along 7, we have <VBu(x, y, 2), Bx(u, v))
+<{By(y, 2), VBy(x, u, v)»=0. Since the above equation holds for any vectors
x, v, 2z, u and v, and VB, and B, are symmetric,

NBy(x, v, 2), Bo(u, v))=—<Bsy(y, 2), YBy(x, u, v)>
=By, , 2), Box, v)>
=—<{By(u, z), YBy(y, x, v)>
=<VB.(v, u, 2), Bo(y, x)
=—<(By(u, v), YBy(x, v, 2)>.

Therefore we get <VBy(x, v, 2), By(u, v)>=0. Similarly we have {TBy(x, ¥, 2),
B,(u, v)>=0. By the definition of the third fundamental form, we obtain B,=%B,
and B37:VB2.

Next we shall show that
(3.2) (By(X, Z, W), Bs(Y, U, V)>—<By(Y, Z, W), By(X, U, V)>
={R*(X, Y)BZ, W)—By(R(X, Y)Z, W)
—By(Z, R(X, )W), By(U, V)>

and the same equation holds for the third fundamental form B, of ¢n.s.  Since,
for any vector fields Y, Z, W, U and V, <NB,(Y, Z, W), By,(U, V)>=0, differ-
entiating it with respect to X, we have

<VVBZ(Xy Y; Z; W)) BZ(U’ V)>:_<VB2(va Z; W)) VBg(X, U) V)>

:_<BS(Y, Z! W)) B3(X) U) V)> .
This, together with (3), gives [32) For B, the situation is quite
similar. By 2),
(RYX, Y)B(Z, W), B(U, V)>={[Hpyz.w), Hp,w.n1(X), Y.
Moreover
(Hpyz.mX, Y>=(By(X, Y), BZ, W)>=(ByX, Y), By(Z, W)

={Hpyzm X, Y.
Thus we have
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<RL(X; Y)BZ(Z; W)_B2(R(Xy Y)Z7 W)—B2(Z, R(X’ Y)W>, BZ(U; V)>
=(R*(X, V)BAZ, W)—BoR(X, Y)Z, W)—By(Z, R(X, Y)W), ByU, V)>.

Now we shall prove [Proposition 3.1} for B,. We recall the third fundamental
form B, of ¢n,s is constant isotropic. Namely there exists a constant 4, such
that for any unit tangent vector u of M, |Bs(u, u, u)|=2. On the other hand
we assume that B; of ¢ is A-isotropic and 4 is not necessarily constant on M.

By
Se{{Bs(us, us, us), By(uy, us, ue)>} =228 {<us, usp{us, up{us, us}

for wui, us, =+, usT,M at an arbitrary point peM. This, together with
yields

(3.3) 6K Bs(us, us, us), Bs(us, us, ue)
=S {{uy, ue>{us, udlus, uey} + <R (Us, uy)Bo(uy, u,)
— By(R(us, us)ts, us)— By(us, R(us, us)us), Bolus, ue)p+ .
Similarly
(3.4)  61<Bs(us, us, us), Balus, us, us))
= 2585 {Cts, uad<ts, ud<tts, wd} <R (s, ) Bolus, us)
— Bo(R(us, u)us, us)—Bo(us, R(us, udus), Bolus, ug>+ .
Since the immersion ¢ is minimal, for an orthonormal basis {e, ---, es} we get

0:(6')z;k<33(8“ €j, ej); B3(ei7 €, ek)>

=A*48(n*+6n*+8n)+(term not containing A).

Similarly 0=2248(n®*+6n%+8n)+(the same term as above). We remark that terms
besides the first term of the right-hand-side of (3.3) are equal to those of the
right-hand-side of (3.4). Therefore we have 1=A4, and again by comparing (3.3)
and (34) we get {Bs(ui, us, us), Bs(uy, us, us)>:<B3<u1, Us, Us), Ba(um Us, Ug))-
Also this implies the dimension of 0% of ¢ is equal to that of ¢, at every
point peM. Therefore every point of M is degree 3 regular for the immersion
o.

Now we will apply the mathematical induction. For this we set the as-
sumptions of the induction as follows;

(1) We assume that ;=3 and that every point of M is degree j regular
for the immersion ¢. Moreover we assume that

(By(uy, =, un), Balvs, -, va)>=<{Bylus, =, uy), Bplvy, -, vi)>

for 2<k=; at every point of M.
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This implies that the vector bundle over M which is given by restricting the
tangent bundle of S! to M admits the following orthogonal decomposition ;

TS{{M:TM+02+O3+ +O"+QJ 3
where OF, 2<k=j, denotes the vector bundle whose fibre at p consists of O%
and @; denotes the vector bundle whose fibre at p consists of the orthogonal
complement of ké O% in N,(M).
=2

(2) Next we assume that VB,_,(uy, ---, u;) has the components only in
O*% and OF for 3=k=<j;. By definition B,(uy, ---, u;)=the component of
VB,-:(uy, -+, up) in O% On the other hand we define a tensor field D, as
follows; D.(uy, -+, uz)=the component of VB,_,(us, -, ug) in O*-2 Similarly
we denote by D, the corresponding tensor field for ¢ns. Moreover we assume
that <Dy(us, -, ur), Da(vs, -+, va>=CD(us, -, up), Dy, -, va)) for =<5

(3) Finally we assume that B,., is A-isotropic.

Under these assumptions, we shall show that the same statements hold for
Bj+;. We proceed on the same way as the process from B, to B,.

Step 1.

<VBj(uO) U, uj)) Bj(vly ) vj>>+<Bj(u1y Ty uj)) VBj(uo, Vi, * vj)>:O .

This can be proved in the same way as in the case ;=2 by using the assumption
1), i.e,

<Bj(u17 Tty uj); Bj(vly T vj>>:<Bj(u17 ) uj): Bj(vl,- Ty vj)> .
Step 2.

(NByx, y, us, -, uy), Bjwy, =, v)>=Byy, x, us, -, uz), Bjwy, =+, vy)>.
By the assumption (2), VB;.;=B;+D;. Since
UD(x, v, us, -, u))=Vs(D;Y, Uy, -+, U))—D,N.Y, U, -+, Uy)
— e —=DLY, U, -+, VaU))

and

— -1
Dj<Y7 U2,' Tty Uj)EOj_27 VD](xy y, Ugy **° uj)e JZ Ok'

Thus we have
<VBj<x) Y, Uy o, ui): BJ'(vl; Tt vj)>
:<v2‘Bj‘1(x, Y, Uy =, uj)) Bj(vl’ Ty vj)>

=B;_1(y, x, Uz, -+, us)+R*(x, y)Bj-1(ug, -+, uy)
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j
—;2 Bji(usg, =+, R(x, y)us, -+, uj), Bslvy, =+, v;)>
:<szj-—l(y’ X, Ugy **°, uj); Bj(vl, Ty, vj)>
+<{R*(x, y)Bj—1(u2, e, U ), Bj(vl, Tty Uj)> .
For j=23, Hp,w,,....p=0. Therefore by Ricci equation,

<RJ'(X, y)Bj~1(u2, U, uj), Bj(vh tty, Uj)>:O-

Thus the statement of Step 2 holds.

Step 3. <VNBj(uo, us, -, us), Bj(vy, -+, v;)>=0, that is, the component of VB,

in O7 vanishes. By Step 2, <NByx, v, us, -+, u;), B,(vs, -+, v,)> is symmetric

with respect to x, y, u,, -+, u; which, combined with Step 1, implies the assertion.
The following two facts are easily seen.

Step 4.

<VBj(u0; Uy, **° Uj), Bj—l(vb Tty 7)j-l)>
:_<Bj(u1; Tt uj)y Bj(uo, Vyy **° vj—1)> .

Step 5. For 2=k=j—2, <VBj{u,, uy, -, u;), Be(vy, -+, vp)>=0. By Step 3,
Step 4, and Step 5 we see that VB; has the components only in 07!
and Q,. By the definition we set Bj.;(u,, uy, -, uj)=the Qj;-component of
VBj(u,, uy, -+, u;) and D,y1(u,, uy, -+, u;)=the O/~'-component of VB;(u,, uy, -,
u;). Similarly we can define B ;41 and D;., for the standard minimal immersion
¢n.s. By Step 4, we have

<Dj+1(u01 Uyy =y uj)) Bj—l(vly ) Vj_1>>

:—<Bj(u17 ) uj)) Bj(uo, Vi, **° Uj-—l)> .
Similarly

<Dj+1(uo, Ui, =y u;‘), Bj-l(vl’ Tty Uj—1)>
:_<Bj(ul) Tty uj)) B](uO; Vi, =, vj—1)> .

Here we remark that by the assumptions of the induction there exists a unique
linear isometry A of O of ¢ onto that of ¢, such that AB; i(u, -+, u;-;)

:Bj_,(ul, -+, uj-y). By the above two equations and the assumptions of the
induction, we have

<ADj+1(uo, Uy, o, Uj), Bj—l(vl, ) Uj—1)>
:<Dj+1(uo, Uy, 7> uj), Bj—l(vl’ Tt Uj-—1)>
:<bj+1(u07 ul: Ty uj)r Bj—l(vh Tty vj—1)> ’

which implies that AD;.,(u,, 4, -, uj)=Dj+1(u0, ui, =+, u;). Thus we get
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Step 6.
{Djerlto, =+ 5 Uz, Djssve, -+, Uj)>:"—<Dj+1(uo, e, Ug), bj+1(vo, U
Step 7.

<Bj+l(u0’ Uiy =, uj)) Bj+1(v0’ Vg, *** vj)>
'_<Bj+1(v0; Uy *** uj), Bj+1(u01 Uy, vj)>
:<Dj+1(v0: ul; Tty uj), Dj+1(u0) vl) Y vj)>

—Djs1(uo, s, -+, uz), Dig1(ve, vy, =+, )0
J
_{Z_:‘l <Bj(u1’ Tty R(”O) Uo)ui; Tt uj); BJ'(vl, Tty vj)> .

Since <VB;(wo, us, -+, uy), B;vy, -, v,)>=0, we see that
V2B (1, Vo, Uz, *+, Uy), Bivs, -, v,
=—<B,(vs, uy, =, u;), VB(uo, v1, =+, ;)
=—Bj1(vo, s, -+, uz)y Byes(to, 03, o+, v
— D11y Uy, =, uz), Djrs(uig, vy, =, v)0.

This, together with (3), gives Step 7.

We remark that the right-hand-side of the equation of Step 7 for the
immersion ¢ is quite equal to that of the standard minimal immersion ¢, . By
the same method as in the case of B, we get
Step 8.

<Bj+1(u07 Uy, ***, uj), Bj+1(v0) Vi, ) Uj)>

:<Bj+1(u0) Uy "y uj)y Bj+1(v(): Vi, *° vj)> .

Thus our proof of [Proposition 3.1 finishes.

In the remainder of this section we show the following property about D,-
of the standard minimal immersions of spheres.

PROPOSITION 3.4. Let ¢p,s: Sksy—ST® be the standard minimal immersion
of a sphere into a unit sphere (n=2) and for this immersion we use the notations
Bj and lo)j defined formerly. Then for an arbitrary unit tangent vector x,

Djsi(x, -, x)=—Q%/25-)B;(x, -, x) (F=3),

where . .
Ai=|By(x, -, )l  and 2;-,=|Bjix, -+, x)|l.

Before the proof, we prepare the following algebraic lemma.
LEMMA 3.5. Let F be a symmetric k-linear form on R™ (k=2). Suppose

n
F, -+, v)/|vl* is constant and g}lF(vl, S Vpes, €4, €0)=0 for any vy, -+, Vios,
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where {ey, ---, ey} is an orthonormal basis of R™. Then F=0.
PrRoOOF. We set A=F(v, ---, v) for a unit vector v R". 1If %k is odd, we have
A=F(—v, -, —0)=(=D*F(v, -, v)=—F(, -, v)=—2,
so that A=0. Thus we get F=0. If % is even,

1
F(uh Tty qu):EJ/-)v:"/ZSZj{<uI: u2> e <u2j—1,' u2j>} .
Then for a fixed unit vector u,
0= 33 Flu, -+, u, ei, e)=K

for some K>0. Therefore A4=0 and we have F=0(.

PROOF OF PROPOSITION 3.4. When n=2, we can easily prove
3.4. So we assume that n=3. Since ¢, is an equivariant immersion, it is
sufficient to show the relation at the origin e¢K of S%;. Since Dj+1(x, LX)
€07, it is sufficient to show that

Dyslx, -+, %), Bialws, -+ vym0)>
=— (/2 )<Bjax, -, x), By, -, 0500
for any vy, -+, v;-,. We recall that
Djsilx, -, x), Bjoy(ws, -+, v;-)>=—<Bx, -, x), Bi(x, v1, -, v;-0)>.
Therefore we shall show that
CBilx, -, x), Bx, vy, -, v;20))

=(2§/2§-1)<Bj-1(x, e, X), Bj—l(vl’ T Uj—1)> .
We set
Fk(UI) Y vk):<Bj(x) Ty X), Bj(x) oy, X, Uy ot Uk)>

— 3/ X)X Bjor(x, oy %), Bioa(x, =) %, 01, o, V)

for 1=k=<j;—1. Then F, is a symmetric k-linear form on the tangent space
T.xS™ We define the subspace V of T.xS™ by V={veT xS™; v, x>=0} and
we use an orthonormal basis {e;, -, e,} of T,xS™ such that e;=x, and e,, ---, ¢,
V. We see that there exists a subgroup K’ of K=SO(n) such that k-x=x
for any k=K’ and K’ acts transitively on the unit sphere of V. So for ke K’
and a unit vector vV we have

Fik-v, -, k-v)
=CB(x, =, x), Bj(x, -, x, kv, =, k-v)
_(23/2§—1)<Bj-1(x) Ty x); Bj—l(x) Ty X, k.v} Tt k'v)>
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=(Byk-x, -, b-x), Bjk-x, -, b-x, kv, -, ko)

— (222 B (Bx, -, Box), Bj(kox, -, Beox, Bev, oo, ko))
={p(k)By(x, -, x), p(k)By(x, -+, x, v, =+, V)

— (/B <p(R)Bja(x, 1), p(R)Bjoa(x, -+, %, v, -, V)
=F;, -, v).

Therefore F;(v, -+, v)/|[v||* is constant on V. Since B,- and B j-1 are isotropic,
Fy(x)=22—(2%/22.,) X 23.,=0. By it is easy to see that <B,(x, -, x),
Byx, -, x, ))=<B;(x, -, x), By-s(x, -, x, v)>=0 for veV, which implies
that Fi(v)=0 for veV. Therefore we have Fy=0 on T.xS".

Next we shall show that F,=0. Since ¢, is minimal, we get

1;21 FZ(eiy ei):<Bj(x, Tty x)) ééj(x: ety X, €4y ei)>

_(2§/2§—1)<Bj—1(x; Ty x)) ééj—l(x; X, 91;, el)>
=0.

Since Fyley, e))=F,(x, x)=0, we have éFz(ei, e;)=0. Using we

obtain F,=0 on V. This, together with F,=0, implies F,=0 on T xS™
Now we apply a mathematical induction. We assume that F;=0 on T .xS”

for 1=:<k—1, where £=3. Since ii‘{Fk(vl, e, Upos, €4, ¢)=0 and F,(vy, -,
Vi-2, X, X)=F,_5(vy, =+, v2-2)=0, we have ﬁ)sz(vl, o, V-, €4, €)=0. Again by

F,=0 on V. Combining this with F;=0 for 1</;<k—1, we have
F,=0 on T.S"™ In particular F;_;=0 on T,.xS™ Then

<Bj(x7 T x)) Bj(x; Vi, =, vj—1)>
=(2§/2§~1)<Bj_1(x, s, X), Bj—l(vh e, Vi)

Thus [Proposition 3.4 is proved.

4. On the rigidity of isotropic minimal immersions.

In this section we show two theorems.

THEOREM 4.1. Let ¢ s: M, —ST® be the standard minimal immersion of
an n-dimensional compact rank 1 symmetric space into a unit sphere corresponding
to the s-th eigenvalue. Let ¢: Mps—St be an another minimal immersion cor-
responding to the same eigenvalue and assume that ¢ is full. We assume that
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in the case of M=S" the degree of ¢ =[s/2] and the j-th fundamental form
B; of ¢ is isotropic at every degree j—1 regular point peR;_, for 2<7=[s/2]
and that in the case of M=P,(C), P,(H), or PyCay) the degree of ¢ =s and
the j-th fundamental form B; of ¢ is isotropic at every degree j—1 regular
point peR;, for 2£j=s. Then we see that ¢ is equivalent to the standard
minimal immersion ¢n,s and in particular l=m(s).

Furthermore, we get the following result on the non-rigidity for S”.

THEOREM 4.2. For n=3 and s=6, there are many inequivalent minimal
immersions of Sks into a unit sphere such that B, is isotropic on Sks for
2=5k=[s/2]-1.

We apply the method of do Carmo and Wallach ([4]). We formulate the
rigidity problem following do Carmo and Wallach.

PROPOSITION 4.3. Let ¢: MPy»—St be a minimal immersion. Then there
exists a symmetric positive semi-definite linear map A of R™*! such that ¢ is
equivalent to Ae(ns. Furthermore ¢ is equivalent to ¢y if and only if the
associated symmetric linear mapping A of ¢ is equal to the identity map.

PROPOSITION 4.4. Let A be a symmetric positive semi-definite linear map of
R™®*, We assume that Ae¢ns is a minimal immersion of MPs into a unit
sphere and we denote by B, and B; the j-th fundamental form of Aepns and
that of ¢u,s vespectively. (When there is no danger of confusion, we use ¢ instead
of ¢ns.) Then we have By(u,, u)=ABy(us, u,) at any point peM. Furthermore
if By is isotropic on M for 2=k=j, then Bp(u, -, u)=AB(uy, -+, uz) for
3Zk=j+1. Under the same assumption, for the orthogonal decomposition
R™®HN=R-p(p)+ s T ,M+-0%4 - +0% at p with respect to ¢, where d=the
degree of ¢, A is an isometric linear mapping on the subspace

R-¢(p)+ 5T yM+0%+ - +0%  at any point peM.

We remark that we identify (as usual) T ,ST* with the subspace of R™®*1,
Under the identification, the above statements make sense.

PROOF OF PROPOSITION 4.4. By the argument in the proof of
3.1, R™®+1 admits the following orthogonal decomposition with respect to the
immersion A-¢:

RO =R Ae(p)+ (AT pM+0%+ -+ +05+(@)); -

Since A-¢) is an isometric immersion of M into SP*®, it is easily seen that A
is an isometric linear map from R-¢(p) to R-A-¢(p) and also from ¢«T,M to
(A-)xT M. We denote by ¥V and V' the Riemannian connections on ST and
R™®+ respectively. Then we see that VyY=V4Y <X, Y>p at p=Sr® for
any vector fields X, Y on SP*®. For an arbitrary unit vector x in T,M, we
set 7(¢) to be the geodesic such that 7(0)=p and 7(0)=x. We denote by o the
curve in SP® defined by o=¢-r and naturally consider ¢ also as a curve in
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R™®+! Then we have

Bo(x, x):ﬁm- 0 (A20) =405y Ao 0)'+A°95(]))
2

e

Aoolt)| _+Ag(p)

=A < t A

= Ao +A9(p)

=4(-% 0| _+o)
dt? t=0

:A(véﬁ)

=ABy(x, x).

Since By(x, x) and B,(x, x) span linearly O? and O? respectively, we have
ABs(uy, us)=Bs(us, u,) for us, u,=T,M. If the second fundamental form B, of
Ae¢ is isotropic on M, then by [Proposition 3.1] we get {B.(u;, us), Bo(vy, vs))
={(ABy(us, us), ABy(v1, v2)>=<By(1s, us), By(vy, vo)>. Therefore A is an isometric
linear mapping from O? to O

Next we prove [Proposition 4.4] for the third fundamental form B, Since

B, is isotropic, by the proof of By(x, x, x)=VBy(x, x, x). Then
Bs(x: X, X)ZVi(Bg(T, T))
=Vao gz Ba(7, 7))+ APsxHpyz,2)x)

:%}(Bz(f, PN+ Al Ha,ye,00%)

d o .. .
:A<—dTBz(7’, T)+¢*H1§2<x,x)x)
= AV} Bo(7, 1)+ PsHaycz.2r%)
:ABS(x, X, x).

This implies that By(us, s, us)=ABs(u1, us, us). If B, is isotropic, by
3.1, A is an isometric linear mapping from O® to O%. We assume that B;(us, -+, u;)
=ABy(uy, -, uy) for 2<i<k (k=3) at every point of M and that A: O*—0O?
is an isometric linear mapping for all 7. Then by the argument of the proof of
IProposition 3.1}

Bz, =, )+ Dypa(x, -, x)
:vé<Bk(7“, Tty j’))
:v(Aog!;);r(Bk(?.’; Tty ?))+(A°¢)*H3k(x.....z>x
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:ﬁ(AM,ﬂv).z(Bk(f; S 9))

=Vaopruz(Be(7, =+, 7))

_d

T odt
d

:AWBk(r: )

= AVLB(F, -, )

Bk(?y Ty 7./)

=A(Bpi(x, -+, x)FDpulx, -, x)).

Here again recalling the proof of [Proposition 3.1, we have

CAD yii(x, -+, %), Byoa(va, 5 vg1)d
=(ADsi(x, -+, 1), AByoi(vy, -+, vaor))
=D yarlx, -, %), Bacalvs, -, vi_)d
=Dy, -, x), Bp-1(vy, ==+, vp-1)) .
Therefore ADyii(x, -, x)=Dyuilx, -+, x). Thus we get Biulx, =, x)
=ABp(x, -+, x). This implies that Bii(uy, -+, upe)=ABpi(uy, -+, Upsr).

If By, is isotropic on M, A is an isometric linear mapping from O**! to 0%+,
Thus [Proposition 4.4] is proved.

Now we identify the space of all symmetric linear mappings of R™®+!
with S%R™®*1) the symmetric square of R™®*! as follows: if u, ve R™®*,
u-veSHR™®+1) (the symmetric product of two vectors will be denoted by u-v),

and if te R™®+1 we set u~v(t):%'{<u, Hv-+<{v, tDu}, where { , > is the inner

product on R™®*!  Under this identification, the inner product on S*R™*1)
is given by (A, B)=trAB. We note that if AS*R™*®*) and u, ve R™®*,
then <Au, v>=(A4, u-v).

For the orthogonal decomposition R™®H=R-d(p)+¢s«T,M+0%+ - +0%
with respect to the standard minimal immersion ¢, let S*R-¢(p)+¢«T M

+ iZ:)ZOﬁ,) be the symmetric square of R-¢(p)+¢sT ,M+0%+ --- +0%. And let
W‘j). be the subspace of S*R™®+!) gpanned by pkejjns2(R.¢(p)+¢*TpM
+1§]20§;). Let W, and W, be the subspace of S%R™®+!) gspanned by
ngSb(P)'S[’(P) and pg{sz(gb*TpM), respectively. Let W, be the subspace of
S R™®+1) spanned by pkejMS%O;;) for any j.

LEMMA 4.5. (1) If AeSHR™ ) and A=0 (i.e., A is positive semi-definite),
then Ae¢n,s is a minimal immersion of Mg in ST such that the k-th funda-
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mental form By of Ae¢n s is isotropic on M for 2<k<j=<the degree of ¢ s if
and only if A*—Is(WP), where (WP)* denotes the orthogonal complement of
WP in S(R™®+Y) and I denotes the identity transformation of R™® 1,

(2> W0+W1+ ‘l"Wj:W(j) .
(3) W,cWw,.

PrOOF. (1) It is known that A-¢, s is a minimal immersion if and only if
A*—I=W¢, where Wi denotes the orthogonal complement of W, in S}(R™®+1)
(Wallach [10]). If Ae¢, s is a minimal immersion such that B, is isotropic
for 2=k=j, then, by [Proposition 4.4, A is an isometric linear mapping on
the subspace R-¢(p)+¢«T,M-+0%+ -+ +0% of R™®+*' at every point p&M.
Therefore <(Au, Av>=<u,v> for any two vectors u,veER-Y(p)+¢+T,M
+0%+ - +0%. This implies that (4% u-v)=(, u-v). Thus A®—I is orthogonal
to SAR-d(p)+¢s«T M+0%4- - +0%). Since p is arbitrary in M, A*—I is
orthogonal to W,

Conversely if A*—~Ie(WP)*, A<¢ns is a minimal immersion of M7, in
STt®, Furthermore by [Proposition 4.4 we have

O:(AZ—'I, Bz(uh uz)‘BZ(Vl, vz))
={ABy(uy, us), ABy(v1, v2)>—<Ba(us, us), Bo(vs, v2))

=<{By(uy, us), By(vs, U2)>‘“<Bz(u1, Us), Bz(vly V) at every point p,

where B, as usual denotes the second fundamental form of Ae¢n,,. Thus B,
is isotropic. Repeating this process, we can prove (1.

(2) It is trivial that W +W,+ --- +W,CW?, We shall prove W,+W;+ ---
+W,DW®, We assume that CeS*(R™®*) is orthogonal to W,+W,+ --- +W,.
Let >0 be such that I+¢C=0 and let A be the positive square root of I-+tC.
Then A*—I=tC is orthogonal to W,. Therefore A¢, , is a minimal immersion
of M, to SP®. Since A*—~I<W#, by the argument in (1) the second funda-
mental form B, of Ae¢,  is isotropic on M. Then [Proposition 4.4 implies that
By=AB,. Similarly, since A*—I<Wj{, B; is isotropic on M. Repeating this
argument, we see that the k-th fundamental form B, of Ae¢,,; is isotropic for
2=k=j. Then (1) implies that A*>—I=tC1 W, Thus (2) is proved.

(3) It is proved in Wallach [10].

LEMMA 4.6. If the degree of the standard minimal immersion ¢n,s is d=2,
then WP =S R™®+Y) for j=[d/2].

PrROOF. We use again the method of Wallach ((10]). We show that if
x€T,M and if o:(—e¢, e)>M is the geodesic through p in M with tangent
vector x, then p% p-5(0), p-6(0), ---, p-o@0)cW?, where we identify o(t)

d* .
giF o(t) in R™®+*,  We

with the curve ¢eo(t) in R™®* and ¢‘®(t) denotes




372 K. Tsukapa

shall show only that p-o‘®0)sW?. We assume that d=odd, i.e., d=27+1.
When d=even, the proof is quite similar. We easily see that ¢P@)eR-¢(a(t))
+ 5T o iy M+ 0%+ -+ +0} ), which implies ¢P@#)- 0P #)sW . First we have
(6P 6P)Y(0)=20(0)-cY*(0)eW?. Similarly

(O-(J'-—l) . o.(j))(?)(o)zo-(j+l)(0>, G(J)(0)+26(])(0> . 0(j+1)(0)+0(j—1)(0),O-(j+2)(0)
._.__30(j+1>(0) . 0(j)(0)+g(j—1)(0) . 0.(j+2)(0) =AU
Therefore we get ¢¥1(0)-¢9*?(0)eW ¥, Similarly
(O-(j—Z) ,U(j))(S)(O):O-(j+1)(O) . 0(f)(0)+30(j)<0), 0-(j+1)<0)
+30.(]'—1)(O) . 0-(j+2)(0)+0-(]'—2)<0). O'(j+3)(0)EW<j) .

These, together with the former results, imply ¢%“-2(0)-¢Y*¥(0)W . Repeating
. these calculations, we see that p-c®*P(0)=p-¢¥(0)W?, By the same method
we can prove that p-e®0)eW? for 0=Zk=d. If CeSYR™®*) and C is
orthogonal to W, then 0=(C, p-a‘®(0))=<(Cp, c®(0)> for 0=k=d. The O%-
component of ¢®(0) is just equal to B(x, ---, x) and O% is linearly spanned by
Bu(x, -+, x), x&€T,M. Using {Cp, 0‘»(0)>=0 for 0=<k=d and for an arbitrary
vector x=T,M, we can prove inductively that {Cp, u>=0 for any vector
usR-P(p)+¢xT,M+0%4 -« +04=R™®*.  Thus we get Cp=0. As the
standard minimal immersion ¢, is full, we have C=0. Thus is
proved.

ProOOF OF THEOREM 4.1. If Ae¢,, is a minimal immersion and the &k-th
fundamental form B, of A-¢,, is isotropic on M for 2=k=[d/2] (d is the
degree of ¢, ), then by (1) A*—Is (W)L, implies
that A2>—I=0 and then A=I]. By Remark 2.4, is proved.

To prove we review do Carmo and Wallach’s results. For the
remainder of this section we assume that M=S%,,=G/K, where G=S0(n-+1)
and K=SO(n).

LEMMA 4.7 (Do Carmo and Wallach [4]). Let ¢ns: Sk —=>ST®CV?® be the
standard minimal immersion described in the second way (cf. §2). If V°* is
orthogonally decomposed as V*=R-Pp(eK)+sT xM+0O%ix+ -+ +05x associated
with ¢n,s, then Ojx is the SO(n)-module of spherical harmonics of order j on
the (n—1) unit sphere.

From now on we denote the above decomposition by V=V ,+V,+ --- +V,
where V; is the K (=SO(n))-module of spherical harmonics of order ; on St~

Now we prepare some results about representation theory of SO(n-+1).
We first give the classification of representations of SO(n+1)=G. Let TCG
be the subgroup of matrices of the form;
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A,
A, 0
if n=2p
0 4,
1
or
I A,
A, 0
it n=2p—1
0 A,
where

cost; sint,
Ai: .

—sin{; cos ¢y
Let g be the linear Lie algebra of G and Y) be the Lie algebra of T in g. Let
E;; be the (n+1)X(n4-1)-matrix whose (7, j)-entry is 1 and all other entries are
zero. Set h;=FEsi_13—FEsi 21, i=1, -+, p. Then hy, -+, h, is a basis of .
Let h* be the (real) dual of §, and let A, ---, 4, be the dual basis for Ay, -, h,.
Order the elements of §H* lexicographically relative to A,, -+, 2,. Then the

highest weights of (complex) irreducible finite dimensional representations of G
are of the form A¢n,=2Im:4;, where my, ---, m, are integers satisfying
1

v

{ MZmeZ - Zmy=0 n=2p

MIZ M= -+ = | Mp| n=2p-—1.

We shall denote the representation of SO(n-+1) with highest weight A, by
nV(m).
THEOREM 4.8 (The Branching Theorem [3]). Notations being as above, we
have as a K-module,
V=3V,
)

(m’
where the summation is taken over all integers mi, -+, mp Such that
MIZ M Z Mg Z M= -+ ZMp= | M| if n=2p,
MZMIZMeZ MG = -+ ZMp-1= My | if n=2p—1.

Now we state the formula which gives the SO(n-+1)-module decomposition
of S,V 00 where S,V ¢%9) is the symmetric product of ,V %% and
is naturally an SO(n-+1)-module.

THEOREM 4.9 (Do Carmo and Wallach [4]). If /=1 and n=3, then, as an
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SO(n—+1)-module,

Ci/2]

SZ(nV(l,O,"',O)): Z nV(Zl—-Zj,2j,0,"',0)+S2(nV(l—-1.0,“',0)) .

j=0
If n=2, as an SO(3)-module
S2(ZV(l,l),"'.0)):2V(2l,0,-",0)+S2<2V(l—1,0,"',0)) A

Next we state the Frobenius reciprocity. We first need the notion of an
induced representation. Let G be a compact topological group and let K be a
closed subgroup. Let V be a finite dimensional K-module over C. Let I'(V) be
the vector space of all continuous functions f: G—V such that f(xk)=£Fk"'f(x)
for all xeG, kK. Let G act on I'(V) by L.f(y)=f(x"'y), x, yeG. Then
I'(V) is a G-module which is called the G-module induced by V.

LEMMA 4.10 (Frobenius Reciprocity). Let U be an arbitrary finite dimensional
G-module over C. Then Homg(U, I'(V)) is canonically isomorphic to Homg(U, V).

We return to the standard minimal immersion ¢, of Sks, in SPF®. We
shall complexify the real representations. Let (V*)¢ be the complexification of
Vs, It is well-known that (V*)¢ is an irreducible G-module over C with highest
weight si;,. We naturally extend G-invariant inner product < , > of V* to the
G-invariant Hermitian inner product < , > of (V®)°. By (V¢ is
decomposed, as a K-module, as (V=(V )¢ -+(V )¢+ -« +(V,)¢, where (V)¢ isa
complexification of V,. It is also well-known that (V)¢ is an irreducible K-
module over C with highest weight /4,. Next we complexify S*V*) and denote
it by SA V. S%V*C is naturally isomorphic to S2((V*)¢). The Hermitian inner
product ( , ) of S(V*®)¢ extended naturally from the inner product of S*V?*)
coincides with the Hermitian product of S%(((V*)’) induced from the Hermitian
product of (VV*)¢. And it is G-invariant. Here we recall W, /=0, 1, ---, s, and
in this case they are described as follows;

W= {pLEjMSb(p) 'Sb(ﬁ)}R: {G . Sb(eK)z} R— {G . SZ(VO)} R

Wi={ U ST M)} ={G-SATox M)} = (G- SV )} n
PEM R

and
Wi={ | S(0D} ={G-SX0}a= 1G-SV he  iZ2,

where {G-S%V,)} g denotes the linear span of the orbit of S%*V,;) in S*V?®).
Therefore W; is a G-submodule of S*V*). Similarly we complexify W; and
denote it by W§. Naturally W¢ is a G-submodule of S*(V*®)°. We also remark
that W¢ is isomorphic to {G-S*V$)}¢. From now on for simplicity we denote
the complexification of a real G-module (or K-module) by the same notation
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used for the real object. For example we denote S*V*), W;, V,, ---, etc. instead
of SXV*)¢, W§, V¢, -, etc.

LEMMA 4.11. For a fixed positive integer j, let U be the sum of those G-
submodules of S*V*®) not containing, as K-submodules, ,-,V 1202000 7f >4
and V@400 gf n=3 where i and k are integers satisfying 0=i<j and
0=<k=[i/2]. Then U is orthogonal to Wi+ --- +W; in S V?®).

PRrROOF. We shall show that U is orthogonal to W,,i=1, ---, . We denote
by I'(S¥V;) the G-module induced by the K-module S%V,) over C. Let
W={usS¥V?*; (u, S¥V,;)=0}, where (, ) is the Hermitian inner product in
S%V*®). Then as a K-module, S¥V¢) admits the orthogonal direct sum decomposi-
tion S¥ V=SV ,)+W. Let P:S*V®)—S%V,) be the corresponding projection.
We claim that W, is contained in I'(S¥V;)) as a G-submodule. To see this,
define, for each uS%V?®), a map fu: G—S¥V,) by f.(g)=P(g~'u). It is easily
verified that f,eI'(S¥V,)). Next define a map a: SAV®)—-I'(S(V,)) by a(u)=f,.
Since a(gou)(g)=P(g ' (gwu)=P((gs'g) ' u)=a(u)(gr'g)=(L ¢ a(u))(g), we conclude
that aeHomg(S%(V?), I'(S¥V ). If ueS¥V®) and a(u)=0, then for any ge&G,
0=a(u)(g)=P(g 'u). Thus 0=(g 'u, SXV.)=(u, g-S*(V;). Thus we see that
kera=W#+. Therefore a: W,—I'(S¥V;)) is a G-module isomorphism, which proves
our claim. Now consider the G-module U. Using the above fact and Frobenius
Reciprocity (Lemma 4.10), we obtain dim¢Homg(U, W;)<dim¢Homg(U, I'(S3((V )
=dim¢Homg(U, S%((V,)). Since V, is isomorphic to ,-,V¢#%9 as a K-module,
implies that U does not contain a K-submodule of S%V,). Therefore
dim¢Homg(U, W;)=0. It follows that U is orthogonal to W;. Thus
is proved.

PROOF OF THEOREM 4.2. By there exists the G-submodule
nV<2s—2[s/2],2[s/2],0.---,0) Of SZ(VS). implies that nV(23—2[3/2],2[3/2],0,"',0) does
not contain, as K-submodule, ,_,V ¥¢-2k28.0..0 for 0<;<[s/2]—1 and 0= k=<[7/2]
if n=4 and ,V @409 for 0</<[s/2]—1 if n=3. Thus by the
dimension of the orthogonal complement of W,+ -« +Wise-: in S%V?®) is
positive. This, together with gives

5. Helical geodesic minimal immersions.

First we give the definition of a helical geodesic immersion following Sakamoto
((8). Let y:I—M be a C-curve parametrized by the arc-length s. Let 7y =7
be the unit tangent vector and put x,=||V;7|. If x, vanishes on I, then 7 is
said to be of order 1. If k, is not identically zero, then we define y® by
Vi P =g, y® on the set I,={scl; ks(s)#0}. Put ks=|V;7®+ryP|. If £,=0
on I, then 7 is said to be of order 2. If &, is not identically zero on I,, then
we define y® by Vir®=—ry®+r7®. Inductively we put ge=[V;7r®
+rq7%"?| and if k4.:=0 on I, then 7 is said to be of order d.
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DEFINITION. Let ¢: M—M be an isometric immersion of a connected com-
plete Riemannian manifold M into a Riemannian manifold M and ¢: I—M be
an arbitrary geodesic in M parametrized by the arc-length. If the curve r=¢p-0
in M is of order d and has constant curvatures k., -+, £; which do not depend
on o, then ¢ is called a helical geodesic immersion of order d.

REMARK. It is known that a strongly harmonic manifold admits a helical
geodesic minimal immersion into a sphere (Besse [2]). In particular the standard
minimal immersions of compact rank one symmetric spaces into spheres are
helical geodesic and minimal.

PROPOSITION 5.1. Let ¢: Sis—St be a minimal immersion. ¢ is a helical
geodesic immersion if and only if the j-th fundamental form Bj; is isotropic for
2=j=(degree of ¢). In particular if ¢ is a helical geodesic minimal immersion
of a sphere into a unit sphere, the order of ¢ is equal to the degree of ¢.

PROOF. Suppose that ¢ is a helical geodesic minimal immersion of order d
of S%;, into Si.. We use the same notations of covariant differentiations on S¥s,,
St, the normal bundle of ¢ etc. as in §3. Let o:I—S}J;, be an arbitrary geodesic
parametrized by the arc-length s. We put X(s)=¢(s). We denote by &, -+, &g
the curvatures of y=¢-o in S!. We shall compute the Frenet frame {yV, y®,
o, 7Y, Since Ver®=By(X, X), we have 7®=¢;'By(X, X). Moreover
| Bo(X, X)||=k, for any unit vector X and then the second fundamental form B,
of ¢ is isotropic on Sf;. Next

ﬁer):Ez_lﬁX(Bz(X’ X)):[gg'l {_HBz(X,X)X+VBZ(X’ -X; X)} .

Since B, is isotropic, Hp,x,z,X=(x;)?X and by the proof of [Proposition 3.I] we
have VBy(X, X, X)=By(X, X, X). It follows that Vx7® =—r,X-+£;'By(X, X, X).
Thus 7® =(k.xs)"'By(X, X, X). Similarly we have |B:y(X, X, X)||=k.k; for any
unit tangent vector X and then B; 1is isotropic on S%;. Here we apply a
mathematical induction. Let ; be a fixed natural number satisfying 3=<;7=<d.
We assume that 7® is described as 7¥=(k, - k;)"'Bu(X, ---, X) and B, is
isotropic on S} for 2<k=j;. Under these assumptions, we have

V7P =(ky -+ k) Vx(ByX, -, X))
=k k) H{UBYX, -, X)) (7=3).

Since B; is isotropic, the argument in the proof of [Proposition 3.1 implies that

VBy(X, -+, X)=Bu(X, -, X)+Duu(X, -, X).

Noticing that we can prove [Proposition 3.4 under the only condition that B, is
isotropic for 2<k=<j, we have

Dj+1(X; Tty X):——(iﬁ/l%—l)Bj-l(X, Tty X),
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where 2,=[By(X, ---, X)| and 2;.1=[B;-+(X, -+, X)|l. So we have D;ui(X, -+, X)
=—k5B; (X, -+, X)=—ks - £;_1(x;)*79 Y. It follows that

ﬁX?’(j):_’Cj?’(j_n‘l‘(’fz < k) By X, e, X

Thus we obtain 7Y+ =(k, - k1) ' B, (X, ---, X) and that Bj,, is isotropic. By
the above argument we see that the Frenet frame {r®, y®, ..., r®@} of 7 is
given by

rP=(ky -+ £,)*BAX, -+, X) for 2=</;=d.

Therefore we see that the order of ¢ is equal to the degree of ¢ and that B;
is isotropic for 2<j=<(degree of ¢). Noticing that if the j-th fundamental form
B; of a minimal immersion ¢ is isotropic, then it is constant isotropic (§3),
we can prove the converse similarly.

By [Proposition 5.1 we easily get

COROLLARY 5.2. Let ¢p,s: Sk—ST® be the s-th standard minimal immersion
(n=2). Then ¢n,s is a helical geodesic immersion of order s.

THEOREM 5.3. Let ¢: Sks—St be a helical geodesic minimal immersion.
Assume that ¢ is full. Then ¢ is equivalent to the standard minimal immers.on
¢n,s and in particular the order of the helical geodesic immersion ¢ is s and
{=m(s).

We prepare some lemmas before the proof of Let XeT .M

— {0} and 7: s—>expz0”~;{~“-X be the geodesic. Let {Y;}i=,..,» be Jacobi fields

along 7 such that Y;(0)=0 for every ; and {Y}(0)}:=s...» forms an orthonormal
basis of the orthogonal complement of X in T, M. Then we define 6: TM—R
by
{ 6(0)=1
O(X)=|X|-* det (Y (I X, -+, Y(IXI)),

where the determinant should be understood with respect to the parallel frame

field of {Yi(0)}. It is known that S™ is a globally harmonic manifold, i.e.,

there exists a C*-function @: R,—R such that 8(X)=0(|X|) for every x&S”

and every XeT,S™

LEMMA 54 (Berger-Gauduchon-Mazet [1] p. 134). Let f be a C=-function

on S™ of the form f(x)=F((x, x,)) (i.e., which depends only on the distance to
xo), where 0 denotes the distance function. Then we have

d*F (6% n—1\ dF

—_W__( 01(; R >71T’

where A denotes the Laplacian and 0%, is the radial derivative of 6., in T ,S™

LEMMA 5.5 (Sakamoto [8]). Let ¢: M—S! be a helical geodesic immersion.

Then there exists a C*-function F: R.—R such that the Euclidean inner product

Af=
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of position vectors ¢(x) and @(y) is given by {p(x), (y)>=F((x, y)).

LEMMA 5.6 (Besse [2] p. 177, p. 178). Let ¢: M—S! be a helical geodesic
immersion of order d and let o:1—M be a geodesic parametrized by the arc-
length. Then the curvatures ks, -, kq of the curve y=¢-0c in S} are completely
determined by F®(0), k=1, 2, -+, where F is the function introduced in Lemma
55. In particular the order of ¢ is determined by F‘®(0), k=1, 2, ---.

PROOF OF THEOREM 5.3. We denote by F and F the functions introduced
in Lemma 55 associated with the helical geodesic minimal immersion ¢ and
the standard minimal immersion ¢, respectively. For a fixed point x,&S5" we
define the functions f and f on S™ by

f(x)=<Lp(x), e(x)>=F((x, x,))
F(x)=<p(x), pxa>=F(B(x, x0)),

where { , > denotes the Euclidean inner product. By a well-known theorem
(Takahashi [9]), f(x) and f(x) are eigenfunctions of the Laplacian on S}, with
eigenvalue n. By we have

4°F  dF 0,  n—1\_
it ds (?;;Jr L )=F
and
d?F  dF 0,  n—1\_ o
— st )=nk .

Since F(0)=F(0)=1 and F’(0)=F’(0)=0, we obtain F=F. Then
implies that the order of ¢ is equal to the order of ¢, =s. By
the j-th fundamental form B; of ¢ is isotropic for 2<;=<s. This, together with
gives

COROLLARY b5.7. Let ¢: Sps—St be a minimal immersion. If the j-th
Sfundamental form Bj is isotropic for 2=j=(degree of ¢), then ¢ is equivalent
to the standard minimal immersion ¢n,s.

PrRoOF. By [Proposition 5.1, ¢ is a helical geodesic immersion. By [Theorem|
5.3 we see that ¢ is equivalent to ¢, .
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