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Introduction.

Let $G$ be a finite group and $\Theta(G)$ the set of G-isomorphism classes of all
finite (left) G-sets. Then $\Theta(G)$ is a semi-ring with addition and multiplication
induced by disjoint union and cartesian product, respectively. The Burnside ring
$A(G)$ of $G$ is defined to be the Grothendieck ring of $\Theta(G)$ . Let $A(G)^{*}$ be the
unit group of the Burnside ring $A(G)$ .

In this note we shall study $A(G)^{*}$ and the homomorphism $u:RO(G)arrow A(G)^{*}$ ,
where $RO(G)$ is the real representation ring of $G$ and $u$ is the homomorphism
defined by T. tom. Dieck (see 1.2). By the famous theorem of Feit-Thompson
( $G$ is solvable if $|G|$ is odd) and by a result of A. Dress (idempotents of $A(G)$

are determined by perfect subgroups of $G$ , cf. [1] Proposition 1.4.1), we know
that

$|A(G)^{*}|=2$ if $|G|$ is odd

(cf. [1] Proposition 1.5.1). Therefore, it remains to study $A(G)^{*}$ and the homo-
morphism $u:RO(G)arrow A(G)^{*}$ for groups $G$ of even order.

In Section 1, we describe the well known results for $A(G)^{*}$ and the homo-
morphism $u:RO(G)arrow A(G)^{*}$ .

Section 2 is the main part of this note, and we obtain the following Theorem
A and Theorem B.

THEOREM A (cf. Theorem 2.2, Corollary 2.4 and Lemma 2.5). $u:RO(G)arrow$

$A(G)^{*}$ is surjective if and only if $u:RO(G’)arrow A(G’)^{*}$ is surjective for every
homomorphic image $G’$ of $G$ such that $|C(G’)|\leqq 2$, where $C(G’)$ is the center of $G’$ .

THEOREM $B$ (cf. Theorem 2.9 and Theorem 2.11). Let $1arrow Harrow Garrow Karrow 1$ be a
group extenston. Then we have

(i) $K$ acts on $A(H)^{*}$ (cf. 2.6) and ${\rm Res}_{H}^{G}(A(G)^{*})\subset(A(H)^{*})^{K}$ , where ${\rm Res}_{H}^{c*}$ is the
natural restnction homomorphim from $A(G)^{*}$ to $A(H)^{*}$ ,

(ii) if $|K|$ is odd and $u:RO(H)arrow A(H)^{*}$ is surjective, then $u:RO(G)arrow$

$A(G)^{*}$ is surjective and ${\rm Res}_{H}^{G}$ : $A(G)^{*}arrow(A(H)^{*})^{K}$ is an isomorphism,
(iii) if the group extenston is split and $|K|$ is odd, then ${\rm Res}_{H}^{G}$ : $A(G)^{*}arrow$

$(A(H)^{*})^{K}$ is an isomorphism.
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In Section 3, we give a few examples. By Theorem A we obtain the follow-
ing example.

EXAMPLE (cf. Example 3.1). Let $D_{m}$ be a dihedral group of order $2m$ . We
put $G=D_{m_{1}}\cross\cdots\cross D_{m_{r}}$ . If $m_{1},$

$\cdots$ , $m_{r}$ are relatively prime integers and $m_{i}>1$

$(i=1, \cdots , r)$ , then $u:RO(G)arrow A(G)^{*}$ is surjective.
The surjectivity of $u:RO(G)arrow A(G)^{*}$ does not necessarily imply the same

for subgroups of $G$ . Here is an example.
EXAMPLE (cf. Example 3.4). We put

$C_{15}=C_{3}\cross C_{5}=\langle\sigma_{1}\rangle\cross\langle\sigma_{2}\rangle$ and Aut $(C_{15})=C_{2}\cross C_{4}=\langle\tau_{1}\rangle\cross\langle\tau_{2}\rangle$ ,

where $C_{m}$ is a cyclic group of order $m$ . Moreover, we put

$H=\langle\sigma_{1}, \sigma_{2}, \tau_{1}\cdot\tau_{2}\rangle$ and $G=\langle\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\rangle$ .

Then $u;RO(G)arrow A(G)^{*}$ is surjective and $u:RO(H)arrow A(H)^{*}$ is not surjective.
Throughout this note, we use the following notation:
1 the unit element of $G$ ,
$(H)$ the conjugate class of a subgroup $H$ of $G$ ,
$\Phi(G)$ the set of conjugate classes of all subgroups of $G$ ,
$N_{G}(H)$ the normalizer of a subgroup $H$ of $G$ in $G$ ,
$X^{G}$ the set of fixed points of a G-set $X$,
$|X|$ the cardinal number of a set $X$,
[X] the element of $A(G)$ represented by a finite G-set $X$,
$\langle Y\rangle$ the subgroup of $G$ generated by a subset $Y$ of $G$ ,
$1_{A(G)}$ the unit element [point] of $A(G)$ ,
$R$ the field of real numbers,
$Z$ the ring of rational integers,
$R^{*}$ the unit group of a ring $R$ .

1. Well known results for $A(G)^{*}$ and $u:RO(G)arrow A(G)^{*}$ .
1.1. Any finite G-set $X$ is isomorphic to the disjoint union of some coset

G-spaces $G/H$. Since $G/H$ and $G/F$ are G-isomorphic if and only if $(H)=(F)$

in $\Phi(G),$ $A(G)$ is a free module with basis $\{[G/H]|(H)\in\Phi(G)\}$ . For a finite
G-set $X$, let $\Psi(X):\Phi(G)arrow Z$ be the mapping defined by

$\Psi(X)((H))=|X^{H}|$ for $(H)\in\Phi(G)$ .
Let $Hom(\Phi(G), Z)$ be the ring of all mappings from $\Phi(G)$ to $Z$ with the ring
structure induced by the ring structure of $Z$. It is well known that the assign-
ment $\Psi:Xarrow\Psi(X)$ induces an injective ring homomorphism

$\Psi:A(G)arrow Hom(\Phi(G), Z)$ .
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Therefore, we can view $A(G)$ and $A(G)^{*}$ as a subring of $Hom(\Phi(G), Z)$ and a
subgroup of $Hom(\Phi(G), Z)^{*}=Hom(\Phi(G), \{\pm 1\})$ , respectively.

1.2. Let $V$ be a real representation of $G$ . Let $u(V)$ be an element of $A(G)^{*}$

defined by
$u(V)((H))=(-1)^{\dim_{R}V^{H}}$ for $(H)\in\Phi(G)$

(cf. [1] Proposition 5.5.9). The assignment $u:Varrow u(V)$ induces a homomorphism
$u:RO(G)arrow A(G)^{*}$ such that $u(V\pm W)=u(V)u(W)$ . For a regular representation
$V=RG$ we have $\dim_{R}V^{G}=1$ and $\dim_{R}V=|G|$ . Therefore if $|G|$ is even, then
there exists a non-trivial unit of $A(G)$ .

1.3. Let $Q$ be the field of rational numbers and $\overline{Q}$ its algebraic closure. Let
$\Gamma$ be the Galois group of $\overline{Q}$ over $Q$ . Let $RO(G)^{ab}$ be the submodule of $RO(G)$

generated by the set, denoted by ab $(G)$ , of all absolutely irreducible real repre-
sentations of $G$ . The group $\Gamma$ acts naturally on $RO(G)$ , $RO(G)^{ab}$ and ab$(G)$ .
Then we have

Imageu $=u(RO(G)^{ab})$ and $|Imageu|\leqq 2^{|ab(G)/\Gamma|}$

(cf. [2] Lemma 5.2). Let $\zeta:A(G)arrow R(G, Q)$ be the natural ring homomorphism
defined by $\zeta([G/H])=1_{H}^{G}$ , where $R(G, Q)$ is the rational representation ring of $G$ .
If $\zeta$ is surjective and the Schur index of every element of ab $(G)$ over $Q$ is odd,

then we have

(1.3.1) Image $u|=2^{|ab(G/\Gamma|}$)

(cf. [2] Lemma 5.5).

1.4. If $e$ is a non-trivial idempotent of $A(G)$ , then $(1-2e)\not\in Imageu$ (cf. [2]

Theorem 5.4). It follows that $u$ is not surjective if $G$ is not solvable. The
converse is not always true (cf. [2] Example 5.9). In general $A(G)^{*}$ is not
generated by Image $u$ and {$(1-2e)|e\in A(G)$ and $e^{2}=e$}. In fact, for the sym-
metric group $\mathfrak{S}_{5}$ , there exists only one non-trivial idempotent $e$ of $A(\mathfrak{S}_{5})$ and
we have

$A(\mathfrak{S}_{5})^{*}\not\geqq$ \langle Image $u,$ $(1-2e)\rangle$

(cf. [2] 5.11.1).

1.5. If $G$ is an abelian group, then $u:RO(G)arrow A(G)^{*}$ is surjective,

$A(G)^{*}=$ \langle $-1_{A(G)},$ $(1_{A(G)}-[G/H])|(H)\in\Phi(G)$ and $|G/H|=2\rangle$

and $|A(G)^{*}|=2^{m(G)+1}$ , where $m(G)=|\{(H)\in\Phi(G)||G/H|=2\}|$ (cf. [2] Example
4.5 and Example 5.6).

2. The homomorphism $u:RO(G)arrow A(G)^{*}$ .
2.1. We put
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$S(G)=$ {$(H)\in\Phi(G)|$ if $H\supset H’$ and $H’$ is normal in $G$ , then $H’=\langle 1\rangle$ } $\cup\{G\}$ ,

$A(G)^{+}=\{\alpha\in A(G)^{*}|\alpha(G)=1\}$ ,

$A(G)_{0}= \{\sum_{(H)\in S(G)}n_{(H)}[G/H]|n_{(H)}\in Z\}$ ,

$A(G)_{0}^{+}=A(G)^{+}\cap A(G)_{0}$ ,

Min $(G)=$ {$H|H$ is a non-trivial minimal normal subgroup of $G$}.

$A(G)_{0}$ is a subring of $A(G)$ with the unit element $1_{A(G)}$ (cf. [2] Lemma 3.3),
$A(G)_{0}^{+}$ a subgroup of $A(G)^{*}$ and $A(G)^{*}=\pm A(G)^{+}$ . Let $f:Garrow G’$ be a group
homomorphism and $X$ a G’-set. Then we may regard $X$ as a G-set via $f$, which
we denote by $f^{*}(X)$ . So $f$ induces a ring homomorphism $f^{*}:$ $A(G’)arrow A(G)$

dePned by $f^{*}([X])=[f^{*}(X)]$ . For a subgroup $H$ of $G,$ $X^{H}$ is a WH-set, where
$WH=N_{G}(H)/H$. The assignment $\omega_{H}$ : $Xarrow X^{H}$ induces a ring homomorphism

$\omega_{H}$ : $A(G)arrow A(WH)$ .
If $H$ is normal in $G$ , then the natural projection $p:Garrow G/H$ induces an injective
ring homomorphism $p^{*};$ $A(G/H)arrow A(G)$ (cf. [2] Theorem 4.4). So we can view
the group $A(G/H)^{*}$ as a subgroup of $A(G)^{*}$ .

THEOREM 2.2. We have the following (i) and (ii).

(i) $A(G)^{+}=( \prod_{(H)\in{\rm Min}(G)}A(G/H)^{+})\cdot A(G)_{0}^{+}$

and
$( \prod_{(H)\in{\rm Min}(G)} A(G/H)^{+})\cap A(G)_{0}^{+}=\{1_{A(G)}\}$ .

(ii) If $V$ is an irreducible faithful real representation of $G$ , then $u(V)\in$

$A(G)_{0}^{+}$ . Moreover, if $\alpha\in(A(G)_{0\cap}^{+}Imageu)$ , then $\alpha=u(V_{1}+\cdots+V_{r})$ for some
irreducible faithful real representations $V_{1},$ $\cdots$ , $V_{r}$ of $G$ .

PROCF OF (i). Suppose that $\alpha\in A(G)^{+}$ . We put

$\alpha=$
$\sum_{(H)\in\Phi(G)}$

$n_{(H)}[G/H]$ $(n_{(H)}\in Z)$ ,

and Min $(G)=\{H_{1}, \cdots , H_{s}\}$ . Since $(G/H)^{F}$ is non-empty if and only if $F$ is con-
jugate to a subgroup of $H$ in $G$ ,

$\omega_{H_{1}}(\alpha)=\sum_{H\supset H_{1}}n_{(H)}[G/H]$ and $\omega_{H_{1}}(\alpha)\in A(G/H_{1})^{+}$ .

We put inductively,

$\alpha_{i}=\alpha\prod_{j=1}^{i}\omega_{H_{j}}(\alpha_{j-1})$ $(i=1, \cdots s)$ ,

where $\alpha_{0}=\alpha$ . Then $\alpha_{s}\in A(G)_{0}^{+},$ $\omega_{H_{j}}(\alpha_{j-1})\in A(G/H_{j})^{+}$ and



Unit groups of Burnside rings 349

$\alpha=(\prod_{j=1}^{l}\omega_{H_{j}}(\alpha_{j-1}))\cdot\alpha_{s}$ .

RROOF OF (ii). For a non-trivial normal $s$ubgroup $H$ of $G,$ $V^{H}$ is a real
representation of $G/H$, so $V^{H}=\{0\}$ . It follows that $u(V)\in A(G)_{0}^{+}$ . The last part
is obtained by (i). Q. E. D.

COROLLARY 2.3. We have

$A(G)^{+}=_{His} \prod_{norma1}A(G/H)_{0}^{+}$ .

COROLLARY 2.4. $u:RO(G)arrow A(G)^{*}$ is surjective if and only if $A(G/H)_{0}^{+}\subset$

$Image(u:RO(G/H)arrow A(G/H)^{*})$ for any normal subgroup $H$ of $G$ .
LEMMA 2.5. Let $C(G)$ be the center of G. If $|C(G)|\geqq 3$, then $A(G)_{0}^{+}=\{1_{A(G)}\}$ .
PROOF. For a maximal element $(H)$ of $S(G)-\{G\}$ , if $\alpha\in A(G)_{0}^{+}$ , then

$\alpha((H))=1+n_{H}|WH|=\pm 1$ ,

for some $n_{H}\in Z$. Since $|C(G)|\geqq 3$ , we have $|WH|\geqq 3$ . It follows that $\alpha=1_{A(G)}$ .
Q. E. D.

2.6. Let $1arrow Harrow Garrow Karrow 1$ be a group extension. We define K-action on
$A(H)$ as follows. For each $g\in G$ , let $\overline{g}$ : $Harrow H$ be the automorphism defined by
$\overline{g}(h)=ghg^{-1}$ . We define G-action on $A(H)$ by

$g\cdot\alpha=\overline{g}^{*}(\alpha)$ ( $g\in G$ and $\alpha\in A(H)$).

Then $H$ acts trivially on $A(H)$ . Therefore $K=G/H$ acts on $A(H)$ . Similarly
$K$ acts on $RO(H)$ .

2.7. For a subgroup $H$ of $G$ , let

${\rm Res}_{H}^{G}$ : $A(G)arrow A(H)$ and ${\rm Res}_{H}^{G}$ : $RO(G)arrow RO(H)$

be the natural restriction ring homomorphisms. We put ${\rm Res}_{H^{*}}^{G}={\rm Res}_{H}^{G}|_{A(G)^{*}}$ . Let
$1arrow Harrow Garrow Karrow 1$ be a group extension and $X$ a finite G-set, then $\tilde{g}:\overline{g}^{*}(X)arrow X$

(defined by $\tilde{g}(x)=g\cdot x$ ) is an H-isomorphism for any $g\in G$ . It follows that

Image ${\rm Res}_{H}^{G}\subset(A(H)^{*})^{K}$ .
Similarly,

Image $({\rm Res}_{H}^{G} : RO(G)arrow RO(H))\subset RO(H)^{K}$ .
For each real representation $V$ of $G$ , the diagram

$\Phi(H)_{\backslash /}^{i_{*}}arrow\Phi(G)$

$u({\rm Res}_{H}^{G}(V))$ $u(V)$

$\searrow_{Z}\swarrow$

is commutative, where $j_{*}$ is a mapping induced by the inclusion map $i:Harrow G$ .
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Therefore, the diagram

$RO(G)RO(H)^{K}\underline{{\rm Res}_{H}^{G}}$

(2.7.1)
$u|$ $\{$

$A(G)^{*}arrow^{{\rm Res}_{H}^{G}.}(A(H$

$u$

$)^{*})^{K}$

is commutative.
LEMMA 2.8. Let $1arrow Harrow Garrow Karrow 1$ be a group extenston. If $|K|$ is odd, then

${\rm Res}_{H^{*}}^{G}$ is injective.
PROOF. It is sufficient to prove that

$(1_{A(G)}+({\rm Res}_{H}^{G})^{-1}(0))\cap A(G)^{*}=\{1_{A(G)}\}$ .
Suppose that $(1_{A(G)}+\alpha)\in A(G)^{*}$ and ${\rm Res}_{H}^{G}(\alpha)=0$ . For any subgroup $L$ of $G$ , the
diagram

$A(G)A(L)\underline{{\rm Res}_{H}^{G}}$

$\downarrow{\rm Res}_{H}^{\sigma}$
$\downarrow{\rm Res}_{H\cap L}^{L}$

$A(H)\underline{{\rm Res}_{H\cap L}^{H}}A(H\cap L)$

is commutative, and $|L/H\cap L|$ is odd. Therefore, by induction on $|G|$ , we can
assume that $\alpha((L))=0$ for every proper subgroup $L$ of $G$ . Suppose that $\alpha(G)\neq 0$ .
Since $(1_{A(G)}+\alpha)\in A(G)^{*},$ $\alpha(G)=-2$ . Let $K_{0}$ be a maximal subgroup of $K$ and $L$

its pre-image. Then

$\alpha((L))=-2+m|(G/L)^{L}|=-2+m|G/L|=0$

for some integer $m$ . Since $|G/L|$ is odd, $\alpha((L))\neq 0$ . This contradiction implies
that $\alpha(G)=0$ . That is, $\alpha=0$ . Q. E. D.

THEOREM 2.9. Let $1arrow Harrow Garrow Karrow 1$ be a group extenston. If $|K|$ is odd and
$u:RO(H)arrow A(H)^{*}$ is surjective, then $u:RO(G)arrow A(G)^{*}$ is surjective and
${\rm Res}_{H}^{G}$ : $A(G)^{*}arrow(A(H)^{*})^{K}$ is an isomorphism.

PROOF. Since $u:RO(H)arrow A(H)^{*}$ is surjective, $u:RO(H)^{K}arrow(A(H)^{*})^{K}$ is sur-
jective. Let $V$ be a K-invariant real representation of $H$. Then we observe that

${\rm Res}_{H}^{G}(RG \bigotimes_{RH}V)=|G/H|\cdot V$ and $|G/H|$ is odd.

It follows that $RO(G)arrow RO(H)^{K}/2\cdot RO(H)^{K}$ is surjective. Therefore $u\cdot{\rm Res}_{H}^{G}$ :
$RO(G)arrow(A(H)^{*})^{K}$ is surjective. By the commutative diagram (2.7.1) and Lemma
2.8, th $e$ desired result follows. Q. E. D.

COROLLARY 2.10. Let $1arrow Harrow Garrow Karrow 1$ be a group $exten\alpha on$ . If $|K|$ is odd
and $H$ is an abelian group, then $u:RO(G)arrow A(G)^{*}is$ surjective and $|A(G)^{*}|=2^{m+1}$ ,



Unit groups of Burnside rings 351

where $m=|$ { $(H_{0})\in\Phi(G)|H\supset H_{0}$ and $|H/H_{0}|=2$} .
PROOF. It is trivial by 1.5 and Theorem 2.9.
THEOREM 2.11. Let $1arrow Harrow Garrow Karrow 1$ be a spljt group extenston. If $|K|$ is

odd, then ${\rm Res}_{H}^{G}$ : $A(G)arrow A(H)^{K}$ is a split epzm0rphism and ${\rm Res}\S$ : $A(G)^{*}arrow(A(H)^{*})^{K}$

is an isomorphism.
PROOF. As an abelian group, $A(H)^{K}$ is generated by K-orbits of $[H/H_{0}]s$ .

We put $K_{0}=\{k\in K|kH_{0}k^{-1}\subset H_{0}\}$ . By the Mackey double coset formula,
${\rm Res}_{H}^{G}([G/K_{0}\cdot H_{0}])$ is the sum of K-orbit of $[H/H_{0}]$ . Therefore ${\rm Res}_{H}^{G}$ is a split
epimorphism. By Lemma 2.8, ${\rm Res}_{H}^{G^{2}}$ is an isomorphism. Q. E. D.

3. Examples.

EXAMPLE 3.1. Let $D_{m}$ be a dihedral group of order $2m$ . We put $G=$

$D_{m_{1}}\cross\cdots\cross D_{m_{r}}$ . If $m_{1},$ $\cdots,$ $m_{r}$ are relatively prime integers and $m_{i}>1(i=1, \cdots, r)$ ,

then $u:RO(G)arrow A(G)^{*}$ is surjective. Moreover, by (1.3.1), we have

$|A(G)^{*}|=2^{\rho}$ ,

where

$\rho=\{\begin{array}{ll}(d(m_{1})+2)\square ^{r}(d(m_{j})+1) if m_{1} is evenj=2 \prod_{j=1}^{r}(d(m_{j})+1) if m_{j} is odd for each j,\end{array}$

and $d(m)=|$ {$i|i$ is a positive divisor of $m$ } $|$ (cf. [2] Example 5. 7).

PROOF. By Corollary 2. 4 and Lemma 2. 5, it is sufficient to prove that

(3.1.1) $A(G’)_{0}^{+}\subset Image(u;RO(G’)arrow A(G’)^{*})$

for each homomorphic image $G’$ of $G$ such that $|C(G’)|\leqq 2$ . $G’$ has one of the
following three types of groups (mutually exclusive).

(I) $D_{m_{1}}\cross\cdots\cross D_{m_{r}}$ , where $m_{1},$ $\cdots,$ $m_{r}$ are relatively
prime odd integers and $m_{i}>1$ $(i=1, --, r)$ .

(II) $C_{2}\cross H$, where $H$ has type (I) and $C_{2}$ is a
cyclic group of order 2.

(III) $D_{m_{1}}\cross\cdots\cross D_{m_{r}}$ , where $m_{1},$
$\cdots$

$m_{r}$ are relatively
prime integers, $m_{i}>1(i=1, \cdots, r)$ and $4|m_{1}$ .

If $G’$ has type (II), then (3.1.1) is true by the following Lemma 3.2. For the
other two types, it will be proved by the same way.

LEMMA 3.2. If $m_{1},$ $\cdots,$ $m_{r}$ are relatively prime odd integers, then (3.1.1) is
true for $G=C_{2}\cross D_{m_{1}}\cross\cdots\cross D_{m_{r}}$ .

PROOF. We put
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$D_{m_{i}}=$ \langle $\sigma_{i},$
$\tau_{i}|\sigma_{i}^{m_{i}}=\tau_{i}^{2}=1$ and $\tau_{i}^{-1}\cdot\sigma_{i}\cdot\tau_{i}=\sigma_{i}^{-1}\rangle$ ,

$C_{2}=\langle\mu\rangle$ and $L=\langle\mu, \tau_{i}|i=1, \cdots , r\rangle$ .
Since each subgroup of $\langle\mu\cdot\tau_{1}\cdot\tau_{2}\cdot\ldots\tau_{r}\rangle$ is normal in $G$ , if $(H)\in(S(G)-\{G\})$ ,
then $H$ is an elementary abelian 2-group conjugate to a subgroup of L. SuPpose
that $\alpha\in A(G)_{0}^{+}$ . We can put

$\alpha=(\sum_{H\subset Land\mu\not\in H}n_{H}[G/H])+1_{A(G)}$ ,

where $n_{H}\in Z$ . Let $L_{1},$ $\cdots$ , $L_{s}$ be all subgroups of $L$ such that $\mu\not\in L_{i}$ and $|L/L_{i}|$

$=2$ for each $i$ . Considering $\alpha((L_{i}))$ , we have

$n_{L_{i}}=0$ or $-1$ for each $i$ .
Moreover, we have

(3.2.1) if $n_{L_{t}}=0$ for some $i$, then $\alpha=1_{A(G)}$ .
PROOF OF (3.2.1). We proceed by induction on $r$ . If $r=1$ , then

$A(G)_{0}^{+}=\{1_{A(G)}, (1_{A(G)}-[G/\langle\tau_{1}\rangle]-[G/\langle\mu\cdot\tau_{1}\rangle]+[G])\}$ .
So, (3.2.1) is true for $r=1$ . Suppose that $n_{L_{1}}=0$ and $r>1$ . We observe that

$\omega_{\langle\tau_{1}\rangle}(\alpha)=1_{A(G’)}+(\sum_{\mu\not\in H\subset Land\tau_{1}\in H}n_{H}[G’/H’])$ ,

where $G’=C_{2}\cross D_{m_{2}}\cross\cdots\cross D_{m_{r}}$ and $H’=H/\langle\tau_{1}\rangle$ . By the assumption of induction,
if $\tau_{1}\in L_{1},$ $\mu\not\in H\subset L$ and $\tau_{1}\in H$, then $n_{H}=0$ . In particular,

$n<\tau_{1},\ldots,\tau_{r}>=0$ if $\tau_{1}\in L_{1}$ .
Similarly,

$n<\tau_{1}\ldots.,\tau_{r}>=0$ if $\tau_{i}\in L_{i}$ for some $i$ .
Therefore we have

$n_{H}=0$ if $\tau_{i}\in H$ for some $i$ .
If $L_{2}$ is a subgroup of $L$ such that $|L/L_{2}|=2$ and $L_{2}\cap\{\mu, \tau_{1}, \cdots , \tau_{r}\}$ is empty,
then $L_{2}=\langle\mu\cdot\tau_{1}, \cdots , \mu\cdot\tau_{r}\rangle$ . For a maximal proper subgroup $H$ of $L_{2}$ ,

$\alpha((H))=1+n_{L_{2}}|(G/L_{2})^{H}|+n_{H}|(G/H)^{H}|=\pm 1$ .
Since $|(G/L_{2})^{H}|$ is even and $|(G/H)^{H}|$ is divisible by 4, $n_{H}=0$ . It follows that
$\alpha=1_{A(G)}$ or $(1_{A(G)}-[G/L_{2}])$ . Since $(1_{A(G)}-[G/L_{2}])$ is not in $A(G)^{*},$ $\alpha=1_{A(G)}$ .
Therefore we obtain (3.2.1).

Let $V_{i}$ ($i=1,$ $\cdots$ , r) be the real representation of $D_{m_{i}}$ ($i=1,$ $\cdots$ , r) determined
by

$\sigma_{i}arrow(\begin{array}{ll}\xi_{m_{i}} 00 \xi_{m_{t}}^{-1}\end{array})$ , $\tau_{i}arrow(\begin{array}{ll}0 11 0\end{array})$
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where $\xi_{m}$ is a primitive m-th root of 1. We put $V=V_{1}\cross\cdots\cross V_{r}$ . Then $V$ is an
irreducible faithful real representation of $G$ , where $\mu$ acts on $V$ by $\mu(v)=-v$ .
If $\alpha\in A(G)_{0}^{+}$ and $\alpha\neq 1_{A(G)}$ , then

$\alpha\cdot u(V)=1_{A(G)}$ (by (3.2.1)).
Q. E. D.

EXAMPLE 3.3. Let $1arrow C_{p}\cross C_{p}arrow Garrow C_{2}arrow 1$ be a split group extension, where
$P$ is an odd prime and $C_{p}$ is a cyclic group of order $p$ . We put $C_{p}\cross C_{p}=$

$\langle\sigma_{1}\rangle\cross\langle\sigma_{2}\rangle$ and $C_{2}=\langle\tau\rangle$ . If $\tau^{-1}\cdot\sigma_{i}\cdot\tau=\sigma_{i}^{-1}(i=1,2)$ , then $u:RO(G)arrow A(G)^{*}$ is not
surjective.

PROOF. Any subgroup of $C_{p}\cross C_{p}$ is normal in $G$ . It follows that there is
no irreducible faithful real representation of $G$ . Since $(1_{A(G)}-2[G/\langle\tau\rangle]+[G])$ is
an element of $A(G)_{0}^{+}$ , the desired result follows from 2.2, (ii). Q. E. D.

Similarly, For each of the following groups $G,$ $u:RO(G)arrow A(G)^{*}$ is not
surjective:

$D_{p}\cross D_{p}$ ( $p$ is an odd prime), $D_{4}\cross D_{4}$ and $D_{4}*D_{4}$

($*means$ the central product).

EXAMPLE 3.4. We put

$C_{15}=C_{3}\cross C_{5}=\langle\sigma_{1}\rangle\cross\langle\sigma_{2}\rangle$ and Aut $(C_{15})=C_{2}\cross C_{4}=\langle\tau_{1}\rangle\cross\langle\tau_{2}\rangle$ .

Moreover, we put

$H=\langle\sigma_{1}, \sigma_{2}, \tau_{1}\cdot\tau_{2}\rangle$ and $G=\langle\sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}\rangle$ .

Then $u;RO(H)arrow A(H)^{*}$ is not surjective and $u;RO(G)arrow A(G)^{*}$ is surjective.
PROOF. We put $\sigma=\sigma_{1}\cdot\sigma_{2}$ and $\tau=\tau_{1}\cdot\tau_{2}$ . Since $(1_{A(H)}-2[H/\langle\tau\rangle]+[H/\langle\tau^{2}\rangle])$

is an element of $A(H)_{0}^{+}$ , it is sufficient to prove that there is no absolutely irre-
ducible faithful real representation of $H$. Since

$QC_{15}\cong Q[\xi_{15}]+Q[\xi_{5}]+\cdots$

every irreducible faithful representation appears in $Q[\xi_{15}][\langle\tau\rangle]$ , where $\xi_{m}$ is a
primitive m-th root of 1 and $Q[\xi_{15}][\langle\tau\rangle]$ is a twisted group ring. Since $\tau_{1}\cdot\tau_{2}^{2}$

is the complex conjugation and $\langle\tau_{1}\cdot\tau_{2}^{2}\rangle\not\subset\langle\tau\rangle$ , no absolutely irreducible faithful
representation of $H$ is dePned over $R$ . It follows that $u:RO(H)arrow A(H)^{*}$ is not
surjective. The surjectivity of $u:RO(G)arrow A(G)^{*}$ will be proved by the use of
Corollary 2. 4 and by similar calculations as in Example 3.1. Q. E. D.
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