On the unit groups of Burnside rings of finite groups

By Toshimitsu MATSUDA and Takehiko MIYATA

(Received March 4, 1982)

Introduction.

Let G be a finite group and $\Theta(G)$ the set of G-isomorphism classes of all finite (left) G-sets. Then $\Theta(G)$ is a semi-ring with addition and multiplication induced by disjoint union and cartesian product, respectively. The Burnside ring A(G) of G is defined to be the Grothendieck ring of $\Theta(G)$. Let $A(G)^*$ be the unit group of the Burnside ring A(G).

In this note we shall study $A(G)^*$ and the homomorphism $u: RO(G) \rightarrow A(G)^*$, where RO(G) is the real representation ring of G and u is the homomorphism defined by T. tom. Dieck (see 1.2). By the famous theorem of Feit-Thompson (G is solvable if |G| is odd) and by a result of A. Dress (idempotents of A(G)are determined by perfect subgroups of G, cf. [1] Proposition 1.4.1), we know that

$$|A(G)^*| = 2$$
 if $|G|$ is odd

(cf. [1] Proposition 1.5.1). Therefore, it remains to study $A(G)^*$ and the homomorphism $u: RO(G) \rightarrow A(G)^*$ for groups G of even order.

In Section 1, we describe the well known results for $A(G)^*$ and the homomorphism $u: RO(G) \rightarrow A(G)^*$.

Section 2 is the main part of this note, and we obtain the following Theorem A and Theorem B.

THEOREM A (cf. Theorem 2.2, Corollary 2.4 and Lemma 2.5). $u: RO(G) \rightarrow A(G)^*$ is surjective if and only if $u: RO(G') \rightarrow A(G')^*$ is surjective for every homomorphic image G' of G such that $|C(G')| \leq 2$, where C(G') is the center of G'.

THEOREM B (cf. Theorem 2.9 and Theorem 2.11). Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. Then we have

(i) K acts on $A(H)^*$ (cf. 2.6) and $\operatorname{Res}_{H}^{G^*}(A(G)^*) \subset (A(H)^*)^K$, where $\operatorname{Res}_{H}^{G^*}$ is the natural restriction homomorphism from $A(G)^*$ to $A(H)^*$,

(ii) if |K| is odd and $u: RO(H) \rightarrow A(H)^*$ is surjective, then $u: RO(G) \rightarrow A(G)^*$ is surjective and $\operatorname{Res}_{H}^{G^*}: A(G)^* \rightarrow (A(H)^*)^K$ is an isomorphism,

(iii) if the group extension is split and |K| is odd, then $\operatorname{Res}_{H}^{G^*}: A(G)^* \to (A(H)^*)^{\kappa}$ is an isomorphism.

In Section 3, we give a few examples. By Theorem A we obtain the following example.

EXAMPLE (cf. Example 3.1). Let D_m be a dihedral group of order 2m. We put $G=D_{m_1}\times\cdots\times D_{m_r}$. If m_1,\cdots,m_r are relatively prime integers and $m_i>1$ $(i=1, \dots, r)$, then $u: RO(G) \rightarrow A(G)^*$ is surjective.

The surjectivity of $u: RO(G) \rightarrow A(G)^*$ does not necessarily imply the same for subgroups of G. Here is an example.

EXAMPLE (cf. Example 3.4). We put

$$C_{15} = C_3 \times C_5 = \langle \sigma_1 \rangle \times \langle \sigma_2 \rangle$$
 and $\operatorname{Aut}(C_{15}) = C_2 \times C_4 = \langle \tau_1 \rangle \times \langle \tau_2 \rangle$,

where C_m is a cyclic group of order m. Moreover, we put

$$H = \langle \sigma_1, \sigma_2, \tau_1 \cdot \tau_2 \rangle$$
 and $G = \langle \sigma_1, \sigma_2, \tau_1, \tau_2 \rangle$.

Then $u: RO(G) \rightarrow A(G)^*$ is surjective and $u: RO(H) \rightarrow A(H)^*$ is not surjective.

Throughout this note, we use the following notation:

1	the unit element of G ,
(H)	the conjugate class of a subgroup H of G ,
$\varPhi(G)$	the set of conjugate classes of all subgroups of G ,
$N_G(H)$	the normalizer of a subgroup H of G in G ,
X^{G}	the set of fixed points of a G -set X ,
X	the cardinal number of a set X,
[X]	the element of $A(G)$ represented by a finite G-set X,
$\langle Y \rangle$	the subgroup of G generated by a subset Y of G ,
$1_{A(G)}$	the unit element [point] of $A(G)$,
R	the field of real numbers,
\boldsymbol{Z}	the ring of rational integers,
R^*	the unit group of a ring R .

1. Well known results for $A(G)^*$ and $u: RO(G) \rightarrow A(G)^*$.

1.1. Any finite G-set X is isomorphic to the disjoint union of some coset G-spaces G/H. Since G/H and G/F are G-isomorphic if and only if (H)=(F) in $\Phi(G)$, A(G) is a free module with basis $\{ [G/H] | (H) \in \Phi(G) \}$. For a finite G-set X, let $\Psi(X) : \Phi(G) \rightarrow \mathbb{Z}$ be the mapping defined by

$$\Psi(X)((H)) = |X^H|$$
 for $(H) \in \Phi(G)$.

Let $Hom(\Phi(G), \mathbb{Z})$ be the ring of all mappings from $\Phi(G)$ to \mathbb{Z} with the ring structure induced by the ring structure of \mathbb{Z} . It is well known that the assignment $\Psi: X \rightarrow \Psi(X)$ induces an injective ring homomorphism

$$\Psi: A(G) \longrightarrow Hom(\Phi(G), \mathbb{Z}).$$

Therefore, we can view A(G) and $A(G)^*$ as a subring of $Hom(\Phi(G), \mathbb{Z})$ and a subgroup of $Hom(\Phi(G), \mathbb{Z})^* = Hom(\Phi(G), \{\pm 1\})$, respectively.

1.2. Let V be a real representation of G. Let u(V) be an element of $A(G)^*$ defined by

$$u(V)((H)) = (-1)^{\dim_{\mathbf{R}^{VH}}} \quad \text{for } (H) \in \boldsymbol{\Phi}(G)$$

(cf. [1] Proposition 5.5.9). The assignment $u: V \to u(V)$ induces a homomorphism $u: RO(G) \to A(G)^*$ such that $u(V \pm W) = u(V)u(W)$. For a regular representation V = RG we have $\dim_{\mathbb{R}} V^G = 1$ and $\dim_{\mathbb{R}} V = |G|$. Therefore if |G| is even, then there exists a non-trivial unit of A(G).

1.3. Let Q be the field of rational numbers and \overline{Q} its algebraic closure. Let Γ be the Galois group of \overline{Q} over Q. Let $RO(G)^{ab}$ be the submodule of RO(G) generated by the set, denoted by ab(G), of all absolutely irreducible real representations of G. The group Γ acts naturally on RO(G), $RO(G)^{ab}$ and ab(G). Then we have

Image
$$u = u(RO(G)^{ab})$$
 and $|\text{Image } u| \leq 2^{|ab(G)/\Gamma|}$

(cf. [2] Lemma 5.2). Let $\zeta : A(G) \to R(G, Q)$ be the natural ring homomorphism defined by $\zeta([G/H]) = 1_{H}^{G}$, where R(G, Q) is the rational representation ring of G. If ζ is surjective and the Schur index of every element of ab(G) over Q is odd, then we have

(1.3.1)
$$|\text{Image } u| = 2^{|ab(G)/\Gamma|}$$

(cf. [2] Lemma 5.5).

1.4. If *e* is a non-trivial idempotent of A(G), then $(1-2e) \in \text{Image } u$ (cf. [2] Theorem 5.4). It follows that *u* is not surjective if *G* is not solvable. The converse is not always true (cf. [2] Example 5.9). In general $A(G)^*$ is not generated by Image *u* and $\{(1-2e) | e \in A(G) \text{ and } e^2 = e\}$. In fact, for the symmetric group \mathfrak{S}_5 , there exists only one non-trivial idempotent *e* of $A(\mathfrak{S}_5)$ and we have

 $A(\mathfrak{S}_5)^* \supseteq \langle \operatorname{Image} u, (1-2e) \rangle$

(cf. [2] 5.11.1).

1.5. If G is an abelian group, then $u: RO(G) \rightarrow A(G)^*$ is surjective,

$$A(G)^* = \langle -1_{A(G)}, (1_{A(G)} - [G/H]) | (H) \in \Phi(G) \text{ and } |G/H| = 2 \rangle$$

and $|A(G)^*| = 2^{m(G)+1}$, where $m(G) = |\{(H) \in \Phi(G) | |G/H| = 2\}|$ (cf. [2] Example 4.5 and Example 5.6).

2. The homomorphism $u: RO(G) \rightarrow A(G)^*$.

2.1. We put

$$S(G) = \{(H) \in \Phi(G) \mid \text{if } H \supset H' \text{ and } H' \text{ is normal in } G, \text{ then } H' = \langle 1 \rangle \} \cup \{G\},\$$

$$A(G)^+ = \{\alpha \in A(G)^* \mid \alpha(G) = 1\},\$$

$$A(G)_0 = \{\sum_{(H) \in S(G)} n_{(H)} \lfloor G/H \rfloor \mid n_{(H)} \in \mathbb{Z}\},\$$

$$A(G)^+_0 = A(G)^+ \cap A(G)_0,\$$

$$M_{i} = (G)^+ \cap (H) \mid H \text{ is normal in } h \text{ is normal in } h \text{ or }$$

 $Min(G) = \{H \mid H \text{ is a non-trivial minimal normal subgroup of } G\}$.

 $A(G)_0$ is a subring of A(G) with the unit element $1_{A(G)}$ (cf. [2] Lemma 3.3), $A(G)_0^+$ a subgroup of $A(G)^*$ and $A(G)^* = \pm A(G)^+$. Let $f: G \to G'$ be a group homomorphism and X a G'-set. Then we may regard X as a G-set via f, which we denote by $f^*(X)$. So f induces a ring homomorphism $f^*: A(G') \to A(G)$ defined by $f^*([X]) = [f^*(X)]$. For a subgroup H of G, X^H is a WH-set, where $WH = N_G(H)/H$. The assignment $\omega_H: X \to X^H$ induces a ring homomorphism

$$\omega_H : A(G) \longrightarrow A(WH)$$
.

If *H* is normal in *G*, then the natural projection $p: G \rightarrow G/H$ induces an injective ring homomorphism $p^*: A(G/H) \rightarrow A(G)$ (cf. [2] Theorem 4.4). So we can view the group $A(G/H)^*$ as a subgroup of $A(G)^*$.

THEOREM 2.2. We have the following (i) and (ii).

(i)
$$A(G)^{+} = (\prod_{(H) \in Min(G)} A(G/H)^{+}) \cdot A(G)^{+}_{0}$$

and

$$(\prod_{(H)\in\operatorname{Min}(\mathcal{G})}A(G/H)^+)\cap A(G)^+_0=\{1_{\mathcal{A}(G)}\}.$$

(ii) If V is an irreducible faithful real representation of G, then $u(V) \in A(G)_0^+$. Moreover, if $\alpha \in (A(G)_0^+ \cap \operatorname{Image} u)$, then $\alpha = u(V_1 + \cdots + V_r)$ for some irreducible faithful real representations V_1, \cdots, V_r of G.

PROOF OF (i). Suppose that $\alpha \in A(G)^+$. We put

$$\alpha = \sum_{(H) \in \Phi(G)} n_{(H)} [G/H] \qquad (n_{(H)} \in \mathbb{Z}),$$

and Min $(G) = \{H_1, \dots, H_s\}$. Since $(G/H)^F$ is non-empty if and only if F is conjugate to a subgroup of H in G,

$$\omega_{H_1}(\alpha) = \sum_{H \supset H_1} n_{(H)} [G/H]$$
 and $\omega_{H_1}(\alpha) \in A(G/H_1)^+$.

We put inductively,

$$\alpha_i = \alpha \prod_{j=1}^i \omega_{H_j}(\alpha_{j-1}) \qquad (i=1, \cdots, s),$$

where $\alpha_0 = \alpha$. Then $\alpha_s \in A(G)_0^+$, $\omega_{H_j}(\alpha_{j-1}) \in A(G/H_j)^+$ and

$$\alpha = (\prod_{j=1}^{s} \omega_{H_j}(\alpha_{j-1})) \cdot \alpha_s$$

RROOF OF (ii). For a non-trivial normal subgroup H of G, V^H is a real representation of G/H, so $V^H = \{0\}$. It follows that $u(V) \in A(G)_0^+$. The last part is obtained by (i). Q. E. D.

COROLLARY 2.3. We have

$$A(G)^{+} = \prod_{H \text{ is normal}} A(G/H)_{0}^{+}.$$

COROLLARY 2.4. $u: RO(G) \rightarrow A(G)^*$ is surjective if and only if $A(G/H)_0^+ \subset$ Image $(u: RO(G/H) \rightarrow A(G/H)^*)$ for any normal subgroup H of G.

LEMMA 2.5. Let C(G) be the center of G. If $|C(G)| \ge 3$, then $A(G)_0^+ = \{1_{A(G)}\}$. PROOF. For a maximal element (H) of $S(G) - \{G\}$, if $\alpha \in A(G)_0^+$, then

$$\alpha((H)) = 1 + n_H |WH| = \pm 1$$
,

for some $n_H \in \mathbb{Z}$. Since $|C(G)| \ge 3$, we have $|WH| \ge 3$. It follows that $\alpha = 1_{A(G)}$. Q.E.D.

2.6. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. We define K-action on A(H) as follows. For each $g \in G$, let $\bar{g}: H \rightarrow H$ be the automorphism defined by $\bar{g}(h) = ghg^{-1}$. We define G-action on A(H) by

$$g \cdot \alpha = \overline{g}^*(\alpha)$$
 $(g \in G \text{ and } \alpha \in A(H)).$

Then H acts trivially on A(H). Therefore K=G/H acts on A(H). Similarly K acts on RO(H).

2.7. For a subgroup H of G, let

$$\operatorname{Res}_{H}^{G}: A(G) \longrightarrow A(H) \text{ and } \operatorname{Res}_{H}^{G}: RO(G) \longrightarrow RO(H)$$

be the natural restriction ring homomorphisms. We put $\operatorname{Res}_{H}^{G^{\bullet}} = \operatorname{Res}_{H}^{G}|_{A(G)^{\bullet}}$. Let $1 \to H \to G \to K \to 1$ be a group extension and X a finite G-set, then $\tilde{g}: \bar{g}^{*}(X) \to X$ (defined by $\tilde{g}(x) = g \cdot x$) is an H-isomorphism for any $g \in G$. It follows that

Image
$$\operatorname{Res}_{H}^{G^{*}} \subset (A(H)^{*})^{K}$$

Similarly,

Image
$$(\operatorname{Res}_{H}^{G}: RO(G) \longrightarrow RO(H)) \subset RO(H)^{K}$$

For each real representation V of G, the diagram

is commutative, where i_* is a mapping induced by the inclusion map $i: H \rightarrow G$.

Therefore, the diagram

is commutative.

LEMMA 2.8. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. If |K| is odd, then $\operatorname{Res}_{H}^{G^{\bullet}}$ is injective.

PROOF. It is sufficient to prove that

$$(1_{A(G)} + (\operatorname{Res}_{H}^{G})^{-1}(0)) \cap A(G)^{*} = \{1_{A(G)}\}.$$

Suppose that $(1_{A(G)} + \alpha) \in A(G)^*$ and $\operatorname{Res}_{H}^{G}(\alpha) = 0$. For any subgroup L of G, the diagram

is commutative, and $|L/H \cap L|$ is odd. Therefore, by induction on |G|, we can assume that $\alpha((L))=0$ for every proper subgroup L of G. Suppose that $\alpha(G)\neq 0$. Since $(1_{A(G)}+\alpha)\in A(G)^*$, $\alpha(G)=-2$. Let K_0 be a maximal subgroup of K and L its pre-image. Then

$$\alpha((L)) = -2 + m |(G/L)^{L}| = -2 + m |G/L| = 0$$

for some integer *m*. Since |G/L| is odd, $\alpha((L)) \neq 0$. This contradiction implies that $\alpha(G)=0$. That is, $\alpha=0$. Q. E. D.

THEOREM 2.9. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. If |K| is odd and $u: RO(H) \rightarrow A(H)^*$ is surjective, then $u: RO(G) \rightarrow A(G)^*$ is surjective and $\operatorname{Res}_{H^*}^{G^*}: A(G)^* \rightarrow (A(H)^*)^K$ is an isomorphism.

PROOF. Since $u: RO(H) \rightarrow A(H)^*$ is surjective, $u: RO(H)^K \rightarrow (A(H)^*)^K$ is surjective. Let V be a K-invariant real representation of H. Then we observe that

$$\operatorname{Res}_{H}^{G}(RG \bigotimes_{RH} V) = |G/H| \cdot V$$
 and $|G/H|$ is odd.

It follows that $RO(G) \rightarrow RO(H)^{\kappa}/2 \cdot RO(H)^{\kappa}$ is surjective. Therefore $u \cdot \operatorname{Res}_{H}^{G}$: $RO(G) \rightarrow (A(H)^{*})^{\kappa}$ is surjective. By the commutative diagram (2.7.1) and Lemma 2.8, the desired result follows. Q. E. D.

COROLLARY 2.10. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a group extension. If |K| is odd and H is an abelian group, then $u : RO(G) \rightarrow A(G)^*$ is surjective and $|A(G)^*| = 2^{m+1}$,

where $m = |\{(H_0) \in \Phi(G) | H \supset H_0 \text{ and } | H/H_0| = 2\}|$.

PROOF. It is trivial by 1.5 and Theorem 2.9.

THEOREM 2.11. Let $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ be a split group extension. If |K| is odd, then $\operatorname{Res}_{H}^{G}: A(G) \rightarrow A(H)^{K}$ is a split epimorphism and $\operatorname{Res}_{H}^{G^{*}}: A(G)^{*} \rightarrow (A(H)^{*})^{K}$ is an isomorphism.

PROOF. As an abelian group, $A(H)^K$ is generated by K-orbits of $[H/H_0]$'s. We put $K_0 = \{k \in K | kH_0k^{-1} \subset H_0\}$. By the Mackey double coset formula, $\operatorname{Res}_H^G([G/K_0 \cdot H_0])$ is the sum of K-orbit of $[H/H_0]$. Therefore Res_H^G is a split epimorphism. By Lemma 2.8, $\operatorname{Res}_H^{G*}$ is an isomorphism. Q. E. D.

3. Examples.

EXAMPLE 3.1. Let D_m be a dihedral group of order 2m. We put $G = D_{m_1} \times \cdots \times D_{m_r}$. If m_1, \cdots, m_r are relatively prime integers and $m_i > 1$ $(i=1, \cdots, r)$, then $u: RO(G) \rightarrow A(G)^*$ is surjective. Moreover, by (1.3.1), we have

 $|A(G)^*| = 2^{\rho}$,

where

$$\rho = \begin{cases} (d(m_1)+2) \prod_{j=2}^r (d(m_j)+1) & \text{if } m_1 \text{ is even} \\ \\ \\ \prod_{j=1}^r (d(m_j)+1) & \text{if } m_j \text{ is odd for each } j \text{,} \end{cases}$$

and $d(m) = |\{i \mid i \text{ is a positive divisor of } m\}|$ (cf. [2] Example 5.7).

PROOF. By Corollary 2.4 and Lemma 2.5, it is sufficient to prove that

$$(3.1.1) A(G')^+_0 \subset \operatorname{Image}(u : RO(G') \longrightarrow A(G')^*)$$

for each homomorphic image G' of G such that $|C(G')| \leq 2$. G' has one of the following three types of groups (mutually exclusive).

(I) $D_{m_1} \times \cdots \times D_{m_r}$, where m_1, \cdots, m_r are relatively prime odd integers and $m_i > 1$ $(i=1, \cdots, r)$.

(II) $C_2 \times H$, where H has type (I) and C_2 is a cyclic group of order 2.

(III)
$$D_{m_1} \times \cdots \times D_{m_r}$$
, where m_1, \cdots, m_r are relatively prime integers, $m_i > 1$ $(i=1, \cdots, r)$ and $4|m_1$.

If G' has type (II), then (3.1.1) is true by the following Lemma 3.2. For the other two types, it will be proved by the same way.

LEMMA 3.2. If m_1, \dots, m_r are relatively prime odd integers, then (3.1.1) is true for $G = C_2 \times D_{m_1} \times \cdots \times D_{m_r}$.

PROOF. We put

T. MATSUDA and T. MIYATA

$$D_{m_i} = \langle \sigma_i, \tau_i \mid \sigma_i^{m_i} = \tau_i^2 = 1 \text{ and } \tau_i^{-1} \cdot \sigma_i \cdot \tau_i = \sigma_i^{-1} \rangle,$$

$$C_2 = \langle \mu \rangle \text{ and } L = \langle \mu, \tau_i \mid i = 1, \cdots, r \rangle.$$

Since each subgroup of $\langle \mu \cdot \tau_1 \cdot \tau_2 \cdot \cdots \cdot \tau_r \rangle$ is normal in *G*, if $(H) \in (S(G) - \{G\})$, then *H* is an elementary abelian 2-group conjugate to a subgroup of *L*. Suppose that $\alpha \in A(G)_0^+$. We can put

$$\alpha \!=\! (\sum\limits_{H \subset L \text{ and } \mu \notin H} n_H [G/H]) \!+\! 1_{A(G)}$$
 ,

where $n_H \in \mathbb{Z}$. Let L_1, \dots, L_s be all subgroups of L such that $\mu \notin L_i$ and $|L/L_i| = 2$ for each *i*. Considering $\alpha((L_i))$, we have

$$n_{L_i}=0$$
 or -1 for each i .

Moreover, we have

(3.2.1) if
$$n_{L_i}=0$$
 for some i , then $\alpha=1_{A(G)}$.

PROOF OF (3.2.1). We proceed by induction on r. If r=1, then

$$A(G)_0^+ = \{1_{A(G)}, (1_{A(G)} - [G/\langle \tau_1 \rangle] - [G/\langle \mu \cdot \tau_1 \rangle] + [G])\}$$

So, (3.2.1) is true for r=1. Suppose that $n_{L_1}=0$ and r>1. We observe that

$$\omega_{\langle \tau_1 \rangle}(\alpha) = \mathbb{1}_{A(G')} + (\sum_{\mu \notin H \subset L \text{ and } \tau_1 \in H} n_H [G'/H'])$$

where $G' = C_2 \times D_{m_2} \times \cdots \times D_{m_r}$ and $H' = H/\langle \tau_1 \rangle$. By the assumption of induction, if $\tau_1 \in L_1$, $\mu \notin H \subset L$ and $\tau_1 \in H$, then $n_H = 0$. In particular,

$$n_{<\tau_1,\ldots,\tau_r>}=0$$
 if $\tau_1 \in L_1$.

Similarly,

 $n_{<\tau_1,\ldots,\tau_r>}=0$ if $\tau_i \in L_i$ for some i.

Therefore we have

 $n_H = 0$ if $\tau_i \in H$ for some *i*.

If L_2 is a subgroup of L such that $|L/L_2|=2$ and $L_2 \cap \{\mu, \tau_1, \dots, \tau_r\}$ is empty, then $L_2 = \langle \mu \cdot \tau_1, \dots, \mu \cdot \tau_r \rangle$. For a maximal proper subgroup H of L_2 ,

$$\alpha((H)) = 1 + n_{L_2} |(G/L_2)^H| + n_H |(G/H)^H| = \pm 1.$$

Since $|(G/L_2)^H|$ is even and $|(G/H)^H|$ is divisible by 4, $n_H=0$. It follows that $\alpha=1_{A(G)}$ or $(1_{A(G)}-[G/L_2])$. Since $(1_{A(G)}-[G/L_2])$ is not in $A(G)^*$, $\alpha=1_{A(G)}$. Therefore we obtain (3.2.1).

Let V_i $(i=1, \dots, r)$ be the real representation of D_{m_i} $(i=1, \dots, r)$ determined by

$$\sigma_{i} \longrightarrow \begin{pmatrix} \xi_{m_{i}} & 0 \\ 0 & \xi_{m_{i}}^{-1} \end{pmatrix}, \quad \tau_{i} \longrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

where ξ_m is a primitive *m*-th root of 1. We put $V = V_1 \times \cdots \times V_r$. Then V is an irreducible faithful real representation of G, where μ acts on V by $\mu(v) = -v$. If $\alpha \in A(G)_0^+$ and $\alpha \neq 1_{A(G)}$, then

$$\alpha \cdot u(V) = 1_{A(G)}$$
 (by (3.2.1)).
Q. E. D.

EXAMPLE 3.3. Let $1 \rightarrow C_p \times C_p \rightarrow G \rightarrow C_2 \rightarrow 1$ be a split group extension, where p is an odd prime and C_p is a cyclic group of order p. We put $C_p \times C_p = \langle \sigma_1 \rangle \times \langle \sigma_2 \rangle$ and $C_2 = \langle \tau \rangle$. If $\tau^{-1} \cdot \sigma_i \cdot \tau = \sigma_i^{-1}$ (*i*=1, 2), then $u : RO(G) \rightarrow A(G)^*$ is not surjective.

PROOF. Any subgroup of $C_p \times C_p$ is normal in G. It follows that there is no irreducible faithful real representation of G. Since $(1_{A(G)}-2[G/\langle \tau \rangle]+[G])$ is an element of $A(G)_0^+$, the desired result follows from 2.2, (ii). Q. E. D.

Similarly, For each of the following groups G, $u: RO(G) \rightarrow A(G)^*$ is not surjective:

 $D_p \times D_p$ (*p* is an odd prime), $D_4 \times D_4$ and $D_4 * D_4$ (* means the central product).

EXAMPLE 3.4. We put

$$C_{15}=C_3\times C_5=\langle \sigma_1 \rangle \times \langle \sigma_2 \rangle$$
 and $\operatorname{Aut}(C_{15})=C_2\times C_4=\langle \tau_1 \rangle \times \langle \tau_2 \rangle$.

Moreover, we put

$$H = \langle \sigma_1, \sigma_2, \tau_1 \cdot \tau_2 \rangle$$
 and $G = \langle \sigma_1, \sigma_2, \tau_1, \tau_2 \rangle$.

Then $u: RO(H) \rightarrow A(H)^*$ is not surjective and $u: RO(G) \rightarrow A(G)^*$ is surjective.

PROOF. We put $\sigma = \sigma_1 \cdot \sigma_2$ and $\tau = \tau_1 \cdot \tau_2$. Since $(1_{A(H)} - 2[H/\langle \tau \rangle] + [H/\langle \tau^2 \rangle])$ is an element of $A(H)_0^+$, it is sufficient to prove that there is no absolutely irreducible faithful real representation of H. Since

$$QC_{15} \cong Q[\xi_{15}] + Q[\xi_5] + \cdots,$$

every irreducible faithful representation appears in $Q[\xi_{15}][\langle \tau \rangle]$, where ξ_m is a primitive *m*-th root of 1 and $Q[\xi_{15}][\langle \tau \rangle]$ is a twisted group ring. Since $\tau_1 \cdot \tau_2^2$ is the complex conjugation and $\langle \tau_1 \cdot \tau_2^2 \rangle \not\subset \langle \tau \rangle$, no absolutely irreducible faithful representation of *H* is defined over *R*. It follows that $u: RO(H) \rightarrow A(H)^*$ is not surjective. The surjectivity of $u: RO(G) \rightarrow A(G)^*$ will be proved by the use of Corollary 2.4 and by similar calculations as in Example 3.1. Q. E. D.

References

- [1] T. tom. Dieck, Transformation groups and representation theory, Lecture Notes in Math., 766, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [2] T. Matsuda, On the unit groups of Burnside rings, Japanese J. Math., New Series,

T. MATSUDA and T. MIYATA

8 (1982), 71-93.

[3] J.-P. Serre, Linear representation of finite groups, GTM, 42, Springer-Verlag, Berlin-Heidelberg-New York.

Toshimitsu MATSUDA

Department of Mathematics Shinshu University Matsumoto, Nagano 390 Japan Takehiko MIYATA Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan