# On the unit groups of Burnside rings of finite groups 

By Toshimitsu Matsuda and Takehiko Miyata

(Received March 4, 1982)

## Introduction.

Let $G$ be a finite group and $\Theta(G)$ the set of $G$-isomorphism classes of all finite (left) $G$-sets. Then $\Theta(G)$ is a semi-ring with addition and multiplication induced by disjoint union and cartesian product, respectively. The Burnside ring $A(G)$ of $G$ is defined to be the Grothendieck ring of $\Theta(G)$. Let $A(G)^{*}$ be the unit group of the Burnside ring $A(G)$.

In this note we shall study $A(G)^{*}$ and the homomorphism $u: R O(G) \rightarrow A(G)^{*}$, where $R O(G)$ is the real representation ring of $G$ and $u$ is the homomorphism defined by T. tom. Dieck (see 1.2). By the famous theorem of Feit-Thompson ( $G$ is solvable if $|G|$ is odd) and by a result of A. Dress (idempotents of $A(G)$ are determined by perfect subgroups of $G$, cf. [1] Proposition 1.4.1), we know that

$$
\left|A(G)^{*}\right|=2 \quad \text { if }|G| \text { is odd }
$$

(cf. [1] Proposition 1.5.1). Therefore, it remains to study $A(G)^{*}$ and the homomorphism $u: R O(G) \rightarrow A(G)^{*}$ for groups $G$ of even order.

In Section 1, we describe the well known results for $A(G)^{*}$ and the homomorphism $u: R O(G) \rightarrow A(G)^{*}$.

Section 2 is the main part of this note, and we obtain the following Theorem A and Theorem B.

Theorem A (cf. Theorem 2.2, Corollary 2.4 and Lemma 2.5). $u: R O(G) \rightarrow$ $A(G)^{*}$ is surjective if and only if $u: R O\left(G^{\prime}\right) \rightarrow A\left(G^{\prime}\right)^{*}$ is surjective for every homomorphic image $G^{\prime}$ of $G$ such that $\left|C\left(G^{\prime}\right)\right| \leqq 2$, where $C\left(G^{\prime}\right)$ is the center of $G^{\prime}$.

Theorem B (cf. Theorem 2.9 and Theorem 2.11). Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. Then we have
(i) $K$ acts on $A(H)^{*}\left(\right.$ cf. 2.6) and $\operatorname{Res}_{H}^{G^{*}}\left(A(G)^{*}\right) \subset\left(A(H)^{*}\right)^{K}$, where $\operatorname{Res}_{H}^{G_{H}^{*}}$ is the natural restriction homomorphism from $A(G)^{*}$ to $A(H)^{*}$,
(ii) if $|K|$ is odd and $u: R O(H) \rightarrow A(H)^{*}$ is surjective, then $u: R O(G) \rightarrow$ $A(G)^{*}$ is surjective and $\operatorname{Res}_{H}^{G^{*}}: A(G)^{*} \rightarrow\left(A(H)^{*}\right)^{K}$ is an isomorphism,
(iii) if the group extension is split and $|K|$ is odd, then $\operatorname{Res}_{H}^{G^{*}}: A(G)^{*} \rightarrow$ $\left(A(H)^{*}\right)^{K}$ is an isomorphism.

In Section 3, we give a few examples. By Theorem A we obtain the following example.

Example (cf. Example 3.1). Let $D_{m}$ be a dihedral group of order $2 m$. We put $G=D_{m_{1}} \times \cdots \times D_{m_{r}}$. If $m_{1}, \cdots, m_{r}$ are relatively prime integers and $m_{i}>1$ $(i=1, \cdots, r)$, then $u: R O(G) \rightarrow A(G)^{*}$ is surjective.

The surjectivity of $u: R O(G) \rightarrow A(G)^{*}$ does not necessarily imply the same for subgroups of $G$. Here is an example.

Example (cf. Example 3.4). We put

$$
C_{15}=C_{3} \times C_{5}=\left\langle\sigma_{1}\right\rangle \times\left\langle\sigma_{2}\right\rangle \quad \text { and } \quad \operatorname{Aut}\left(C_{15}\right)=C_{2} \times C_{4}=\left\langle\tau_{1}\right\rangle \times\left\langle\tau_{2}\right\rangle,
$$

where $C_{m}$ is a cyclic group of order $m$. Moreover, we put

$$
H=\left\langle\sigma_{1}, \sigma_{2}, \tau_{1} \cdot \tau_{2}\right\rangle \quad \text { and } \quad G=\left\langle\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\rangle .
$$

Then $u: R O(G) \rightarrow A(G)^{*}$ is surjective and $u: R O(H) \rightarrow A(H)^{*}$ is not surjective.
Throughout this note, we use the following notation:
1 the unit element of $G$,
(H) the conjugate class of a subgroup $H$ of $G$,
$\Phi(G)$ the set of conjugate classes of all subgroups of $G$,
$N_{G}(H)$ the normalizer of a subgroup $H$ of $G$ in $G$,
$X^{G} \quad$ the set of fixed points of a $G$-set $X$,
$|X|$ the cardinal number of a set $X$,
[ $X]$ the element of $A(G)$ represented by a finite $G$-set $X$,
$\langle Y\rangle \quad$ the subgroup of $G$ generated by a subset $Y$ of $G$,
$1_{A(G)}$ the unit element [point] of $A(G)$,
$\boldsymbol{R}$ the field of real numbers,
$\boldsymbol{Z}$ the ring of rational integers,
$R^{*} \quad$ the unit group of a ring $R$.

1. Well known results for $A(G)^{*}$ and $u: R O(G) \rightarrow A(G)^{*}$.
1.1. Any finite $G$-set $X$ is isomorphic to the disjoint union of some coset $G$-spaces $G / H$. Since $G / H$ and $G / F$ are $G$-isomorphic if and only if $(H)=(F)$ in $\Phi(G), A(G)$ is a free module with basis $\{[G / H] \mid(H) \in \Phi(G)\}$. For a finite $G$-set $X$, let $\Psi(X): \Phi(G) \rightarrow \boldsymbol{Z}$ be the mapping defined by

$$
\Psi(X)((H))=\left|X^{H}\right| \quad \text { for }(H) \in \Phi(G) .
$$

Let $\operatorname{Hom}(\Phi(G), \boldsymbol{Z})$ be the ring of all mappings from $\Phi(G)$ to $Z$ with the ring structure induced by the ring structure of $\boldsymbol{Z}$. It is well known that the assignment $\Psi: X \rightarrow \Psi(X)$ induces an injective ring homomorphism

$$
\Psi: A(G) \longrightarrow \operatorname{Hom}(\Phi(G), \boldsymbol{Z})
$$

Therefore, we can view $A(G)$ and $A(G)^{*}$ as a subring of $\operatorname{Hom}(\Phi(G), \boldsymbol{Z})$ and a subgroup of $\operatorname{Hom}(\Phi(G), \boldsymbol{Z})^{*}=\operatorname{Hom}(\Phi(G),\{ \pm 1\})$, respectively.
1.2. Let $V$ be a real representation of $G$. Let $u(V)$ be an element of $A(G)^{*}$ defined by

$$
u(V)((H))=(-1)^{\operatorname{dim}_{R} V^{H}} \quad \text { for }(H) \in \Phi(G)
$$

(cf. [1] Proposition 5.5.9). The assignment $u: V \rightarrow u(V)$ induces a homomorphism $u: R O(G) \rightarrow A(G)^{*}$ such that $u(V \pm W)=u(V) u(W)$. For a regular representation $V=R G$ we have $\operatorname{dim}_{R} V^{G}=1$ and $\operatorname{dim}_{R} V=|G|$. Therefore if $|G|$ is even, then there exists a non-trivial unit of $A(G)$.
1.3. Let $\boldsymbol{Q}$ be the field of rational numbers and $\overline{\boldsymbol{Q}}$ its algebraic closure. Let $\Gamma$ be the Galois group of $\overline{\boldsymbol{Q}}$ over $\boldsymbol{Q}$. Let $R O(G)^{\text {ab }}$ be the submodule of $R O(G)$ generated by the set, denoted by $\mathrm{ab}(G)$, of all absolutely irreducible real representations of $G$. The group $\Gamma$ acts naturally on $R O(G), R O(G)^{\text {ab }}$ and $\mathrm{ab}(G)$. Then we have

$$
\text { Image } u=u\left(R O(G)^{\mathrm{ab}}\right) \quad \text { and } \quad \mid \text { Image } u \mid \leqq 2^{|\mathrm{ab}(G) / \Gamma|}
$$

(cf. [2] Lemma 5.2). Let $\zeta: A(G) \rightarrow R(G, \boldsymbol{Q})$ be the natural ring homomorphism defined by $\zeta([G / H])=1 G$, where $R(G, \boldsymbol{Q})$ is the rational representation ring of $G$. If $\zeta$ is surjective and the Schur index of every element of $\mathrm{ab}(G)$ over $\boldsymbol{Q}$ is odd, then we have

$$
\begin{equation*}
\mid \text { Image } u \mid=2^{|\mathrm{ab}(G) / \Gamma|} \tag{1.3.1}
\end{equation*}
$$

(cf. [2] Lemma 5.5).
1.4. If $e$ is a non-trivial idempotent of $A(G)$, then ( $1-2 e) \notin \operatorname{Image} u$ (cf. [2] Theorem 5.4). It follows that $u$ is not surjective if $G$ is not solvable. The converse is not always true (cf. [2] Example 5.9). In general $A(G)^{*}$ is not generated by Image $u$ and $\left\{(1-2 e) \mid e \in A(G)\right.$ and $\left.e^{2}=e\right\}$. In fact, for the symmetric group $\mathbb{S}_{5}$, there exists only one non-trivial idempotent $e$ of $A\left(\Im_{5}\right)$ and we have

$$
A\left(\mathfrak{S}_{5}\right) * \supsetneq\langle\operatorname{Image} u,(1-2 e)\rangle
$$

(cf. [2] 5.11.1).
1.5. If $G$ is an abelian group, then $u: R O(G) \rightarrow A(G)^{*}$ is surjective,

$$
\left.A(G)^{*}=\left\langle-1_{A(G)},\left(1_{A(G)}-[G / H]\right)\right|(H) \in \Phi(G) \text { and }|G / H|=2\right\rangle
$$

and $\left|A(G)^{*}\right|=2^{m(G)+1}$, where $m(G)=|\{(H) \in \Phi(G)| | G / H \mid=2\}|$ (cf. [2] Example 4.5 and Example 5.6).
2. The homomorphism $u: R O(G) \rightarrow A(G)^{*}$.
2.1. We put

$$
\begin{aligned}
& S(G)=\left\{(H) \in \Phi(G) \mid \text { if } H \supset H^{\prime} \text { and } H^{\prime} \text { is normal in } G, \text { then } H^{\prime}=\langle 1\rangle\right\} \cup\{G\}, \\
& A(G)^{+}=\left\{\alpha \in A(G)^{*} \mid \alpha(G)=1\right\}, \\
& A(G)_{0}=\left\{\sum_{(H) \in S(G)} n_{(H)}[G / H] \mid n_{(H)} \in Z\right\}, \\
& A(G)_{0}^{+}=A(G)^{+} \cap A(G)_{0}, \\
& \operatorname{Min}(G)=\{H \mid H \text { is a non-trivial minimal normal subgroup of } G\} .
\end{aligned}
$$

$A(G)_{0}$ is a subring of $A(G)$ with the unit element $1_{A(G)}$ (cf. [2] Lemma 3.3), $A(G)^{+}$a subgroup of $A(G)^{*}$ and $A(G)^{*}= \pm A(G)^{+}$. Let $f: G \rightarrow G^{\prime}$ be a group homomorphism and $X$ a $G^{\prime}$-set. Then we may regard $X$ as a $G$-set via $f$, which we denote by $f^{*}(X)$. So $f$ induces a ring homomorphism $f^{*}: A\left(G^{\prime}\right) \rightarrow A(G)$ defined by $f^{*}([X])=\left[f^{*}(X)\right]$. For a subgroup $H$ of $G, X^{H}$ is a $W H$-set, where $W H=N_{G}(H) / H$. The assignment $\omega_{H}: X \rightarrow X^{H}$ induces a ring homomorphism

$$
\omega_{H}: A(G) \longrightarrow A(W H)
$$

If $H$ is normal in $G$, then the natural projection $p: G \rightarrow G / H$ induces an injective ring homomorphism $p^{*}: A(G / H) \rightarrow A(G)$ (cf. [2] Theorem 4.4). So we can view the group $A(G / H)^{*}$ as a subgroup of $A(G)^{*}$.

Theorem 2.2. We have the following (i) and (ii).

$$
\begin{equation*}
A(G)^{+}=\left(\prod_{(H) \in \operatorname{Min}(G)} A(G / H)^{+}\right) \cdot A(G)_{0}^{+} \tag{i}
\end{equation*}
$$

and

$$
\left(\prod_{(H) \in \operatorname{Min}(G)} A(G / H)^{+}\right) \cap A(G)_{0}^{+}=\left\{1_{A(G)}\right\}
$$

(ii) If $V$ is an irreducible faithful real representation of $G$, then $u(V) \in$ $A(G)_{0}^{+}$. Moreover, if $\alpha \in\left(A(G)_{0}^{+} \cap \operatorname{Image} u\right)$, then $\alpha=u\left(V_{1}+\cdots+V_{r}\right)$ for some irreducible faithful real representations $V_{1}, \cdots, V_{r}$ of $G$.

Proof of (i). Suppose that $\alpha \in A(G)^{+}$. We put

$$
\alpha=\sum_{(H) \in \Phi} n_{(G)} n_{(H)}[G / H] \quad\left(n_{(H)} \in \boldsymbol{Z}\right),
$$

and $\operatorname{Min}(G)=\left\{H_{1}, \cdots, H_{s}\right\}$. Since $(G / H)^{F}$ is non-empty if and only if $F$ is conjugate to a subgroup of $H$ in $G$,

$$
\omega_{H_{1}}(\alpha)=\sum_{H \supset H_{1}} n_{(H)}[G / H] \quad \text { and } \quad \omega_{H_{1}}(\alpha) \in A\left(G / H_{1}\right)^{+} .
$$

We put inductively,

$$
\alpha_{i}=\alpha \prod_{j=1}^{i} \omega_{H_{j}}\left(\alpha_{j-1}\right) \quad(i=1, \cdots, s)
$$

where $\alpha_{0}=\alpha$. Then $\alpha_{s} \in A(G)_{0}^{\dagger}, \omega_{H j}\left(\alpha_{j-1}\right) \in A\left(G / H_{j}\right)^{+}$and

$$
\alpha=\left(\prod_{j=1}^{s} \omega_{H_{j}}\left(\alpha_{j-1}\right)\right) \cdot \alpha_{s}
$$

Rroof of (ii). For a non-trivial normal subgroup $H$ of $G, V^{H}$ is a real representation of $G / H$, so $V^{H}=\{0\}$. It follows that $u(V) \in A(G)_{0}^{+}$. The last part is obtained by (i).
Q. E. D.

Corollary 2.3. We have

$$
A(G)^{+}=\prod_{H \text { is normal }} A(G / H)_{0}^{+} .
$$

Corollary 2.4. $u: R O(G) \rightarrow A(G)^{*}$ is surjective if and only if $A(G / H)_{0}^{+} \subset$ Image $\left(u: R O(G / H) \rightarrow A(G / H)^{*}\right)$ for any normal subgroup $H$ of $G$.

Lemma 2.5. Let $C(G)$ be the center of $G$. If $|C(G)| \geqq 3$, then $A(G)_{0}^{+}=\left\{1_{A(G)}\right\}$.
Proof. For a maximal element $(H)$ of $S(G)-\{G\}$, if $\alpha \in A(G)_{0}^{+}$, then

$$
\alpha((H))=1+n_{H}|W H|= \pm 1
$$

for some $n_{H} \in \boldsymbol{Z}$. Since $|C(G)| \geqq 3$, we have $|W H| \geqq 3$. It follows that $\alpha=1_{A_{(G)}}$.
Q.E.D.
2.6. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. We define $K$-action on $A(H)$ as follows. For each $g \in G$, let $\bar{g}: H \rightarrow H$ be the automorphism defined by $\bar{g}(h)=g h g^{-1}$. We define $G$-action on $A(H)$ by

$$
g \cdot \alpha=\bar{g}^{*}(\alpha) \quad(g \in G \text { and } \alpha \in A(H)) .
$$

Then $H$ acts trivially on $A(H)$. Therefore $K=G / H$ acts on $A(H)$. Similarly $K$ acts on $R O(H)$.
2.7. For a subgroup $H$ of $G$, let

$$
\operatorname{Res}_{H}^{G}: A(G) \longrightarrow A(H) \text { and } \operatorname{Res}_{H}^{G}: R O(G) \longrightarrow R O(H)
$$

be the natural restriction ring homomorphisms. We put $\operatorname{Res}_{H}^{G *}=\left.\operatorname{Res}_{H}^{G}\right|_{A(G)}$. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension and $X$ a finite $G$-set, then $\tilde{g}: \bar{g}^{*}(X) \rightarrow X$ (defined by $\tilde{g}(x)=g \cdot x)$ is an $H$-isomorphism for any $g \in G$. It follows that

$$
\text { Image } \operatorname{Res}_{I I}^{G^{*}} \subset\left(A(H)^{*}\right)^{K} \text {. }
$$

Similarly,

$$
\text { Image }\left(\operatorname{Res}_{H}^{G}: R O(G) \longrightarrow R O(H)\right) \subset R O(H)^{K} .
$$

For each real representation $V$ of $G$, the diagram

is commutative, where $i_{*}$ is a mapping induced by the inclusion map $i: H \rightarrow G$.

Therefore, the diagram

is commutative.
Lemma 2.8. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. If $|K|$ is odd, then $\operatorname{Res}_{H}^{G_{H}^{*}}$ is injective.

Proof. It is sufficient to prove that

$$
\left(1_{A(G)}+\left(\operatorname{Res}_{H}^{G}\right)^{-1}(0)\right) \cap A(G)^{*}=\left\{1_{A(G)}\right\} .
$$

Suppose that $\left(1_{A(G)}+\alpha\right) \in A(G)^{*}$ and $\operatorname{Res}_{H}^{G}(\alpha)=0$. For any subgroup $L$ of $G$, the diagram

is commutative, and $|L / H \cap L|$ is odd. Therefore, by induction on $|G|$, we can assume that $\alpha((L))=0$ for every proper subgroup $L$ of $G$. Suppose that $\alpha(G) \neq 0$. Since $\left(1_{A(G)}+\alpha\right) \in A(G)^{*}, \alpha(G)=-2$. Let $K_{0}$ be a maximal subgroup of $K$ and $L$ its pre-image. Then

$$
\alpha((L))=-2+m\left|(G / L)^{L}\right|=-2+m|G / L|=0
$$

for some integer $m$. Since $|G / L|$ is odd, $\alpha((L)) \neq 0$. This contradiction implies that $\alpha(G)=0$. That is, $\alpha=0$. Q.E.D.

ThEOREM 2.9. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. If $|K|$ is odd and $u: R O(H) \rightarrow A(H)^{*}$ is surjective, then $u: R O(G) \rightarrow A(G)^{*}$ is surjective and $\operatorname{Res}_{H}^{G^{*}}: A(G)^{*} \rightarrow\left(A(H)^{*}\right)^{K}$ is an isomorphism.

Proof. Since $u: R O(H) \rightarrow A(H)^{*}$ is surjective, $u: R O(H)^{K} \rightarrow\left(A(H)^{*}\right)^{K}$ is surjective. Let $V$ be a $K$-invariant real representation of $H$. Then we observe that

$$
\operatorname{Res}_{H}^{G}(\boldsymbol{R} G \underset{\boldsymbol{R H}}{\otimes} V)=|G / H| \cdot V \quad \text { and } \quad|G / H| \text { is odd. }
$$

It follows that $R O(G) \rightarrow R O(H)^{K} / 2 \cdot R O(H)^{K}$ is surjective. Therefore $u \cdot \operatorname{Res}_{H}^{G}$ : $R O(G) \rightarrow\left(A(H)^{*}\right)^{K}$ is surjective. By the commutative diagram (2.7.1) and Lemma 2.8 , the desired result follows.
Q. E. D.

Corollary 2.10. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. If $|K|$ is odd and $H$ is an abelian group, then $u: R O(G) \rightarrow A(G)^{*}$ is surjective and $\left|A(G)^{*}\right|=2^{m+1}$,
where $m=\mid\left\{\left(H_{0}\right) \in \Phi(G) \mid H \supset H_{0}\right.$ and $\left.\left|H / H_{0}\right|=2\right\} \mid$.
Proof. It is trivial by 1.5 and Theorem 2 9.
Theorem 2.11. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a split group extension. If $|K|$ is odd, then $\operatorname{Res}_{H}^{G}: A(G) \rightarrow A(H)^{K}$ is a split epimorphism and $\operatorname{Res}_{H}^{G *}: A(G)^{*} \rightarrow\left(A(H)^{*}\right)^{K}$ is an isomorphism.

Proof. As an abelian group, $A(H)^{K}$ is generated by $K$-orbits of $\left[H / H_{0}\right]^{\prime}$ 's. We put $K_{0}=\left\{k \in K \mid k H_{0} k^{-1} \subset H_{0}\right\}$. By the Mackey double coset formula, $\operatorname{Res}_{H}^{G}\left(\left[G / K_{0} \cdot H_{0}\right]\right)$ is the sum of $K$-orbit of $\left[H / H_{0}\right]$. Therefore $\operatorname{Res}_{H}^{G}$ is a split epimorphism. By Lemma 2.8, $\operatorname{Res}_{H}^{G *}$ is an isomorphism.
Q. E. D.

## 3. Examples.

Example 3.1. Let $D_{m}$ be a dihedral group of order $2 m$. We put $G=$ $D_{m_{1}} \times \cdots \times D_{m_{r}}$. If $m_{1}, \cdots, m_{r}$ are relatively prime integers and $m_{i}>1(i=1, \cdots, r)$, then $u: R O(G) \rightarrow A(G)^{*}$ is surjective. Moreover, by (1.3.1), we have

$$
\left|A(G)^{*}\right|=2^{\rho},
$$

where

$$
\rho= \begin{cases}\left(d\left(m_{1}\right)+2\right) \prod_{j=2}^{r}\left(d\left(m_{j}\right)+1\right) & \text { if } m_{1} \text { is even } \\ \prod_{j=1}^{r}\left(d\left(m_{j}\right)+1\right) & \text { if } m_{j} \text { is odd for each } j,\end{cases}
$$

and $d(m)=\mid\{i \mid i$ is a positive divisor of $m\} \mid$ (cf. [2] Example 5.7).
Proof. By Corollary 2.4 and Lemma 2.5, it is sufficient to prove that

$$
\begin{equation*}
A\left(G^{\prime}\right)_{0}^{+} \subset \operatorname{Image}\left(u: R O\left(G^{\prime}\right) \longrightarrow A\left(G^{\prime}\right)^{*}\right) \tag{3.1.1}
\end{equation*}
$$

for each homomorphic image $G^{\prime}$ of $G$ such that $\left|C\left(G^{\prime}\right)\right| \leqq 2 . \quad G^{\prime}$ has one of the following three types of groups (mutually exclusive).
$D_{m_{1}} \times \cdots \times D_{m_{r}}$, where $m_{1}, \cdots, m_{r}$ are relatively prime odd integers and $m_{i}>1(i=1, \cdots, r)$.
$C_{2} \times H$, where $H$ has type (I) and $C_{2}$ is a cyclic group of order 2.
$D_{m_{1}} \times \cdots \times D_{m_{r}}$, where $m_{1}, \cdots, m_{r}$ are relatively prime integers, $m_{i}>1(i=1, \cdots, r)$ and $4 \mid m_{1}$.

If $G^{\prime}$ has type (II), then (3.1.1) is true by the following Lemma 3.2. For the other two types, it will be proved by the same way.

Lemma 3.2. If $m_{1}, \cdots, m_{r}$ are relatively prime odd integers, then (3.1.1) is true for $G=C_{2} \times D_{m_{1}} \times \cdots \times D_{m_{r}}$.

Proof. We put

$$
\begin{aligned}
& \left.D_{m_{i}}=\left\langle\sigma_{i}, \tau_{i}\right| \sigma_{i}^{m_{i}}=\tau_{i}^{2}=1 \text { and } \tau_{i}^{-1} \cdot \sigma_{i} \cdot \tau_{i}=\sigma_{i}^{-1}\right\rangle, \\
& C_{2}=\langle\mu\rangle \text { and } L=\left\langle\mu, \tau_{i} \mid i=1, \cdots, r\right\rangle .
\end{aligned}
$$

Since each subgroup of $\left\langle\mu \cdot \tau_{1} \cdot \tau_{2} \cdot \cdots \cdot \tau_{r}\right\rangle$ is normal in $G$, if $(H) \in(S(G)-\{G\}$ ), then $H$ is an elementary abelian 2-group conjugate to a subgroup of $L$. Suppose that $\alpha \in A(G)_{0}^{+}$. We can put

$$
\alpha=\left(\sum_{H \subset L} \sum_{\mu \neq \mu H} n_{H}[G / H]\right)+1_{A(G)},
$$

where $n_{H} \in \boldsymbol{Z}$. Let $L_{1}, \cdots, L_{s}$ be all subgroups of $L$ such that $\mu \notin L_{i}$ and $\left|L / L_{i}\right|$ $=2$ for each $i$. Considering $\alpha\left(\left(L_{i}\right)\right)$, we have

$$
n_{L_{i}}=0 \text { or }-1 \quad \text { for each } i .
$$

Moreover, we have

$$
\begin{equation*}
\text { if } \quad n_{L_{i}}=0 \text { for some } i, \quad \text { then } \alpha=1_{A(G)} . \tag{3.2.1}
\end{equation*}
$$

Proof of (3.2.1). We proceed by induction on $r$. If $r=1$, then

$$
A(G)_{0}^{+}=\left\{1_{A(G)},\left(1_{A(G)}-\left[G /\left\langle\tau_{1}\right\rangle\right]-\left[G /\left\langle\mu \cdot \tau_{1}\right\rangle\right]+[G]\right)\right\} .
$$

So, (3.2.1) is true for $r=1$. Suppose that $n_{L_{1}}=0$ and $r>1$. We observe that

$$
\omega_{\tau_{\tau_{1}}}(\alpha)=1_{A\left(G^{\prime}\right)}+\left(\sum_{\mu \notin H \subset L} \sum_{\text {and } \tau_{1} \in H} n_{H}\left[G^{\prime} / H^{\prime}\right]\right),
$$

where $G^{\prime}=C_{2} \times D_{m_{2}} \times \cdots \times D_{m_{r}}$ and $H^{\prime}=H /\left\langle\tau_{1}\right\rangle$. By the assumption of induction, if $\tau_{1} \in L_{1}, \mu \notin H \subset L$ and $\tau_{1} \in H$, then $n_{H}=0$. In particular,

$$
n_{\left\langle\tau_{1}, \ldots, \tau_{r}\right\rangle}=0 \quad \text { if } \tau_{1} \in L_{1} .
$$

Similarly,

$$
n_{\left\langle\tau_{1}, \ldots, \tau_{r}\right\rangle}=0 \quad \text { if } \tau_{i} \in L_{i} \text { for some } i
$$

Therefore we have

$$
n_{H}=0 \quad \text { if } \tau_{i} \in H \text { for some } i .
$$

If $L_{2}$ is a subgroup of $L$ such that $\left|L / L_{2}\right|=2$ and $L_{2} \cap\left\{\mu, \tau_{1}, \cdots, \tau_{r}\right\}$ is empty, then $L_{2}=\left\langle\mu \cdot \tau_{1}, \cdots, \mu \cdot \tau_{r}\right\rangle$. For a maximal proper subgroup $H$ of $L_{2}$,

$$
\alpha((H))=1+n_{L_{2}}\left|\left(G / L_{2}\right)^{H}\right|+n_{H}\left|(G / H)^{H}\right|= \pm 1 .
$$

Since $\left|\left(G / L_{2}\right)^{H}\right|$ is even and $\left|(G / H)^{H}\right|$ is divisible by $4, n_{H}=0$. It follows that $\alpha=1_{A(G)}$ or $\left(1_{A(G)}-\left[G / L_{2}\right]\right)$. Since $\left(1_{A(G)}-\left[G / L_{2}\right]\right)$ is not in $A(G)^{*}, \alpha=1_{A(G)}$. Therefore we obtain (3.2.1).

Let $V_{i}(i=1, \cdots, r)$ be the real representation of $D_{m_{i}}(i=1, \cdots, r)$ determined by

$$
\sigma_{i} \longrightarrow\left(\begin{array}{ll}
\xi_{m_{i}} & 0 \\
0 & \xi_{m_{i}}^{-1}
\end{array}\right), \quad \tau_{i} \longrightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where $\xi_{m}$ is a primitive $m$-th root of 1 . We put $V=V_{1} \times \cdots \times V_{r}$. Then $V$ is an irreducible faithful real representation of $G$, where $\mu$ acts on $V$ by $\mu(v)=-v$. If $\alpha \in A(G)_{0}^{+}$and $\alpha \neq 1_{A(G)}$, then

$$
\alpha \cdot u(V)=1_{A(G)} \quad(\text { by }(3.2 .1))
$$

Q.E.D.

Example 3.3. Let $1 \rightarrow C_{p} \times C_{p} \rightarrow G \rightarrow C_{2} \rightarrow 1$ be a split group extension, where $p$ is an odd prime and $C_{p}$ is a cyclic group of order $p$. We put $C_{p} \times C_{p}=$ $\left\langle\sigma_{1}\right\rangle \times\left\langle\sigma_{2}\right\rangle$ and $C_{2}=\langle\tau\rangle$. If $\tau^{-1} \cdot \sigma_{i} \cdot \tau=\sigma_{i}^{-1}(i=1,2)$, then $u: R O(G) \rightarrow A(G)^{*}$ is not surjective.

Proof. Any subgroup of $C_{p} \times C_{p}$ is normal in $G$. It follows that there is no irreducible faithful real representation of $G$. Since ( $1_{A_{(G)}}-2[G /\langle\tau\rangle]+[G]$ ) is an element of $A(G)_{0}^{+}$, the desired result follows from 2.2, (ii). Q.E.D.

Similarly, For each of the following groups $G, u: R O(G) \rightarrow A(G)^{*}$ is not surjective:
$D_{p} \times D_{p}$ ( $p$ is an odd prime), $D_{4} \times D_{4}$ and $D_{4} * D_{4}$
(* means the central product).

Example 3.4. We put

$$
C_{15}=C_{3} \times C_{5}=\left\langle\sigma_{1}\right\rangle \times\left\langle\sigma_{2}\right\rangle \quad \text { and } \quad \operatorname{Aut}\left(C_{15}\right)=C_{2} \times C_{4}=\left\langle\tau_{1}\right\rangle \times\left\langle\tau_{2}\right\rangle .
$$

Moreover, we put

$$
H=\left\langle\sigma_{1}, \sigma_{2}, \tau_{1} \cdot \tau_{2}\right\rangle \quad \text { and } \quad G=\left\langle\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\right\rangle .
$$

Then $u: R O(H) \rightarrow A(H)^{*}$ is not surjective and $u: R O(G) \rightarrow A(G)^{*}$ is surjective.
Proof. We put $\sigma=\sigma_{1} \cdot \sigma_{2}$ and $\tau=\tau_{1} \cdot \tau_{2}$. Since ( $1_{A(H)}-2[H /\langle\tau\rangle]+\left[H /\left\langle\tau^{2}\right\rangle\right]$ ) is an element of $A(H)_{0}^{+}$, it is sufficient to prove that there is no absolutely irreducible faithful real representation of $H$. Since

$$
\boldsymbol{Q} C_{15} \cong \boldsymbol{Q}\left[\xi_{15}\right]+\boldsymbol{Q}\left[\xi_{5}\right]+\cdots,
$$

every irreducible faithful representation appears in $\boldsymbol{Q}\left[\xi_{15}\right][\langle\tau\rangle]$, where $\xi_{m}$ is a primitive $m$-th root of 1 and $\boldsymbol{Q}\left[\xi_{15}\right][\langle\tau\rangle]$ is a twisted group ring. Since $\tau_{1} \cdot \tau_{2}^{2}$ is the complex conjugation and $\left\langle\tau_{1} \cdot \tau_{2}^{2}\right\rangle \not \subset\langle\tau\rangle$, no absolutely irreducible faithful representation of $H$ is defined over $\boldsymbol{R}$. It follows that $u: R O(H) \rightarrow A(H)^{*}$ is not surjective. The surjectivity of $u: R O(G) \rightarrow A(G)^{*}$ will be proved by the use of Corollary 2.4 and by similar calculations as in Example 3.1. Q.E.D.

## References

[1] T. tom. Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[2] T. Matsuda, On the unit groups of Burnside rings, Japanese J. Math., New Series,

8 (1982), 71-93.
[3] J.-P. Serre, Linear representation of finite groups, GTM, 42, Springer-Verlag, Berlin-Heidelberg-New York.

| Toshimitsu MATSUDA | Takehiko MiyATA |
| :--- | :--- |
| Department of Mathematics | Department of Mathematics |
| Shinshu University | Osaka City University |
| Matsumoto, Nagano 390 | Sumiyoshi-ku, Osaka 558 |
| Japan | Japan |

