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1. Introduction.

A characterization of a space of constant curvature is an interesting problem
in Riemannian geometry. It has been done by the various methods as seen in
[2], [4] and [10]. In particular we are interested in the axiom of n-planes
which is stated as follows; a Riemannian manifold $M$ of dimension $m\geqq 3$ is
said to satisfy the axiom of n-planes if for each $P$ in $M$ and any n-dimensional
subspace $T_{p}’$ of the tangent space $T_{p}M$, there is an n-dimensional totally geo-
desic submanifold $N$ containing $P$ such that the tangent space of $N$ at $P$ is $T_{p}’$ ,
where $n$ is a fixed integer $2\leqq n<m$ . E. Cartan [4] proved that if $M$ satisfies
the axiom of n-planes for some $n$ , then $M$ is a space of constant curvature.

Historically, E. Beltrami [1] proved that a space of constant curvature $M$

satisfies the axiom of 2-planes, and the converse was proved by F. Schur [12].

E. Cartan also indicated in [3] that Schur’s theorem had been proved by
L. Schlaefli [11] in combination with F. Klein [9].

The purpose of the present paper is to exhibit this axiom in terms of con-
vex analysis, $i$ . $e.$ , convex combinations and convex hulls.

Let $M$ be a Riemannian manifold without boundary. For a point $p$ in $M$

let $B_{r}(p)$ denote “the strongly convex (open) ball” with center $P$ and radius $r$,
$i$ . $e.$ , every ball which is contained in $B_{r}(p)$ is convex where the term, convex,
is used in the following sense. A set $D\subset M$ is convex iff $x,$ $y$ in $D$ implies
that there is a unique (distance minimizing geodesic) segment $T(x, y)$ and it is
contained in $D$ . From [6] and [7] we know that for each $P$ in $M$ there is an
$r>0$ such that $B_{\tau}(p)$ is strongly convex. Since the constancy of curvature is a
local property, we may direct our attention to the interior of a strongly convex
ball.

If $U$ is a subset of $B_{r}(p)$ , then we consider the smallest convex set which
contains $U$ . We call it the convex hull of $U$ and denote it by $HU$ . Clearly
$HU\subset B_{r}(p)$ .

For a set $U$ in $M,$ $CU$ is by definition the set of all points each of which
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belongs to some segment which joins two points of $U$ , and we put $C^{k}U:=$

$C(C^{k-1}U)$ inductively, $k=1,2,3,$ $\cdots$ , $C^{0}U:=U$ . Clearly $HU= \bigcup_{k=0}^{\infty}C^{k}U$ holds for any

$U\subset B_{r}(p)$ . We may think that $C^{k}$ corresponds to convex combinations in the
linear space.

It is the nature of a space of constant curvature that the convex hull of suffi-
ciently close $n+1$ points $x_{0},$ $x_{1},$

$\cdots$ , $x_{n}$ can be obtained by $C^{k}\{x_{0}, x_{1}, \cdots , x_{n}\}$ ,
where the integer $k$ satisfies 2 $\leqq n<2^{k}$ . And if $M$ satisPes the axiom of n-
planes with $2\leqq n<\dim M$, then the set of $n+1$ points $x_{0},$ $x_{1},$

$\cdots$ , $x_{n}$ , which are
sufficiently close to each other, has the property that $C^{k}\{x_{0}, x_{1}, \cdots , x_{n}\}=H\{x_{0}$ ,
$x_{1},$

$\cdots$ , $x_{n}$ }, where the integer $k$ satisfies $2^{k-1}\leqq n<2^{k}$ .
However it is not easy to verify the converse. This is because $C^{k}$ $\{\}$ does

not in general carry the structure of a smooth submanifold, and because the
dimension of $H\{\}$ is in general greater than $n$ .

Thus our main result is
THEOREM 1. Let dim $M$ be greater than 3. If for each point $p$ in $M$ there

exists a convex neighborhood $V$ of $p$ in $M$ such that $H\{x_{0}, x_{1}, x_{2}, x_{3}\}=C^{2}\{x_{0},$ $x_{1}$ ,
$x_{2},$ $x_{3}$ } for any $p\alpha ntsx_{0},$ $x_{1},$ $x_{2},$ $x_{3}$ in $V$ , then $M$ is a space of constant curvature.

The author does not know whether the above theorem for convex combina-
tions of three points is true. On this problem the following holds.

THEOREM 2. Let dim $M$ be greater than 2. If for each point $P$ in $M$ there
exists a convex neighborhood $V$ of $p$ in $M$ such that $H\{x_{0}, x_{1}, x_{2}\}=C^{2}\{x_{0},$ $x_{1}$ ,
$m(x_{1}, x_{2})\}\cup C^{2}\{x_{0}, x_{2}, m(x_{1}, x_{2})\}$ for any points $x_{0},$ $x_{1},$ $x_{2}$ in $V$ , where $m(x_{1}, x_{2})$

is the midPoint of the segment $T(x_{1}, x_{2})$ which joins $x_{1}$ and $x_{2}$ , then $M$ is a space
of constant curvature.

In the proofs of our theorems we shall need to estimate the dimensions
(defined in [8] p. 24) of convex hulls. For this purpose we will often use the
a-measure $m_{a}(X),$ $0\leqq a<\infty$ , of $a$ (separable) metric space $X$ which is defined

in [8] p. 102 as follows. Given $\epsilon>0$, let $m_{a}^{\epsilon}(X):= \inf\sum_{i=1}^{\infty}[\delta(A_{i})]^{a}$ , where $X=$

$\bigcup_{i=1}^{\infty}A_{i}$ is any decomposition of $X$ in a countable number of subsets such that

for every $i$ the diameter $\delta(A_{i})$ of $A_{i}$ is less than $\epsilon$ , and the superscript $a$ denotes
the exponentiation. Let $m_{a}(X):= \sup_{\text{\’{e}}>0}m_{a}^{\epsilon}(X)$ .

Concerning this measure it is well known $([8] P\cdot 104)$ that if $X$ is a metric
space such that $m_{n+1}(X)=0,0\leqq n<\infty$ , then dim $X\leqq n$ , and this fact is used in
the proof of Lemma 2 in \S 2.

In \S 2 we shall give lemmas which are used in the proofs of our theorems
and we will prove theorems in \S 3. In \S 4 we give remarks of the theorems.

The author would like to express his thanks to Professor K. Shiohama for
his valuable suggestions.
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2. Lemmas.

In [5] Cheeger-Gromoll showed that if $S$ is a connected locally convex set
in $M$, then there is a smooth totally geodesic imbedded submanifold $N$ of $M$

such that $N\subset S\subset\overline{N}$, where $\overline{N}$ is the closure of $N$.
This fact and the axiom of 2-planes furnish the following.
LEMMA 1. Let $m:=\dim M$ be greater than 2. If for each point $p$ in $M$

and for some $n,$ $2\leqq n<m$ , there is a convex neighborhood $V$ of $p$ in $M$ such that
dim $H\{x_{0}, x_{1}, \cdots , x_{n}\}\leqq n$ for any points $x_{0},$ $x_{1},$ $\cdots$ , $x_{n}$ in $V$ , then $M$ is a space
of constant curvature.

PROOF. We first claim that dim $H\{x_{0}, x_{1}, \cdots , x_{k}\}\leqq k$ holds for every $k,$ $2\leqq$

$k\leqq n$ , and for any points $x_{0},$ $x_{1},$
$\cdots$ , $x_{k}$ in $V$ . Suppose dim $H\{x_{0}, x_{1}, \cdots , x_{n-1}\}$

$>n-1$ for some points $x_{0},$ $x_{1},$
$\cdots$ , $x_{n-1}$ in $V,$ $i$ . $e.$ , dim $H\{x_{0}, x_{1}, \cdots , x_{n-1}\}=n$ .

Then there exists a smooth totally geodesic n-dimensional imbedded submanifold
$N$ such that $N\subset H\{x_{0}, x_{1}, \cdots , x_{n-1}\}\subset\overline{N}$. Take a point $q$ in $N$ and a normal
vector $v$ of $N$ at $q$ such that $\exp_{N}v\in V$ . Then $\dim H\{x_{0}, x_{1}, \cdots , x_{n-1}, \exp_{N}v\}$

$>n$ , a contradiction. Thus we obtain dim $H\{x_{0}, x_{1}, \cdots , x_{n-1}\}\leqq n-1$ for any
points $x_{0},$ $x_{1},$

$\cdots$ , $x_{n-1}$ in $V$ . By the same argument inductively we have our
claim. In particular, dim $H\{x_{0}, x_{1}, x_{2}\}\leqq 2$ for any points $x_{0},$ $x_{1},$ $x_{2}$ in $V$ .

Now we show that $M$ satisfies the axiom of 2-planes. Let $T_{p}’$ be an arbi-
trary 2-dimensional subspace of $T_{p}M$ and let $v_{1}$ and $v_{2}$ be vectors in $T_{p}’$ such
that $x_{1}$ $;=\exp_{p}v_{1}$ and $x_{2}$ $;=\exp_{p}v_{2}$ belong to $V$ , and $p,$ $x_{1}$ and $x_{2}$ are non-collinear.
Take $q$ in the interior of the segment $T(x_{1}, x_{2})$ joining $x_{1}$ and $x_{2}$ , and take $x_{0}$

in $V$ on the other side of $q$ with respect to $p$ on the extension of $T(p, q)$ . Let
$N_{0}$ be the set of all points each of which belongs to a certain segment from $x_{\theta}$

to a point of $T(x_{1}, x_{2})$ . Then $N_{0}$ is a smooth surface except at $x_{0}$ . We need to
prove that $T_{p}N_{0}=T_{p}’$ and $N_{0}-\{x_{0}\}$ is totally geodesic in $M$. Let $N$ be a smooth
totally geodesic submanifold in $M$ such that $N\subset H\{x_{0}, x_{1}, x_{2}\}\subset\overline{N}$. Since $p\in$

$N_{0}\subset H\{x_{0}, x_{1}, x_{2}\}$ and dimH $\{x_{0}, x_{1}, x_{2}\}\leqq 2$, it follows that $N_{0}\subset N$ and $\dim N_{0}$

$=\dim N=2$ . Thus $T_{p}N_{0}=T_{p}’$ and $N_{0}-\{x_{0}\}$ is totally geodesic in $M$.
We know from this lemma that in order to prove our theorems we have

only to estimate the dimension of $H\{\}$ . We then need the following lemma.
LEMMA 2. Let $T_{1}$ and $T_{2}$ be two segments contained in a convex set $V$ in

M. Let $A$ be the set of all points each of which belongs to some segment joining
a point of $T_{1}$ and a point of $T_{2}$ . Then $\dim A\leqq 3$ and $A$ is closed.

PROOF. Let $x(\tau),$ $0\leqq\tau\leqq\alpha$ , and $y(\nu),$ $0\leqq\nu\leqq\beta$ , represent segments $T_{1}$ and $T_{2}$

respectively, and let $W_{q}$ , for each $q$ in $V$ , be a subset of $T_{q}M$ where $\exp_{q}|W_{q}$

is diffeomorphic onto $V$ . Define a map $G$ of $[0,1]\cross[0, \alpha]\cross[0, \beta]$ into $T_{p}M$

by $G(\mu, \tau, \nu):=(\exp_{p}|W_{p})^{-1}[\exp_{x(\tau)}\{\mu(\exp_{x(\tau)}|W_{x(\tau)})^{-1}(y(\nu))\}]$ for $(\mu, \tau, \nu)\in[0,1]$

$\cross[0, \alpha]\cross[0, \beta]$ , where $p$ is a fixed point in $V$ . Then $G$ is differentiable, and
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hence $G$ is Lipschitz continuous. Therefore it follows from the dePnition of 4-
measure that the 4-measure of the image of $G$ is zero since the 4-measure of
$[0,1]\cross[0, \alpha]\cross[0, \beta]$ is zero. Note that $A$ is the image of $\exp_{p}\circ G$ and that
the property of having at most dimension $n$ is topologically invariant. Thus
we conclude dim $A\leqq 3$ by the fact in \S 1.

Closedness of $A$ is evident.
LEMMA 3. Let $p$ be a fixed point in M. For an arbitrary $\alpha>0$ , there exists

an $r>0$ such thai for any points $x,$ $y$ and $z$ in $B_{r}(p)$ ,

$\mu(1-\alpha)yz\leqq w_{y}(\beta\mu)w_{z}(\gamma\mu)\leqq\mu(1+\alpha)yz$

for any $\mu\in[0,1]$ , where $yz$ is the distance between $y$ and $z$, and $w_{y}(\tau),$ $0\leqq\tau\leqq\beta$ ,

and $w_{z}(\nu),$ $0\leqq\nu\leqq\gamma$ , represent segments $T(x, y)$ and $T(x, z)$ respectively.
PROOF. By a straightforward generalization of Proposition 9.10 in [7] p. 54

we obtain that for given $0<\epsilon<1$ there is an $r>0$ such that for any non-col-
linear points $x,$ $y$ and $z$ in $B_{r}(p)$

$1-\epsilon<\Vert(\exp_{x}|B_{r})^{-1}(y)-(\exp_{x}|B_{r})^{-1}(z)\Vert_{x}/yz<1+\epsilon$ ,

where $\Vert\Vert_{x}$ is the norm in $T_{x}M$, and $B_{r}$ is the r-ball in $T_{x}M$ centered at the
origin.

We then have

$1-\epsilon<\Vert(\exp_{x}|B_{r})^{-1}(w_{y}(\beta\mu))-(\exp_{x}|B_{r})^{-1}(w_{z}(\gamma\mu))\Vert_{x}/w_{y}(\beta\mu)w_{z}(\gamma\mu)<1+\epsilon$

for $\mu\neq 0$ . Therefore

$(1-\epsilon)/(1+\epsilon)<(1/\mu)(w_{y}(\beta\mu)w_{z}(\gamma\mu)/yz)<(1+\epsilon)/(1-\epsilon)$ .
If we choose an $\epsilon>0$ which satisfies

l–a $<(1-\epsilon)/(1+\epsilon)<(1+\epsilon)/(1-\epsilon)<1+\alpha$ ,

then it follows that $\mu(1-\alpha)yz\leqq w_{y}(\beta\mu)w_{z}(\gamma\mu)\leqq\mu(1+\alpha)yz$ for any $\mu\in[0,1]$ .

3. Proofs of Theorems.

3.1. PROOF OF THEOREM 1. We denote six segments each of which joins
$x_{i}$ and $x_{j},$ $0\leqq i<j\leqq 3$ by $T_{k},$ $k=1,2,$ $\cdots$ , 6. Then from the assumption $H\{x_{0}$ ,
$x_{1},$ $x_{2},$ $x_{3}$ } $=$ $U$ { $x\in V;x$ belongs to some segment which connects a point of

$1\leqq i\leqq j\leqq 6$

$T_{i}$ and a point of $T_{j}$}. Therefore it follows from Lemma 2 and the sum theorem
([8] p. 30), $i$ . $e.$ , a separable metric space which is the countable sum of closed
subsets of dimension $\leqq n$ has dimension $\leqq n$ , that dim $H\{x_{0}, x_{1}, x_{2}, x_{3}\}\leqq 3$ . Hence
we obtain our theorem by Lemma 1.

3.2. PROOF OF THEOREM 2. Let $\alpha>0$ satisfy that $6((1+\alpha)/2)^{3}<1$ . And
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for this $\alpha$ we choose an $r>0$ such that $B_{r}(p)\subset V$ satisfies the conclusion of
Lemma 3 and the $4r$-ball with center $p$ is strongly convex.

By Lemma 1 it suffices to show that $\dim H\{x_{0}, x_{1}, x_{2}\}\leqq 2$ . If dim C2 $\{y_{0},$
$y_{1}$ ,

$y_{2}\}\leqq 2$ for any points $y_{0},$ $y_{1}$ and $y_{2}$ in $B_{r}(p)$ , then $\dim H\{x_{0}, x_{1}, x_{2}\}\leqq 2$ because
of the sum theorem.

In fact, dim $C^{2}\{y_{0}, y_{1}, y_{2}\}\leqq 2$ is established as follows. From the definition
of $C^{2}\{y_{0}, y_{1}, y_{2}\}$ the diameter of $C^{2}\{y_{0}, y_{1}, y_{2}\}$ is not greater than $y_{0}y_{1}+y_{1}y_{2}+$

$y_{2}y_{0}$, because $C^{2}\{y_{0}, y_{1}, y_{2}\}$ is contained in $B_{()}y_{0}y_{1}+y_{1}y_{2}+y_{2}y_{0}/2(y_{0})$ . Since $H\{y_{0}$ ,
$y_{1},$ $y_{2}$ } $\supset C^{2}\{y_{0}, y_{1}, y_{2}\}$ , it holds that

$C^{2}\{y_{0}, y_{1}, y_{2}\}\subset C^{2}\{y_{0}, y_{1}, m(y_{1}, y_{2})\}\cup C^{2}\{y_{0}, y_{2}, m(y_{1}, y_{2})\}$ .

Hence if we put $y_{0}’$ $:=m(y_{1}, y_{2}),$ $y_{1}’$ $:=m(y_{0}, y_{2}),$ $y_{2}’$ $:=m(y_{0}, y_{1})$ and $y’$ $:=m(y_{0}$ ,
$y_{0}’)$ , then

$C^{2}\{y_{0}, y_{1}, y_{2}\}\subset C^{2}\{y_{0}, y_{1}’, y’\}\cup C^{2}\{y_{0}, y’, y_{2}’\}\cup C^{2}\{y_{1}’, y_{2}, y_{0}’\}$

$\cup C^{2}\{y_{1}’, y_{0}’, y’\}\cup C^{2}\{y’, y_{0}’, y_{2}’\}\cup C^{2}\{y_{2}’, y_{0}’, y_{1}\}$ ,

and the diameter of each $C^{2}$ $\{\}$ on the right hand side are not greater than
$((1+\alpha)/2)(y_{0}y_{1}+y_{1}y_{2}+y_{2}y_{0})$ (by Lemma 3). If we repeat this $(n-1)$ times for
each $C^{2}$ $\{\}$ of the right hand side, then we obtain $6^{n}C^{2}\{\}s$ and their diameters
are not greater than $((1+\alpha)/2)^{n}(y_{0}y_{1}+y_{1}y_{2}+y_{2}y_{0})$ . Hence for given $\epsilon>0$ there
is an $n_{0}$ such that $n\geqq n_{0}$ implies $((1+\alpha)/2)^{n}(y_{0}y_{1}+y_{1}y_{2}+y_{2}y_{0})<\epsilon$ . Since
$m_{3}^{\epsilon}(C^{2}\{y_{0}, y_{1}, y_{2}\})\leqq\Sigma[\delta(C^{2} \{ \})]^{3}\leqq 6^{n}[((1+\alpha)/2)^{n}(y_{0}y_{1}+y_{1}y_{2}+y_{2}y_{0})]^{3}$ for $n\geqq n_{0}$ , we
get $m_{\}(C^{2}\{y_{0}, y_{1}, y_{2}\})=0$ . By the fact introduced in \S 1, dim C2 $\{y_{0}, y_{1}, y_{2}\}\leqq 2$ .
The proof is complete.

4. Remarks.

If we try to describe Theorem 1 with only convex combinations we have
Corollary 1. This is because $C^{k+1}U=C^{k}U$ for every subset $U$ of $B_{r}(p)$ in $M$

means $HU=C^{k}U$.
COROLLARY 1. Let dim $M$ be greater than 3. If for each point $p$ in $M$

there is a convex neighborhood $V$ of $p$ in $M$ such that $C^{3}\{x_{0}, x_{1}, x_{2}, x_{3}\}=C^{2}\{x_{0}$ ,
$x_{1},$ $x_{2},$ $x_{3}$ } for any Points $x_{0},$ $x_{1},$ $x_{2},$ $x_{3}$ in $V$ , then $M$ is a space of constant
curvature.

The following corollary is evident by the fact that $H\{y_{0}, y_{1}, y_{2}\}\supset C^{2}\{y_{0},$ $y_{1}$ ,
$y_{2}\}$ for any $y_{0},$ $y_{1}$ and $y_{2}$ in $B_{r}(p)\subset M$. Moreover it is directly proved by the
same way as in the proof of Theorem 2.

COROLLARY 2. Let dim $M$ be greater than 2. If for each point $p$ in $M$

there is a convex neighborhood $V$ of $P$ in $M$ such that $H\{x_{0}, x_{1}, x_{2}\}=H\{x_{0},$ $x_{1}$ ,
$m(x_{1}, x_{2})\}\cup H\{x_{0}, x_{2}, m(x_{1}, x_{2})\}$ for any Points $x_{0},$ $x_{1}$ and $x_{2}$ in $V$ , then $M$ is a
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space of constant curvature.
It is natural to ask whether $H\{x_{0}, x_{1}, x_{2}\}$ in the assumption of Theorem 2

could be replaced by $C^{2}\{x_{0}, x_{1}, x_{2}\}$ . On this question we show the following.
THEOREM 3. Let dim $M$ be greater than 2. If for each $p$ in $M$ there is a

convex neighborhood $V$ of $p$ in $M$ such that $C^{2}\{x_{0}, x_{1}, x_{2}\}=C^{2}\{x_{0}, x_{1}, x\}\cup C^{2}\{x_{0}$ ,
$x_{2},$ $x$ } for any points $x_{0},$ $x_{1}$ and $x_{2}$ in $V$ and for any point $x$ in the segment
$T(x_{1}, x_{2})$ , then $M$ is a space of constant curvature.

If it is possible to replace $x$ in the assumption with $m(x_{1}, x_{2})$ , then this
theorem is stronger than Theorem 2. However the author does not know the
possibility.

We prepare a lemma.
LEMMA 4. Let $M$ satisfy the assumpti0n in Theorem 3. Let $x(\tau),$ $0\leqq\tau\leqq\alpha$ ,

and $y(\nu),$ $0\leqq\nu\leqq\beta$ , represent segments $T_{1}=T(y_{0}, y_{1})$ and $T_{2}=T(y_{0}, y_{2})$ respectively
in $B_{r}(p)\subset V$ and let $t:= \max_{\mu\in[0.1]}x(\alpha\mu)y(\beta\mu)$ . If the $3r$-ball with center $p$ is strongly

convex, then $C^{2}\{y_{0}, y_{1}, y_{2}\}$ is contained in the union of the closed t-neighborhood
of $T_{1}$ and the closed t-neighborhood of $T_{2}$ in $M$.

PROOF OF LEMMA 4. Choose a partition $0=\mu_{0}<\mu_{1}<\ldots<\mu_{n}=1$ of $[0,1]$

such that $a(\mu_{i}-\mu_{i-1})<t$ and $\beta(\mu_{i}-\mu_{i-1})<t$ for $1\leqq i\leqq n$ . Then $C^{2}\{x(a\mu_{i-1})$ ,
$x(\alpha\mu_{i}),$ $y(\beta\mu_{i-1})$ } $\subset H\{x(\alpha\mu_{l-1}), x(\alpha\mu_{i}), y(\beta\mu_{i-1})\}\subset B_{t}(x(\alpha\mu_{i-1}))$ and $C^{2}\{x(\alpha\mu_{i})$ ,

$y(\beta\mu_{i-1}),$ $y(\beta\mu_{t})$ } $\subset\overline{B_{t}(y(\beta\mu_{i}))}$ for every $1\leqq i\leqq n$ , because for every $1\leqq i\leqq n$

$B_{t}(x(a\mu_{i-1}))$ and $\overline{B_{t}(y(\beta\mu_{i}))}$ are contained in $B_{3r}(p)$ and hence are convex. Since

$C^{2}\{y_{0}, y_{1}, y_{2}\}\subset UC^{2}\{x(a\mu_{i-1})i=1nx(\alpha\mu_{i}), y(\beta\mu_{i-1})\}\cup C^{2}\{x(\alpha\mu_{i}), y(\beta\mu_{i-1}), y(\beta\mu_{i})\}$ ,

$C^{2}\{y_{0}, y_{1}, y_{2}\}$ is contained in the union of the closed t-neighborhood of $T_{1}$ and
the closed t-neighborhood of $T_{2}$ in $M$.

PROOF OF THEOREM 3. Let $x_{0},$ $x_{1}$ and $x_{2}$ be any points in $B_{r}(p)\subset V$ where
$r$ is a positive such that the $3r$-ball with center $p$ is strongly convex. Let $S$

be the set of all points each of which belongs to the segment $T(x_{0}, x)$ for some
$x$ in $T(x_{1}, x_{2})$ . $S\subset C^{2}\{x_{0}, x_{1}, x_{2}\}$ is clear. We claim $S=C^{2}\{x_{0}, x_{1}, x_{2}\}$ . In fact,
suppose there exists a point $z\in C^{2}\{x_{0}, x_{1}, x_{2}\}-S$ . $Lets$ be the distance between
$z$ and S. Since $S$ is closed we have $s>0$ . Choose a partition $x_{1}=z_{1},$ $z_{2}$ , ,.. , $z_{n}$

$=x_{2}$ of $T(x_{1}, x_{2})$ in this order such that if $z_{i}(\tau),$ $0\leqq\tau\leqq\alpha_{i}$ , represents the seg-
ment $T(x_{0}, z_{i})$ for each $1\leqq i\leqq n$ , and if we put $t_{i}= \max_{\mu\in[0.1]}z_{i}(a_{i}\mu)z_{i+1}(\alpha_{i+1}\mu)$ for

each $1\leqq i\leqq n-1$ , then $t_{i}<s$ for all $1\leqq i\leqq n-1$ . By Lemma 4 and the assumption
$C^{2}\{x_{0}, x_{1}, x_{2}\}$ is contained in the open s-neighborhood of $S$ in $M$, a contradiction.

Next we assert $H\{x_{0}, x_{1}, x_{2}\}=C^{2}\{x_{0}, x_{1}, x_{2}\}$ . Let $z$ and $y$ be any points of
$C^{2}\{x_{0}, x_{1}, x_{2}\}$ . Then by the above argument there are points $z’$ and $y’$ in $T(x_{1}, x_{2})$

such that $z\in T(x_{0}, z’)$ and $y\in T(x_{0}, y’)$ . Since $C^{2}\{x_{0}, x_{1}, x_{2}\}=C^{2}\{x_{0}, x_{1}, z’\}\cup$

$C^{2}\{x_{0}, z’, y’\}\cup C^{2}\{x_{0}, x_{2}, y’\}$ , where we assume without loss of generality that
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$x_{1},$ $z’,$ $y’$ and $x_{2}$ are in this order on $T(x_{1}, x_{2})$ , and since $T(z, y)$ is contained in
$C^{2}\{x_{0}, z’, y’\},$ $T(z, y)$ is contained in $C^{2}\{x_{0}, x_{1}, x_{2}\}$ , which implies the convexity
of $C^{2}\{x_{0}, x_{1}, x_{2}\}$ .

Thus $H\{x_{0}, x_{1}, x_{2}\}=C^{2}\{x_{0}, x_{1}, x_{2}\}=S$ . Then we conclude $\dim H\{x_{0}, x_{1}, x_{2}\}$

$\leqq 2$ , and hence we obtain our theorem by Lemma 1.
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