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1. Introduction.

Foliated manifolds are studied by C. Ehresmann, A. Haefliger, G. Reeb and
many people. Many of works are topological (non-riemannian) cases. The early
study of riemannian case was done by B.L. Reinhart [24], that is, he defined
foliated manifolds with “bundle-like” metrics with respect to the foliations and
proved so-called Reeb stability theorem for this case. The foliated manifolds
with bundle-like metrics are studied by R. Hermann [4], A.M. Naveira
J.S. Pasternack [22, 23], B.L. Reinhart [24, 25], R. Sacksteder I. Vaisman
28, 297 and others.

The typical examples of foliated manifolds with bundle-like metrics are the
followings; (i) each fiber space under a suitable choice of metric, (ii) the foliation
of a riemannian manifold by orbits of a group of isometries having all its
orbits of the same dimension.

In this paper we discuss the behavior of geodesics in foliated manifolds with
bundle-like metrics. As a well-known and fundamental result in this direction,
we may state:

THEOREM (B.L. Reinhart [24]). A geodesic of a bundle-like metric is ortho-
gonal to the leaf at one point if and only if it is orthogonal to the leaf at every
point.

We discuss geodesics making constant angles with leaves, and these are
generalizations of [14]. We discuss focal points of leaves along transversal
geodesics, and, in the case of codimension 1, we have non-existence of focal
points of leaves along transversal geodesics. The relations between the Levi-
Civita connection and the second connection defined by I. Vaisman are
discussed.

The topological obstructions for the existence of the foliation with a bundle-
like metric were studied by H. Kitahara and S. Yorozu [12], J.S. Pasternack
[22] and R. Sacksteder [26]. The existence of the complete bundle-like metric
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was discussed by H. Kitahara [8, 9.

We shall be in C®-category. Latin indices run from 1 to p, and Greek
indices run from p-+1 to p+¢. We use the Einstein’s summation convention
unless otherwise stated.

2. Foliated manifold.

Let M be an n dimensional connected riemannian manifold with a riemannian
metric < , > and the Levi-Civita connection V with respect to < ,>. Let TM
denote the tangent bundle (or, its total space) over M. For a subbundle E of
TM, I'(E) is a set of all sections of E.

DEFINITION 2.1. A sub-bundle E of TM is called integrable if, for any
X, Yel'(E), [X, Y]el'(E) where [ , ] denotes the bracket operator.

DEFINITION 2.2. If TM admits an integrable sub-bundle E of fiber dimension
p (=n—q, 0<p<n), then M is called a foliated manifold with a foliation E of
codimension g. The maximal connected integral manifolds of E are called /eaves.

Hereafter we assume that M is a foliated manifold with a foliation E of
codimension g=n—p. For each point of M, we may find a coordinate neigh-
borhood U with coordinates (x!, -, x?, xP*! ... x?*?) such that (i) |x?| <1,
| x%] <1, (ii) the integral manifolds of E are given locally by x?*'=c?*!, ..., xP+¢
=cP*¢ for constants c® satisfying |c¢*| <1. Such a coordinate chart U(x?, x¢) is
called flat.

If Ut x%) and U(x x%) are flat coordinate charts such that UmUvﬁ@
then 0/0x* transforms by coordinate change into a combination of d/0x!,
0/0%?, since the tangent space to a leaf goes into the tangent space to the leaf.
Thus the coordinate transformation is of the form z'=x!(x’, x#) and z%=x2(x5).

In each flat coordinate chart U(x?, x%), we may choose 1-forms w?, ---, w?
such that {w?, -, w?, dx?*!, ---, dx?*%} is a basis for the cotangent space at
each point in U, and vectors vy41, ***, Up+q SUuch that {9/0x?, ---, 0/0x?, vpsy, -+,
vp+q 1S the dual base for the tangent space. We have wi=dx*4 ALdx* and

=0/0x*— ALd/0xt for any functions Ai=Ai(x*, x7) on U. If we transform
the flat coordinate chart U(x?, x%) into U(xzt, %*) and choose @' and 7, in
U(JE", x%), then w® transforms into a combination of the w’ and 7, into a combi-
nation of the vsg. '

3. - Bundle-like metric and examples.

Let Q be the quotlent bundle TM/E. The natural prO]eCtIOIl r: TM-Q
nduces a map = : [(TM)-I'(Q).
_ DEFINITION3.1. In each flat coordinate chart U(x?, x%), a frame {X;, ‘-a-‘, X5,
Xp+1s =y Xpagt 1S an adapted frame to the foliation E if {X,, -, X,} and
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{7m(Xps1), =, m(Xpag)} span I'(E|y) and I'(Q|y) respectively.

In each U(x?, x*), frames {0/0x% 0/0x*} and {0/0x?, v,} are adapted frames
to E (See [14], [22], [23], [24)).

DEeFINITION 3.2. The adapted frame {0/0x% v.} is called the basic adapted
frame to the foliation E.

It holds that
(3.1 ([ X, vo])=0 for any Xel'(Elyp).

We may identify the quotient bundle @ with the orthogonal complement
bundle E* to E in TM with respect to the riemannian metric { , ), and we
have '

3.2 TM=EGQ=E®DE*

where ¢ denotes the Whitney sum.

The riemannian metric ¢ ,)> has a local expression < , >|y=hdx*-dx?
+2h;gdxt-dxP+hapdx*-dx? in each flat coordinate chart U(x? x%). We have
det (hs;)>0, thus we denote by (%) the inverse matrix of (h;;). If we choose
Ai=h;h¥, then the frame {v,41, =, Upso spans I'(E*|y). Thus we have
following local expression of < , >:

o lu=gaf(xk, x)wh w4 gas(x?, x7)dx* - dxf

where gi;=h;; and geg=haes—hi; AL AL
DEFINITION 3.3. The riemannian metric { , > is a bundle-ltke metric with
respect to the foliation E if, in each flat coordinate chart U(x?, x#), it has a
local expression
D0 lu=gulx®, xwh wit-gap(x7)dx*-dx?,

that is, 0<va, vg>/0x*=0 for 1=Vi<p and p+1=Va, VE<p+q.

Now, we have the following theorem which will play an important role in
the next section. ,

THEOREM 3.1 (See [14]) The riemannian metric { , > on a foliated manifold
M with a foliation E of codimension q is a bundle-like metric with respect to E

if and only if, for each flat coordinate chart U(x?, x%), there exists an orthonormal
adapted frame {X;, X,} to E such that

Ty Xiy Xp>+ (T s Xoy Xad=0

for 1=Vi<p and p+1=Va, VB=p+q.

DEFINITION 34. A leaf L in M is called totally geodeszc if VxY|neTnL
for each point me L, any flat coordinate chart U (meU) and any X, YeI(E|y),
where T, L denotes the tangent space of L at m.

We remark that an immersed sub-manifold N of a manifold M with the
Levi-Civita connection V is totally geodesic (=the second fundamental form of
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N identically vanishes) if and only if VY l(TN) for any X, Yl (TN) (See
[15].

The foliated manifolds all leaves of which are totally geodesic are studied
by many people (See [2], [3], [5], [16]).

We are often able to find out the foliated manifolds with bundle-like metrics
in the study of differential geometry: (i) Let M be a riemannian manifold acted
on by a group of isometries such that all orbits are of the same dimension. M
is a foliated manifold with orbits as its leaves, and the riemannian metric on M
is a bundle-like metric with respect to the foliation (See [5], [7], [22], [23], [24]).
(ii) Let M be the tangent bundle TN over a ¢ dimensional riemannian manifold
N. Then M is a foliated manifold with fibers as leaves, and the Sasaki metric
(See [27]) on TN is a bundle-like metric with respect to the foliation. (iii) Let
¢ : M—B be a riemannian submersion (See [6], [20]). M is a foliated manifold
with fibers ¢~'(b) (b= B) as leaves, and the riemannian metric on M is a bundle-
like metric. with respect to the foliation. ~

We remark that the canonical metric on S® is not bundle-like metric with
respect to the Reeb foliation.

4. Geodesic making constant angle with leaves.

Let 7(s) (or 7) be a geodesic in M parametrized by arc-length s, that is,
Viw7(s)=0 where 7(s) denotes a tangent vector of 7 at s.

For any point 7(s), we may choose a flat coordinate chart U(xt, x%) such
that 7(s)eU and an orthonormal adapted frame {X;, X,} to E in U. Let
{6%, 6°} be its dual adapted frame. Then we define f={fy} by

@ fols)=folr(s)= 3 [OG(sN*

LEMMA 4.1. The function f={fy} defined by (4.1) is independent of the
choice of U. f is a differentiable function on I, which is a range of parameter
sofr.

The geometric meaning of f(s) is a square of the length of orthographic
vector in E,, of a vector #(s) in T, M. Let a(s) be an angle between the
orthographic vector of 7(s) and 7(s). Then we have that f(s)=[cos a(s)]2

DEFINITION 4.1. A geodesic 7(s) parametrized by arc-length s is called a
geodesic making constant angle with leaves if the function f is a constant, that
is, df(s)/ds=0 for any se<I,.

THEOREM 4.1. Let M be a foliated manifold with a foliation E of codi-
mension q (=n—p) and with a riemannian metric < ,>. Suppose that all leaves
are totally geodesic.

(i) If the metric { , ) is a bundle-like metric with respect to E, then any
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geodesic in M is a geodesic making constant angle with leaves.

(ii) If all geodesics in M are of making constant angle with leaves, then the
metric < , ) 1s a bundle-like metric with respect to E.

Proor. (i) Let 7(s) be a geodesic parametrized by arc-length s. In a flat
coordinate chart U(x?% x*) such that y(s)eU for any fixed sel,, by
3.1, we have an orthonormal adapted frame {X;, X,} to FE satisfying
Vx, X, Xﬂ>+<VXﬂX,-, X.>=0, that is,

(4.2) Ig+15=0

where VXAXB:fﬁBXC (A, B,C=1,2, -, p, p+1, ---, p+q). And, by the
orthonormality of the frame, we have

(4.3) ISp+15:=0.

Then we have
y4

df(s)/ds=—( 3, [04(N)

ds \i=1

=2 3 (OGN - (0435

and
0:0i(Vf(s)f(s))

=4 043
+ T 0(F()O* () + T 05(7(s) 0 ((s))
+ 4,08 ()0 (()+ i g9 2(F(s)OP(F(s))
where {6%, %} denotes the dual frame of {X;, X,}. Thus we have, by

and [4.3),
df(S)/ds"——21.;ﬁf%0i(r’(8))0j(r'(3))0‘9(f(8)) :

Since all leaves are totally geodesic, we have fg?izo. Therefore we have
df(s)/ds=0 for any sel,.

(i) For any point me M, we take a flat coordinate chart U(x? x%) at m
and any geodesic 7(s) through m making constant angle with leaves. By the
method of Schmidt’s orthonormalization, we may make the basic adapted frame
{8/0x%, v,} to E into an adapted frame {X;, X,} to E such that {X,} is mutually
orthonormal and X,=v.. We set Vs A)? BzfﬁB)?c, we have

Iy +1%,=0, f§ﬁ+f§igﬁr:0, fjai:O-
Thus we have
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0=df(s)/ds
==2, 3 Tasf (H()F NG (s))

for any s=I,, where {§%, 6=} denotes the dual frame of {)?1-, )Z'a}. As the choice
of a geodesic 7 is arbitrary, we have, for each 7, I'{s67(7(s)8%(7(s))=0. We set
#s)=fi X+ feX =X+ f*v,. Then we have

4.4) Fisfeff=0 (@*G(s)H=r.
Thus N . .
Xif*Xay FPX5D
=(Vyag Xi, BXDHX,, f°Xa], 2R
+<f K, Vyng Ro+<f Ko, (X, FPR5D
=21 f P 5iges+2f "X f*)gus -

Here we note that [X'i, )?a]el“(EIU).
On the other hand, we have

XifeXa, PR >=Xif"fPgap)
=21 X f*)gas+ /P Xigup).
Thus we have
2f*fPIsigs=f"fPXi(gap) .
Since <V;2a)?ﬂ, Xi>+<)?‘3, V,{»a)?i>:0, that is, fjﬂ—kf;igf,g:(), we have
foreXdgap)=—2ff*Tis=0 (from [44).
As the choice of the geodesic 7 is arbitrary, we have X’i(gaﬂ)zo. By the con-

struction of X;, we have X,= kzz) ht/ox* (1=Yi<p, h% are functions in U), and
=1
thus we have
0gap/0x'=0

for 1=Vi<p and p+1=Vea, V8=p+q. Therefore the metric {, > is a bundle-
like metric with respect to E. Q.E.D.

The condition that all leaves are totally geodesic is necessary:

ExamMPLE 4.1. Let R? be an x—y plane with the flat metric. We set M=R?
— {the origin point}, then M is considered a foliated manifold whose leaves are
L.={(x, y)eR?*| x*+y*=#?} for any >0 and a metric {, > on M is induced
from the flat metric on R?% All leaves are not totally geodesic. A geodesic
given by y=constant=c is to be tangent to L, at (0, ¢) and make an angle of
z/3 with the leaf L, at (v 3¢, ¢).

For the geodesics orthogonal to the leaves, we may omit the condition that
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all leaves are totally geodesic.

THEOREM 4.2. Let M be a foliated manifold with a foliation E of codimension
g (=n—p) and with a riemannian metric < , ).

(i) (B.L. Reinhart [24]) If the riemannian metric { , > is a bundle-like
metric with respect to E, then any geodesic orthogonal to the leaf at some point
on the geodesic is to be orthogonal to the leaves at all points on the geodesic.

(ii) If, for any point me M, all geodesics that are to be orthogonal to the
leaf at m are to be orthogonal to the leaves at all points on the geodesics, then
the metric < , > is a bundle-like metric with respect to E.

(i) is a generalization of the corresponding results of Y. Muto
[17], B. O’Neill and S. Sasaki [27].

Proor. We give a proof of (ii). For any point meM, we take a flat
coordinate chart U(x?, x%) of the point m. Let y(s) be any geodesic through m
orthogonal to the leaves. We take an adapted frame {X;, X,} to E such that
X, are mutually orthogonal and are given by the method of Schmidt’s orthogoenali-
zation from 8/9x?, and X,=v.. Let {#%, 3*} denote the dual frame of {X,, Xa}.
For each 7, we have

0=0(Te7(5))
_ 4 i
S R AGO)

+ L7 ()0 (F(8))+ Tis07(7())FP(7(s))

+ 4,05 (F(N0(F ()4 Tés0(F ()P (7(s))

=Ti0%(7(s)FA(7(s)) .
By the same way as the proof of (ii), we have that the metric
<, > is a bundle-like metric with respect to E. Q.E.D.

Theorems and 4.2 are generalizations of [14].

DEFINITION 4.2. A geodesic y on M is called a transversal geodesic if 7 is
to be orthogonal to the leaves at all points on 7.

Even if M admits only one transversal geodesic, then the metric {, > on
M is not necessarily a bundle-like metric with respect to the foliation:

ExAMPLE 4.2. Let R? be a u—v plane with the flat metric (, >. R?is a
foliated manifold whose leaves are given by {(u, v)= R*|v=u*+a} for any a=R.
A geodesic given by u=0 is only one transversal gecdesic. We set

f(u)=%(2u(4u2+l)”2+10g Qu+4u*+1)"?)

2

x=f(u), y=v—u’.
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Setting w=dx +2u(du*+1)"**dy, we have {, >=du-du-+t+dv-dv=w- -w+
Au+1)"dy-dy=w-w+@4(f(x))*+1)*dy-dy. Thus the metric {, > is not a
bundle-like metric with respect to the foliation.

5. Focal point of a leaf.
We recall that the bundle-like metric < , > on M is locally expressed by

G o lv=gu(x®, X)W wi+ gap(x)dx®-dxbf

in each flat coordinate chart U(x?, x%). Here and hereafter, vector fields, forms,
tensor fields etc. are locally expressed by the basic adapted frame {0/0x%, v.}
to E and its dual {w? dx¢}, where wi=dx*+Aidx* and v,=0/0x*— Aid/0x".
We set, in U,

Va/axia/aszrfja/axk+[7§jvr
Va/axiv§:F’{ﬂa/8xk+F§ﬁvt
V,.0/0x7=T"%3/0x*+ I,

Vvav,ngiﬁa/axk+F§,gvr
and

[V, v51=(0AL /5P —0A}/0x7+ ALDA}/0x7— ARDAL/9x7)8 /0
:Bf,,ga/axi .

LEMMA 5.1. Suppose that the metric { , ) is a bundle-like metric with respect
to E, then

1 ) .
Ffj: ?gkh(aghj/axl’f‘agih/ax]—8gij/axh)
1 ) )
F%j: ?g""(gnjaA?/ax1+ginaz4?/ax]—ve(gij))

1 )
Ffj: “2‘gkh(va(ghj)+ghzaA£x/axJ_gjtaAfx/axh)

I, =TIt—0A%/0x7 Fgﬁ:_[‘gaz_lz_Bﬁﬁ

1
ng:F}:a:—?gNBﬁeghj

1
Féﬁz7g"(agsp/ax“-l-agas/axﬂ-—agaﬁ/axs) .

By the decomposition TM=E®E*, any Yel'(TM) is decomposed as
Y=Yj3;+Yg:, where Y (resp. Yz.) denotes a I'(E)- (resp. I'(E*)-) component of
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Y. In a flat coordinate chart U(x?, x%), Yz and Yz are locally expressed by
Yp=Y%0/0x* and Y z.=Y %, respectively.

Let 7(t) be a transversal geodesic in M parametrized proportionally to arc-
length, then, setting 7(t)=X*v, in U, we have

(6.1) X (X7)+ X XPF5=0 (p+1l=sVr=p+q).

According to B. O’Neill [21], we have
DEFINITION 5.1. If Y(#)=Y=Yz+Yz: is a vector fleld along a transversal
geodesic 7(¢) in M, then

YO=Y=0,Y 0)g— Ty gH ) +2(V; 0, Y 52)p

is called the derived vector field of Y, and ?(t)EF(Elm)).
Hereafter, we assume that M has a bundle-like metric { , > with respect to E.
PROPOSITION 5.1. For a vector field Y along a transversal geodesic y(t) in
M, it holds that

(5.2) VoV Y + R, 77 0)e= sy V)p+(To7 (D) »
(5.3) (Vs VY +R(Y, #E)7(1))z-
=V (Vi Y 258t — (T (T gu (052
~(Vargr.swpp: FO)pr+2T 0 V)

where R denotes the curvature tensor of N, that is, R(V, WZ=VyI%Z —Nw vZ
—Vv, w12,

This is proved by the direct calculation, taking notice of and [5.1).

Let 7: [0, 11—M be a transversal geodesic in M parametrized proportionally
to arc-length. Let L,., denote the leaf through a point 7({) and T, L the
tangent space to L., at 7(t).

A linear space €(Lywy, Lyy) (resp. €(L,w, 7(1))) consists of piece-wise dif-
ferentiable vector fields Y (¢) along 7(¢) orthogonal to 7(¢) satisfying Y(0)eT;, L
and Y(1)eT, L (resp. Y(1)=0). Then the index form I on &(L;«w, Lyw) is

given by
1

1Y, 2)= 75| =, Tro TV RO, 20070, 2>t

+<vf(£)Y—Sf(ﬁ)Y) Z>l$
+ B TN~ Tro VD, 24,

where L(y) denotes the length of 7, S denotes the second fundamental form:
SinY, Z>=—pZ, 7(t)), 0<t;<t,< - <t,-1<1 are points where Y is not dif-
ferentiable, and (V;,Y)(#7) (resp. (V;,Y)(t})) denotes the left (resp. right) limit
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of Vi)Y at t; (See [18] [21).

The following lemmas are easily proved.

LEMMA 5.2. Let Y be a vector field along a transversal geodesic y(t) in M.
If YT, L, then

Y(0)=(V;wY £)2(0)— Ty ;7(1)x(0) ,
(Vf(n Y)z(0)= (vf(t) Y )£(0),
Siey Y (0)=(Vy g7 ))&(0) .

LEMMA 53. Let Y be a piece-wise differentiable vector field along a trans-
versal geodesic (t) in M and 0<t;<t,< -+ <t-1<1 broken poinis of Y. Then,
for each i (1=i<k-—1),

(V3o V) =T VD =YD =Y+ Vi Y £)pe(7)— V30 Y p2)p2(t3) .

From the above two lemmas, the index form [ on &(L;«), L;)) is rewritten:

1 1 N
54) 1Y, 2)= 75| =, Tro TV +R, 1070, Zodt

+CF, D1+ T AT, 2

+ 2 BT Y et Zesltd) ],

where A?(h):?(t?)—?(tf) and A(V; )Y g2)pr (1) =Ny Y V) B+ —Nioy Y 51) 52 ().
DEeFINITION 5.2. A vector field Y along a geodesic y(¢) is called a Jacob: field
along v if Y satisfies the Jacobi equation: V;,V;, Y +RY, 7@)7@)=0.
Let 7 be a transversal geodesic in M parametrized proportionally to arc-
length and g(7) the linear space of all Jacobi fields along 7 orthogonal to 7.
Then we consider the following subspaces of T(y):

T (N={Ye2(); Y=0}
I(; L)y={Yea();, Yt)eT,,nL for any t<[0, 1]}
97 ; Liwoyy Lyay)={Yea(@),; Y0)eT,nL and Y(1)eT,y L}
I(7; Ly, T()={Yeg(),; YO T;nL and Y(1)=0}
To(r; L)=9(NNa(r; L)
.75 Lyw, Lya)=2NIT5 Lrwy, Lyw)
(75 Ly, rAN=T(NNIT; Ly, 1)) .
LEMMA 5.4. The space T(r; L) consists of all solutions Y of
(5.9) ViV =iy VD)et + Vi Y 51+ Ve g7 (0)e
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on 7 such that Y(0)TwyL. Moreover dim I.(y; L)=».

PROOF. If Y=Y z+Y g satisfies (5.5) and Y z.(0)=0, then we have (Vy) Y gt)pe
=0, since (V; ,Y)er=(V3y Y £)er+V5yY gr)ge. Then we have Ygi=0. Thus
Y=Y Since (Vf(z>YE)E:(VYEf(t))E and ?E:(vr'(t)YE)E'—(VYE?“))E; we have ¥'=0.
By [Proposition 5.1, we have V;, Vi, Y +R(Y, 7¢)7(t)=0. And we have <Y, 7()>
=0. Therefore Yea,.(r; L).

Conversely, if Yeg,(r; L), then it is trivial that Y satisfies [5.5).

And we easily have dim g ,(y; L)=p. Q.E.D.

LEMMA 55. Let Y be a Jacobi field along a transversal geodesic y. If, for
some t,€[0, 17, Y(#,)=0, then Yeg.(7).

PrOOF. From Y satisfies (Vf(t)?)E—HVf,)"(t))E:O. Thus we have

Yo ¥ =T es— 7)),  Yt)=0.

Then we have ¥Y=0. Therefore Y ea.(y). Q.E.D.

Then we have (See [15], [18]

PROPOSITION 5.2. A vector field Y €&(Lyoy, Lyy) belongs to Ti(y; Ly, Lray)
if and only if I(Y, Z)=0 for any Z€&( L1y, Lyy)-

By the same way, the nullspace of the index form I on &(L;, r(1)) is
T(; Lewoy, y(1)). Thus we have

DEFINITION 5.3. Let 7(t) be a transversal geodesic in M parametrized pro-
portionally to arc-length. A point y(1) is a focal point of the leaf L,w along 7
if there exists a non-zero vector field Y belonging to I.(7; L;w, 7(1)).

PROPOSITION 5.3. Let Y=Y yg+Y gL be a vector field along a transversal
geodesic v in M. If Yeed.1(7; Ly, 7(1)), then Y g=0.

DEFINITION 5.4. Let 7(#) (¢=[0, 1]) be a transversal geodesic in M and
a: [0, 17X (—e, e)=M (¢>0) a variation of 7, that is, a(t, 0)=y(). The variation
aof risa (Lyw, Lya)-geodesic variation of 7 if (i) for each ues(—e, ¢), a curve
a,(t) (=a(t,u)) is a geodesic, and (ii) two curves a’(u)=a(0, u) and a’(u)=a(l, u)
are in L, and L,,, respectively.

PROPOSITION 5.4. Let 7(t) (t<[0, 1) be a transversal geodesic in M para-
metrized proportionally to arc-length and a: [0, 11X (—e, &)=>M (e >0) a (Ly0y, Lyny)-
geodesic variation of y. Then the variational vector field Y (t)=ax(d/0u)(t, 0) along
v belongs to T1(v; Lywy, Lyw))-

ProoF. We have that Y is a Jacobi field along y and <Y(¢), 7(¢)>=0 for any
te[0, 1]. By and [Y, 7®)]1l:=e=0, we have

Y(0)=(Vst,Y 0)5(0)— (Vy 57(t))50)
=([7®), YeDe0)=({7®), Y 1=z0)
=0.
By we have Yeg,(7), and YeT,(7; Lyw, Lyw)- Q.E.D.



262 S. Yorozu

The following proposition is easily proved.
PROPOSITION 5.5.

T1(7; Ly, TO)DIL(r; LYTTL(r; Lrwoys Lray)

and dim T1(7; Ly, 7(1))=qg—1, where b denotes the direct sum.

THEOREM b5.1. Let M be a foliated manifold with a foliation E of codimen-
sion 1 and with a bundle-like metric with respect to E. For any point meM,
there is not a focal point of the leaf L., through m along every transversal
geodesic v starting from m.

PrOOF. By [Proposition 5.5, we have dim T .(y; Ly, 7(1))=0. Q.E.D.

ExaMmPLE 5.1. Let R® be the set of triple (x, y, z) of real numbers. R?® is
considered a riemannian manifold with a riemannian metric <, )=dx-dx—
2zdx-dy+(1+2z% dy-dy+dz-dz. Then R®is considered a foliated manifold whose
leaves are orbits of a vector field 0/0x, and the metric is a bundle-like metric
with respect to the foliation, that is, { , Y)=w-w+dy-dy+dz-dz where w=dx—
zdy. For any point (x,, ¥, 20)ER’ let 7 be an arbitrary transversal geodesic
starting from (xo, ¥o, 2o) and Lz, 4,:» the leaf through the point (x,, yo, z0).
Then there is no focal point of the leaf L, , ., along 7.

ExaMpPLE 5.2. Let R* be identified with the quaternion number field @, and
let 3-dimensional sphere S?*CR* be a set {a=Q||al|=1} where |a|*=a-d and &
denotes conjugate of a. For any a=S®% L, denotes a set given by {(cos 8)-a-+
(sin 8)-(z-a)|0=0=2x}. Then S*® is a foliated manifold by a family of the set
L,. The metric on S? induced from the flat metric on R* is a bundle-like metric
with respect to the foliation (See [3], [12], [14]). For any a=S? let L, be the
leaf through a and 7(s) a transversal geodesic parametrized by arc-length such
that y(0)=a. Then a point y(x/2) is a focal point of L, along 7.

6. Clairaut’s foliation.

The following Clairaut’s theorem is a basic tool for studying geodesics on a
surface of revolution.

CLAIRAUT’S THEOREM. Let r be the distance to the axis of revolution, and
let a be the angle between a geodesic and the meridians, viewed as a function of
the parameter of the geodesic. Then rsina=-constant.

Then we have the following definition:

DEFINITION 6.1. Let M be a foliated manifold with a foliation E of codi-
mension ¢ and with a riemannian metric <, >. The foliation E is called the
Clairaut’s foliation if there exists a positive valued function r: M—R such that,
for any geodesic 7(¢) parametrized proportionally to arc-length,

rsina=constant,
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where a=a(t) is defined by cosa®)=|Xz @/ X®| OZat)<n/2), 71)=X@t)=
Xe(t)+ Xgi(t) and || X(#)|[|=<X(@), X(t)>*%. The function r is called the girth of E
(See [1], [10]).

Let 7(t) be a geodesic in M parametrized proportionally to arc-length and
76)=X(#)=Xg+Xg1. Setting p’=|X(t)|*=constant, we have (Xz, Xz>=p®sin’a
and <{Xg:, Xg1)=p®cos’a.

R.L. Bishop defined and studied Clairaut submersions, and H. Kitahara
discussed the Clairaut’s foliations of codimension 1. We will discuss the
foliated manifold with a Clairaut’s foliation E of codimension ¢ and with a
bundle-like metric with respect to E.

Hereafter, let M be a foliated manifold with a foliation E of codimension ¢
and with a bundle-like metric with respect to E.

DEFINITION 6.2. A function f on M is called a foliated function if f is con-
stant on each leaf of M.

PROPOSITION 6.1. Let M be a foliated manifold with a foliation E of codimen-
sion ¢ and with a bundle-like metric { , > with respect to E. If E isa Clairaut’s
foliation with the girth r=e’, where f is a function on M, then f is a foliated
function on M.

Proor. Let 7(¢) be a geodesic parametrized proportionally to arc-length. By
assumption, rsina=constant, thus we have

— 9 sina=r 3 da
O_Tt(rsma)—r It sina-r cosa g

Then we have
a . ) s
Oi<—ﬁ(rs1na))p sina

_.4af
T

=r{y(t), <Xg, Xgygrad >+r{V;w,Xg, Xp>,

{XE, XE>+F<Vf(t)XE, Xgy

since %/ =j(0), gradf> and /()= Xs+ Xs-. Thus we have <7(0), (X5, Xp> grad />

=—<V;,Xg, Xg>. And we have

(6.1) Ny Xg, Xep=<Xgs, Vi Xp> »

6.2) (Xpr, Ty Xp>={ X1, Vi g X -
Thus

(6.3) F@), <Xg, Xp>grad [)=—<Xps, Vx  Xp> .

For any fixed point meM and any non-zero vector YT ,L, we take a
geodesic 7(t) such that y(0)=m and 7(0)=Y. Then we have, by (6.3) at t=0,
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Y,<Y, Y>grad f|»>=0. Thus we have <Y, grad f|»>=0.
Therefore, grad f is orthogonal to the leaf at each point, and f is a foliated
function on M. Q.E.D.
- DEFINITION 6.3. Let {X;, X,} be an orthonormal adapted frame to E. The
mean curvature vector N, at meM of the leaf L, is defined by

1
Nm:n——Qiza<VXiXi|m, Xa|md>Xalm -

DEFINITION 6.4. A leaf is called totally umbilic if, for each point m of the
leaf, it holds

Xlm, YImINm=VxY)zL|m

for any X, Yel'(E|y) (U: flat coordinate chart at m).

PROPOSITION 6.2. Let M be a foliated manifold with a foliation E and with
a bundle-like metric { , > with respect to E. If E is a Clairaut’s foliation with
the girth r=e’ where f is a function on M. Then the mean curvature vector N
of each leaf is —grad f.

Proor. For a geodesic 7(t), 7(t)=Xg+ Xg:, we have

(6.4) (Xg1, {Xg, Xg>grad f)=—< Xz, Vx Xz,

since grad f is orthogonal to each leaf and (6.3).

For any fixed point me M and any non-zero vector Y*X,|, at m, we may
take geodesics 7:(t) (7=1, 2, ---, p) such that 7;(0)=m and 7,(0)=X;| n+Y*Xa|m,
where {X;, X.} is an orthonormal adapted frame to E. By we have, for
each 7,

<YaXa|mx gradf|m>:”—<YaXalm; vX,Alem> .
And, for each 7 and a,

Xealm, inXi|m>:’_<Xa!m, grad f|n> .

Thus we have

iEa<Xa]m, VXiXi|m>Xa|m:_(n_Q)§<Xa|m; gradf|m>Xalm

=—(n—g)grad f|n.

Therefore, by the choice of m, we have N=—grad f. Q.E.D.
THEOREM 6.1. Let M be a foliated manifold with a foliation E of codimen-
sion ¢ and with a bundle-like metric { , > with respect to E. Suppose that all
leaves are totally umbilic and the mean curvature vector N of each leaf is
—grad f, where f is a function on M. Then E is a Clairaut’s foliation with the
girth r=e’.
PRrROOF. Let 7(t) be an arbitrary geodesic parametrized proportionally to arc-
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length and 7(t)=X=Xg+ Xg1. We set

p=|7®I|l (=constant), cos a=|Xg|/IIX], r=e’.
We have

<7',(t), <XE, XE’> grad f>
={(Xg1, {Xp, Xp>grad f)
=—<(Xg:, {Xz, XgpN)> (from that N=--grad f)

=K Xg1, Vx  Xp> (from that all leaves are totally umbilic)
=—( X1, vf‘(t)XE> (from {(6.2))
:'—<Vf(t)XE; Xe> (from ) .
Thus
<XE7 XE><7(t): grad f>+<v7"(t)XE) XE>:O:
that is,

df 2 ol 2 _i__ 2 i 2o —
ar p?sin’a+ T, (p?sin’a)=0.

Then we have

ZQf%pz sin2a+ef—jt—(p2 sin®a)=0,

and
. dr . d .
2 — —_— pamant
2p sma( T sina+r T (sma)) 0.
By the choice of 7, we have d(rsina)/dt=0. Therefore, E is a Clairaut’s folia-
tion with the girth r=e’. Q.E.D.

ExXAMPLE 6.1. Let R? be an x—y plane with the flat metric <, ). We con-
sider R*—{(0, 0)} a foliated manifold whose leaves are sets L,={(x, y)=R?*|x?
+y2=r?} (»>0). The metric <, >|re-10, 0 1S a bundle-like metric with respect
to the foliation. Then the foliation is a Clairaut’s foliation with the girth r=
( %2 +,’)’2)”2~

7. Second connection.

I. Vaisman proved the following theorem:

THEOREM (I. Vaisman [28, 29]). Let M be a foliated manifold with a folia-
tion E of codimension q and with a riemannian metric { , >. Then there exists a
connection D uniquely defined by the conditions:

(i) If YeI'(E) (resp. I'(EY)), then DxY €Il'(E) (resp. I'(E*)) for any X
.
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(ii) If X,Y, Zel'(E) (or I'(EY)), then XY, Z)={DxY, Z>4+<Y, DxZ>.

(i) (T(X,Y)g=0 if at least one of the arguments is in ['(E), and (T(X,Y))gL
=0 if at least one of the arguments is in I'(E*). Here T denotes the torsion
tensor of D, that is, T(X, Y)=DxyY—Dy; X—[X, Y.

This is proved by similar way to prove the existence and uniqueness of the
Levi-Civita connection on a manifold with a riemannian metric.

DEFINITION 7.1. The connection D of the above theorem is called the second
connection on a foliated manifold.

The second connection is not metrical with respect to the riemannian metric
and has non-zero torsion in general. The foliated manifolds with second connec-
tions are studied by H. Kitahara [11], H. Kitahara and S. Yorozu [13], I. Vaisman
[28] and others.

Now, we have expressions of the second connection D and its torsion tensor
T by using the basic adapted frame {0/0x% v,} to E in a flat coordinate chart
U(x?, x%).

LEMMA 7.1. It holds that

Dj152:0/0x7=T%0/0x* D, 0/0x’=I"%;0/0x*

Djjaziv5=0 D, vg=I%sv:,
where

ri= %gkn(aghj/axi+agih/axj_agij/axn)

I'%;=0A%/0x7

Iip= 5 £ 0ulgep) 0580 —0u8as)
Moreover

T(@/0xt, 0/0x%)=0  T(9/0x% vg)=0
T (Va, vg)=(0AL/0xP—0A%/0x*+ AL A% /Ox"— A0 AL /0x™)0/0x* .
LEMMA 7.2. It holds that
(0/0x%)<0/0x7, 0/0x*)={D3,3,i0/0x7, 0/0x*>4<0/0x7, Dy5,10/0x*>
Va{vg, Ve» =Dy vp, v:y+<vs, Dy,ve) .
Moreover, if the metric {, > is a bundle-like metric with respect to E, then
(0/0x)Va, v5>=LDyj3ziVa, V> +<Va, Dssazi0p>
=0.

We discuss the relation between the second connection D and the Levi-
Civita connection V.
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PROPOSITION 7.1. Let M be a foliated manifold with a foliation E of codimen-
sion q and with a bundle-like metric { , > with respect to E. If all leaves are
totally geodesic and E* is integrable, then V=D.

PrROOF. By the integrability of E*, we have [v,, vs]=B}z0/0x'=0 (See sec-
tion 5), that is, Biz=0 for every ¢, @, 8. Then we have

Itg=Tfo=T5=T7=0

by Lemma 5.1l
Since all leaves are totally geodesic, we have I'5=0 and, by Lemma 5.1,
(7.1) Ve(gi;)=gr0A%/0x*+ g0 A% /0x7 .

Substituting above equality to the right side of the third equality in Lemma 5.1,
we have ['};=0A%/9x’. Thus we have ['},=0.
Therefore we have

Fi"}zrfj, Ff;‘:I”ij; F;ﬂ:I’Z‘B

and others vanish. Q.E.D.

8. Geodesic with respect to the second connection.

Hereafter, M is a foliated manifold with a foliation E of codimension ¢ and
with a bundle-like metric < , > with respect to E.

Let 7(#) be a curve in M. Locally, 7(t) is expressed by 7{)=('@®), r*®)) in
a flat coordinate chart U(x?, x%), and

T@)=7t)a/ox*+7*(t)d/0x“
=FU)+ AL @))0/0x +F2(t)e .

DEFINITION 8.1. A curve 7(t) in M is called a D-geodesic if Dj,7(t)=0.
Such a parameter ¢ is called a D-affine parameter.

REMARK. To distinguish a geodesic with respect to the Levi-Civita connec-
tion V from a D-geodesic, we will use “V-geodesic” instead of “geodesic with
respect to V7.

Let y(u) be a D-geodesic in M parametrized by a parameter u=u(?#) where
t is a D-affine parameter. Then we have

Dy 1" (w)=—((d*u/dt*)/(du/dt)*)y"(w)

where 7/ (w)=(dy¢/du+Aidy®/du)d/ox*+(dy®/du)v,.

Now, let y(¢) be a D-geodesic parametrized by a D-affine parameter ¢ and
7)=X=Xg+Xg:. Let s be the arc-length along y. Then we have ds/dt=
(K Xg, Xp>+<Xg1, Xp))'* and
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1
@®.1)  d's/dt*=75 (X, X +<{Xps, Xpi)) [ X(Xp, Xp>+<Xps, Xpsd)].

By we have
X Xg, Xpp+<Xgs, Xg1D)
=2{Dx Xp, Xp>+Xpi{Xp, Xp>+2{DxpXps, Xp>+2{Dxp Xp1, Xps)
=2{Dx X, Xpp+2{Dx X, Xg1)+ Xpgi{Xg, Xg>—2{Dx . Xp, Xg»
=Xp{Xpg, Xgp—2{Dxp: Xp, Xp> .
Thus, setting Xz=X%/0x* and Xz.=X%,, we have
8.2) XK Xg, Xpp+<{Xg1, Xp))=X* XX ,(gi;)—2X*gi,0AL/0x%).

PROPOSITION 8.1. Let M be a foliated manifold with a foliation E of codimen-
sion q and with a bundle-like metric with respect to E. Suppose that all leaves
are totally geodesic. Then the arc-length parameter is a D-affine parameter.

ProOOF. By the assumption, we have v,(g;)=g:0A%/0x*+g;,0A%/0x7 (See
(71). By we have

X Xg, Xp>+<{Xgs, Xg1))
=XX/(Xig,,0A%/0x"+ X'g, 0 A% Jox'—2X* g, ,0AL/0xF)
=XX/(Xig,0A%)oxi— X*g,;0AL/0xF)

— XX Xig 0 AR Joxi— X XIX* g 0 AL /ox "
=0.

Thus, by (8.1), d*s/dt*=0. Therefore we have D, 7’(s)=0 where ’ denotes the
derivative with respect to s. Q.E.D.

DEFINITION 8.2. A D-geodesic y(t) in M is called a transversal D-geodesic if
tyel'(E*|, ) for every t.

The following theorem is easily proved.

THEOREM 8.1. Let M be a foliated manifold with a foliation E of codimen-
sion q and with a bundle-like metric with respect to E. A curve 7(t) in M is a
transversal D-geodesic if and only if y(t) is a transversal V-geodesic.

9. Jacobi field with respect to the second connection.

Let M be as in the above section. We define a D-Jacobi field along a D-
geodesic in M.

DEFINITION 9.1. Let 7(t) be a D-geodesic in M. A vector field Y=Y ()
along 7(?) is called a D-Jacobi field along 7(t) if Y satisfies the Jacobi equation:
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Dy, Dy tyY +Rp(Y, 7NT®)+ D or(T(Y, 7(2))=0

where RKp denotes the curvature tensor of D and T denotes the torsion tensor

of D (See [15])).
We notice that

(9.1) Dy (T(Y, 7(1))gr=0

by Lemma 7.1l

REMARK. We will use “V-Jacobi field” and “V-focal point” instead of “Jacobi
field” and “focal point” in section 5, respectively.

DEFINITION 9.2. A vector field Y on M is called transversal if Y el'(E*).

By Lemma 7.1 and (9.1), we have

LEMMA 9.1. If Y is a transversal D-Jacobi field along a transversal D-geodesic
r(t) in M, then

Df(t)D?(t)Y+RD(Y, 'I:’(t))f’(t):o .

Every transversal D-geodesic 7(¢) admits two D-Jacobi fields in a natural way.
One is given by 7(t) and the other is given by t7().

PROPOSITION 9.1. Let M be a foliated manifold with a foliation E of codimen-
sion q and with a bundle-like metric with respect to E. Then every D-Jacobi field
Y=Y () along a transversal D-geodesic y(t) in M is uniquely decomposed in the
following form: Y (#)=(at-+b)7t)+V(t), where a and b are real constants, and V(t)
is a D-Jacobi field along 7(t) orthogonal to ().

PROPOSITION 9.2. Let M be a foliated manifold with a foliation E of codimen-
sion q and with a bundle-like metric { , > with respect to E. Let y() (t<[0, 1])
be a transversal D-geodesic in M and Y a transversal D-Jacobi field along 7(t).
If {RY(Y, 7iNT®), Y>=0 and Y wvanishes at two points y(0) and (1), then Y
vanishes identically. . -

Proor. We have

d
—dt—<Dm)Y’ Y>:<Df<z)Dm>Y, Y>+<Df(z)yx Di’(t)Y>

:_"<RD(Y; 7(1))7(1), Y>+<Df<t>Y, D)"(t)Y> ’
thus

[ DY, Dy Vo —CRoY, 70)70), V) dt
=Dy VD), YAD—{(Ds YYO), YO
=0. '

Since <Rp(Y, 7)), Y>=0, we have (DY, Djy,Y>=0 for any t<[0, 1].
Since Y vanishes at 7(0), D;«,Y =0 implies Y=0 for any t<[0, 1]. Q.E.D.
Now we have the non-existence of V-focal points of each leaf under a certain
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condition of Rp.

For a point me M, a plane Il in the tangent space T .M is called a trans-
versal plane if II is spanned by linearly independent vectors X,, Y, such that
Xn, YneEL (that is, X,, and Y, are transversal vectors). For each point meM
and each transversal plane Il in T,M, the transversal D-sectional curvature
K(m, IT) is defined by

{Rp( Xy, Y)Y my Xun)
{Xmy Xedl¥ o, Yir—<Xm, Y u)?

where X, and Y, are linearly independent vectors and span a transversal plane
II. If Kim, II)<0 for each point meM and for all transversal planes I/ in
T.M, then M is called to have non-positive transversal D-sectional curvature.

THEOREM 9.1. Let M be a foliated manifold with a foliation E of codimen-
sion q and with a bundle-like metric { , > with respect to E. Suppose that M has
non-positive transversal D-sectional curvature. Then, for any point m& M, there
is not a V-focal point of the leaf through m along every transversal V-geodesic
starting from m.

ProoF. Let r() (t<[0, 1]) be a transversal V-geodesic starting from m.
We assume that a point 7(1) is a V-focal point of the leaf L, through m along 7.
That is, we assume that there exists a non-zero V-Jacobi field YeT.(7; L, 7(1)).
Then we have Y z1+#0 by |[Proposition 5.3, Thus we have

Y=0, YWOeT,nl, Y©N=0
and, by [Proposition 5.1}

K(m, II)=

(9.2) 0:(Vﬂt)(vf(t)YEl)E-L)El_(Vi(t)(VYEJj(l‘))El)EJ-—(V(EYEL,?(t)])EJ’(t))Ei .

The transversal V-geodesic 7 is also a transversal D-geodesic by [Theorem 8.1
By Lemma 5.0 and Lemma 7.1, (9.2) implies

O:Di’(t)D?(t)YEJ'_Df(t)DYE_L?(t)_"D([YE_L, f(t)])Elf’(t)
=D;uyDiyY gr+Rp(Y gr, TE)7(1) .

Thus Yz. is a transversal D-Jacobi field along 7 and satisfies Y z:(0)=Y z1(1)=0.
By <Rp(Y g, 7)7(®), Y.>=0 and [Proposition 9.2, we have Yz.=0. This is a
contradiction. Q.E.D.
See Example 5.1.
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