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1. Introduction.

Many properties of the tree topologies of $\omega_{1}$-trees are related to the normal
Moore space problem and to the Dowker space problem. Countable metacom-
pactness is related to the latter. We refer the reader to Devlin and Shelah [1],

Fleissner [2] and Rudin [3] for explanations about the background of this
subject.

This work was motivated by Fleissner’s paper [2]. In this paper we
improve one of his results, answer a question raised there and prove some more
facts concerning them.

It is known that:
(1) a specjal Aronszajn tree is countably metacompact $(cmc)$ ,

(2) a Souslin tree is almost Souslin.
The following is due to P. Nyikos (see [2]):

(3) An almost Souslin tree is $cmc$ .
By these facts, we see that both Souslin rrees and special Aronszajn trees are
cmc. Since a Souslin tree and a special Aronszajn tree are very different in
nature ( $e$ . $g$ . “Souslin” and “special Aronszajn” are incompatible properties), it
may be natural to ask the following:

QUESTION 1. Is every Aronszajn tree is $cmc^{\rho}$

But Fleissner [2] gave a counter example. For the purpose he assumed Jensen’s
combinatorial principle $\langle\rangle^{+}$ , which is a consequence of the axiom of construc-
tibility $V=L$ . However more popular principle $\langle\rangle$ weaker than $\langle\rangle^{+}$ suffices for
the task (see Section 2 for the definition of $\langle\rangle$ , also for that of $\langle\rangle^{*}$ also used
in this paper):

(4) If $C\rangle$ holds, there is an Aronszajn tree which is not cmc (Theorem 1).

Relating to countable metacompactness, we consider the property that every
closed set is $G_{\delta}$ . We call an $\omega_{1}$-tree with this property a perfect tree here.
The following are easy facts:
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(5) A special Aronszajn tree is perfect and a perfect tree is a cmc Aronszajn
tree.
If $MA+7CH$ holds, the converse are also true, since every Aronszajn tree is
then special. So the following are reasonable questions:

QUESTION 2 (Fleissner [2]). Does “perfect” imply “special Aronszajn” $in$

ZFC ?
QUESTION 3. Does $cmc’$ imPly “perfect” for Aronszajn trees in ZFC ?

The latter is easily answered negatively. For, the following hold:
(6) Every Souslin tree is not perfect,
(7) If $O$ holds, there is a Souslin tree (Jensen).

And hence by (2) and (3), if $O$ holds, we have a Souslin tree as a counter example
of Question 3. To answer Question 2, we first observe the following:

(8) Every perfect tree is R-embeddable (Theorem 2).

Hence by (5), every perfect tree is R-embeddable and cmc. This gives rise to
the following further:

QUESTION 4. Does R-embeddability charactenze perfectness for a cmc tree
in $ZFC^{p}$

As may be expected, the answer is negative. But one must fail if one attempts
to construct as its counter example an almost Souslin tree which is R-embed-
dable but not perfect, under the observation of the fact (3):

(9) Every R-embeddable almost Souslin tree is perfect (Theorem 3).

This means that perfectness can be characterized by R-embeddability for an
almost Souslin tree (equivalently a collectionwise Hausdorff tree). This answers
Question 2 negatively, since the following hold:

(10) If $\langle\rangle^{*}$ holds, there is an R-embeddable almost Souslin tree (Devlin and
Sbelah [1]),

(11) An almost Souslin tree is not a special Aronszajn tree.
The following answers Question 4 negatively:

(12) If $\langle\rangle^{*}$ holds, there is a cmc tree which is R-embeddable but not perfect
(Theorem 4).

Our results are summarized in the following diagram:
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where $AT=the$ Aronszajn trees, $RE=the$ R-embeddable trees, CMC$=the$ count-
ably metacompact Aronszajn trees, $PT=the$ perfect trees, AST$=the$ almost
Souslin trees, SAT $=the$ special Aronszajn trees, $ST=the$ Souslin trees. The
Aronszajn trees are thus divided into nine categories in ZFC. If $V=L$ holds,
these categories are all non-empty. More precisely (a) $O\Rightarrow C_{1}\neq\emptyset$ (Jensen) &
$C_{2}\neq\emptyset$ (Devlin and Shelah [1]), (b) $C_{5}\neq\emptyset,$ $(c)O^{*}\Rightarrow C_{3}\neq\emptyset$ (Devlin and Shelah
[1]) $\ C_{7}\neq\emptyset$ (Theorem 4), (d) $[\langle\rangle\Rightarrow C_{8}\neq\emptyset]\ [\phi\Rightarrow C_{6}\neq\emptyset]$ & $[C\rangle^{*}\Rightarrow C_{4}\neq\emptyset]$

follows easily from the others; $e$ . $g$ . $C_{4}\neq\emptyset$ is immediate from $C_{3}\neq\emptyset\ C_{5}\neq\emptyset$ ,
(e) $C_{9}\neq\emptyset$ can be proven also under {\rangle but we only give the proof of $\langle\rangle\Rightarrow$

$C_{8}\cup C_{9}\neq\emptyset$ because this proof is much simpler and displays clearly the idea to
destroy cmc property.

2. Preliminaries.

The cardinality of a set $X$ is denoted by $|X|$ . A subset $C$ of $\omega_{1}$ is club
(closed and unbounded) iff $|C|=\omega_{1}$ and whenever $D$ is a countable subset of $C$,
then sup $D\in C$ . A subset $D$ of $\omega_{1}$ is stationary iff it meets every club set.

A tree $\mathcal{T}$ is a partially ordered set $(T, <_{T})$ such that for every $t\in T$ , the
set $f=\{s\in T:s<_{T}i\}$ is well ordered by $<\tau$ . The order type of $(t, <_{T})$ is
denoted by ht $(t),$ { $t\in T$ : ht $(t)=\alpha$ } is denoted by $T_{\alpha}$ . A branch of $\mathcal{T}$ is a maxi-
mal totally ordered subset of $T$ . For $C$ a set of ordinals, $T[C=\{t\in T$ : ht $(t)$

$\in C\}$ . An antichain of $\mathcal{T}$ is a pairwise incomparable subset of $T$ .
$\mathcal{T}$ is an $\alpha$-tree iff (i) {ht $(t):t\in T$ } $=\alpha$ , (ii) for all $\xi<\alpha,$ $|T_{\xi}|\leqq\omega$ , (iii) for

every $t\in T$ and for every $\xi$, ht $(t)<\xi<\alpha,$ $t$ has at least two successors of height
$\xi$, and (iv) if ht $(t)=ht(s)$ is a limit ordinal, $t=s$ iff $\hat{t}=\hat{s}$ . An Aronszajn tree is
an $\omega_{1}$-tree with no uncountable branch. A Souslin tree is an $\omega_{1}$-tree with no
uncountable antichain.

Let $\mathcal{T}$ be an $\omega_{1}$-tree. The tree topology on $\mathcal{T}$ has a basis of all sets of the
following forms:

$[t, s)=\{u\in T:t\leqq u<s\}$ , where $t\in T_{0},$ $s\in T$ ,

$(t, s)=\{u\in T:t<u<s\}$ , where $t\in T,$ $s\in T$ .
An $\omega_{1}$-tree $\mathcal{T}$ is said to be almost Souslin iff whenever $A$ is an antichain of $\mathcal{T}$

then {ht $(a):a\in A$} is not stationary. It is known that $\mathcal{T}$ is almost Souslin iff
the tree topology of $\mathcal{T}$ is collectionwise Hausdorff. An $\omega_{1}$-tree $\mathcal{T}$ is R-embeddable
iff there is a function $f:Tarrow R$ such that whenever $x<y$ in $\mathcal{T}$ , then $f(x)<f(y)$

in $R$ . We call such $f$ an R-embedding. A space is countably metacompact $(cmc)$

iff every countable open cover has a point finite open refinement.
$\langle S_{cf} : \alpha<\omega_{1}\rangle$ is a $O$-sequence iff (i) $S_{\alpha}\subseteqq\alpha$ , (ii) whenever $X$ is a subset of

$\omega_{1}$ , then the set $\{\alpha;X\cap\alpha=S_{a}\}$ is stationary. $\langle F_{\alpha} : \alpha<\omega_{1}\rangle$ is a $\langle\rangle^{*}$-sequence iff
(i) $F_{\alpha}\subseteqq \mathcal{P}(\alpha)$ , (ii) $|F_{a}|\leqq\omega$ , (iii) whenever $X$ is a subset of $\omega_{1}$ , then the set
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$\{\alpha:X\cap\alpha\in F_{\alpha}\}$ contains a club set. $\langle\rangle$ is the assertion that a $\langle\rangle$-sequence
exists. $\langle\rangle^{*}$ is the assertion that a $\langle\rangle^{*}$-sequence exists. Both are consequences
of $V=L$ .

LEMMA 2.1. Let $\{P_{\alpha} : \alpha<\omega_{1}\}$ be a partiti0n of $\omega_{1}$ . Let $\langle S_{a} : \alpha<\omega_{1}\rangle$ be $a$ O-
sequence and $\langle F_{\alpha} ; \alpha<\omega_{1}\rangle a(\rangle^{*}$-sequence. Then whenever $X$ is a subset of $\omega_{1}$

such that $X\cap P_{\alpha}$ is at most countable for all $\alpha<\omega_{1}$ , then the following hold:
(i)

$\{\alpha:x_{\cap}\bigcup_{\xi<\alpha}P_{\xi}=S_{a}\}$ is stationary,

(ii)
$\{\alpha:X\cap\bigcup_{6<a}P_{\xi}\in F_{\alpha}\}$ contains a club set.

The proof is left to the reader.
$\tau*$ stands for $\bigcup_{a<\omega_{1}}\alpha\omega$, the set of all functions $f$ such that dom $(f)\in\omega_{1}$ and

ran $(f)\subseteqq\omega$ . $\mathcal{T}^{*}=(T^{*}, <)$ is a tree by defining $t<srightarrow t\subset s,$ $i$ . $e$ . $s$ is a function
extension of $t$ . If $x\in T^{*}$ , then $x^{\wedge}\langle n\rangle$ stands for $xU\{\langle ht(x), n\rangle\}$ , a function
from ht $(x)+1$ to $\omega$, an immediate successor of $x$ in $\mathcal{T}^{*}$ . If $T$ is a subset
of $T^{*}[\alpha$ and $(\forall x\in T)(\forall y\in\tau*r\alpha)[y<xarrow y\in T]$ and $(T, <)$ is an $\alpha$-tree, then
$\mathcal{T}=(T, <)$ is said to be an $\alpha$-subtree of $(T^{*}\uparrow\alpha, <)$ . If $\mathcal{T}$ is an $\omega_{1}$-subtree of
$\mathcal{T}^{*},$ $T_{\alpha}\subseteqq T_{a}^{*}$ obviously.

LEMMA 2.2 $(C\rangle)$ . There is a sequence $\langle Z_{\alpha} : \alpha<\omega_{1}\rangle$ such that
(i) $Z_{a}\subseteqq T^{*}\uparrow\alpha\cross\omega$,
(ii) whenever $X\subseteqq T^{*}\cross\omega$ and $|X\cap(T_{a}^{*}\cross\omega)|\leqq\omega$ for all $\alpha<\omega_{1}$ , then $\{\alpha:X\cap$

( $T^{*}(\alpha\cross\omega)=Z_{\alpha}$ } is stationary.
PROOF. $<3$ implies CH. Hence $|T^{*}\cross\omega|=|T^{*}|=|U^{a}\omega\alpha<\omega_{1}|=2^{\omega}=\omega_{1}$ . Let $f$

be a bijection: $\tau*\cross\omegaarrow\omega_{1}$ . Fix a $O$-sequence $\langle S_{a} : \alpha<\omega_{1}\rangle$ and put $Z_{a}=$

$f^{-1}(S_{\alpha})\cap(T^{*}(\alpha\cross\omega)$ for $\alpha<\omega_{1}$ . It is easy to check that by Lemma 2.1 \langle $Z_{a}$ :
$\alpha<\omega_{1}\rangle$ satisfies the desired conditions (notice that $\bigcup_{\xi<\alpha}f(T_{\xi}^{*}\cross\omega)=f(T^{*}[\alpha\cross\omega)$ ).

Lemma 2.2 is thus proved.

LEMMA 2.3 $(\langle\rangle^{*})$ . There is a sequence $\langle Y_{\alpha} : \alpha<\omega_{1}\rangle$ such that
(i) $(\forall X\in Y_{\alpha})[X\subseteqq T^{*}\square \alpha]$ & $|Y_{a}|\leqq\omega$ ,

(ii) whenever $X\subseteqq T^{*}and$ $|X\cap T_{\alpha}^{*}|\leqq\omega$ for all $\alpha<\omega_{1}$ , then $\{\alpha:X\cap T^{*}[\alpha\in Y_{a}\}$

contains a club set.
PROOF. Similar to the above.

3. A not countably metacompact Aronszajn tree.

The following is proved in this section:
THEOREM 1 $(\langle\rangle)$ . There is $a$ not cmc Aronszajn tree.
Let $\langle Z_{a} : \alpha<\omega_{1}\rangle$ be the sequence written in Lemma 2.2.
Our goal is the same as Fleissner’s: $i$ . $e$ . it is to define an Aronszajn tree

$\mathcal{T}$ with antichain $A$ and partition of $A$ into $\{A_{n} : n\in\omega\}$ such that there are no
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functions $f$ from $T$ into $\omega$ that would satisfy
(P1) if $a\in A_{n}$ , then $f(a)=n$ ,
(P2) for all $t\in T-T_{0}$ , there is $s<t$ such that for all $u\in(s, t),$ $f(u)\geqq f(t)$ .

Such a tree is not cmc (see Fleissner [2]). We construct an $\omega_{1}$-subtree $\mathcal{T}$ of $\mathcal{T}^{*}$

as such a tree. We define $T_{\alpha}\subseteqq T_{a}^{*}$ and $\{A_{n}\cap T_{\alpha} : n\in\omega\}$ by induction on $\alpha<\omega_{1}$ .
It is assumed that $T[\alpha$ and $\{A_{n}\cap T[\alpha:n\in\omega\}$ has been befined already. We
denote $\{x\in Tt\alpha: x\cup\{x\}\cap A=\emptyset\}$ by $B$ . We further assume the following
inductively at each stage $\alpha$ :

(1) ( $T$ ta, $<$ ) is an $\alpha$-subtree of $(\tau*(\alpha, <)$ ,
(2) $\{A_{n}\cap T(\alpha;n\in\omega\}$ is a partition of an antichain $A\cap T\uparrow\alpha$ ,
(3) Whenever $x\in B$ and ht $(x)<\beta<\alpha$ , then there is $y\in B$ such that $x<y$

$\in T_{\beta}$ .
I. CASE $\alpha=0$ . Define $T_{0}=\{0\}$ and $A\cap T_{0}=\emptyset$ .

II. CASE $\alpha=\beta+1$ . Define $T_{\beta+1}=\{x^{\wedge}\langle n\rangle:x\in T_{\beta}, n\in\omega\}$ and $A\cap T_{\beta+1}=\emptyset$ .
III. CASE lim $(\alpha)$ . Fix an increasing sequence $\{\alpha_{n} ; n\in\omega\}$ cofinal in $\alpha$ .

We [associate with each $x\in T\square \alpha$ a sequence $\{x_{n} : n\in\omega\}\subseteqq T\uparrow\alpha$ such that (i)

$x_{0}=x$ , (ii) $x_{n}<x_{n+1}$ and $\alpha_{n}<ht(x_{n+1})$ , (iii) if $x_{n}\in B$ then $x_{n+1}\in B$ . This is
possible by (3). Put

$t(x)=\cup\{x_{n} : n<\omega\}\in T_{a}^{*}$ .

There are three cases to consider.
CASE 1. $f_{a}=^{df}Z_{\alpha}$ is a function from $\tau r\alpha$ to $\omega$ and satisfies

(i) if $x\in A_{n}\cap T[\alpha$ , then $f_{\alpha}(x)=n$ ,
(ii) if $x\in\tau r\alpha-T_{0}$ , then $(\exists y<x)(\forall z\in(y, x))[f_{a}(z)\geqq f_{a}(x)]$ . We divide this

into two cases further.
SUBCASE 1.1. $(\forall n\in\omega)(\forall x\in B)(\exists y\in B)$ [$y>x$ and $(\forall z\in B)[z\geqq yarrow f_{a}(z)\geqq n]$ ].

Take a sequence $\{u_{n}\in B:n\in\omega\}$ so that the following hold:
(i) $u_{0}=\emptyset\in T_{0}$ ,

(ii) $u_{2k}<u_{2k+1}\in B$ and $(\forall z\in B)[z\geqq u_{2k+1}arrow f_{\alpha}(z)\geqq k]$ ,
(iii) $u_{2k+1}<u_{2k+2}\in B$ and ht $(u_{2k+2})\geqq\alpha_{k}$ .

Put $u= \bigcup_{n\in\omega}u_{n}\in T_{a}^{*}$ ,

$T_{\alpha}=\{u\}\cup\{t(x):x\in\tau r\alpha\}$ and $A\cap T_{\alpha}=\emptyset$ .

SUBCASE 1.2. Otherwise. Then we can take $m\in\omega$ and $w\in B$ such that
$(\forall y\in B)$ [$y>warrow(\exists z\in B)[z\geqq y$ &f\alpha (z) $<m]$ ]. Take a sequence $\{v_{n}\in B:n\in\omega\}$

$\subset T(\alpha$ so that the following hold:
(i) $v_{0}=w\in B$ ,

(1i) $v_{2k}<v_{2k+1}\in B$ and ht $(v_{2k+1})\geqq\alpha_{k}$ ,

(iii) $v_{2k+1}\leqq v_{2k+2}\in B$ and $f_{\alpha}(v_{2k+2})<m$ .
Put $v=\cup\{v_{n} : n\in\omega\}\in T_{\alpha}^{*}$ ,
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$T_{\alpha}=\{v\}\cup\{t(x):x\in T(\alpha\}$ and $A_{n}\cap T_{\alpha}=\{\begin{array}{l}\{v\} if n=m,\emptyset else.\end{array}$

(To check that $(\forall x\in B)(\exists y\in T_{\alpha})[x<y\ \hat{y}\cup\{y\}\cap A=\emptyset]$ , observe that for every
$x\in B$ , there is $n\in\omega$ such that $x^{\wedge}\langle n\rangle\not\in\hat{v}$ and for such $n,$ $y=t(x^{\wedge}\langle n\rangle)$ satisPes
$\hat{y}\cup\{y\}\cap A=\emptyset.)$

CASE 2. $Z=\{x\in T[\alpha:(\exists n\in\omega)[<x, n\rangle\in Z_{\alpha}]\}$ is a cofinal branch of $T[\alpha$ .
Then with each $x\in T[\alpha$ , we associate $n_{x}\in\omega$ such that $x^{\wedge}\langle n_{x}\rangle\not\in Z$ and put

$T_{\alpha}=\{t(x^{\wedge}\langle n_{x}\rangle):x\in T\uparrow\alpha\}$ and $A\cap T_{\alpha}=\emptyset$ .
CASE 3. Otherwise. Put $T_{\alpha}=\{t(x):x\in T[\alpha\}$ and $A\cap T_{\alpha}=\emptyset$ .
Having defined $\mathcal{T}$ , we prove that it is as required.
CLAIM 1. $\mathcal{T}$ is an Aronszajn tree.
This proof is left to the reader.
CLAIM 2. $\mathcal{T}$ is not $cmc$ .
To prove this, suppose that there were a function $f:Tarrow\omega$ which satisfies

(P1) and (P2). Let $B’$ stand for $\{x\in T:x\cup\{x\}\cap A=\emptyset\}$ . Put

$E=$ { $\alpha<\omega_{1}$ : lim $(\alpha)$ and $f((\tau r\alpha)=Z_{\alpha}$ },

$C=\{\alpha<\omega_{1}$ ; $(\forall x\in B’\cap T[\alpha)(\forall n\in\omega)[(\exists y\in B’)[x<y$ &

$f(y)=n]arrow(\exists y\in B’\cap T[\alpha)$ [$x<y$ &f$(y)=n$ ]]}.

$E$ is stationary and $C$ is club. Take $\alpha\in E\cap C$ . Put $B=B’\cap Tr\alpha$ . There are
two cases to consider.

CASE 1. $(\forall n\in\omega)(\forall x\in B)(\exists y\in B)$ [$y>x$ &(\forall z\in B) $[z\geqq yarrow f(z)\geqq n]$]. Since
$f((T[\alpha)=f_{\alpha},$ $T_{\alpha}$ must have been defined in Subcase 1.1. Hence $u\in T_{\alpha}$ . Put
$m=f(u)$ . Recall the definition of $u= \bigcup_{n\in\omega}u_{n}$ . By the definition, $(\forall z\in B)[z\geqq u_{2m+3}$

$arrow f(z)\geqq m+1]$ . Since $\alpha\in C,$ $(\forall z\in B’)[z\geqq u_{2m+3}arrow f(z)\geqq m+1]$ . $u\in B’$ , since
$A\cap T_{\alpha}=\emptyset$ . Besides $u\geqq u_{2m+3}$ . Hence $f(u)\geqq m+1$ . This contradicts the defini-
tion of $m$ .

CASE 2. Otherwise. $T_{a}$ must have been defined in Subcase 1.2. Let $m,$ $w$

and $v$ be the ones that were used in the definition of $T_{\alpha}$ . $v\in A_{m}$ by the defini-
tion of $A_{m}\cap T_{\alpha}$ and hence $f(v)=m$ by (P1). So, by (P2), there is $y<v$ such
that $(\forall z\in(y, v))[f(z)\geqq m]$ . But, for some $k,$ $y<v_{2k+1}\leqq v_{2k+2}<v$ and $f(v_{2k+2})<m$ .
This is absurd. Claim 2 is thus proved. This completes the proof of Theorem 1.

4. Perfectness implies R-embeddability.

In this section, we prove
THEOREM 2. If an $\omega_{1}$-tree $\mathcal{T}$ is perfect, $i$ . $e$ . every closed set is $G_{\delta}$ , then $\mathcal{T}$
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is R-embeddable.
LEMMA 1. If $T-T$ (Lim is the union of countably many antichains, then $\mathcal{T}$

is R-embeddable, where Lim $=$ { $\alpha<\omega_{1}$ : lim $(\alpha)$ }.
The proof is easy and omitted.
LEMMA 2. If $F$ is a closed set such that $F\subseteqq T-T[C$ for some club set $C$,

then $F$ is the union of countably many antichains.
To prove this, let $F$ be a closed set and $F\subseteqq\tau-\tau rc$ for a club set $C$ .

Let $\langle c(\alpha):\alpha<\omega_{1}\rangle$ be a monotone enumeration of $C$ . Let $\langle x_{n}^{\alpha} : n\in\omega\rangle$ be an
enumeration of $\{x\in T:c(\alpha)<ht(x)<c(\alpha+1)\}$ for each $\alpha<\omega_{1}$ . Put $B_{n}=\{x_{n}^{a}$ ;

$\alpha<\omega_{1}\}\cap F$ for each $n\in\omega$ . Then for every $x\in B_{n}$ , the set $\hat{x}\cap B_{n}$ is finite. So,
if we put $B_{n}^{m}=\{x\in B_{n} : |\hat{x}\cap B_{n}|=m\}$ for each $m$ and $n$ , then every $B_{n}^{m}$ is
antichain and $F= \bigcup_{m,n\in\omega}B_{n}^{m}$ . Lemma 2 is thus proved.

To prove the theorem, suppose $\mathcal{T}$ is perfect. Then, since $T-T$ (Lim is
open, there is $\{F_{n} : n\in\omega\}$ , a family of closed sets such that $\tau-\tau rLim=\bigcup_{n\in\omega}$

$F_{n}$ . By Lemma 2, $F_{n}$ is the union of countably many antichains and hence so
is $\tau-\tau rLim$ . By Lemma 1, $\mathcal{T}$ is R-embeddable. Theorem 2 is thus proved.

5. A characterization of perfectness for an almost Souslin tree.

In this section, we prove
THEOREM 3. If an almost Souslin tree $\mathcal{T}$ is R-embeddable, then $\mathcal{T}$ is perfect.
LEMMA 1. If $\mathcal{T}$ is R-embeddable and $C$ is a club set, then there is an $R-$

embedding $e:Tarrow R$ such that $e(T-T(C)\subseteqq Q$ .
To prove this, take an R-embedding $f:Tarrow R$ . Let $\langle c_{\alpha} : \alpha<\omega_{1}\rangle$ be a

monotone enumeration of $C$ and let $\langle x_{n}^{\alpha} ; n<\omega_{1}\rangle$ enumerate the elements of
$\{x\in T:c_{\alpha}<ht(x)<c_{\alpha+1}\}$ . Fix $\alpha$ arbitrarily. For each $\chi_{n}^{\alpha}$ define $r(x_{n}^{\alpha})\in Q$ by

induction on $n\in\omega$ so that the following hold:
(i) $f(y)<r(x_{n}^{\alpha})\leqq f(x_{n}^{a})$ , where $y$ is the element of $\hat{x}_{n}^{\alpha}$ such that ht $(y)=c_{\alpha}$ ,
(ii) $x_{m}^{\alpha}<x_{n}^{a}arrow r(x_{m}^{\alpha})<r(x_{n}^{\alpha})$ , for all $m,$ $n\in\omega$ . Then this embedding $r$ :

$(T-\tau rc)arrow Q$ can be extended to an embedding $r:Tarrow R$ naturally. Lemma
1 is thus proved.

As a corollary of this lemma, we obtain
LEMMA 2. If $\mathcal{T}$ is R-embeddable, then for any club set $C,$ $\tau-\tau rc$ is the

union of countably many antichains.
Now, to prove Theorem 3, suppose that $\mathcal{T}$ is almost Souslin and a function

$f$ embeds $T$ into $R$ . To show that $\mathcal{T}$ is perfect, take an open set $U\subset T$ arbi-
trarily. Put

$I=\{u\in U:(\forall x<u)[[x, u)\not\leqq U]\}$ .
For each $u\in I$ , put

$V(u)=\{x\in U:[u, x]\subseteqq U\}$ .
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Clearly $U= \bigcup_{u\in I}V(u)$ and $V(u)\cap V(v)=\emptyset$ for all $u,$ $v\in I$ with $u\neq v$ . Since $U$ is

open, $I\subseteqq T-T$ (Lim and so $V(u)$ is open.
LEMMA 3. $V(u)$ is $F_{\sigma}$ for all $u\in I$ .
To prove this, put $A=\overline{V(u}$) $-V(u)$ . Then $A$ is clearly an antichain. Since

$\mathcal{T}$ is almost Souslin, there is a club set $C\subset\omega_{1}$ such that $T(C\cap A=\emptyset$ . By
Lemma 2, $V(u)\cap(T-T\uparrow C)$ is the union of countably many antichains and
hence $F_{\sigma}$ . On the other hand, $V(u)\cap T(C$ is a closed set. For, if $x\in\overline{V(u)\cap}$

$\overline{T|C}$, then clearly $x\in V(u)\cap TtC$ since $\tau tC\cap A=\emptyset$ . Thus $V(u)$ is $F_{\sigma}$ . Lemma
3 is thus proved.

By Lemma 3, we obtain $\{F_{n}(u):n\in\omega\}$ a family of closed sets such that
$V(u)= \bigcup_{n\in\omega}F_{n}(u)$ for all $u\in I$. Since $I\subseteqq T-\tau rLim$, by Lemma 2, we can take

$\{A_{k} : k\in\omega\}$ a disjoint family of antichains such that $I= \bigcup_{k\in\omega}A_{k}$ . With each $u$

$\in I$ , we associate $k(u)\in\omega$ such that $u\in A_{k(u)}$ . Put

$B_{n}=\cup\{F_{n-k(u)}(u):u\in I, k(u)\leqq n\}$ .
Clearly $U= \bigcup_{n\in\omega}B_{n}$ . It remains to show that each $B_{n}$ is closed. Suppose $x\not\in B_{n}$ .
To show $(y, x$] $\cap B_{n}=\emptyset$ for some $y<x$ , take $y’<x$ so that $(y’, x) \cap\bigcup_{k\leqq n}A_{k}=\emptyset$ .
Suppose $(y’, x$] $\cap B_{n}\neq\emptyset$ . Take $z\in(y’, x$] $\cap B_{n}$ . Then $z\in F_{n-k(u)}(u)$ for some
$u\in I$ with $k(u)\leqq n$ . Take $y<x$ so that $(y, x$] $\subseteqq(y’, x$] $-F_{n-kCu)}(u)$ . We show
$(y, x]\cap B_{n}=\emptyset$ . If there were $u’\in I$ with $k(u’)\leqq n$ such that $(y, x$] $\cap F_{n-k(u^{r})}(u’)$

$\neq\emptyset$ , then $u’>u$ and so $u’>z(>y’)$ since $z\in V(u)$ . This is absurd since $u’\in$

$(y’, x)\cap I$ implies $k(u’)>n$ by the choice of $y’$ . Theorem 3 is thus proved.

6. An R-embeddable, not perfect, cmc tree.

In this section, we prove
THEOREM 4 $(\langle\rangle^{*})$ . There is a cmc tree which is R-embeddable but not perfect.
We construct an $\omega_{1}$-subtree $\mathcal{T}$ of $\mathcal{T}^{*}$ with an initial segment $U$ and an R-

embedding $r:Tarrow R$ . Let $\langle Y_{a} : \alpha<\omega_{1}\rangle$ be a $\langle\rangle^{*}$-sequence in Lemma 2.3 and
$\langle Z_{\alpha} : \alpha<\omega_{1}\rangle$ a $\langle\rangle$-sequence in Lemma 2.2. We define $T_{\alpha}\subseteqq T_{\alpha}^{*},$ $U\cap T_{a}$ and $r[T_{\alpha}$

by induction on $\alpha<\omega_{1}$ . We assume that $T(\alpha,$ $U\cap Tr\alpha$ and $r[(\tau r\alpha)$ have been
defined. The letter $q$ is used to denote an element of $Q$ . We write $x>_{U}^{q}y$ for
$[x>y \ r(x)<q \ [y\in Uarrow x\in U]]$ . We ensure the following at each stage
$\alpha$ , where $\alpha’$ denotes $\alpha+1$ :

(1) $(T(\alpha’, <)$ is an $\alpha’$-subtree of $\mathcal{T}^{*}[\alpha’$ ,
(2) $U\cap Tr\alpha’$ is an initial segment of $T\uparrow\alpha’$ ,

(3) $r:\tau r\alpha’arrow R$ is an R-embedding,
(4) $x\in T\uparrow\alpha$ &ht $(x)<\beta\leqq\alpha$ &r(x) $<q\in Qarrow(\exists y\in T_{\beta})[y>kx]$ .

I. CASE $\alpha=0$ . $T_{0}=\{\emptyset\},$ $U\cap T_{0}=\{\emptyset\},$ $r(\emptyset)=0$ .
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II. CASE $\alpha=\beta+1$ . $T_{\beta+1}=\{x^{\wedge}\langle n\rangle:x\in T_{\beta}, n\in\omega\},$ $U\cap T_{\beta+1}=\{x^{\wedge}\langle n\rangle$ :
$x\in U\cap T_{\beta},$ $n\in\omega$} $,$

$r(x^{\wedge}\langle n\rangle)=q_{n}$ , where $\langle q_{n} : n\in\omega\rangle$ is an enumeration of {$q\in Q$ ;

$r(x)<q\}$ .
III. CASE lim $(\alpha)$ . Fix a sequence $\{\alpha_{n} : n\in\omega\}$ such that $\sup_{n\in\omega}\alpha_{n}=\alpha$ . Let

$\langle V_{n} : n\in\omega\rangle$ be an enumeration with infinitely many iterations of { $X\in\{\emptyset\}\cup Y_{\alpha}$ :
$X$ is an open set}. First we associate $t(x, q)$ an element of $T_{\alpha}^{*}$ with each pair
of $x\in T(\alpha$ and $q>r(x)$ as follows: (i) Put $x_{0}=x$ ; (ii) Take $x_{2k+1}>qUx_{2k}$ so that
ht $(x_{2k+1})>\alpha_{k}$ ; (iii) Take $x_{2k+2}>qx$ so that if possible, $x_{2k+2}\not\in V_{k}$ ; And put
$t(x, q)= \bigcup_{k\in\omega}x_{k}$ . Now we divide the case into two cases.

CASE 1. $F_{n}^{\alpha}=^{df}\{x\in T[\alpha:\langle x, n\rangle\in Z_{\alpha}\}$ is closed in $T(\alpha$ for all $n\in\omega$ and
$\bigcup_{n\in\omega}F_{n}^{\alpha}=U\cap Tr\alpha$ and $F_{m}^{a}\subseteqq F_{n}^{\alpha}$ if $m\leqq n$ .

SUBCASE 1.1. There are $x\in U\cap T\uparrow\alpha,$ $p\in(r(x), \infty)\cap Q$ and $m\in\omega$ such that
$(\forall y>_{U}^{p}x)(\exists z>Upy)[z\in F_{m}^{\alpha}]$ . Let $x,$ $p$ and $m$ be such ones. (i) Put $u_{0}=x$ ; (ii)

Take $u_{3k+1}>ffu_{3k}$ so that ht $(u_{3k+1})>\alpha_{k}$ ; (iii) Take $u_{3k+2}>\theta u_{3k+1}$ so that if pos-
sible, $u_{8k+2}\not\in V_{k}$ ; (iv) Take $u_{3k+3}>pu$ so that $u_{3k+3}\in F_{m}^{a}$ . Put $u_{\alpha}= \bigcup_{k\in\omega}u_{k}\in$

$T_{\alpha}^{*}$ . Define $T_{\alpha}=\{u_{\alpha}\}\cup\{t(x, q): x\in T[\alpha, q>r(x)\},$ $r(u_{\alpha})= \sup_{k\in\omega}r(u_{k})\leqq p$ ,
$r(t(x, q))= \sup_{k\in\omega}r(x_{k})\leqq q,$ $U\cap T_{\alpha}=\{t(x, q) : x\in U\cap T\uparrow\alpha, q>r(x)\}-\{u_{\alpha}\}$ .

SUBCASE 1.2. Otherwise. Then for each $x\in U\cap T[\alpha,$ $q>r(x),$ $k\in\omega$, there
is $y> x$ such that $(\forall z>qUy)[z\not\in F_{k}^{\alpha}]$ . (i) Put $v_{0}=\emptyset$ and $p(0)=1\in Q$ ; (ii) Take
$v_{3k+1}>\theta^{(k)}$ V3k so that ht $(v_{3k+1})>\alpha_{k}$ ; (iii) Take $v_{3k+2}>\theta^{(k)}v_{3k+1}$ so that if possible,
$v_{3k+2}\not\in V_{k}$ ; (iv) Take $p(k+1)\in Q$ so that $r(v_{3k+2})<p(k+1)<p(k);(v)$ Take $V_{3k+3}$

$>ff^{(k+1)}v_{3k+2}$ so that $(\forall z>ff^{(k+1)}v_{3k+3})[z\not\in F_{k}^{\alpha}]$ . Put $v_{\alpha}= \bigcup_{k\in\omega}v_{k}\in T_{a}^{*}$ and define:
$T_{\alpha}=\{v_{\alpha}\}\cup\{t(x, q):x\in T[\alpha, q>r(x)\}$ ; $r(v_{\alpha})= \sup_{k\in\omega}v_{k}$ ( $<p(k)\leqq 1$ for all $k\in\omega$);
$r(t(x, q))= \sup_{k\in\omega}r(x_{k})\leqq q;U\cap T_{\alpha}=\{v_{a}\}\cup\{t(x, q) : x\in U\cap T[\alpha, q>r(x)\}$ .

CASE 2. Otherwise. Define: $T_{a}=\{t(x, q): x\in T(\alpha, q>r(x)\}$ ; $r(t(x, q))=$

$supk<\omega r(x_{k})\leqq q;U\cap T_{\alpha}=$ { $t(x,$ $q):x\in U\cap T$ ta, $q>r(x)$}.
$\mathcal{T},$ $U\subset T$ and $r:Tarrow R$ is thus defined. We prove that $\mathcal{T}$ is as required.

$\mathcal{T}$ is R-embeddable obviously.

LEMMA 1. $\mathcal{T}$ is not perfect.
To prove this, it suffices to show that $U$ is not $F_{\sigma}$ , since $U$ is an initial

segment of $T$ and hence an open set. Suppose to the contrary that there is
$\{F_{n} : n\in\omega\}$ a family of closed sets such that $U=U\{F_{n} : n\in\omega\}$ and $F_{m}\subseteqq F_{n}$ for
$m\leqq n\in\omega$ . Put $F= \bigcup_{n\in\omega}F_{n}\cross\{n\}$ and $C=\{\alpha<\omega_{1}$ : $(\forall x\in U\cap T(\alpha)(\forall q>r(x))(\forall n\in\omega)$

[ $(\exists y)[x<ky\in F_{n}]arrow(\exists y\in T[\alpha)[x<ky\in F_{n}]]$ }. Since $C$ is club and $F\subset T\cross\omega$,
there is a limit ordinal $\alpha\in C$ such that $F\cap(\tau r_{\alpha}\cross\omega)=Z_{a}$ . Then $F_{n}^{\alpha}=\{x\in$

$T(\alpha:\langle x, n\rangle\in Z_{a}\}=F_{n}\cap T\uparrow\alpha$ is a closed set in $\tau t\alpha$ for all $n\in\omega$ . So, $T_{\alpha}$ must
have been defined in Case 1 and hence contains $u_{\alpha}$ or $v_{\alpha}$ .

CASE 1. $u_{\alpha}\in T_{a}$ . Recall the definition of $u_{\alpha}$ and let $x,$ $p$ and $m$ be the
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ones in the definition. Then $(x, u_{\alpha})\cap F_{m}^{\alpha}$ is cofinal in $\hat{u}_{\alpha}$ and hence $u_{\alpha}\in F_{m}(\subset U)$

since $(x, u_{a})\cap F_{m}^{a}\subset F_{m}$ and $F_{m}$ is closed. But this is absurd since $u_{\alpha}\not\in U$ by

the definition of $U\cap T_{\alpha}$ .
CASE 2. $v_{a}\in T_{\alpha}$ . By the definition of $U\cap T_{\alpha},$

$v_{\alpha} \in U=\bigcup_{n\in\omega}F_{n}$ . Take $n$ so

that $v_{\alpha}\in F_{n}$ . Recall the definition of $v_{a}$ :

$(\forall z\in Tr\alpha)$ [$z>ff^{(n+1)}v_{3n+3}arrow z\not\in F_{n}^{\alpha}=F_{n}\cap T$ ta].

Hence by $\alpha\in C,$ $(\forall z)[z>Uv_{3n+3}p(n+1)arrow z\not\in F_{n}]$ . But $v_{\alpha}\in F_{n}\subset U$ and $r(v_{\alpha})<p(n+1)$

and $V_{\alpha}>v_{3n+3}$ . This is absurd. Lemma 1 is thus proved.
LEMMA 2. $\mathcal{T}$ is countably metacompact.
To prove this, suppose $\mathcal{U}=\{U_{n} : n\in\omega-\{0\}\}$ be a countable open cover of

$T$ . Take a club set $C_{n}$ so that $C_{n}\subseteqq$ { $\alpha<\omega_{1}$ : $U_{n}\cap T$ I $\alpha\in Y_{\alpha}$ } for $n\in\omega-\{0\}$ .
Put:

$C_{0}=\{\alpha<\omega_{1}$ ; $(\forall x\in T(\alpha)(\forall q>r(x))$

$[(\exists y)[y>qUx]arrow(\exists y\in\tau ra)[y>qUx]]\}$ ;

$C’=\{a<\omega_{1}$ ; $(\forall x\in T[\alpha)(\forall q>r(x))(\forall n\in\omega)$

$[(\exists y)[y>\# x\ y\not\in U_{n}]arrow(\exists y\in Tt\alpha)[y>qUx\ y\not\in U_{n}]]\}$ .

Put $C=c_{\cap}’ \bigcap_{n\in\omega}C_{n}$ , a club set. We define two point finite refinements $\mathcal{W}$ and

$\mathcal{W}’$ of $\mathcal{U}$ satisfying $\cup \mathcal{W}\supseteqq TtC$ and $\cup \mathcal{W}’\supseteqq T-T[C$ .
SUBLEMMA 2.1. Let $\alpha\in C$ . Then:
(i) If $u_{\alpha}\in T_{\alpha}$ and $u_{\alpha}\in U_{k}$ , then $(\exists q\geqq r(u_{\alpha}))(\exists y<u_{a})(\forall z\in Tt\alpha)[z>qUyarrow$

$z\in U_{k}]$ ;
(ii) If $v_{a}\in T_{\alpha}$ and $v_{\alpha}\in U_{k}$ , then $(\exists q\geqq r(v_{\alpha}))(\exists y<v_{\alpha})(\forall z\in\tau r\alpha)[z>qUyarrow$

$z\in U_{k}]$ ;
(iii) If $t(x, q)\in U_{k}\cap T_{a}$ , then $(\exists q\geqq r(t(x, q)))(\exists y<t(x, q))$ ( $\forall z\in T$ Pa) $[z>qUy$

$arrow z\in U_{k}]$ .
We prove only (i) because (ii) and (iii) can be proved similarly. Suppose

$u_{\alpha}\in T_{\alpha}$ and $u_{\alpha}\in U_{k}$ . Then $T_{\alpha}$ has been defined in Subcase 1.1. Let $x,$ $p$ and
$m$ be the ones described there. Since $U_{k}$ is open, we can take $y<u_{\alpha}$ satisfying
$(y, u_{\alpha}]\subseteqq U_{k}$ . Since $\alpha\in C_{k},$ $(y, u_{\alpha})\subseteqq U_{k}\cap Tr\alpha\in Y_{a}$ . Since every open set be-
longing to $Y_{a}$ appears in $\langle V_{n} : n\in\omega\rangle$ infinitely many times and $\langle u_{k} : k\in\omega\rangle$ is
cofinal in $\hat{u}_{\alpha}$ , there is $i$ such that $V_{i}=U_{k}\cap Tr\alpha$ and $y<u_{3i+1}$ . Since $u_{3i+2}\in$

$U_{k}\cap T\uparrow\alpha=V_{i}$ , by choice of $u_{3i+2},$ $(\forall z\in Tt\alpha)[z>puarrow z\in V_{i}\subseteqq U_{k}]$ . This
asserts (i), since $r(u_{\alpha})\leqq P$ and $u_{3i+1}<u_{a}$ . Sublemma 2.1 is thus proved.

SUBLEMMA 2.2. If $\alpha\in C$ and $t\in T_{a}\cap U_{k}$ , then

$(\exists q\geqq r(t))(\exists y<t)(\forall z\in T)[z>qUyarrow z\in U_{k}]$ .
This follows immediately from the previous lemma, since $\alpha\in C’$ .
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Now let $\alpha\in C$ . For each $t\in T_{\alpha}$ , putting $k(t)=the$ l\’east $k$ such that $t\in U_{k}$ ,

we take $q(t)\in Q$ and $t^{*}\in Tt\alpha$ so that:

$r(t)\leqq q(t)$ & $(\exists y<t)(\forall z)[z>Uyarrow z\in U_{k(\zeta)}]$ ;

$t^{*}<t$ &r(t)-- $r(t^{*})<1/k(t)$ &(Vz) $[z>Ut^{*}arrow z\in U_{k(t)}]$ .

For each $i\in\omega-\{0\}$ , put $W_{i}=\cup\{(t^{*}, t]:t\in T(C \ k(t)=i\}$ . Clearly $W_{\ell}\subseteqq U_{i}$

for $each_{L}i\in\omega-\{0\}$ .
CLAIM. $\mathcal{W}=\{W_{i} : i\in\omega-\{0\}\}$ is point finite.
To the contrary, assume $\bigcap_{i\in I}W_{i}\neq\emptyset$ for some infinite subset $I\subset\omega-\{0\}$ .

Then we can take $z\in T$ and $\{t_{i} : i\in I\}$ such that $z\in(t_{l}^{*}, t_{i}$] & $k(t_{i})=i$ & $t_{i}\in$

$\tau tC$ for all $i\in I$ . We may assume $z\neq t_{i}$ for all $i\in I$ by taking $I$ appropriately.
Let $i$ be the least element of $I$ . Take $j\in I$ so that $r(t_{i})-r(z)>1/$]. Then $r(t_{j})$

$-r(z)<r(t_{j})-r(tf)<1/k(t_{j})=1/J<r(t_{i})-r(z)$ . Hence $r(t\beta)<r(z)<r(t_{j})<r(t_{i})\leqq q(t_{i})$ .
Put $p=q(t_{i})$ for simplicity. Since $t_{i}^{*}<pz<pt_{j}$ , we have $t_{i}^{*p}<t$ . But this means
$t_{j}\in U_{i}$ , because by the dePnition of $t_{i}^{*}(\forall z)[z>Upt_{i}^{*}arrow z\in U_{i}]$ holds. This contra-
dicts that $j$ is the least $k$ satisfying $t_{j}\in U_{k}$ . Claim is thus proved.

Clearly $\mathcal{W}$ covers $\tau tC$ . Thus $\mathcal{W}$ is a point finite refinement of $\mathcal{U}$ which
covers $\tau tC$ .

Now we define $\mathcal{W}’$ a point finite refinement of $\mathcal{U}$ which covers $T-TtC$ .
Let $\langle c_{\alpha} : \alpha<\omega_{1}\rangle$ be the monotone enumeration of $\{0\}\cup C$ . Let $\langle t_{n}^{\alpha} : n\in\omega\rangle$ be an
enumeration of $\{t\in T:c_{\alpha}<ht(t)<c_{\alpha+1}\}$ for $\alpha<\omega_{1}$ . Fix $a<\omega_{1}$ arbitrarily. By
induction on $n$ , take $u_{n}^{\alpha}\in Ttc_{\alpha+1}-Ttc_{\alpha}$ so that: (i) if $t_{n}^{\alpha}\not\in l<U_{n}(u_{i}^{\alpha}, t_{l}^{\alpha}$

], then

$u_{n}^{\alpha}<t_{n}^{\alpha} \ (u_{n}^{a}, t_{n}^{\alpha}]\bigcap_{t<n}\cup(u_{i}^{\alpha}, t_{i}^{a}]=\emptyset\ (u_{n}^{\alpha}, t_{n}^{\alpha}] \subseteqq U_{k}$ , where $k$ is the least $k$ such

that $t_{n}^{\alpha}\in U_{k}$ ; (ii) if $t_{n}^{a} \in\bigcup_{t<n}(u_{t}^{\alpha}, t_{i}^{\alpha}$ ], then $u_{n}^{a}=t_{n}^{\alpha},$
$i$ . $e$ . $(u_{n}^{\alpha}, t_{n}^{\alpha}$ ] $=\emptyset$ . Then $\mathcal{W}’=$

$\{(u_{n}^{a}, t_{n}^{\alpha}]:n\in\omega, a<\omega_{1}\}$ is clearly a point finite open refinement of $\mathcal{U}$ and covers
$T-TtC$ .

Now $\mathcal{W}\cup \mathcal{W}’\cup\{T_{0}\}$ is a point finite open refinement of $\mathcal{U}$ which covers
whole $T$ . Lemma 2 is thus proved. The proof of Theorem 4 is complete.

REMARK. An R-embeddable, not perfect, cmc tree can not be almost Souslin
by Theorem 3. We can however obtain an R-embeddable, not perfect, cmc tree
which is almost an almost Souslin tree in the sense that there is an antichain
$A$ such that whenever $X$ is an antichain, {ht $(x):x\in X-A$} is not stationary.
Such a tree can be obtained by modifying slightly the definition of $t(x, q)$ in
the proof of Theorem 4 and putting $A=\overline{U}-U$ .
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