The axiom of n-planes and convexity in Riemannian manifolds

Dedicated to Professor I. Mogi on his 60th birthday

By Nobuhiro Innami

(Received April 16, 1981)
(Revised Sept. 3, 1981)

1. Introduction.

A characterization of a space of constant curvature is an interesting problem in Riemannian geometry. It has been done by the various methods as seen in [2], [4] and [10], In particular we are interested in the axiom of n-planes which is stated as follows; a Riemannian manifold M of dimension $m \geqq 3$ is said to satisfy the axiom of n-planes if for each p in M and any n-dimensional subspace T_{p}^{\prime} of the tangent space $T_{p} M$, there is an n-dimensional totally geodesic submanifold N containing p such that the tangent space of N at p is T_{p}^{\prime}, where n is a fixed integer $2 \leqq n<m$. E. Cartan [4] proved that if M satisfies the axiom of n-planes for some n, then M is a space of constant curvature.

Historically, E. Beltrami [1] proved that a space of constant curvature M satisfies the axiom of 2-planes, and the converse was proved by F. Schur [12]. É. Cartan also indicated in [3] that Schur's theorem had been proved by L. Schlaefli [11] in combination with F. Klein [9].

The purpose of the present paper is to exhibit this axiom in terms of convex analysis, i. e., convex combinations and convex hulls.

Let M be a Riemannian manifold without boundary. For a point p in M let $B_{r}(p)$ denote "the strongly convex (open) ball" with center p and radius r, i. e., every ball which is contained in $B_{r}(p)$ is convex where the term, convex, is used in the following sense. A set $D \subset M$ is convex iff x, y in D implies that there is a unique (distance minimizing geodesic) segment $T(x, y)$ and it is contained in D. From [6] and [7] we know that for each p in M there is an $r>0$ such that $B_{r}(p)$ is strongly convex. Since the constancy of curvature is a local property, we may direct our attention to the interior of a strongly convex ball.

If U is a subset of $B_{r}(p)$, then we consider the smallest convex set which contains U. We call it the convex hull of U and denote it by $H U$. Clearly $H U \subset B_{r}(p)$.

For a set U in $M, C U$ is by definition the set of all points each of which
belongs to some segment which joins two points of U, and we put $C^{k} U:=$ $C\left(C^{k-1} U\right)$ inductively, $k=1,2,3, \cdots, C^{0} U:=U$. Clearly $H U=\bigcup_{k=0}^{\infty} C^{k} U$ holds for any $U \subset B_{r}(p)$. We may think that C^{k} corresponds to convex combinations in the linear space.

It is the nature of a space of constant curvature that the convex hull of sufficiently close $n+1$ points $x_{0}, x_{1}, \cdots, x_{n}$ can be obtained by $C^{k}\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$, where the integer k satisfies $2^{k-1} \leqq n<2^{k}$. And if M satisfies the axiom of n planes with $2 \leqq n<\operatorname{dim} M$, then the set of $n+1$ points $x_{0}, x_{1}, \cdots, x_{n}$, which are sufficiently close to each other, has the property that $C^{k}\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}=H\left\{x_{0}\right.$, $\left.x_{1}, \cdots, x_{n}\right\}$, where the integer k satisfies $2^{k-1} \leqq n<2^{k}$.

However it is not easy to verify the converse. This is because $C^{k}\{ \}$ does not in general carry the structure of a smooth submanifold, and because the dimension of $H\}$ is in general greater than n.

Thus our main result is
Theorem 1. Let $\operatorname{dim} M$ be greater than 3. If for each point p in M there exists a convex neighborhood V of p in M such that $H\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}=C^{2}\left\{x_{0}, x_{1}\right.$, $\left.x_{2}, x_{3}\right\}$ for any points $x_{0}, x_{1}, x_{2}, x_{3}$ in V, then M is a space of constant curvature.

The author does not know whether the above theorem for convex combinations of three points is true. On this problem the following holds.

Theorem 2. Let $\operatorname{dim} M$ be greater than 2. If for each point p in M there exists a convex neighborhood V of p in M such that $H\left\{x_{0}, x_{1}, x_{2}\right\}=C^{2}\left\{x_{0}, x_{1}\right.$, $\left.m\left(x_{1}, x_{2}\right)\right\} \cup C^{2}\left\{x_{0}, x_{2}, m\left(x_{1}, x_{2}\right)\right\}$ for any points x_{0}, x_{1}, x_{2} in V, where $m\left(x_{1}, x_{2}\right)$ is the midpoint of the segment $T\left(x_{1}, x_{2}\right)$ which joins x_{1} and x_{2}, then M is a space of constant curvature.

In the proofs of our theorems we shall need to estimate the dimensions (defined in [8] p. 24) of convex hulls. For this purpose we will often use the a-measure $m_{a}(X), 0 \leqq a<\infty$, of a (separable) metric space X which is defined in [8] p. 102 as follows. Given $\varepsilon>0$, let $m_{a}^{\varepsilon}(X):=\inf \sum_{i=1}^{\infty}\left[\delta\left(A_{i}\right)\right]^{a}$, where $X=$ $\bigcup_{i=1}^{\infty} A_{i}$ is any decomposition of X in a countable number of subsets such that for every i the diameter $\delta\left(A_{i}\right)$ of A_{i} is less than ε, and the superscript a denotes the exponentiation. Let $m_{a}(X):=\sup _{s>0} m_{a}^{\varepsilon}(X)$.

Concerning this measure it is well known ([8] p. 104) that if X is a metric space such that $m_{n+1}(X)=0,0 \leqq n<\infty$, then $\operatorname{dim} X \leqq n$, and this fact is used in the proof of Lemma 2 in $\S 2$.

In $\S 2$ we shall give lemmas which are used in the proofs of our theorems and we will prove theorems in $\S 3$. In $\S 4$ we give remarks of the theorems.

The author would like to express his thanks to Professor K. Shiohama for his valuable suggestions.

2. Lemmas.

In [5] Cheeger-Gromoll showed that if S is a connected locally convex set in M, then there is a smooth totally geodesic imbedded submanifold N of M such that $N \subset S \subset \bar{N}$, where \bar{N} is the closure of N.

This fact and the axiom of 2-planes furnish the following.
Lemma 1. Let $m:=\operatorname{dim} M$ be greater than 2. If for each point p in M and for some $n, 2 \leqq n<m$, there is a convex neighborhood V of p in M such that $\operatorname{dim} H\left\{x_{0}, x_{1}, \cdots, x_{n}\right\} \leqq n$ for any points $x_{0}, x_{1}, \cdots, x_{n}$ in V, then M is a space of constant curvature.

Proof. We first claim that $\operatorname{dim} H\left\{x_{0}, x_{1}, \cdots, x_{k}\right\} \leqq k$ holds for every $k, 2 \leqq$ $k \leqq n$, and for any points $x_{0}, x_{1}, \cdots, x_{k}$ in V. Suppose $\operatorname{dim} H\left\{x_{0}, x_{1}, \cdots, x_{n-1}\right\}$ $>n-1$ for some points $x_{0}, x_{1}, \cdots, x_{n-1}$ in V, i. e., $\operatorname{dim} H\left\{x_{0}, x_{1}, \cdots, x_{n-1}\right\}=n$. Then there exists a smooth totally geodesic n-dimensional imbedded submanifold N such that $N \subset H\left\{x_{0}, x_{1}, \cdots, x_{n-1}\right\} \subset \bar{N}$. Take a point q in N and a normal vector v of N at q such that $\exp _{N} v \in V$. Then $\operatorname{dim} H\left\{x_{0}, x_{1}, \cdots, x_{n-1}, \exp _{N} v\right\}$ $>n$, a contradiction. Thus we obtain $\operatorname{dim} H\left\{x_{0}, x_{1}, \cdots, x_{n-1}\right\} \leqq n-1$ for any points $x_{0}, x_{1}, \cdots, x_{n-1}$ in V. By the same argument inductively we have our claim. In particular, $\operatorname{dim} H\left\{x_{0}, x_{1}, x_{2}\right\} \leqq 2$ for any points x_{0}, x_{1}, x_{2} in V.

Now we show that M satisfies the axiom of 2 -planes. Let T_{p}^{\prime} be an arbitrary 2 -dimensional subspace of $T_{p} M$ and let v_{1} and v_{2} be vectors in T_{p}^{\prime} such that $x_{1}:=\exp _{p} v_{1}$ and $x_{2}:=\exp _{p} v_{2}$ belong to V, and p, x_{1} and x_{2} are non-collinear. Take q in the interior of the segment $T\left(x_{1}, x_{2}\right)$ joining x_{1} and x_{2}, and take x_{0} in V on the other side of q with respect to p on the extension of $T(p, q)$. Let N_{0} be the set of all points each of which belongs to a certain segment from x_{0} to a point of $T\left(x_{1}, x_{2}\right)$. Then N_{0} is a smooth surface except at x_{0}. We need to prove that $T_{p} N_{0}=T_{p}^{\prime}$ and $N_{0}-\left\{x_{0}\right\}$ is totally geodesic in M. Let N be a smooth totally geodesic submanifold in M such that $N \subset H\left\{x_{0}, x_{1}, x_{2}\right\} \subset \bar{N}$. Since $p \in$ $N_{0} \subset H\left\{x_{0}, x_{1}, x_{2}\right\}$ and $\operatorname{dim} H\left\{x_{0}, x_{1}, x_{2}\right\} \leqq 2$, it follows that $N_{0} \subset N$ and $\operatorname{dim} N_{0}$ $=\operatorname{dim} N=2$. Thus $T_{p} N_{0}=T_{p}^{\prime}$ and $N_{0}-\left\{x_{0}\right\}$ is totally geodesic in M.

We know from this lemma that in order to prove our theorems we have only to estimate the dimension of $H\}$. We then need the following lemma.

Lemma 2. Let T_{1} and T_{2} be two segments contained in a convex set V in M. Let A be the set of all points each of which belongs to some segment joining a point of T_{1} and a point of T_{2}. Then $\operatorname{dim} A \leqq 3$ and A is closed.

Proof. Let $x(\tau), 0 \leqq \tau \leqq \alpha$, and $y(\nu), 0 \leqq \nu \leqq \beta$, represent segments T_{1} and T_{2} respectively, and let W_{q}, for each q in V, be a subset of $T_{q} M$ where $\exp _{q} \mid W_{q}$ is diffeomorphic onto V. Define a map G of $[0,1] \times[0, \alpha] \times[0, \beta]$ into $T_{p} M$ by $G(\mu, \tau, \nu):=\left(\exp _{p} \mid W_{p}\right)^{-1}\left[\exp _{x(\tau)}\left\{\mu\left(\exp _{x(\tau)} \mid W_{x(\tau)}\right)^{-1}(y(\nu))\right\}\right]$ for $(\mu, \tau, \nu) \in[0,1]$ $\times[0, \alpha] \times[0, \beta]$, where p is a fixed point in V. Then G is differentiable, and
hence G is Lipschitz continuous. Therefore it follows from the definition of 4measure that the 4 -measure of the image of G is zero since the 4 -measure of $[0,1] \times[0, \alpha] \times[0, \beta]$ is zero. Note that A is the image of $\exp _{p}{ }^{\circ} G$ and that the property of having at most dimension n is topologically invariant. Thus we conclude $\operatorname{dim} A \leqq 3$ by the fact in $\S 1$.

Closedness of A is evident.
Lemma 3. Let p be a fixed point in M. For an arbitrary $\alpha>0$, there exists an $r>0$ such that for any points x, y and z in $B_{r}(p)$,

$$
\mu(1-\alpha) y z \leqq w_{y}(\beta \mu) w_{z}(\gamma \mu) \leqq \mu(1+\alpha) y z
$$

for any $\mu \in[0,1]$, where $y z$ is the distance between y and z, and $w_{y}(\tau), 0 \leqq \tau \leqq \beta$, and $w_{z}(\nu), 0 \leqq \nu \leqq \gamma$, represent segments $T(x, y)$ and $T(x, z)$ respectively.

Proof. By a straightforward generalization of Proposition 9.10 in [7] p. 54 we obtain that for given $0<\varepsilon<1$ there is an $r>0$ such that for any non-collinear points x, y and z in $B_{r}(p)$

$$
1-\varepsilon<\left\|\left(\exp _{x} \mid B_{r}\right)^{-1}(y)-\left(\exp _{x} \mid B_{r}\right)^{-1}(z)\right\|_{x} / y z<1+\varepsilon,
$$

where $\left\|\|_{x}\right.$ is the norm in $T_{x} M$, and B_{r} is the r-ball in $T_{x} M$ centered at the origin.

We then have

$$
1-\varepsilon<\left\|\left(\exp _{x} \mid B_{r}\right)^{-1}\left(w_{y}(\beta \mu)\right)-\left(\exp _{x} \mid B_{r}\right)^{-1}\left(w_{z}(\gamma \mu)\right)\right\|_{x} / w_{y}(\beta \mu) w_{z}(\gamma \mu)<1+\varepsilon
$$

for $\mu \neq 0$. Therefore

$$
(1-\varepsilon) /(1+\varepsilon)<(1 / \mu)\left(w_{y}(\beta \mu) w_{z}(\gamma \mu) / y z\right)<(1+\varepsilon) /(1-\varepsilon) .
$$

If we choose an $\varepsilon>0$ which satisfies

$$
1-\alpha<(1-\varepsilon) /(1+\varepsilon)<(1+\varepsilon) /(1-\varepsilon)<1+\alpha,
$$

then it follows that $\mu(1-\alpha) y z \leqq w_{y}(\beta \mu) w_{z}(\gamma \mu) \leqq \mu(1+\alpha) y z$ for any $\mu \in[0,1]$.

3. Proofs of Theorems.

3.1. Proof of Theorem 1. We denote six segments each of which joins x_{i} and $x_{j}, 0 \leqq i<j \leqq 3$ by $T_{k}, k=1,2, \cdots, 6$. Then from the assumption $H\left\{x_{0}\right.$, $\left.x_{1}, x_{2}, x_{3}\right\}=\bigcup_{1 \leq i \leq j \leq 6}\{x \in V ; x$ belongs to some segment which connects a point of T_{i} and a point of $\left.T_{j}\right\}$. Therefore it follows from Lemma 2 and the sum theorem ([8] p. 30), i. e., a separable metric space which is the countable sum of closed subsets of dimension $\leqq n$ has dimension $\leqq n$, that $\operatorname{dim} H\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\} \leqq 3$. Hence we obtain our theorem by Lemma 1.
3.2. Proof of Theorem 2. Let $\alpha>0$ satisfy that $6((1+\alpha) / 2)^{3}<1$. And
for this α we choose an $r>0$ such that $B_{r}(p) \subset V$ satisfies the conclusion of Lemma 3 and the $4 r$-ball with center p is strongly convex.

By Lemma 1 it suffices to show that $\operatorname{dim} H\left\{x_{0}, x_{1}, x_{2}\right\} \leqq 2$. If $\operatorname{dim} C^{2}\left\{y_{0}, y_{1}\right.$, $\left.y_{2}\right\} \leqq 2$ for any points y_{0}, y_{1} and y_{2} in $B_{r}(p)$, then $\operatorname{dim} H\left\{x_{0}, x_{1}, x_{2}\right\} \leqq 2$ because of the sum theorem.

In fact, $\operatorname{dim} C^{2}\left\{y_{0}, y_{1}, y_{2}\right\} \leqq 2$ is established as follows. From the definition of $C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}$ the diameter of $C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}$ is not greater than $y_{0} y_{1}+y_{1} y_{2}+$ $y_{2} y_{0}$, because $C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}$ is contained in $B_{\left(y_{0} y_{1}+y_{1} y_{2}+y_{2} y_{0}\right) / 2}\left(y_{0}\right)$. Since $H\left\{y_{0}\right.$, $\left.y_{1}, y_{2}\right\} \sqsupset C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}$, it holds that

$$
C^{2}\left\{y_{0}, y_{1}, y_{2}\right\} \subset C^{2}\left\{y_{0}, y_{1}, m\left(y_{1}, y_{2}\right)\right\} \cup C^{2}\left\{y_{0}, y_{2}, m\left(y_{1}, y_{2}\right)\right\} .
$$

Hence if we put $y_{0}^{\prime}:=m\left(y_{1}, y_{2}\right), y_{1}^{\prime}:=m\left(y_{0}, y_{2}\right), y_{2}^{\prime}:=m\left(y_{0}, y_{1}\right)$ and $y^{\prime}:=m\left(y_{0}\right.$, y_{0}^{\prime}), then

$$
\begin{aligned}
& C^{2}\left\{y_{0}, y_{1}, y_{2}\right\} \subset C^{2}\left\{y_{0}, y_{1}^{\prime}, y^{\prime}\right\} \cup C^{2}\left\{y_{0}, y^{\prime}, y_{2}^{\prime}\right\} \cup C^{2}\left\{y_{1}^{\prime}, y_{2}, y_{0}^{\prime}\right\} \\
& \cup C^{2}\left\{y_{1}^{\prime}, y_{0}^{\prime}, y^{\prime}\right\} \cup C^{2}\left\{y^{\prime}, y_{0}^{\prime}, y_{2}^{\prime}\right\} \cup C^{2}\left\{y_{2}^{\prime}, y_{0}^{\prime}, y_{1}\right\},
\end{aligned}
$$

and the diameter of each $C^{2}\{ \}$ on the right hand side are not greater than $((1+\alpha) / 2)\left(y_{0} y_{1}+y_{1} y_{2}+y_{2} y_{0}\right)$ (by Lemma 3). If we repeat this ($n-1$) times for each $C^{2}\{ \}$ of the right hand side, then we obtain $6^{n} C^{2}\{ \}$'s and their diameters are not greater than $((1+\alpha) / 2)^{n}\left(y_{0} y_{1}+y_{1} y_{2}+y_{2} y_{0}\right)$. Hence for given $\varepsilon>0$ there is an n_{0} such that $n \geqq n_{0}$ implies $((1+\alpha) / 2)^{n}\left(y_{0} y_{1}+y_{1} y_{2}+y_{2} y_{0}\right)<\varepsilon$. Since $m_{3}^{\varepsilon}\left(C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}\right) \leqq \Sigma\left[\delta\left(C^{2}\{ \}\right)\right]^{3} \leqq 6^{n}\left[((1+\alpha) / 2)^{n}\left(y_{0} y_{1}+y_{1} y_{2}+y_{2} y_{0}\right)\right]^{3}$ for $n \geqq n_{0}$, we get $m_{3}\left(C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}\right)=0$. By the fact introduced in $\S 1, \operatorname{dim} C^{2}\left\{y_{0}, y_{1}, y_{2}\right\} \leqq 2$. The proof is complete.

4. Remarks.

If we try to describe Theorem 1 with only convex combinations we have Corollary 1. This is because $C^{k+1} U=C^{k} U$ for every subset U of $B_{r}(p)$ in M means $H U=C^{k} U$.

Corollary 1. Let $\operatorname{dim} M$ be greater than 3. If for each point p in M there is a convex neighborhood V of p in M such that $C^{3}\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}=C^{2}\left\{x_{0}\right.$, $\left.x_{1}, x_{2}, x_{3}\right\}$ for any points $x_{0}, x_{1}, x_{2}, x_{3}$ in V, then M is a space of constant curvature.

The following corollary is evident by the fact that $H\left\{y_{0}, y_{1}, y_{2}\right\} \supset C^{2}\left\{y_{0}, y_{1}\right.$, $\left.y_{2}\right\}$ for any y_{0}, y_{1} and y_{2} in $B_{r}(p) \subset M$. Moreover it is directly proved by the same way as in the proof of Theorem 2

Corollary 2. Let $\operatorname{dim} M$ be greater than 2. If for each point p in M there is a convex neighborhood V of p in M such that $H\left\{x_{0}, x_{1}, x_{2}\right\}=H\left\{x_{0}, x_{1}\right.$, $\left.m\left(x_{1}, x_{2}\right)\right\} \cup H\left\{x_{0}, x_{2}, m\left(x_{1}, x_{2}\right)\right\}$ for any points x_{0}, x_{1} and x_{2} in V, then M is a
space of constant curvature.
It is natural to ask whether $H\left\{x_{0}, x_{1}, x_{2}\right\}$ in the assumption of Theorem 2 could be replaced by $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$. On this question we show the following.

Theorem 3. Let $\operatorname{dim} M$ be greater than 2. If for each p in M there is a convex neighborhood V of p in M such that $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}=C^{2}\left\{x_{0}, x_{1}, x\right\} \cup C^{2}\left\{x_{0}\right.$, $\left.x_{2}, x\right\}$ for any points x_{0}, x_{1} and x_{2} in V and for any point x in the segment $T\left(x_{1}, x_{2}\right)$, then M is a space of constant curvature.

If it is possible to replace x in the assumption with $m\left(x_{1}, x_{2}\right)$, then this theorem is stronger than Theorem 2. However the author does not know the possibility.

We prepare a lemma.
Lemma 4. Let M satisfy the assumption in Theorem 3. Let $x(\tau), 0 \leqq \tau \leqq \alpha$, and $y(\nu), 0 \leqq \nu \leqq \beta$, represent segments $T_{1}=T\left(y_{0}, y_{1}\right)$ and $T_{2}=T\left(y_{0}, y_{2}\right)$ respectively in $B_{r}(p) \subset V$ and let $t:=\max _{\mu \in[0,1]} x(\alpha \mu) y(\beta \mu)$. If the $3 r$-ball with center p is strongly convex, then $C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}$ is contained in the union of the closed t-neighborhood of T_{1} and the closed t-neighborhood of T_{2} in M.

Proof of Lemma 4. Choose a partition $0=\mu_{0}<\mu_{1}<\cdots<\mu_{n}=1$ of [0, 1] such that $\alpha\left(\mu_{i}-\mu_{i-1}\right)<t$ and $\beta\left(\mu_{i}-\mu_{i-1}\right)<t$ for $1 \leqq i \leqq n$. Then $C^{2}\left\{x\left(\alpha \mu_{i-1}\right)\right.$, $\left.\left.x\left(\alpha \mu_{i}\right), y\left(\beta \mu_{i-1}\right)\right\} \subset H\left\{x\left(\alpha \mu_{i-1}\right), x\left(\alpha \mu_{i}\right), y\left(\beta \mu_{i-1}\right)\right\} \subset \overline{B_{t}\left(x\left(\alpha \mu_{i-1}\right)\right.}\right)$ and $C^{2}\left\{x\left(\alpha \mu_{i}\right)\right.$, $\left.y\left(\beta \mu_{i-1}\right), y\left(\beta \mu_{i}\right)\right\} \subset \overline{B_{t}\left(y\left(\beta \mu_{i}\right)\right)}$ for every $1 \leqq i \leqq n$, because for every $1 \leqq i \leqq n$ $\overline{B_{t}\left(x\left(\alpha \mu_{i-1}\right)\right)}$ and $\overline{B_{t}\left(y\left(\beta \mu_{i}\right)\right)}$ are contained in $B_{3 r}(p)$ and hence are convex. Since $C^{2}\left\{y_{0}, y_{1}, y_{2}\right\} \subset \bigcup_{i=1}^{n} C^{2}\left\{x\left(\alpha \mu_{i-1}\right), x\left(\alpha \mu_{i}\right), y\left(\beta \mu_{i-1}\right)\right\} \cup C^{2}\left\{x\left(\alpha \mu_{i}\right), y\left(\beta \mu_{i-1}\right), y\left(\beta \mu_{i}\right)\right\}$, $C^{2}\left\{y_{0}, y_{1}, y_{2}\right\}$ is contained in the union of the closed t-neighborhood of T_{1} and the closed t-neighborhood of T_{2} in M.

Proof of Theorem 3. Let x_{0}, x_{1} and x_{2} be any points in $B_{r}(p) \subset V$ where r is a positive such that the $3 r$-ball with center p is strongly convex. Let S be the set of all points each of which belongs to the segment $T\left(x_{0}, x\right)$ for some x in $T\left(x_{1}, x_{2}\right)$. $S \subset C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$ is clear. We claim $S=C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$. In fact, suppose there exists a point $z \in C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}-S$. Let s be the distance between z and S. Since S is closed we have $s>0$. Choose a partition $x_{1}=z_{1}, z_{2}, \cdots, z_{n}$ $=x_{2}$ of $T\left(x_{1}, x_{2}\right)$ in this order such that if $z_{i}(\tau), 0 \leqq \tau \leqq \alpha_{i}$, represents the segment $T\left(x_{0}, z_{i}\right)$ for each $1 \leqq i \leqq n$, and if we put $t_{i}=\max _{\mu \in[0,1]} z_{i}\left(\alpha_{i} \mu\right) z_{i+1}\left(\alpha_{i+1} \mu\right)$ for each $1 \leqq i \leqq n-1$, then $t_{i}<s$ for all $1 \leqq i \leqq n-1$. By Lemma 4 and the assumption $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$ is contained in the open s-neighborhood of S in M, a contradiction.

Next we assert $H\left\{x_{0}, x_{1}, x_{2}\right\}=C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$. Let z and y be any points of $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$. Then by the above argument there are points z^{\prime} and y^{\prime} in $T\left(x_{1}, x_{2}\right)$ such that $z \in T\left(x_{0}, z^{\prime}\right)$ and $y \in T\left(x_{0}, y^{\prime}\right)$. Since $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}=C^{2}\left\{x_{0}, x_{1}, z^{\prime}\right\} \cup$ $C^{2}\left\{x_{0}, z^{\prime}, y^{\prime}\right\} \cup C^{2}\left\{x_{0}, x_{2}, y^{\prime}\right\}$, where we assume without loss of generality that
$x_{1}, z^{\prime}, y^{\prime}$ and x_{2} are in this order on $T\left(x_{1}, x_{2}\right)$, and since $T(z, y)$ is contained in $C^{2}\left\{x_{0}, z^{\prime}, y^{\prime}\right\}, T(z, y)$ is contained in $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$, which implies the convexity of $C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}$.

Thus $H\left\{x_{0}, x_{1}, x_{2}\right\}=C^{2}\left\{x_{0}, x_{1}, x_{2}\right\}=S$. Then we conclude $\operatorname{dim} H\left\{x_{0}, x_{1}, x_{2}\right\}$ $\leqq 2$, and hence we obtain our theorem by Lemma 1.

References

[1] E. Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali di Matem., (2) 2 (1868-69), 232-255.
[2] H. Busemann, The Geometry of geodesics, Academic Press, New York, 1955.
[3] É. Cartan, L’axiome du plan et la géométrie différentielle metrique, Euvres complètes, Partie III, 2, Gauthier-Villars, Paris, 1955.
[4] É. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928.
[5] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math., 96 (1972), 413-443.
[6] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., 55, Springer, Berlin-Heidelberg-New York, 1968.
[7] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[8] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, New Jersey, 1948.
[9] F. Klein, Ueber die sogenannte nicht-euklidische Geometrie, Math. Ann., 6 (1873), 112-145.
[10] D.S. Leung and K. Nomizu, The axiom of spheres in Riemannian geometry, J. Differential Geometry, 5 (1971), 487-489.
[11] L. Schlaefli, Nota alla Memoria del sig. Beltrami, (Sugli spazii di curvatura costante), Annali di Matem., (2) 5, (1871-73).
[12] F. Schur, Ueber den Zusammenhang der Räume constanten Riemann'schen Krümmungsmasses mit den projectiven Räumen, Math. Ann., 27 (1886), 537-567.

Nobuhiro Innami
Institute of Mathematics University of Tsukuba Sakura-mura, Ibaraki 305 Japan

